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Summary

The chromatic polynomial of a graph G is a univariate polynomial whose evalu-

ation at any positive integer q enumerates the proper q-colourings of G. It was

introduced in connection with the famous four colour theorem but has recently

found other applications in the field of statistical physics. In this thesis we study

the real roots of the chromatic polynomial, termed chromatic roots, and focus

on how certain properties of a graph affect the location of its chromatic roots.

Firstly, we investigate how the presence of a certain spanning tree in a graph

affects its chromatic roots. In particular we prove a tight lower bound on the

smallest non-trivial chromatic root of a graph admitting a spanning tree with at

most three leaves. Here, non-trivial means different from 0 or 1. This extends

a theorem of Thomassen on graphs with Hamiltonian paths. We also prove

similar lower bounds on the chromatic roots of certain minor-closed families of

graphs.

Later, we study the Tutte polynomial of a graph, which contains the chromatic

polynomial as a specialisation. We discuss a technique of Thomassen using

which it is possible to deduce that the roots of the chromatic polynomial are

dense in certain intervals. We extend Thomassen’s technique to the Tutte poly-

nomial and as a consequence, deduce a density result for roots of the Tutte
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polynomial. This partially answers a conjecture of Jackson and Sokal.

Finally, we refocus our attention on the chromatic polynomial and investigate

the density of chromatic roots of several graph families. In particular, we show

that the chromatic roots of planar graphs are dense in the interval (3, 4), except

for a small interval around τ + 2 ≈ 3.618, where τ denotes the golden ratio.

We also investigate the chromatic roots of related minor-closed classes of graphs

and bipartite graphs.



Danish Summary

Det kromatiske polynomium af en graf G er et polynomium, hvis evaluering i

ethvert positivt heltal q tæller antallet af q-farvninger af G. Det blev indført

i forbindelse med det berømte Fire-Farve-Problem, men har for nylig fundet

andre anvendelser inden for statistisk fysik. I denne afhandling undersøger vi

de reelle rødder af det kromatiske polynomium, kaldet kromatiske rødder, og

fokuserer på, hvordan visse grafegenskaber påvirker placeringen af disse rødder.

Først undersøger vi hvordan tilstedeværelsen af et vis udspændende træ i en

graf påvirker dets kromatiske rødder. Nærmere bestemt vi bevise en skarp ned-

re grænse for den mindste ikke-trivielle kromatiske rod af en graf med et ud-

spændende træ med højst tre blade. Her betyder ikke-triviel forskellig fra 0 og

1. Dette udvider en sætning af Thomassen om grafer med Hamilton-veje. Vi

beviser også lignende nedre grænser for de kromatiske rødder af visse familier

af grafer som er lukkede under minor-operationer.

Senere studerer vi Tutte-polynomiet af en graf, der indeholder det kromatiske

polynomium som en specialisering. Vi diskuterer en teknik af Thomassen som

gør det muligt at udlede at rødderne af det kromatiske polynomium er tætte

i bestemte intervaller. Vi udvider Thomassens teknik til Tutte-polynomiet og

fra dette udleder vi et densitet-resultat for rødderne af Tutte-polynomiet. Dette
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besvarer delvist en formodning af Jackson og Sokal.

Endelig koncentrerer vi os om det kromatiske polynomium og undersøger tæthe-

den af kromatiske rødder af nogle familier af grafer. Nærmere bestemt viser vi at

de kromatiske rødder af plane grafer er tætte i intervallet (3, 4) med undtagelse

af et lille interval omkring τ + 2 ≈ 3, 618, hvor τ betegner det gyldne snit. Vi

undersøger også de kromatiske rødder relateret til todelte grafer og til familier

af grafer som er lukkede under minor-operationer.
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Chapter 1

Introduction

In this chapter we introduce the main object of study of this thesis, the chromatic

polynomial, and mention some important existing results. For the reader’s con-

venience, we also include an overview of the results contained in the subsequent

chapters.

1.1 Preliminaries

This thesis lies within the subject of graph theory, a branch of discrete math-

ematics. For general notation and terminology we refer the reader to [Die16].

However, we detail some of the most important concepts below.

A graph G is an ordered pair (V,E), where V is set whose elements are called

vertices, and E is a set of unordered 2-tuples of elements from V . The elements

of E are called edges. For brevity we always write uv in place of (u, v). In



2 Introduction

this thesis, we only consider finite graphs, that is, where |V (G)| is finite. A

graph is said to be simple if it contains no loops: edges of the form (u, u) for

u ∈ V (G). A multigraph is a generalisation of a graph where E(G) is allowed

to be a multiset. We will always assume that the edge and vertex sets of a

multigraph are finite. In this thesis we only deal with multigraphs in Chapter 5.

Thus, for simplicity, we almost always use the term graph to mean both graph

and multigraph, and indicate where multigraphs are allowed by a remark. For

example, all remaining definitions in this section are valid for multigraphs.

A subgraph H of a graph G is a graph such that V (H) ⊆ V (G) and E(H) ⊆
E(G). If A ⊆ V (G), then G[A] denotes the induced subgraph of G where

V (G[A]) = A, and E(G[A]) = {uv ∈ E(G) : u, v ∈ A}. A sequence of distinct

vertices u1, . . . , ur ∈ V (G) is called a path if uiui+1 ∈ E(G) for each i ∈
{1, . . . , r− 1}. If u, v ∈ V (G), then a path from u to v is a path u1, . . . , ur such

that u1 = u and ur = v. Similarly the sequence of vertices u1, . . . , ur is called

a cycle if r > 2, u1ur ∈ E(G) and uiui+1 ∈ E(G) for i ∈ {1, . . . , r − 1}. We

often identify a path or cycle in a graph G with the subgraph of G consisting of

the vertices and edges of that path or cycle. A path or cycle is Hamiltonian

if it contains all vertices of the graph. A graph is said to be Hamiltonian if it

contains a Hamiltonian cycle.

A graph G is said to be connected if for every pair of vertices u, v ∈ V (G), there

exists a path in G from u to v. Otherwise G is disconnected. A component

of G is a maximally connected subgraph. If S ⊆ V (G), then G − S denotes

the graph obtained from G by deleting all vertices of S and all edges with an

endpoint in S. If S = {u}, then we write G− u for G− S. If G− S has strictly

more components than G, then we say that S is a cut-set. If |S| = 1, then the

unique element of S is called a cut-vertex. If |S| = 2, then we say S is a 2-cut.

A connected graph G is said to be separable if it has a cut-vertex, and non-

separable otherwise. A block of G is a maximal non-separable subgraph of G.

We say that a graph G is 2-connected if for every pair of vertices u, v ∈ V (G),

there exist two paths P1 and P2 from u to v, such that V (P1)∩V (P2) = {u, v}.
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Suppose G is a 2-connected graph and {x, y} is a 2-cut of G. Let C be a

connected component of G− {x, y}, and B = G[V (C) ∪ {x, y}]. We say that B

is an {x, y}-bridge of G. If |V (B)| = 3, then we say B is trivial.

Suppose G is a graph and u, v ∈ V (G). We denote by G+uv the graph formed

from G by adding an edge uv. If uv is an edge of G with multiplicity r, then in

G+uv the edge uv has multiplicity r+1. We let Guv denote the graph formed

from G by identifying the vertices u and v. All edges between u and v in G

become loops in Guv. Multiple edges may also arise for example if there is a

vertex w ∈ V (G) such that wu,wv ∈ E(G). Thus, we have |E(G)| = |E(Guv)|.
We let G/uv denote the simple graph formed from Guv by deleting all loops and

all but one copy of each edge. This operation is referred to as the contraction

of uv. If G1 and G2 are graphs then G1 ∪ G2 denotes the graph with vertex

set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). Similarly, G1 ∩ G2 denotes

the graph with vertex set V (G1) ∩ V (G2) and edge set E(G1) ∩ E(G2).

We let A denote the topological closure of a set A ⊆ Rn. We also let N denote

the set {1, 2, . . . } and N0 be the set N ∪ {0}. Finally, a graph is said to be

planar if it can be embedded on the sphere such that its edges intersect only

at their endpoints.

1.2 Graph Colouring

Many problems in graph theory involve assigning labels to the vertices of a

graph. In graph colouring, we do so under the additional restriction that neigh-

bouring vertices receive different labels.

Definition 1.1 A proper q-colouring of a graph G is a map φ : V (G) →
{1, . . . , q} such that for all vertices u, v ∈ V (G), we have φ(u) 6= φ(v) whenever

uv ∈ E(G).
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We say that a graph G is q-colourable if there exists a proper q-colouring of

G. Since we shall always deal with this type of colouring, we will drop the

word proper in what follows. The smallest natural number q such that G has a

q-colouring is called the chromatic number of G and is denoted by χ(G).

The study of graph colouring began with the four colour conjecture which seems

to have been posed by Guthrie around 1852. The conjecture, which says that

every planar graph is 4-colourable, was finally proved in 1976 by Appel and

Haken.

1.3 The Chromatic Polynomial

The chromatic polynomial P (G, q) of a graph G is a univariate polynomial

which contains all the quantitative information about the colourings of G. It

was introduced by Birkhoff [Bir12] in 1912 for planar graphs and extended to

all graphs by Whitney [Whi32a, Whi32b] in 1932. The initial hope was that its

study might lead to an analytic proof of the four colour theorem, but this has

not yet been realised.

Perhaps most intuitively, one may derive the chromatic polynomial as follows.

For a graphG, first define P (G, q) to be the function of the non-negative integers,

such that for q ∈ N0, the number of proper q-colourings of G is precisely P (G, q).

Next, note that for every q ∈ N0 and for every pair of non-adjacent vertices

x, y ∈ V (G), this function satisfies the equality

P (G, q) = P (G+ xy, q) + P (G/xy, q), (1.1)

because the q-colourings of G come in one of two types: those that assign

different colours to x and y, and those that assign the same colours to x and y.

These correspond precisely to the q-colourings of G+xy and G/xy respectively.
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Lemma 1.2 For a graph G, the function P (G, q) is a polynomial in q.

Sketch of Proof. We proceed by induction, firstly on the number of vertices

n and secondly on the number of missing edges m(G) =
(
n
2

)
− |E(G)|. If n = 1

or m(G) = 0, then G is a clique on n vertices, and a simple counting argument

shows that P (G, q) = q(q−1)(q−2) · · · (q−n+1). This is a polynomial in q, so

we proceed to the induction step. If m(G) > 0, then we choose a non-adjacent

pair of vertices and apply equality (1.1). By induction, and since the sum of

two polynomials is a polynomial, the result follows. �

One should be careful to check that the derivation of the chromatic polynomial

does not depend on the order of the non-adjacent pairs chosen in the proof

of Lemma 1.2. This is easy to see. Indeed, since the evaluation of P (G, q)

was determined at infinitely many points, there is a unique polynomial which

interpolates them all.

Equality (1.1) is called the addition-contraction identity, and by the same

reasoning as above, can now be seen to hold for all q ∈ R.

Proposition 1.3 If G is a graph and x, y ∈ V (G) such that xy 6∈ E(G),

then P (G, q) = P (G+ xy, q) + P (G/xy, q) for all q ∈ R.

By rearranging and renaming the graphs, we obtain the following deletion-

contraction identity, which will sometimes be more convenient to work with.

Proposition 1.4 If G is a graph and x, y ∈ V (G) such that xy ∈ E(G),

then P (G, q) = P (G− xy, q)− P (G/xy, q) for all q ∈ R.

Propositions 1.3 and 1.4 are central tools in studying all aspects of the chromatic

polynomial. From them, one can easily extract an algorithm for computing the

chromatic polynomial of a given graph, however we mention that since the

chromatic polynomial contains all information about the number of colourings,

it is necessarily #P-hard to compute.
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It is also possible to define the chromatic polynomial explicitly. The following

formula was found independently by Birkhoff [Bir12] and Whitney [Whi32b].

Definition 1.5 The chromatic polynomial P (G, q) of a graph G is the poly-

nomial ∑
A⊆E(G)

(−1)|A|qk(A), (1.2)

where q is an indeterminate and k(A) denotes the number of components of the

graph with vertex set V (G) and edge set A.

We now note two further identities. The first allows us to express the chromatic

polynomial of a graph as the product of the chromatic polynomials of two smaller

graphs.

Proposition 1.6 If G is a graph such that G = G1 ∪G2 and G1 ∩G2 = Kk

for some k ∈ N, then

P (G, q) =
P (G1, q)P (G2, q)

P (Kk, q)
=

P (G1, q)P (G2, q)

q(q − 1) · · · (q − k + 1)
.

If G = G1 ∪G2 and G1 ∩G2 = ∅, then P (G, q) = P (G1, q)P (G2, q).

The second identity regards an operation studied by Whitney [Whi33], and

which we call a Whitney 2-switch. Let G be a graph, {x, y} be a 2-cut of

G, and C be a component of G − {x, y}. Define G′ to be the graph obtained

from the disjoint union of G−C and C by adding for all z ∈ V (C) the edge xz

(respectively yz) if and only if yz (respectively xz) is an edge of G.

Proposition 1.7 If G is a graph and G′ is obtained from G by a Whitney

2-switch, then P (G, q) = P (G′, q).

Sketch of proof. If xy ∈ E(G), then apply Proposition 1.6 to the 2-cut

{x, y} in both G and G′. The resulting expressions for P (G, q) and P (G′, q)

are the same. If xy 6∈ E(G), then first apply Proposition 1.3 to the pair {x, y}
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in both G and G′. Next, apply Proposition 1.6 to G + xy,G/xy,G′ + xy and

G′/xy. Again the resulting expressions for P (G, q) and P (G′, q) are the same.

�

If G′ can be obtained from G by a sequence of Whitney 2-switches, then

P (G, q) = P (G′, q), and we say that G and G′ are Whitney-equivalent.

1.4 Chromatic Roots

Amongst the most basic attributes of a polynomial P are its roots or zeros:

the complex numbers q ∈ C which satisfy P (q) = 0. In this thesis we will be

interested exclusively in real roots of the chromatic polynomial. This motivates

the following definition.

Definition 1.8 Let G be a graph and q ∈ R. We say that q is a chromatic

root of G if P (G, q) = 0.

Since the evaluations of the chromatic polynomial count the number of colour-

ings of a graph, it follows that the numbers 0, 1, . . . , χ(G)− 1 are always chro-

matic roots of a graph G. In particular, 0 and 1 are chromatic roots of any

graph with at least one edge. Thus we say that a chromatic root q is trivial if

q ∈ {0, 1}, and non-trivial otherwise. If G is a class of graphs, then we denote

the set of real chromatic roots of G ∈ G by R(G). Let G be a class of graphs

and I ⊆ R be an interval. We say that I is zero-free for G if R(G) ∩ I = ∅. If

I is zero-free for the class of all graphs, then we simply say that I is zero-free.

Using deletion-contraction and induction, it can easily be shown that the coef-

ficients of the chromatic polynomial have alternating signs, that is P (G, q) =∑n
i=0(−1)iaiqn−i, where ai ∈ N and n = |V (G)|. From this fact it follows easily

that the interval (−∞, 0) is zero-free. Tutte [Tut74] showed that the interval

(0, 1) is also zero-free. Thus, all non-trivial chromatic roots are greater than 1.
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For a class of graphs G, we define ω(G) to be the infimum of the non-trivial

chromatic roots of the graphs G ∈ G. For technical reasons, we define ω(∅) =∞.

In 1993, Jackson proved the following surprising result, which is a central result

in the study of chromatic roots and the starting point of this thesis.

Theorem 1.9 [Jac93] If G denotes the class of all graphs, then ω(G) = 32/27.

Theorem 1.9 incorporates two results. The first is that the interval (1, 32/27)

is zero-free. The second is that 32/27 is a limit point of the set of chromatic

roots of all graphs. The fact that 32/27 cannot itself be a chromatic root follows

from the well known rational root theorem together with the observation that

all chromatic polynomials are monic, that is the coefficient of q|V (G)| is 1.

Later, Thomassen [Tho97] proved a counterpart to Jackson’s result.

Theorem 1.10 [Tho97] The set of chromatic roots of all graphs contains 0, 1

and a dense subset of the interval [32/27,∞).

Theorems 1.9 and 1.10 are the main coordinates from which this thesis begins.

If G denotes the class of all graphs, then taken together, they imply that R(G) =
{0, 1} ∪ [32/27,∞) and that the chromatic roots of all graphs exhibit a striking

dichotomy. However, for restricted classes of graphs our knowledge is much less

complete. The classes of planar graphs and 3-connected graphs are prominent

examples. Indeed, despite the fact that the chromatic polynomial was initially

introduced to study planar graphs, we still do not know the closure of their

chromatic roots. These problems motivate the results of this thesis.

1.5 Outline of the Thesis

This thesis is organised as follows. In Chapter 2 we introduce the class of

generalised triangles and show how these graphs play a key role in determining
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the zero-free intervals for various graph classes.

In Chapter 3 we investigate how the presence of a certain spanning tree in a

graph affects its chromatic roots. In particular we employ the techniques from

Chapter 2 to find a zero-free interval for graphs admitting a spanning tree with

at most three leaves. This extends a theorem of Thomassen on graphs with

Hamiltonian paths.

Chapter 4 concerns the chromatic roots of minor-closed classes of graphs. We

first note a relationship between graph minors and certain classes of generalised

triangles. Using this observation, we derive zero-free intervals for several classes

of graphs characterised by excluding a generalised triangle as a minor.

In Chapter 5 we introduce the Tutte polynomial of a graph, which contains the

chromatic polynomial as a specialisation. We discuss a technique of Thomassen

using which it is possible to deduce that the roots of the chromatic polynomial

are dense in certain intervals. We extend Thomassen’s technique to the Tutte

polynomial and as a consequence, deduce a density result for roots of the Tutte

polynomial. This partially answers a conjecture of Jackson and Sokal.

Finally, in Chapter 6, we refocus our attention on the chromatic polynomial and

apply the methods of Chapter 5 to investigate the density of chromatic roots of

planar graphs. In particular, we show that the chromatic roots of planar graphs

are dense in the interval (3, 4), except for a small interval around τ +2 ≈ 3.618,

where τ denotes the golden ratio. We also investigate the chromatic roots of

related minor-closed classes of graphs and the class of bipartite graphs.
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Chapter 2

Generalised Triangles

2.1 Introduction

Given a class of graphs G, what is the infimum of the non-trivial chromatic roots

of G ∈ G? In this chapter we introduce a method which has been used to attack

this problem. Loosely speaking, the method shows that to determine ω(G) for

certain classes of graphs G, one only needs to investigate a class of graphs K
whose elements are called generalised triangles. More precisely, we show that

ω(G) = ω(G ∩ K) when G satisfies certain conditions. Of course it still remains

to determine ω(G ∩K), but the additional structure of the generalised triangles

makes this a tractable problem, normally solvable by Propositions 1.3, 1.4, 1.6

and some elementary analysis.

The generalised triangles were first introduced by Jackson [Jac93] when proving

Theorem 1.9. To define them, we first define the following operation on a graph

G called double subdivision: choose an edge uv of G and construct a new
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graph from G−uv by adding two new vertices and joining both of them to u and

v. A generalised triangle is either K3 or any graph which can be obtained

from K3 by a sequence of double subdivisions. We denote the class of gener-

alised triangles by K. The following alternative characterisation of generalised

triangles can be found in Dong and Koh [DK10], see also [Jac93].

Proposition 2.1 [DK10] A graph G is a generalised triangle if and only if

it satisfies the following conditions.

(GT1) G is connected and non-separable.

(GT2) G is not 3-connected.

(GT3) For every 2-cut {x, y}, we have xy 6∈ E(G).

(GT4) For every 2-cut {x, y}, G has precisely three {x, y}-bridges.

(GT5) For every 2-cut {x, y}, each {x, y}-bridge is separable.

For a graph G, let ♦(G) denote the graph obtained from G by applying the

double subdivision operation to every edge of G. For k ∈ N, we define ♦k(G) to

be the graph obtained from G by repeating this operation k times recursively.

That is, we define ♦0(G) = G and ♦k(G) = ♦k−1(♦(G)) for k ∈ N. We have

already seen the surprising result of Jackson [Jac93] that the interval (1, 32/27]

is zero-free for the class of all graphs. The following lemma demonstrates im-

mediately that the double subdivision operation is of great importance in this

context.

Lemma 2.2 [JS09] Let G be a non-separable graph with an odd number of

vertices. For every ε > 0, there exists k0 ∈ N such that for every k ≥ k0, the

graph ♦k(G) has a chromatic root in the interval (32/27, 32/27 + ε).

SinceK3 is the smallest non-separable graph with an odd number of vertices, the

class of generalised triangles is in some sense representative of this behaviour.
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In particular it follows from Lemma 2.2 that if G is a class of graphs such that

K ⊆ G, then ω(G) = 32/27.

2.2 The Generalised Triangle Method

In this section we present the generalised triangle method and describe the

classes of graphs to which it can be applied. The method was first used implicity

by Jackson [Jac93] to prove Theorem 1.9. Later it was again used implicitly by

Thomassen [Tho00] who determined ω(H) where H denotes the class of graphs

with a Hamiltonian path. The method was extracted and abstracted by Dong

and Koh [DK08a, DK10], and the remainder of this section can largely be found

in those papers. Nevertheless, we give a slightly different presentation intended

to ease the readers understanding of the subsequent results in this thesis.

We have already seen the results of Tutte and Jackson which imply that ω(G) =
32/27 when G is the class of all graphs. From this fact, it is clear that for any

graph G, the sign of P (G, q) remains constant for q ∈ (1, 32/27]. In fact, it can

be easily determined because of the following theorem.

Theorem 2.3 [Jac93] Let G be a graph with n vertices and c components. If

b denotes the number of blocks of G with at least two vertices, then

(i) (−1)nP (G, q) > 0 for q ∈ (−∞, 0).

(ii) P (G, q) has a zero of multiplicity c at q = 0.

(iii) (−1)n+cP (G, q) > 0 for q ∈ (0, 1).

(iv) P (G, q) has a zero of multiplicity b at q = 1.

(v) (−1)n+c+bP (G, q) > 0 for q ∈ (1, 32/27].

For simplicity, define Q(G, q) = (−1)n+c+bP (G, q), where n, c and b are the
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quantities defined in Theorem 2.3 with respect to the graph G. We briefly note

how Q(G, q) interacts with Propositions 1.3, 1.4 and 1.6.

Proposition 2.4 Let G be a non-separable graph such that G 6= K2, and

let x, y ∈ V (G). Suppose that G/xy has r blocks and that if xy ∈ E(G), then

G− xy has s blocks. For all q ∈ R, we have the following.

(i) If xy 6∈ E(G), then Q(G, q) = Q(G+ xy, q) + (−1)rQ(G/xy, q).

(ii) If xy ∈ E(G), then Q(G, q) = (−1)s+1Q(G− xy, q)− (−1)rQ(G/xy, q).

Proposition 2.5 Let G,G1 and G2 be graphs such that G = G1 ∪ G2. If

G1 ∩G2 = ∅, then Q(G, q) = Q(G1, q)Q(G2, q). Similarly, if G1 ∩G2 = Kk for

some k ∈ {1, 2}, then

Q(G, q) = P (Kk, q)
−1Q(G1, q)Q(G2, q). (2.1)

Proof. Let n, c and b be the number of vertices, components and blocks with

at least two vertices of G. Similarly, for i ∈ {1, 2}, let ni, ci and bi denote

the corresponding quantities for Gi. Clearly, if G1 ∩ G2 = ∅, then n + c + b =∑
i∈{1,2}(ni+ci+bi). Hence, Proposition 1.6 gives Q(G, q) = Q(G1, q)Q(G2, q).

So suppose G1 ∩ G2 = Kk for k ∈ {1, 2}. Note that n1 + n2 = n + k and

c1 + c2 = c+ 1. Finally, if k = 1, then we have b1 + b2 = b. On the other hand,

if k = 2, then b1 + b2 = b+ 1. To see this, let e be the unique edge of G1 ∩G2.

Note that every block of G1 which has at least two vertices and does not contain

e is a block of G. The same statement holds for G2. Finally, the unique blocks

of G1 and G2 which contain e become one in G. This is because if B1 and B2

are non-separable graphs, then the graph formed by identifying an edge of B1

with an edge of B2 is a non-separable graph. It can now be checked that in both

cases, we have n + c + b ≡ ∑i∈{1,2}(ni + ci + bi) mod 2. Hence (2.1) follows

from Proposition 1.6. �

Note that parts (i) - (iv) of Theorem 2.3 imply that if G is a class of graphs,
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then Q(G, q) > 0 for q ∈ (1, ω(G)) and G ∈ G. This stronger “determined

sign” formulation is often easier to work with. As an example, suppose we are

investigating a class of graphs G and we conjecture that there is q0 ∈ (1,∞)

such that the following statement is true:

Q(G, q) > 0 for G ∈ G and q ∈ (1, q0). (2.2)

Suppose that G is a counterexample to our conjecture; in other words G ∈ G
and there is q ∈ (1, q0) such that Q(G, q) ≤ 0. Furthermore, suppose that G is

non-separable and has an edge e such that G−e and G/e are both non-separable

members of G. By Proposition 2.4, we have

Q(G, q) = Q(G− e, q) +Q(G/e, q). (2.3)

SinceG is a smallest counterexample andG−e,G/e ∈ G, we have thatQ(G−e, q)
and Q(G/e, q) are positive. But now by (2.3), Q(G, q) > 0 which is a contradic-

tion. Thus, we deduce that a smallest counterexample to statement (2.2) has

no such edge. Note that using the statement that P (G, q) is non-zero in (1, q0)

would not work here. Indeed, knowing that Q(G− e, q) 6= 0 and Q(G/e, q) 6= 0

is not enough to deduce that Q(G, q) 6= 0 from equation (2.3).

In a similar way, we will use Propositions 2.4 and 2.5 to deduce several structural

properties of a smallest counterexample. This is possible if the class G is closed

under certain operations.

Definition 2.6 [DK08a] A class of graphs G is called splitting-closed if

the following conditions are satisfied for each G ∈ G.

(SC1) All components and blocks of G are elements of G. Furthermore, if {x, y}
is a 2-cut of G and xy ∈ E(G), then G includes each {x, y}-bridge of G.

(SC2) If G is non-separable and {x, y} is a 2-cut of G with xy 6∈ E(G), then G
includes all {x, y}-bridges of G+ xy and all blocks of G/xy.
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Many natural classes of graphs are splitting-closed. For example all minor-closed

classes satisfy the definition, and in Chapter 3 we mention how classes defined by

the existence of a certain spanning tree are also splitting-closed. Furthermore,

for every positive integer k, Dong and Koh [DK08a] showed that the class of

graphs with domination number at most k is splitting-closed.

Lemma 2.7 [DK08a, Lemma 2.2] Let G be a splitting-closed class of graphs.

If G ∈ G is a smallest counterexample to statement (2.2), then G satisfies prop-

erties (GT1) and (GT3) of Proposition 2.1.

Proof of Lemma 2.7. We first show that G is connected. Indeed, otherwise

G is the disjoint union of graphs G1, . . . , Gr and by Proposition 2.5, we have

Q(G, q) =
∏r
i=1Q(Gi, q). Since Q(G, q) ≤ 0, we have Q(Gi, q) ≤ 0 for some

i ∈ {1, . . . , r}. But Gi ∈ G since G satisfies (SC1). This contradicts the fact

that G is a smallest counterexample.

In a similar way, if G is separable, then there exist connected graphs G1, . . . , Gr

such thatG = G1∪· · ·∪Gr andG1∩· · ·∩Gr is a single vertex. By Proposition 2.5,

Q(G, q) = q1−r
∏r
i=1Q(Gi, q). Again, since the left hand side of this equality is

negative, there is some i ∈ {1, . . . , r} such that Q(Gi, q) ≤ 0. However, by (SC1)

we have Gi ∈ G, so Gi is a smaller counterexample than G, a contradiction. This

proves that G satisfies (GT1).

Finally, suppose that {x, y} is a 2-cut of G with {x, y}-bridges B1, . . . , Br. If

xy ∈ E(G), then by Proposition 2.5 we have

Q(G, q) = q1−r(q − 1)1−r
r∏
i=1

Q(Bi, q).

Now, as before, the left hand side of this equality is negative, so there is i ∈
{1, . . . , r} such that Q(Bi, q) ≤ 0. However, by (SC1) we have Bi ∈ G. This

contradicts the fact that G is a smallest counterexample, which shows that G

satisfies (GT3). �
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Lemma 2.8 [DK08a, Lemma 2.3] Let G be a splitting-closed class of graphs.

If G ∈ G is a smallest counterexample to statement (2.2), then G has an odd

number of {x, y}-bridges at each 2-cut {x, y} of G.

Proof. By Lemma 2.7, we have that G satisfies (GT1) and (GT3) of Proposi-

tion 2.1. Thus, G is non-separable and for every 2-cut {x, y}, we have that xy 6∈
E(G). Now suppose for a contradiction that G has {x, y}-bridges B1, . . . , B2r

where r ∈ N. Since G is non-separable, Proposition 2.4 gives

Q(G, q) = Q(G+ xy, q) +Q(G/xy, q). (2.4)

Now apply Proposition 2.5 to each of the terms in (2.4). Note that we have

Q(Bi + xy, q) > 0 and Q(Bi/xy, q) > 0 for each i ∈ {1, . . . , 2r} since G is a

smallest counterexample and G is splitting-closed. Thus, we conclude from (2.4)

that Q(G, q) > 0, a contradiction. �

We say that a class of graphs G is connectivity-reducible if for every 3-

connected graph in G, there exists an edge e ∈ E(G) such that G− e,G/e ∈ G.

Lemma 2.9 If G is connectivity-reducible, then a smallest counterexample to

statement (2.2) satisfies (GT2).

The proof of Lemma 2.9 follows simply by the deletion-contraction identity as

in (2.3). Note that since G is 3-connected, each of the graphs G − e and G/e

will be non-separable. For some classes of graphs, the property in Lemma 2.9

is trivial to verify. Consider for example any minor-closed class of graphs. We

will later show that it is also not difficult to verify when G is defined by the

existence of certain spanning trees. However for some classes of graphs this is a

much more difficult problem. Consider the following conjecture which has been

open for some time.

Conjecture 2.10 [Tho96] If G is a 3-connected Hamiltonian graph, then

there is e ∈ E(G) such that G− e and G/e are both Hamiltonian.
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U

U

V ′

V

Figure 2.1: A bridge-partition (U, V ′).

Aside from being an interesting problem in itself, a positive resolution of Conjec-

ture 2.10 would imply that ω(G) = 2 where G denotes the class of Hamiltonian

graphs, see [Tho96].

Let G be a class of graphs and G ∈ G be non-separable. Let {x, y} be a 2-cut of

G such that xy 6∈ E(G), and let U be a proper subgraph of G consisting of the

union of an odd number of {x, y}-bridges. Possibly U is a single {x, y}-bridge.
Let V denote the union of the other {x, y}-bridges, and let V ′ denote the graph

formed from V by adding a new vertex z and the edges xz and yz, see Figure 2.1.

In this case, we say that (U, V ′) is an {x, y}-bridge-partition. If the relevant

2-cut is obvious, then we will drop the qualifier {x, y}.

Lemma 2.11 [DK08a, Lemma 2.5] Let G be a non-separable graph and {x, y}
be a 2-cut of G with {x, y}-bridges B1, . . . , Br where r is an odd number such

that r > 1. Let (U, V ′) be a bridge-partition of G and suppose that for fixed

q ∈ (1, 2), we have that Q(U, q), Q(V ′, q), Q(Bi + xy, q), and Q(Bi/xy, q) are

positive for i ∈ {1, . . . , r}. If U is non-separable, then Q(G, q) > 0.

Proof. First note that since Q(Bi + xy, q) and Q(Bi/xy, q) are positive for

i ∈ {1, . . . , r}, Proposition 2.5 implies that Q(U + xy, q) > 0, Q(V + xy, q) > 0

and Q(V/xy, q) > 0. Since G and U have an odd number of {x, y}-bridges, it
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follows that V ′ has an odd number of {x, y}-bridges. Thus, Propositions 2.4

and 2.5 give that

Q(V ′, q) = Q(V ′ + xy, q)−Q(V ′/xy, q)

= Q(V + xy, q)(2− q)−Q(V/xy, q)(q − 1). (2.5)

Since Q(V ′, q) > 0 and 1 < q < 2, we have from equation (2.5) that

Q(V + xy, q)

q − 1
>
Q(V/xy, q)

2− q > Q(V/xy, q). (2.6)

Recall that each of Q(U, q), Q(U + xy, q), Q(V + xy, q) and Q(V/xy, q) are

positive. Using Proposition 2.4 on G and inequality (2.6) we have

Q(G, q) = Q(G+ xy, q)−Q(G/xy, q)

=
Q(U + xy, q)Q(V + xy)

q(q − 1)
− Q(U/xy, q)Q(V/xy, q)

q

>
Q(V/xy, q)

q
(Q(U + xy, q)−Q(U/xy, q)) . (2.7)

Note that since U is non-separable, and U/xy has an odd number of blocks,

we have Q(U, q) = Q(U + xy, q) −Q(U/xy, q) by Proposition 2.4. Finally, this

together with (2.7) gives Q(G, q) > q−1Q(V/xy, q)Q(U, q) > 0 as claimed. �

If G is a splitting-closed class of graphs, and G ∈ G is a smallest counterexample

to statement (2.2) under the additional assumption that q0 ∈ (1, 2], then the

technical conditions of Lemma 2.11 are conveniently satisfied.

Lemma 2.12 Let G be a splitting-closed class of graphs, and let G ∈ G be a

smallest counterexample to statement (2.2) where q0 ∈ (1, 2]. If (U, V ′) is a

bridge-partition of G, and U, V ′ ∈ G, then U is separable.

Proof. Since q0 ∈ (1, 2] and G is a smallest counterexample to statement (2.2),

there is q ∈ (1, q0) such that Q(G, q) ≤ 0. In particular, q ∈ (1, 2). Let

B1, . . . , Br be the {x, y}-bridges of G. Since G is splitting-closed, we have by
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Lemma 2.8 that r is odd. Furthermore, since G is a smallest counterexam-

ple and G is splitting-closed, we have that Q(U, q), Q(V ′, q), Q(Bi + xy, q) and

Q(Bi/xy, q) are positive for each i ∈ {1, . . . , r}. Thus, U must be separable.

Otherwise, Lemma 2.11 implies that Q(G, q) > 0, which is a contradiction. �

Let G be a class of graphs. If, for every non-separable graph G ∈ G and every

bridge-partition (U, V ′) of G, the graphs U, V ′ ∈ G, then we say that G is

partition-closed.

Lemma 2.13 Let G be a splitting-closed and partition-closed class of graphs.

If G ∈ G is a smallest counterexample to statement (2.2) where q0 ∈ (1, 2], then

G satisfies properties (GT4) and (GT5) of Proposition 2.1.

Proof. Since G is splitting-closed, Lemma 2.7 implies that G is non-separable.

Now let {x, y} be a 2-cut and let the number of {x, y}-bridges of G be r. By

Lemma 2.8, r is odd, so suppose for a contradiction that r ≥ 5. Let (U, V ′) be

a bridge-partition such that U is the union of three {x, y}-bridges. Since G is

partition-closed, we have that U, V ′ ∈ G. Furthermore, we clearly have that U

is non-separable, which contradicts Lemma 2.12. Thus r = 3 and G satisfies

(GT4). For the same reason, every {x, y}-bridge is separable. �

Theorem 2.14 Let G be a splitting-closed, partition-closed and connectivity-

reducible class of graphs. If ω(G ∩ K) ∈ (1, 2], then ω(G) = ω(G ∩ K).

Proof. Since G ∩ K ⊆ G, we have ω(G) ≤ ω(G ∩ K). Thus, it suffices to

show that Q(G, q) > 0 for G ∈ G and q ∈ (1, ω(G ∩ K)). Let G be a smallest

counterexample to this statement. So, there is q ∈ (1, ω(G ∩ K)) such that

Q(G, q) ≤ 0. Moreover, since ω(G ∩ K) ∈ (1, 2], we have q ∈ (1, 2). Now, since

G is splitting-closed, partition-closed and connectivity-reducible, we deduce by

Lemmas 2.7, 2.9, 2.13, and Proposition 2.1 that G ∈ K, which is a contradiction.

�

It is easy to name a few classes of graphs which are splitting-closed, partition-



2.2 The Generalised Triangle Method 21

closed and connectivity-reducible. For example any minor-closed class of graphs

G satisfies these properties. If G is a class of forests, then R(G) = {0, 1} and

so ω(G) = ∞ and ω(G ∩ K) = ω(∅) = ∞ by definition. On the other hand, if

G is not a class of forests, then K3 ∈ G. Since 2 is a chromatic root of K3, we

deduce that ω(G ∩ K) ∈ (1, 2]. These observations and Theorem 2.14 imply the

following, which was first noticed by Dong and Koh [DK10].

Theorem 2.15 [DK10] If G is a minor-closed class of graphs, then ω(G) =
ω(G ∩ K).

In practice we will deal with classes of graphs G which are not so well behaved.

However, it often turns out that by a variation of the techniques above, or by an

ad-hoc argument, one can deduce that it suffices just to consider the generalised

triangles in G.
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Chapter 3

Spanning Trees

3.1 Introduction

In this section we consider the chromatic roots of graphs which have a spanning

tree with certain properties. This study was initiated by Thomassen [Tho00]

who provided a new link between Hamiltonian paths and colourings. Thomassen

showed that the zero-free interval of Jackson can be extended for graphs with a

Hamiltonian path.

Theorem 3.1 [Tho00] If H denotes the class of graphs with a Hamiltonian

path, then ω(H) = t2, where t2 ≈ 1.296 is the unique real root of the polynomial

(q − 2)3 + 4(q − 1)2.

It is natural to ask if an analogous result holds for other spanning trees, and

there are a number of possible generalisations of the class H. Define a k-leaf

spanning tree of a graph to be a spanning tree with at most k leaves. We

denote the class of graphs which admit a k-leaf spanning tree by Gk. Thus,
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Theorem 3.1 shows that the interval (1, t2) is zero-free for the class G2. The

main result of this section will be to prove the following analogous result for the

class G3.

Theorem 3.2 ω(G3) = t3, where t3 ≈ 1.290 is the smallest real root of the

polynomial (q − 2)6 + 4(q − 1)2(q − 2)3 − (q − 1)4.

A natural extension of this result would be to find εk > 0 so that (1, 32/27+εk)

is zero-free for the class Gk, k ≥ 4. However, because of Theorem 1.9, it must be

that εk → 0 as k → ∞. Nevertheless, we conjecture that ω(Gk) is never equal

to 32/27.

Conjecture 3.3 For every k ≥ 2, we have ω(Gk) > 32/27.

A more restricted generalisation to consider is the class of graphs having a

spanning tree of maximum degree 3 and at most ` leaves. Here the possible

implications are much more interesting since it is not clear if ε` → 0 as `→∞.

Theorems 3.1 and 3.2 solve the cases ` = 2 and ` = 3 respectively, which leads

us to conjecture the following.

Conjecture 3.4 If G denotes the class of graphs with a spanning tree of

maximum degree 3, then ω(G) > 32/27.

An affirmative answer to Conjecture 3.4 would have interesting implications.

Indeed, consider the following conjecture of Jackson.

Conjecture 3.5 [Jac03] The interval (1, α) is zero-free for the class of 3-

connected graphs, where α ≈ 1.781 is a chromatic root of K3,4.

Whilst there has been no progress on this conjecture, Dong and Jackson [DJ11]

proved that there is a constant t ≈ 1.204, such that the interval (1, t) is zero-

free for 3-connected planar graphs. For context, the Herschel graph is the

3-connected planar graph with the smallest known non-trivial chromatic root

at approximately 1.840. Barnette [Bar66] proved that every 3-connected planar
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graph has a spanning tree of maximum degree 3. Thus, an affirmative answer

to Conjecture 3.4 would immediately imply a zero-free interval for the class of

3-connected planar graphs, and this interval could perhaps be larger than that

found by Dong and Jackson.

One should obviously check that the graphs in Lemma 2.2 do not give a coun-

terexample to Conjecture 3.4. Indeed they do not, as the following lemma

shows.

Proposition 3.6 For every graph G, only finitely many of the graphs ♦k(G),

k ∈ N have a spanning tree of maximum degree 3.

Proof. First note that for any graph with a spanning tree of maximum degree

3, deleting r vertices yields a graph with at most 2r + 1 components.

Now suppose that G has n vertices and m edges. Clearly we may suppose

that G is connected. A simple calculation shows that for k ∈ N0, k ≥ 2, the

graph ♦k(G) has 2m · 4k−1 vertices of degree 2, and r = n + 2
3m(4k−1 − 1)

vertices of degree greater than 2. Furthermore, for k ≥ 2, the vertices of degree

2 form an independent set. Thus, deleting all r vertices of degree at least 3

yields precisely 2m · 4k−1 components. Provided k is large enough, this exceeds

2r + 1 = 2n+ 4
3m(4k−1 − 1) + 1, which contradicts the above assertion. �

One can similarly check that the graphs in Lemma 2.2 do not constitute a

counterexample to Conjecture 3.3. Indeed, in this case the number of leaves is

bounded, so the number of vertices of degree more than 2 is also bounded. It

follows that deleting r vertices can create at most O(r) components, which can

be used to deduce a contradiction in the same way.

Lemma 2.2 and the following proposition show that the zero-free interval for

all graphs cannot be extended for graphs admitting spanning trees with an

unbounded number of vertices of degree at least 4.
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u

v

u
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Figure 3.1: Construction of a spanning tree of maximum degree 4.

Proposition 3.7 If G is a graph such that ♦(G) has a spanning tree of

maximum degree 4, then for every k ∈ N, the graph ♦k(G) also has a spanning

tree of maximum degree 4.

Sketch of Proof. Let k ∈ N and let Tk be a spanning tree of ♦k(G) with

maximum degree 4. Note that the edges of ♦k(G) decompose naturally into a

collection of 4-cycles. Furthermore, in each 4-cycle, at most three of the edges

are in Tk, and up to symmetry, there are only 3 possible configurations. To

construct a spanning tree Tk+1 of maximum degree 4 in ♦k+1(G), we use the

constructions indicated by Figure 3.1 on each 4-cycle. Note that in Tk+1, the

degrees of the vertices u and v are the same as in Tk. �
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3.2 Hamiltonian Paths

To prove Theorem 3.1, Thomassen effectively employed the generalised triangle

method discussed in Section 2.2. He first showed that if H denotes the class

of graphs with Hamiltonian paths, then H is splitting-closed and connectivity-

reducible. Furthermore, he noted that if G is a graph with a Hamiltonian path,

then G has at most three bridges at every 2-cut. These facts together with

Lemmas 2.7 and 2.9 imply that a smallest counterexample to Theorem 3.1 sat-

isfies properties (GT1), (GT2), (GT3) and (GT4) of Proposition 2.1. Finally,

Thomassen employed an ad-hoc argument to show that in a smallest counterex-

ample every bridge is separable. Consequently, we have the following.

Lemma 3.8 [Tho00] ω(H) = ω(H ∩K).

We now describe the structure of the graphs in H∩K. To this end, for each nat-

ural number ` ≥ 1, let H` denote the graph obtained from a path x1x2 . . . x2`+3

by adding the edges x1x4, x2`x2`+3, and all edges xixi+4 for i ∈ {2, 4, . . . , 2`−2}.
Figure 3.2 shows the graph H3. Also let H0 be a copy of K3 with vertex set

{x1, x2, x3}, and let H′ = {H` : ` ∈ N0}.

For ` ≥ 0, define F` to be the graph H` − x1x2. If G is a graph, {x, y} is a

2-cut of G, and B is an {x, y}-bridge, then we say that B is a copy of F (x, y, `)

to indicate that B is isomorphic to F`, where x is identified with x1, and y is

identified with x2 in G.

In what follows, we often require the following simple proposition.

Proposition 3.9 Let G be a non-separable graph, and {x, y} be a 2-cut of

G. Let B be an {x, y}-bridge of G and v be a cut-vertex of B. Suppose that

B = Bx ∪ By where Bx and By are connected graphs such that x ∈ V (Bx),

y ∈ V (By), and Bx ∩By = v. If {x, v} is not a 2-cut of G, then Bx = xv.
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Figure 3.2: The graph H3.

Proof. Note that Bx clearly contains a path from x to v. However, if |V (Bx)| ≥
3, then {x, v} is a 2-cut of G. Thus Bx is the edge xv as claimed. �

The following lemma characterises the bridges of a generalised triangle under

certain conditions. It is implicit in Thomassen [Tho00].

Lemma 3.10 Let G be a generalised triangle, {x, y} be a 2-cut of G, and B

be an {x, y}-bridge of G.

(a) If B contains a Hamiltonian path P starting at x and ending at y, then B

is a copy of F (x, y, 0), i.e. B is a path of length 2.

(b) If B contains a path P starting at y and covering all vertices of B except

for x, then B is a copy of F (x, y, `) for some ` ∈ N0.

Proof.

(a) Since G is a generalised triangle, B is separable and has a cut-vertex v. The

Hamiltonian path P of B shows that neither of G−{x, v} and G−{y, v} can
have more than two components. Thus, since G is a generalised triangle,

neither {x, v} nor {y, v} is a 2-cut of G. It follows by Proposition 3.9 that

|V (B)| = 3 and xv, yv ∈ E(G). Since G is a generalised triangle, xy 6∈ E(G),

and so B is a path of length 2 as required.

(b) We proceed by induction on |V (B)|. If |V (B)| = 3, then B is a copy of

F (x, y, 0), so we may assume that |V (B)| ≥ 4 and the result is true for all

bridges on fewer vertices. Since G is a generalised triangle, B has a cut-

vertex v. Also, |V (B)| ≥ 4 implies that at least one of {x, v} or {y, v} is
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a 2-cut of G. If {x, v} is a 2-cut, then G has three {x, v}-bridges, two of

which lie inside B. But then P cannot cover all vertices of B− x. Thus, by
Proposition 3.9, the vertex v is the unique neighbour of x in B, and {y, v}
is a 2-cut of G with precisely three {y, v}-bridges, two of which, say B1 and

B2, are contained in B. Suppose without loss of generality that B1 contains

the subpath of P from y to v. Now, P [V (B1)] is a Hamiltonian path of B1

and so by part (a), B1 is a copy of F (y, v, 0). On the other hand, P [V (B2)]

is a path in B2, starting at v and covering all vertices of B2 except for y.

By induction, B2 is a copy of F (y, v, ` − 1) for some ` ∈ N. It can now be

checked that B is a copy of F (x, y, `).
�

If G is a generalised triangle with a Hamiltonian path, then at any 2-cut, one

of the bridges must satisfy Lemma 3.10(a), and the other two must satisfy

Lemma 3.10(b) up to changing the roles of the vertices x and y. Thus, we

deduce the following easy corollary of Lemma 3.10.

Corollary 3.11 H′ = H ∩K.

The final element in the proof of Theorem 3.1 is to show that t2 is the infimum

of R(H′) \ {0, 1}, where t2 is the unique real root of the polynomial (q − 2)3 +

4(q − 1)2. To do this, Thomassen [Tho00] showed that for fixed q ∈ (1, t2], the

value of the chromatic polynomial of H` at q can be expressed as

P (H`, q) = Aα` +Bβ`. (3.1)

where α and β are solutions, depending on q, of the auxiliary polynomial x2 =

(q−2)2x+(q−1)2(q−2), which is derived from a recurrence relation as we shall

later show. The quantities A and B are constants depending on q. Alternatively

A,B, α and β are defined by the following relations [Tho00].

δ =
√
(q − 2)4 + 4(q − 1)2(q − 2), (3.2)

α =
1

2
[(q − 2)2 + δ], β =

1

2
[(q − 2)2 − δ], (3.3)
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A+B = q(q − 1)(q − 2), (3.4)

Aα+Bβ = q(q − 1)[(q − 2)3 + (q − 1)2]. (3.5)

Note that δ > 0 and so 0 < β < α < 1 for q ∈ (1, t2). Multiplying (3.4) by β,

subtracting it from (3.5), and noting that α− β = δ, we have more explicitly

A =
1

δ
q(q − 1)[(q − 2)α+ (q − 1)2], and (3.6)

B = q(q − 1)(q − 2)−A.

Since α > 1
2 (q− 2)2, it is easily checked that the contents of the square bracket

in (3.6) is negative. Thus, it may be seen that 0 < B < −A for q ∈ (1, t2).

Finally, using a computer algebra package such as Maple, it may be checked

that −A < 1 for q ∈ (1, t3]. These inequalities will be used in the proof of

Theorem 3.2.

3.3 3-Leaf Spanning Trees

3.3.1 Generalised Triangles with 3-Leaf Spanning Trees

In this section we investigate the class of generalised triangles with 3-leaf span-

ning trees and analyse their chromatic roots. For i, j, k ∈ N0, define Gi,j,k to

be the graph composed of two vertices x and y, and three {x, y}-bridges which
are copies of F (x, y, i), F (x, y, j) and F (y, x, k) respectively. Figure 3.3 shows

the graph G4,2,3. We let G′ = {Gi,j,k : i, j, k ∈ N0}. Note that for i, k ∈ N0, the

graph Gi,0,k is isomorphic to Hi+k+2.

It is easy to see that each Gi,j,k is a generalised triangle and contains a 3-

leaf spanning tree. In fact, G′ is a complete characterisation of G3 ∩ K up to

Whitney-equivalence.
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x

y

F (y, x, 3)

F (x, y, 2)F (x, y, 4)

Figure 3.3: The graph G4,2,3 and a 3-leaf spanning tree thereof.

Lemma 3.12 If G is a generalised triangle with a 3-leaf spanning tree, then

G is Whitney-equivalent to Gi,j,k for some i, j, k ∈ N0.

Proof. If G contains a Hamiltonian path, then by Corollary 3.11, we have that

G ∈ H′. Thus, G is isomorphic to Gi,0,k for some i, k ∈ N0.

Now we may assume that G has a 3-leaf spanning tree T . Let v be the vertex

of degree 3 in T . Since G is not 3-connected, there is a 2-cut of G. Consider

a 2-cut S = {x, y} so that the smallest S-bridge Bv containing v has as few

vertices as possible. If v 6∈ S, then since Bv is separable it has a cut-vertex u.

Also, since v has degree 3 in T , we have |V (Bv)| ≥ 4. Thus, one of {x, u} or

{y, u} contradicts the minimality of S, so we may assume that v ∈ S. We now

find a 2-cut S such that v ∈ S, and the three neighbours of v in T , denoted

v1, v2 and v3, lie in three different S-bridges. If this is not already the case, then

choose a 2-cut S such that v ∈ S, and the S-bridge containing two of v1, v2, v3
is as small as possible. By a similar argument we find a 2-cut with the desired

property.

Now fix the 2-cut {x, y} so that y has degree 3 in T . For i ∈ {1, 2, 3}, let Bi
be an {x, y}-bridge, and yi ∈ V (Bi) be the neighbours of y in T . Finally for

i ∈ {1, 2, 3} we let Pi be the unique path in T from y to a leaf of T , which
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Figure 3.4: Cases 1 and 2 in the proof of Lemma 3.12.

contains the vertex yi. Suppose without loss of generality that x lies on P2. We

distinguish two cases.

Case 1. V (P2) = V (B2).

In this case, P1 and P3 are paths which start at y, and cover all vertices of B1−x
and B3 − x respectively. By Lemma 3.10(b), B1 is a copy of F (x, y, i) and B3

is a copy of F (x, y, k) for some i, k ∈ N0. If P2 ends at x then Lemma 3.10(a)

implies B2 is a copy of F (x, y, 0) and by performing a Whitney 2-switch of B3

about {x, y} we are done. So suppose P2 ends at some vertex z other than x,

see Figure 3.4. Since B2 is separable, it has a cut-vertex v, and since P contains

a subpath connecting y and x, it follows that v lies between y and x on P .

Now let Q1, Q2 and Q3 be the subpaths of P2 from y to v, v to x, and x to

z respectively. Now G − {y, v} contains at most two components, and so by

Proposition 3.9, Q1 is the edge yv. Since |V (B)| ≥ 4, we have that {x, v} is

a 2-cut with precisely three {x, v}-bridges, two of which are contained in B2.

Let C2 and C3 be the {x, v}-bridges containing Q2 and Q3 respectively. Q2

is a Hamiltonian path of C2 from v to x. Thus, by Lemma 3.10(a), C2 is a

copy of F (x, v, 0). Similarly, C3 contains a path starting at x and covering all

vertices of C3 except for v. By Lemma 3.10(b) it follows that B3 is a copy of

F (v, x, j − 1) for some j ∈ N0. Now performing a Whitney 2-switch of C3 with

respect to {x, v} gives a new graph, where the {x, y}-bridge corresponding to B2
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is F (x, y, j). Finally, performing a Whitney 2-switch of B3 about {x, y} gives a
graph isomorphic to Gi,j,k as required.

Case 2. V (P2) ⊃ V (B2).

Suppose without loss of generality that P2 also contains vertices of B3 − x− y.
As before, Lemma 3.10(b) implies that B1 is a copy of F (x, y, i − 1) for some

i ∈ N0, and Lemma 3.10(a) implies that B2 is a copy of F (x, y, 0). Now T [V (B3)]

consists of two disjoint paths Q1 and Q2, starting at x and y respectively, see

Figure 3.4. Since B3 is separable, it has a cut-vertex v. We may assume that

v ∈ V (Q1). If this is not the case, then we perform a Whitney 2-switch of B3

with respect to {x, y} and proceed similarly. Both Q1 and Q2 contain at least

one edge, thus |V (B3)| ≥ 4 and at least one of {x, v} and {y, v} is a 2-cut of

G. Suppose for a contradiction that {x, v} is a 2-cut. Since G is a generalised

triangle, G has precisely three {x, v}-bridges, two of which are contained in

B3. Since v ∈ V (Q1), all vertices of these two bridges must be covered by Q1.

Now, if {v, y} is also a 2-cut, then similarly, there must be two {v, y}-bridges
contained in B3. But, since v ∈ V (Q1), it is not possible that Q2 can cover

all of these vertices. Thus, we deduce that {v, y} is not a 2-cut, and hence by

Proposition 3.9, v is the unique neighbour of y in B3. Because v ∈ V (Q1), this

means that Q2 is a single vertex, which contradicts the fact that Q2 contains at

least one edge.

We may now assume that v is the unique neighbour of x in B3, and that {y, v}
is a 2-cut of G. As before, G has precisely three {v, y}-bridges, two of which are

contained in B3. Denote the two {v, y}-bridges which are contained in B3 by

C1 and C2, where Q2 is contained in C2, see Figure 3.4. It is now easy to see

that Q2 is a path of C2 starting at y and containing all vertices of C2 except for

v. Similarly, Q1[V (C1)] is a path of C1 starting at v and containing all vertices

of C1 except for y. Thus, by Lemma 3.10(b), C1 is a copy of F (y, v, k) and C2

is a copy of F (v, y, j) for some j, k ∈ N0.

Finally, consider the 2-cut {v, y} of G. It has three bridges two of which are
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C1 and C2 found in B3. The third {v, y}-bridge, denoted C3, is composed of

the edge xv and the two {x, y}-bridges F (x, y, 0) and F (x, y, i − 1) of G. By

performing a Whitney 2-switch of F (x, y, i−1) at {x, y}, we get a new graph G′,

where the {v, y}-bridge of G′ corresponding to C3 is precisely F (v, y, i). Now

G′ is isomorphic to Gi,j,k as required. �

By the remark following Proposition 1.7, Lemma 3.12 implies that {P (G, q) :

G ∈ G3 ∩ K} = {P (G, q) : G ∈ G′}. This implies the following.

Corollary 3.13 ω(G3 ∩ K) = ω(G′).

We now determine the behaviour of the chromatic roots of each G ∈ G′.

Lemma 3.14 ω(G′) = t3, where t3 ≈ 1.290 is the smallest real root of the

polynomial (q − 2)6 + 4(q − 1)2(q − 2)3 − (q − 1)4.

Proof. Recall that t2 is the real number defined in Theorem 3.1 and H′ =
{H` : ` ∈ N0} is the class of graphs defined in Section 3.2. As mentioned, it

is easily seen that Gi,0,k = Hi+k+2. If j = 1, then by Proposition 1.4 and 1.6

applied to y and the cut-vertex v of F (x, y, j), we find that

P (Gi,1,k, q) = P (Gi,1,k + vy, q) + P (Gi,1,k/vy, q)

= (q − 2)2P (Hi+k+2, q) +
(q − 1)

q
P (Hi+1, q)P (Hk, q).

Also, if j ≥ 2, then using Proposition 1.4 and 1.6 on the vertices x2j and x2j+2

of F (x, y, j) gives the recurrence

P (Gi,j,k, q) = P (Gi,j,k + x2jx2j+2, q) + P (Gi,j,k/x2jx2j+2, q)

= (q − 2)2P (Gi,j−1,k, q) + (q − 1)2(q − 2)P (Gi,j−2,k, q).

Solving this second order recurrence explicitly for fixed q ∈ (1, t2] gives a solution

of the form P (Gi,j,k, q) = Cαj +Dβj , where C and D are constants depending

on i, k and q. Recall that α and β are defined in (3.3). The initial conditions
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corresponding to j = 0 and j = 1 are

C +D = P (Hi+k+2, q), and (3.7)

Cα+Dβ = (q − 2)2P (Hi+k+2, q) +
q − 1

q
P (Hi+1, q)P (Hk, q). (3.8)

Multiplying (3.7) by β, and subtracting the resulting equation from (3.8) gives

C(α− β) = [(q − 2)2 − β]P (Hi+k+2, q) +
q − 1

q
P (Hi+1, q)P (Hk, q)

= αP (Hi+k+2, q) +
q − 1

q
P (Hi+1, q)P (Hk, q). (3.9)

For convenience let us write γ = γ(q) = αq/(q− 1). Note that for q ∈ (1, t2], we

have γ(q) > 0. Now let t3 be the smallest real root of the polynomial

(q − 2)6 + 4(q − 1)2(q − 2)3 − (q − 1)4. (3.10)

Claim 1 For q ∈ (1, t2], we have γβ < −A. Furthermore, if q ∈ (1, t2], then

−A ≤ γα if and only if q ∈ (1, t3].

The first inequality follows since γβ = −q(q − 1)(q − 2) and so by (3.4), we

have −A − γβ = B > 0. The second assertion follows since by (3.6) and the

subsequent inequalities, we have

−A ≤ γα

⇐⇒ − 1
δ q(q − 1)[(q − 2)α+ (q − 1)2] ≤ q

q−1 (q − 2)[(q − 2)α+ (q − 1)2]

⇐⇒ −(q − 1)2 ≥ (q − 2)δ

⇐⇒ (q − 1)4 ≤ (q − 2)2δ2.

Using (3.2), the final inequality is seen to be satisfied precisely when the poly-

nomial in (3.10) is non-negative. For q ∈ (1, t2], this is the case if and only if

q ∈ (1, t3], which completes the proof of Claim 1.

Since each H ∈ H′ is non-separable and has an odd number of vertices, Theo-

rems 2.3(v) and 3.1 imply that P (H, q) < 0 for q ∈ (1, t2]. It now follows that
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(3.9), and hence C, are negative if

γ|P (Hi+k+2, q)| > P (Hi+1, q)P (Hk, q).

Recall that 0 < β < α < 1 and 0 < B < −A < 1 for q ∈ (1, t3]. Together

with (3.1) and Claim 1, we have that for q ∈ (1, t3],

P (Hi+1, q)P (Hk, q) = (Aαi+1 +Bβi+1)(Aαk +Bβk)

= A2αi+k+1 +ABαi+1βk +ABαkβi+1 +B2βi+k+1

< −Aγαi+k+2 −B2βi+k+1 −Bγβi+k+2 +B2βi+k+1

= γ(−Aαi+k+2 −Bβi+k+2) = γ|P (Hi+k+2, q)|.

Since C < 0, equality (3.7) implies that D < −C. Finally, since α > β, we may

conclude that P (Gi,j,k, q) = Cαj +Dβj < 0 for q ∈ (1, t3].

Now suppose that q ∈ (t3, t2) is fixed. By Claim 1 we have −A > γα. Setting

i+ 1 = k for simplicity we see that

P (Hk, q)
2

γ|P (H2k+1, q)|
=
A2α2k + 2ABαkβk +B2β2k

γ(−Aα2k+1 −Bβ2k+1)
−→ A2

−γAα =
−A
γα

> 1,

as k → ∞. Thus, for large enough i and k, we have γ|P (Hi+k+2, q)| <
P (Hi+1, q)P (Hk, q). Hence C is positive. Though (3.7) implies that D is neg-

ative, since α > β it follows that for large enough j, we have P (Gi,j,k, q) > 0.

Since we have proven that P (Gi,j,k, q) < 0 on (1, t3], we may conclude by con-

tinuity that P (Gi,j,k, q) has a root in the interval (t3, q). �

3.3.2 Reduction to Generalised Triangles

In this section we use the generalised triangle method presented in Section 2.2

to prove the following lemma. Together with Corollary 3.13 and Lemma 3.14,

this completes the proof of Theorem 3.2.
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Lemma 3.15 ω(G3) = ω(G3 ∩ K).

We first note a number of properties of the class Gk and the graphs therein.

Lemma 3.16 For all k ≥ 2, the class of graphs Gk is splitting-closed.

Proof. IfG is a graph with a k-leaf spanning tree T , then clearlyG is connected

and for every block B of G, the graph T [V (B)] is a k-leaf spanning tree of B.

Now let {x, y} be a 2-cut of G, let B be an {x, y}-bridge, and let T ′ = T [V (B)].

If T ′ is disconnected, then T ′+xy and T ′/xy are k-leaf spanning trees of B+xy

and B/xy respectively. Similarly, if T ′ is connected, then T ′ is clearly a k-leaf

spanning tree of B and B + xy, so it just remains to consider B/xy.

Note first that since T ′ is connected, there is a leaf vertex u of T in an {x, y}-
bridge distinct from B. Thus, the graph T ′/xy has at most k − 1 vertices of

degree 1. There is also a unique cycle C of T ′/xy containing the vertex v formed

from the contraction of x and y. Now delete an edge e of C adjacent with v.

If dT ′/xy(v) ≥ 3, then this creates at most one new leaf and so T ′/xy − e is a

k-leaf spanning tree of B/xy. On the other hand, if dT ′/xy(v) ≤ 2, then both

x and y are leaves of T ′. This implies that T ′/xy has at most k − 2 vertices of

degree 1. Since deleting e creates at most 2 new leaves, the graph T ′/xy − e is

again a k-leaf spanning tree of B/xy as required. �

Lemma 3.17 For all k ≥ 2, the class of graphs Gk is connectivity-reducible.

Proof. Let G be a 3-connected graph and let T be a k-leaf spanning tree of

G. Let v be a leaf of T , and e be an edge of G which is incident to v but not

in T . Such an edge exists since G is non-separable. It is easy to see that T is a

k-leaf spanning tree of G− e and T − v is a k-leaf spanning tree of G/e. �

We can now prove the main result of this section.

Proof of Lemma 3.15. Clearly we have ω(G3) ≤ ω(G3 ∩ K), thus it suffices

to show that Q(G, q) > 0 for G ∈ G3 and q ∈ (1, ω(G3 ∩ K)). Suppose G
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is a smallest counterexample to this statement, so there is q ∈ (1, ω(G3 ∩ K))
such that Q(G, q) ≤ 0. By Lemmas 3.16 and 3.17, G3 is splitting-closed and

connectivity-reducible. Thus, by Lemmas 2.7 and 2.9, we have that G is non-

separable, not 3-connected, and for every 2-cut {x, y}, we have xy 6∈ E(G). In

other words, G satisfies properties (GT1), (GT2) and (GT3) of Proposition 2.1.

Let {x, y} be a 2-cut of G. Since G3 is splitting-closed, Lemma 2.8 implies

that G has an odd number of {x, y}-bridges. Moreover, because G has a 3-leaf

spanning tree, the graph G − {x, y} has at most four components. It follows

that G has precisely three {x, y}-bridges and thus satisfies property (GT4) of

Proposition 2.1.

If, in addition, G satisfies property (GT5), then by Proposition 2.1, we deduce

that G ∈ K, which is a contradiction. Therefore it only remains to verify the

following claim.

Claim 2 If {x, y} is a 2-cut of G, then every {x, y}-bridge is separable.

Let T be a 3-leaf spanning tree of G. Let B be an arbitrary {x, y}-bridge and

suppose for a contradiction that B is non-separable. Since xy 6∈ E(G), we have

|V (B)| ≥ 4. We may assume that B contains at most two leaves of T , since if T

has three leaves in B, then G−{x, y} has at most two components. Relabelling

x and y if necessary, there are four cases how T [V (B)] may behave:

Case 1: T [V (B)] is connected.

Case 2: T [V (B)] consists of an isolated vertex x and a path starting at y and

covering all vertices of B − x.

Case 3: T [V (B)] consists of an isolated vertex x and a tree with precisely three

leaves, one of which is y, covering all vertices of B − x.

Case 4: T [V (B)] consists of two disjoint paths P1 and P2, starting at x and y

respectively, which together cover all vertices of B.
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Figure 3.5: Subcase 3a of Claim 2.

In Case 1, the graph T [V (B)] is a 3-leaf spanning tree of B. In Case 2, adding

any edge of B incident with x to T [V (B)] also shows that B contains such a

spanning tree. Let (U, V ′) be a bridge-partition of G, where U = B and V ′

denotes the graph defined before Lemma 2.11. In these two cases, we have

U ∈ G3. Furthermore, it is easy to check that V ′ ∈ G3. Hence, by Lemma 2.12,

B is separable. We now deal with the remaining cases.

Case 3. T [V (B)] consists of an isolated vertex x and a tree with precisely three

leaves, one of which is y, covering all vertices of B − x.

Let v be the vertex of degree 3 in T , and let T1 be the path in T from y to v.

Subcase 3a. The graph B − x is separable.

Let z be a cut-vertex of B − x. So {x, z} is a 2-cut of B and a 2-cut of G.

Since G satisfies (GT4), G has precisely three {x, z}-bridges, two of which are

contained in B. Due to the structure of T , this implies that v = z and T1 is a

Hamiltonian path of the block of B − x which contains y, see Figure 3.5. Since

B is non-separable, V (T1) ≥ 3 and x has a neighbour in V (T1) \ {y, z}. Choose
such a neighbour, x′, from which the distance to y on T1 is minimal. Note that

there are two internally vertex-disjoint paths from x to x′ avoiding the edge xx′
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itself, one through y and one through v. Thus, G − xx′ is non-separable and

has a 3-leaf spanning tree. Since G has property (GT3), the set {x, x′} is not a
2-cut of G. Thus, G/xx′ is also non-separable. Now Proposition 2.4 gives

Q(G, q) = Q(G− xx′, q) +Q(G/xx′, q). (3.11)

Since G is a smallest counterexample, Q(G−xx′, q) > 0. Thus, we have reached

a contradiction if Q(G/xx′, q) > 0. This follows immediately if G/xx′ has a

3-leaf spanning tree. Otherwise we use Lemma 2.11 on G/xx′ as follows.

Let (U, V ′) be an {x, y}-bridge-partition of G/xx′ where U = B/xx′. Note that

U,U + xy, U/xy and V ′ all have a 3-leaf spanning tree. Furthermore, since G3
is splitting-closed, we have B′ + xy,B′/xy ∈ G3 for all other {x, y}-bridges B′

of G/xx′. We claim that U is non-separable. If this is not the case, then {x, x′}
is a 2-cut of B. By the choice of x′, this implies that {x′, y} is a 2-cut of G.

Now, by (GT4), G must have three {x′, y}-bridges, two of which lie inside B.

However, due to the structure of T1, the vertices of these two bridges cannot

be covered by T1. We deduce that U is separable and hence all conditions of

Lemma 2.11 are satisfied. Hence, we get Q(G, q) > 0 which is a contradiction.

Therefore B is separable.

Subcase 3b. The graph B − x is non-separable.

Since B − x is non-separable, we have in particular that G− e is non-separable

for every edge e ∈ E(B) incident to x. Choose a neighbour, x′ of x, such that

the distance on T [V (B)] from v to x′ is maximal. Note that if x′ is a leaf of T ,

then B contains a 3-leaf spanning tree and so we are done by the same argument

as in Cases 1 and 2. Since B is non-separable, x has at least two neighbours

in B and so x′ 6= v. By the same argument as in Case 3a, both G − xx′ and
G/xx′ are non-separable. Furthermore G − xx′ has a 3-leaf spanning tree. As

before, by (3.11), we have reached a contradiction if Q(G/xx′, q) > 0. This

follows immediately if G/xx′ has a 3-leaf spanning tree. Otherwise we apply
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Lemma 2.11 to G/xx′ as in Case 3a. The same argument shows that by the

choice of x′, the hypotheses of Lemma 2.11 hold.

Case 4. The graph T [V (B)] consists of two disjoint paths P1 and P2, starting

at x and y respectively, which together cover all vertices of B.

Let P1 = x1, . . . , xn1 and P2 = y1, . . . , yn2 where x = x1 and y = y1. If x or xn1

has a neighbour x′ on P2, then B contains a 3-leaf spanning tree. As in Cases 1

and 2, this is enough to reach a contradiction. Since B is non-separable, this

means that |V (P1)| ≥ 4 and all neighbours of xn1
lie on P1. Also, apart from

xn1−1, the vertex xn1
has at least one other neighbour on P1. If xn1

has at least

two other neighbours, say xi, xj with i < j, then G − xn1
xj and G/xn1

xj are

non-separable and have a 3-leaf spanning tree. By Proposition 2.4 we reach a

contradiction. So we may suppose that d(xn1) = 2 and N(xn1) = {xn1−1, xi}
for some i ∈ {1, . . . , n1− 2}. It follows that {xi, xn1−1} is a 2-cut of G. We now

make the following claim about 2-cuts on P1.

Claim 3 Let xa and xb be vertices of P1 with a < b < n1. If {xa, xb} is a

2-cut of G, then b = a+ 2 and d(xa+1) = 2.

First note that because G satisfies property (GT4), there are precisely three

{xa, xb}-bridges, and both of xa and xb have a neighbour in each such bridge.

Let By and Bn1
be the {xa, xb}-bridges of G containing y and xn1

respectively,

and let B′ be the {xa, xb}-bridge containing the subpath of P1 from xa to xb.

Finally, let e1 be an edge of Bn1
incident to ai, and let e2 be an edge of By

incident to xb. Since T [V (B′)] is a Hamiltonian path of B′, it follows from

Case 1 that B′ is separable. Thus, it has a cut-vertex v. Because of the edges

e1 and e2, we see that G − {xa, v} and G − {v, xb} both have at most two

components. By property (GT4), neither of {xa, v} and {v, xb} are 2-cuts of

G. Thus, by two applications of Proposition 3.9, we deduce that B′ is a path

of length 2, which implies that b = a+ 2, and d(xa+1) = 2. This completes the

proof of Claim 3.
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Figure 3.6: Case 4, when w ∈ V (P1).

By Claim 3 applied with a = i and b = n1− 1, we conclude that {xn1−3, xn1−1}
is a 2-cut of G, and d(xn1−2) = 2. Thus, there is at least one vertex of degree 2

in the interior of P1.

Now let xj ∈ V (P1) \ {x1, xn1
} be a vertex of degree 2 with j as small as

possible, see Figure 3.6. Then {xj−1, xj+1} is a 2-cut and G contains precisely

three {xj−1, xj+1}-bridges. Since each of xj−1 and xj+1 has a neighbour in each

{xj−1, xj+1}-bridge, there is some edge e from xj−1 to one of xj+2, xj+3, . . . , xn1
.

Now consider the {xj−1, xj+1}-bridge, By, containing y. This bridge contains a

3-leaf spanning tree covering all of its vertices apart from xj+1. By Case 3, it

is separable and has a cut-vertex w. It is easy to see that w must either lie on

the subpath of P1 from x to xj−2 or on P2.

We claim that w lies on P2, so suppose for a contradiction that w lies on the

subpath of P1 from x to xj−2, see Figure 3.6. Since |V (By)| ≥ 4, at least one of

{xj−1, w} and {xj+1, w} is a 2-cut of G. However, because of the edge e and the

presence of the other {x, y}-bridges, the graph G − {xj+1, w} has at most two

components. Therefore {xj−1, w} is a 2-cut of G with three {xj−1, w}-bridges,
one of which contains the subpath of P1 from w to xj−1. This path has length

at least 2 by property (GT3). By Claim 3, we deduce that w = xj−3 and

d(xj−2) = 2, contradicting the minimality of j.
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Figure 3.7: Case 4, when w ∈ V (P2).

Thus, the vertex w lies on the path P2, see Figure 3.7. As before, at least one

of {xj−1, w} or {xj+1, w} is a 2-cut of G. However, since G − {xj+1, w} has

at most two components, property (GT4) implies that {xj+1, w} is not a 2-cut

of G . By Proposition 3.9, it follows that wxj+1 ∈ E(G) and {xj−1, w} is a

2-cut with precisely three bridges. Let B5 be the {xj−1, w}-bridge containing

the vertex yn2
. So the subpath of P2 from w to yn2

is a path of B5 covering

all vertices of B5 except xj−1. By Case 2, B5 is separable and has a cut-vertex

z on the subpath of P2 from w to yn2
. Because of the edge wxj+1, the graph

G − {xj−1, z} has at most two components. Therefore, by (GT4), {xj−1, z} is
not a 2-cut of G and Proposition 3.9 implies that zxj−1 ∈ E(G).

Finally note that xj−1 6= x and w 6= y, or else B would contain a 3-leaf span-

ning tree. Consider the {xj−1, w}-bridge B6 containing x and y. T [V (B6)] is

connected, so by Case 1 the bridge B6 has a cut-vertex z′. Since |V (B6)| ≥ 4,

at least one of {xj−1, z′} and {w, z′} is a 2-cut of G. However because of the

edges zxj−1 and wxj+1, both G− {xj−1, z′} and G− {w, z′} have at most two

components. This contradicts (GT4), so B is separable and Claim 2 holds. �
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Chapter 4

Minor-Closed Classes of

Graphs

4.1 Introduction

In Chapter 2 we noted a close connection between generalised triangles and

minor-closed classes of graphs. In particular, if G is a minor-closed class of

graphs, then Theorem 2.15 says that ω(G) = ω(G ∩ K). From this, it is easy

to deduce a number of simple corollaries. For example, let G denote the class

of K2,3-minor-free graphs. Since every generalised triangle except K3 contains

K2,3 as a minor, we have ω(G) = ω(G ∩K) = ω({K3}) = 2. On the other hand,

if G denotes the series-parallel graphs, then ω(G) = ω(G ∩ K) = ω(K) = 32/27,

since every generalised triangle is series-parallel. More generally, since 32/27 is

not a chromatic root of any graph, we have the following observation.

Proposition 4.1 If G is a minor-closed class of graphs such that G ∩ K is

finite, then ω(G) > 32/27.
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Figure 4.1: From left to right, the graphs H0, H1 and H2.

Dong and Koh [DK10] noted that for any r ≥ 3, the class of graphs not con-

taining the complete bipartite graph K2,r as a minor is such a class.

For all previously investigated minor-closed classes G, the set of generalised

triangles in G is either finite or equal to K. In such cases it is easy to determine

ω(G). Indeed if G ∩ K = K, then ω(G) = 32/27, while if G ∩ K is finite, then

ω(G) is the minimum of the non-trivial roots of G ∈ G ∩ K, which is a finite

problem. In this chapter we precisely determine ω(G) for three minor-closed

classes of graphs, each of which has the property that G ∩K is infinite, but not

equal to K.

Theorem 4.2 Let H0, H1 and H2 be the graphs in Figure 4.1.

(i) If G is the class of H0-minor-free graphs, then ω(G) = 5/4.

(ii) If G is the class of {H1, H2}-minor-free graphs, then ω(G) = t1, where

t1 ≈ 1.225 is the real root of q4 − 4q3 + 4q2 − 4q + 4 in (1, 2).

(iii) If G is the class of {H0, H1, H2}-minor-free graphs, then ω(G) = t2, where

t2 ≈ 1.296 is the unique real root of q3 − 2q2 + 4q − 4.

Since the graphs H0, H1 and H2 are some of the smallest generalised triangles,

Theorem 4.2 provides evidence for the following conjecture.

Conjecture 4.3 If G is a minor-closed class of graphs, then ω(G) > 32/27

if and only if G does not contain all generalised triangles.

One can easily show that Conjecture 4.3 is equivalent to the following.
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Conjecture 4.4 If G is a minor-closed class of graphs, then ω(G) > 32/27

if and only if G does not contain all series-parallel graphs.

The intervals we find in Theorem 4.2 coincide with those obtained or conjec-

tured for other, seemingly unrelated, classes of graphs. Notice for example that

the interval in Theorem 4.2(iii) is the same as that of Theorem 3.1. This con-

nection will be fully explained. Furthermore, the intervals in parts (i) and (ii)

of Theorem 4.2 coincide precisely with those in important conjectures of Dong

and Jackson. These conjectures would have implications for the chromatic roots

of 3-connected graphs, about which very little is currently known. We describe

how our results suggest that it might be fruitful to attack a relaxed version of

these conjectures.

4.2 Generalised Triangles and Minors

In this section we collect a few preliminary results regarding generalised triangles

and graph minors.

Proposition 4.5 Let G be a generalised triangle and {x, y} be a 2-cut of G.

If B is an {x, y}-bridge, then B has precisely two blocks.

Proof. Consider the block graph T of B, whose vertices are the cut-vertices

and blocks of B, see [Die16, Lemma 3.1.4]. Since G is non-separable, T is

a path. If T has more than three vertices, then there is a 2-cut of G which

contradicts (GT4) of Proposition 2.1. Hence, B has precisely two blocks. �

Proposition 4.6 Suppose that G is a generalised triangle, {x, y} is a 2-cut

of G, and B is an {x, y}-bridge of G. The following hold.

(i) B + xy is a generalised triangle.

(ii) If B is non-trivial, then there is a 2-cut {u, v} of G such that {u, v} ⊆
V (B), and the two {u, v}-bridges of G which are contained in B are trivial.
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Proof.

(i) It is easy to check that the conditions (GT1) - (GT4) in Proposition 2.1

hold for the graph B + xy. To see that (GT5) holds, let {u, v} be a 2-

cut of B + xy such that some {u, v}-bridge B′ of B + xy is non-separable.

Delete xy and reinstate the {x, y}-bridges of G distinct from B. It remains

the case that the {u, v}-bridge of G corresponding to B′ is non-separable,

which contradicts the fact that G is a generalised triangle.

(ii) Let z be a vertex of G not in B. Choose a 2-cut {u, v} of G such that

{u, v} ⊆ V (B), and the {u, v}-bridge of G containing z has as many ver-

tices as possible. Suppose some {u, v}-bridge B′ contained in B is not

trivial. Proposition 2.1 implies that B′ has a cut-vertex w. Since B′ is

not trivial, one of {u,w} and {v, w} is a 2-cut of G and the bridge of this

2-cut containing z is larger, a contradiction.
�

The double subdivision operation defines a partial order on the class of gener-

alised triangles. More precisely, for G,H ∈ K we define H ≤ G if G can be

obtained from H by a sequence of double subdivisions. The following lemma

was presented in [Per16a].

Lemma 4.7 If G,H ∈ K, then H is a minor of G if and only if G can be

obtained from H by a sequence of double subdivisions.

Unfortunately, Lemma 4.7 is false. Clearly, if G can be obtained from H by

a sequence of double subdivision operations, then H is a minor of G, but the

other direction does not hold. In [Per16a], the proofs of subsequent lemmas and

Theorem 4.2 are shortened by a dependency on Lemma 4.7, however they hold

nonetheless as we show in this chapter.

Let G and H be graphs such that H is a minor of G. We say that a graph J is a

fixed H-minor of G if J is isomorphic to H, and is formed from G by deleting

and contracting fixed sets of edges.
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Figure 4.2: The structure of G′ and G in the proof of Proposition 4.8.

Proposition 4.8 Let G,G′, H ∈ K such that G is obtained from G′ by apply-

ing a double subdivision operation to the edge xy ∈ E(G′), and let u, v ∈ V (G)

be the vertices created. If H is a minor of G but not a minor of G′, then for

any fixed H-minor J of G, we have xu, xv, yu, yv ∈ E(J).

Proof. Let B be the {x, y}-bridge of G not containing u or v. Since G is a

generalised triangle, Proposition 2.1 implies that B has a cut-vertex z which

separates x from y. Furthermore, Proposition 4.5 shows that B has precisely

two blocks, Lx and Ly, containing x and y respectively, see Figure 4.2.

Since H is a generalised triangle, it is clearly non-separable. Furthermore, since

H is not a minor of the generalised triangle G′, we deduce that H 6= K3 and

thus |V (H)| > 3. Because H is non-separable and a minor of G but not G′,

the vertices x and y are not identified to form J . Furthermore, at least one of

u and v, say u, has neither of its adjacent edges deleted or contracted. Thus

xu, yu ∈ E(J) and u has degree 2 in J . This implies that {x, y} is a 2-cut of J ,

and since H is a generalised triangle, (GT3) implies that the edge xy 6∈ E(J)

There are now two remaining possibilities: Either the edges xv and yv are

deleted entirely, or xv, yv ∈ E(J).

By (GT4), there are three {x, y}-bridges BJ1 , BJ2 and BJ3 , one of which, say BJ1 ,

is the path xuy. It remains to show that one of BJ2 or BJ3 is the path xvy,
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so suppose for a contradiction that this is not the case, and that BJ2 ∪ BJ3 is a

minor of B. Every path in B from x to y must go through the cut-vertex z of B.

However, since BJ2 and BJ3 are distinct {x, y}-bridges in J , they each contain a

path from x to y, and these paths are internally disjoint. It follows that to form

J , the vertex z must be identified with either x or y, say x. In fact, since H

is non-separable, J is a minor of the graph formed from G by contracting the

whole of Lx to a single vertex. Thus BJ2 ∪BJ3 is a minor of Ly, see Figure 4.2.

Now let P be a path from x to z in Lx. Since P has at least one edge and BJ1 is

a trivial bridge, it follows that BJ1 is a minor of the graph P +xy. But now J is

a minor of the graph Ly ∪ P + xy, which is a subgraph of G′. This contradicts

the fact that H is not a minor of G′. �

4.3 Restricted Classes of Generalised Triangles

In this section we determine the value of ω(G) for several minor-closed classes of

graphs. To do this, we investigate subsets K′ ⊆ K of generalised triangles defined

by properties of their 2-cuts. We show that these subsets can be considered

minor-closed within K, in the sense that there is a minor-closed class of graphs

G such that G∩K = K′. Using Theorem 2.15, we have ω(G) = ω(G∩K) = ω(K′),
so determining ω(K′) gives the value ω(G) for the much larger class G.

Definition 4.9 Let G be a graph.

(i) A 2-cut {x, y} of G has property P0 if for every {x, y}-bridge B, at least

one of x and y has degree 1 in B.

(ii) A 2-cut {x, y} of G has property P1 if at least one {x, y}-bridge is trivial.

For i ∈ {0, 1}, define Ki to be the class of generalised triangles such that every

2-cut has property Pi.
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We define a generalised edge to be either K2 or any graph obtained from K2

by a sequence of double subdivisions. When V (K2) = {u, v}, we shall refer to a

generalised edge obtained from this K2 as a generalised uv-edge. Let G be

a generalised uv-edge with |V (G)| ≥ 4, and let B1 and B2 be the {u, v}-bridges
of G. For i ∈ {0, 1}, we say G has property Pi if every 2-cut {x, y} such that

{x, y} ⊆ V (Bj) for some j ∈ {1, 2} has property Pi.

Let A ⊆ K. We say A is a downward-closed subset of K if for all G ∈ A
and H ∈ K, we have that H ≤ G implies H ∈ A. In practice, if K′ is a class

of generalised triangles defined by some graph property, then K′ is frequently

downward-closed. It is often possible to exploit this to determine the value of

ω(K′).

Lemma 4.10 K0 and K1 are downward-closed subsets of K.

Sketch of proof. Let i ∈ {0, 1}. It suffices to show that if G ∈ Ki and G is

formed from G′ by a single double subdivision, then G′ ∈ Ki. The contrapositive
of this statement is much easier to see. Indeed if G′ 6∈ Ki, then there is some

2-cut {x, y} of G′ which does not satisfy property Pi. The same vertices form a

2-cut of G which does not satisfy property Pi. �

4.3.1 The Class K0

The aim of this section is to prove Theorem 4.2(i). To do this we first show that

ω(K0) = 5/4.

Lemma 4.11 If G ∈ K0, then Q(G, q) > 0 for q ∈ (1, 5/4].

The proof of this lemma is simple but fairly lengthy and can be found in Sec-

tion 4.4.1. The idea is to prove several inequalities simultaneously by induction,

one of which is the statement above.

Lemma 4.12 ω(K0) = 5/4.



52 Minor-Closed Classes of Graphs

Proof. Let J0 = K3 and x ∈ V (J0). For i ∈ N, let Ji be obtained from Ji−1

by applying the double subdivision operation to each edge of Ji−1 incident with

x. Though it is non-trivial to verify, Dong and Jackson [DJ11, pg. 1114] say

that these graphs have chromatic roots converging to 5/4 from above. We shall

show that Ji ∈ K0 for each i ∈ N0. It then follows that ω(K0) ≤ 5/4, which

together with Lemma 4.11 implies that ω(K0) = 5/4.

Let i ∈ N0 and note that, by construction, every 2-cut of Ji contains the ver-

tex x. Consider a 2-cut {x, y} and let B be an {x, y}-bridge of Ji. Since Ji
is a generalised triangle, Proposition 2.1 gives that B has a cut-vertex z which

separates x from y. If y has degree at least 2 in B, then {y, z} is a 2-cut of G,

contradicting the fact that each 2-cut contains x. Thus, for each 2-cut {x, y},
the vertex y has degree 1 in each {x, y}-bridge. We conclude that each 2-cut

has property P0, so Ji ∈ K0 as desired. �

Recall that H0 is the graph depicted in Figure 4.1. It is formed from K3 by

applying the double subdivision operation to each edge. We now show that H0

is the forbidden minor which characterises K0 within K.

Lemma 4.13 If G ∈ K, then G ∈ K0 if and only if G is H0-minor-free.

Proof. If G ∈ K \ K0, then G has a 2-cut {x, y} with three {x, y}-bridges B1,

B2 and B3, such that both x and y have degree at least 2 in B1 say. Since G is

a generalised triangle, B1 has a cut-vertex z. Furthermore, since both x and y

have degree at least 2 in B1, both of {x, z} and {y, z} are 2-cuts of G, and have

precisely three bridges, two of which are contained in B1. It is now easy to see

that G contains H0 as a minor.

Now let G ∈ K such that G contains H0 as a minor, and suppose for a contra-

diction that G ∈ K0. We may assume that G is minimal with respect to the

double subdivision operation. Let G′ ∈ K be such that G is obtained from G′

by double subdividing the edge xy ∈ E(G′). Since K0 is downward-closed, we

have G′ ∈ K0.
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Figure 4.3: From left to right, the graphs H ′0, H ′1 and H ′2.

Let J be a fixed H0-minor of G. By Proposition 4.8, we have that J contains

both trivial {x, y}-bridges of G. Let B be the third {x, y}-bridge of G. Since

G ∈ K0, one of x and y has degree 1 in B. Say dB(x) = 1 and the neighbour of x

in B is z. Since |V (H0)| = 9 and H0 is a minor of G, we have that |V (G)| ≥ 9.

Thus, {y, z} is a 2-cut of G and gives rise to precisely three bridges, two of

which, B1 and B2, are contained in B. Let H ′0 be the graph consisting of two

4-cycles joined at a vertex, see Figure 4.3. It is easy to see that B1 ∪ B2 must

contain H ′0 as a minor, where the vertices a and b of H ′0 are identified with y

and z respectively. Because of this, H ′0 must in fact be a minor of either B1 or

B2, say B1. Finally, note that there are paths of length at least 2 from y to z in

both B2 and the {y, z}-bridge of G′ containing the vertex x. Combining these

paths with the H ′0-minor of B1, we see that G′ contains H0 as a minor. This

contradicts the minimality of G. �

Proof of Theorem 4.2(i). Let G be the class of H0-minor-free graphs. By

Theorem 2.15 and Lemma 4.13 we have ω(G) = ω(G ∩ K) and G ∩ K = K0

respectively. Now, by Lemma 4.12, we have ω(K0) = 5/4. The result follows.

�

Let D0 be the class of non-separable graphs for which there is a unique vertex

which is contained in every 2-cut. Dong and Jackson [DJ11] conjecture that

ω(D0) = 5/4. This conjecture is significant because D0 contains the class of

3-connected graphs, and so a positive solution would give a lower bound on the

non-trivial chromatic roots of 3-connected graphs, see Conjecture 3.5. Whilst
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it can be shown that D0 ∩ K ⊂ K0, this does not prove the conjecture since it

is not known if ω(D0) = ω(D0 ∩ K). In particular D0 is not minor-closed so

Theorem 2.15 does not apply.

The fact that D0 ∩ K is not the largest class of generalised triangles K′ such
that ω(K′) = 5/4 suggests that a well chosen weaker property could be used to

make progress on Dong and Jackson’s conjecture.

Problem 4.14 Find a class of graphs D such that D0 ⊆ D, ω(D) = ω(D∩K)
and D ∩K = K0.

4.3.2 The Class K1

In this section we prove Theorem 4.2(ii). To do this we first show that ω(K1) =

t1, where t1 ≈ 1.225 is the unique real root of the polynomial q4−4q3+4q2−4q+4

in the interval (1, 2).

Lemma 4.15 If G ∈ K1, then Q(G, q) > 0 for q ∈ (1, t1].

The proof of this lemma is also simple but fairly lengthy and can be found in

Section 4.4.2. The idea is the same as that of Lemma 4.11.

Lemma 4.16 ω(K1) = t1.

Proof. Define J0 = K3 and consider an embedding of J0 in the plane. For

i ∈ N, let Ji be formed from Ji−1 by applying the double subdivision operation

to each edge of Ji−1 on the outer face. In [DJ11, pg. 1114], Dong and Jackson

say this sequence of graphs has chromatic roots converging to t1 from above.

The following claim implies that Ji ∈ K1 for i ∈ N0. It then follows that

ω(K1) ≤ t1, which together with Lemma 4.15 gives that ω(K1) = t1.

Claim 4 For i ∈ N0, every 2-cut of Ji has a trivial bridge which lies in the

interior of the outer cycle of Ji.
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We prove the claim by induction on i. The result holds vacuously for i = 0

and is easily checked for i = 1, so suppose the result is true for k ∈ N0. For

the induction step, note that the 2-cuts of Jk+1 consist of the 2-cuts of Jk, and

{u, v} for every edge uv of the outer cycle of Jk. If {x, y} is a 2-cut of Jk,

then by the induction hypothesis there is a trivial {x, y}-bridge which lies in the

interior of the outer cycle of Jk. This bridge is left unchanged in Jk+1 so {x, y}
still satisfies the hypothesis. Alternatively, if uv is an edge of the outer cycle of

Jk, then in Jk+1, the edge uv is replaced with two trivial {u, v}-bridges. One of

these bridges forms part of the outer cycle of Jk+1, whilst the other bridge lies

in the interior of the new outer cycle as required. �

Let H ′1 and H ′2 be the graphs formed from a 4-cycle with vertex set {a, b, c, d}
by applying the double subdivision operation to the edges ab, ad and ab, cd

respectively, see Figure 4.3.

Proposition 4.17 If G is a generalised uv-edge with property P1, then G

does not contain a minor isomorphic to H ′1 or H ′2 where the vertices a and c

are identified with the vertices u and v of G in some order.

Proof. Let G be a smallest counterexample, and let J be a fixed H ′1-minor or

H ′2-minor of G such that the vertices a and c of J are identified with the vertices

u and v of G in some order. Since G is a generalised uv-edge with property P1, it

follows that G has two {u, v}-bridges B1 and B2, one of which, say B1, is trivial.

Since a and c are at distance 3 in J , it follows that the edges of B1 are deleted

to form J from G. Thus, J is a minor of B2. Now, since G is a generalised edge,

Proposition 4.8 implies that B2 has a cut-vertex u′ which separates B2 into two

blocks, Lu and Lv, containing u and v respectively. Since J is non-separable, it

follows that J must be a minor of one of these blocks, say Lv. Furthermore, J

must be a minor of Lv in such a way that the vertices a and c of J correspond

to the vertices u′ and v of Lv in some order. Now notice that Lv is a generalised

{u′, v}-edge with property P1. This contradicts the minimality of G. �
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Let H = K2,3 with vertex partition {{x, y}, {u, v, w}}. The graph H1 is formed

from H by applying the double subdivision operation to each edge adjacent to x.

The graph H2 is formed from H by applying the double subdivision operation

to the edges xu, xv and yw, see Figure 4.1. The next lemma shows that H1 and

H2 are the forbidden minors which characterise K1 within K.

Lemma 4.18 If G ∈ K, then G ∈ K1 if and only if G is {H1, H2}-minor-free.

Proof. If G ∈ K \ K1, then G has a 2-cut {x, y} with three {x, y}-bridges,
none of which are trivial. Thus, each {x, y}-bridge is obtained from a path of

length 2 by at least one double subdivision operation. It is now easy to see that

G contains either H1 or H2 as a minor.

Now let G ∈ K be such that G contains H1 or H2 as a minor, and suppose for a

contradiction that G ∈ K1. We may assume that G is minimal with respect to

the double subdivision operation. Let G′ ∈ K be such that G is obtained from

G′ by double subdividing the edge xy ∈ E(G′). Since K1 is downward-closed,

we have G′ ∈ K1.

Let J be a fixed H1-minor or H2-minor of G. By Proposition 4.8, we have that

J contains both trivial {x, y}-bridges of G. Let B be the third {x, y}-bridge of

G. Since G is a generalised triangle, B has a cut-vertex z, and Proposition 4.5

implies that B has precisely two blocks. Let H ′1 and H ′2 be the graphs in

Figure 4.3. Clearly, if J is H1, then B contains H ′1 as a minor. Similarly, if

J is H2, then B contains H ′1 or H ′2 as a minor. In either case, since H ′1 and

H ′2 are non-separable, this minor must lie inside one of the two blocks of B,

say the block Lx which contains x. Furthermore, it must lie in such a way that

the vertices a and c are identified with the vertices x and z of G in some order.

Now, since the block Lx is a generalised xz-edge with property P1, we reach a

contradiction by Proposition 4.17. �

Proof of Theorem 4.2(ii). Let G be the class of {H1, H2}-minor-free graphs.

By Theorem 2.15 and Lemma 4.18 we have ω(G) = ω(G ∩ K) and G ∩ K = K1
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respectively. Now, by Lemma 4.16, we have ω(K1) = t1. Hence the result

follows. �

Let D1 be the class of non-separable plane graphs such that every 2-cut is

contained in the outer-cycle. In [DJ11], Dong and Jackson conjecture that

ω(D1) = t1. Once again, this is an important conjecture since D1 contains the

class of 3-connected planar graphs. Whilst it can be shown that D1 ∩ K ⊂ K1,

this does not prove the conjecture since it is not known if ω(D1) = ω(D1 ∩ K).
In particular D1 is not minor-closed so Theorem 2.15 does not apply.

Again, the fact that D1 ∩ K is not the largest class of generalised triangles K′

such that ω(K′) = t1 suggests that a well chosen weaker property could be used

to make progress on Dong and Jackson’s conjecture.

Problem 4.19 Find a class of graphs D such that D1 ⊆ D, ω(D) = ω(D∩K)
and D ∩K = K1.

4.3.3 The Class K0 ∩ K1

In this section we show that ω(K0∩K1) = t2, where t2 ≈ 1.296 is the unique real

root of the polynomial q3−2q2+4q−4. We use this to deduce Theorem 4.2(iii).

Recall the definition of a Whitney 2-switch from Section 1.3. We first note a

useful property of the graphs in K0 ∩ K1.

Proposition 4.20 Let G ∈ K0, let {x, y} be a 2-cut of G, and let B be an

{x, y}-bridge. Suppose that every 2-cut of G except possibly {x, y} has property

P1. There is a graph G′, which is Whitney-equivalent to G, such that the {x, y}-
bridge B′ of G′ corresponding to B contains a path starting at y, and covering

all vertices of B′ except for x.

Proof. We proceed by induction on |V (B)|. If |V (B)| = 3, then B is trivial

and the result is clear. Thus we may suppose that |V (B)| > 3. Since G ∈ K0, at
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Figure 4.4: The bridge B in the proof of Proposition 4.20.

least one vertex in {x, y} has degree 1 in B. Call this vertex v1, and let v2 be the

other vertex of {x, y}. Now, let z be the neighbour of v1 in B, see Figure 4.4.

Since |V (B)| > 3, we have that {v2, z} is a 2-cut of G with precisely three

{v2, z}-bridges B1, B2 and B3, two of which, say B1 and B2, are contained in

B. Since {v2, z} has property P1, and |V (B3)| > 3, one of B1 and B2 is trivial.

Without loss of generality, say that B1 is the path v2wz, see Figure 4.4.

Now |V (B2)| < |V (B)|, so by induction, there is a sequence of Whitney 2-

switches of G such that in the resulting graph G′, the bridge B′2 corresponding

to B2 contains a path P2 starting at z, and covering all vertices of B2 except

for v2. Now let P ′ = v2wz ∪ P2. Clearly, P ′ is a path which starts at v2, and

covers all vertices of the bridge B′ of G′ which corresponds to B in G. If v2 = y,

then the graph G′ and path P ′ are as desired. Otherwise we perform a Whitney

2-switch of B′ about {x, y}. The resulting graph and the path P ′ are as desired.

�

As before, let H denote the class of graphs which have a Hamiltonian path. The

next two lemmas show that {P (H, q) : H ∈ H∩K} = {P (G, q) : G ∈ K0 ∩K1}.

Lemma 4.21 H ∩K ⊆ K0 ∩ K1.

Proof. Suppose G ∈ H ∩ K and let P denote the Hamiltonian path of G.

If G = K3, then we are done, so we may assume that G contains a 2-cut.

Let {x, y} be an arbitrary 2-cut of G. Since G is a generalised triangle, by
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Proposition 2.1 there are precisely three {x, y}-bridges of G which we call B1, B2

and B3. Without loss of generality, assume that P begins in B1, visits x before

y, and ends in B3.

Since the subpath of P from x to y is a Hamiltonian path of B2, Lemma 3.10(a)

implies that B2 is a path of length 2. Thus, {x, y} has property P1. Since B1

contains a path starting at y and covering all vertices of B1 except for x, then by

Lemma 3.10(b), we have that B1 is a copy of F (x, y, `) for some ` ∈ N0. From

the definition of the graph F , it follows that y has degree 1 in B1. Similarly, it

can be shown that x has degree 1 in B3. Thus, {x, y} has property P0. �

Lemma 4.22 If G ∈ K0 ∩ K1, then there is H ∈ H ∩ K such that P (G, q) =

P (H, q).

Proof. Let G ∈ K0 ∩ K1. By the characterisation of generalised triangles in

Proposition 2.1, it is easy to see that K is invariant under Whitney 2-switches.

Thus, we only need to show that G can be transformed into a graph with

a Hamiltonian path by a sequence of Whitney 2-switches. The result clearly

holds if G = K3, so we may suppose that |V (G)| > 3.

Let {x, y} be a 2-cut of G such that two of the {x, y}-bridges B1 and B2 are

trivial with vertex-sets {x, y, u} and {x, y, v} respectively. Such a 2-cut can

easily be found by considering the construction of G from a triangle by double

subdivisions. Let B be the remaining {x, y}-bridge. By Proposition 4.20, there

is a sequence of Whitney 2-switches in G such that the resulting graph has a

path P starting at y and covering all vertices of B except for x. In the resulting

graph, uxvy ∪ P is a Hamiltonian path. �

Proof of Theorem 4.2(iii). Let G be the class of {H0, H1, H2}-minor-free

graphs. By Theorem 2.15 we have ω(G) = ω(G∩K). Lemmas 4.13 and 4.18 imply

that G ∩ K = K0 ∩ K1. Now, by Lemmas 4.21 and 4.22, we have ω(K0 ∩ K1) =

ω(H∩K). Finally, Theorem 3.1 and Lemma 3.8 imply that ω(H∩K) = t2. This

completes the proof. �
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Figure 4.5: The graph H3.

4.3.4 3-Leaf Spanning Trees

Recall Theorem 3.2 from the previous chapter, which says that ω(G3) = t3,

where G3 denotes the class of graphs with 3-leaf spanning trees, and t3 ≈ 1.290.

As in Section 4.3.3, we can deduce an excluded minor result for this class of

graphs. To state it, let W be the class of graphs which are Whitney-equivalent

to H3, where H3 is the generalised triangle depicted in Figure 4.5.

Theorem 4.23 If G denotes the class of {H0} ∪ W-minor-free graphs, then

ω(G) = t3 where t3 ≈ 1.290 is the smallest real root of the polynomial (q− 2)6+

4(q − 1)2(q − 2)3 − (q − 1)4.

Let K3 denote the class of generalised triangles such that every 2-cut has prop-

erty P0, and all but at most one 2-cut have property P1. Thus, we have

K0 ∩ K1 ⊆ K3 ⊆ K0. To prove Theorem 4.23 we first show that ω(K3) = t3.

This follows from the following two lemmas.

Lemma 4.24 G3 ∩ K ⊆ K3.

Proof. Let G ∈ G3∩K. By Lemma 3.12, G is Whitney-equivalent to the graph

Gi,j,k for some i, j, k ∈ N0. Furthermore, it is easy to see that Gi,j,k ∈ K3 for all

i, j, k ∈ N0. Now the result follows because the properties P0 and P1 of a 2-cut

are invariant under Whitney 2-switches. �
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Lemma 4.25 If G ∈ K3, then there exists H ∈ G3 ∩ K such that P (G, q) =

P (H, q).

Proof. Let G ∈ K3. If G ∈ K0 ∩ K1, then by Lemma 4.22 there is H ∈ H ∩K
such that P (G, q) = P (H, q). Since H ⊆ G3, the result follows. So suppose there

is a 2-cut {x, y} of G which does not have property P1. By the definition of

K3, all other 2-cuts satisfy P1. Now, since G ∈ K, there are three {x, y}-bridges
B1, B2 and B3. By three applications of Proposition 4.20, we find a graph G′,

which is Whitney-equivalent to G, and where the {x, y}-bridges B′1, B′2 and B′3
of G′ corresponding to B1, B2 and B3 each contain a path starting at y and

covering all vertices of that bridge except x. By Lemma 3.10(b), B′1, B′2 and B′3
are each copies of F (x, y, `) for some ` ∈ N. Performing a Whitney 2-switch of

one of these bridges about {x, y} yields a graph H which is isomorphic to Gi,j,k
for some i, j, k ∈ N0. Clearly H ∈ G3 ∩K, and since H is Whitney-equivalent to

G, we have P (G, q) = P (H, q) as desired. �

The next lemma implies that if G denotes the class of {H0} ∪ W-minor-free

graphs, then G ∩ K = K3. Theorem 4.23 then follows from Theorem 2.15.

Lemma 4.26 If G ∈ K, then G ∈ K3 if and only if G is {H0}∪W-minor-free

Proof. If G ∈ K \ K3, then either G has a 2-cut without property P0, or

two 2-cuts without property P1. In the former case, Lemma 4.13 implies that

G contains H0 as a minor. Thus, we may suppose the latter case holds, and

that in addition, every 2-cut has property P0. Let {x, y} and {u, v} be 2-cuts

of G without property P1. Let B1, B2 and B3 be the {x, y}-bridges of G, and

suppose without loss of generality that {u, v} ⊆ V (B1). Since {x, y} does not

have property P1, the bridges B2 and B3 are formed from a trivial bridge by

at least one double subdivision. Thus, B2 ∪ B3 contains H ′1 or H ′2 as a minor

in such a way that the vertices a and c are identified with the vertices x and y

of G.
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Now, since {x, y} has property P0, one of x or y has degree 1 in B1. Suppose

without loss of generality that this is y, and let z be the unique neighbour of y

in B1. Thus, {x, z} is a 2-cut of G. Let C1, C2 and C3 be the {x, z}-bridges
of G such that C3 contains y. Clearly, we now have {u, v} ⊆ V (C1 ∪ C2).

Since {u, v} does not have property P1, we deduce by the argument above that

C1 ∪ C2 contains H ′1 or H ′2 as a minor in such a way that the vertices a and c

are identified with the vertices u and v of G in some order. Now consider the

two minors of H ′1 or H ′2, together with two paths in B3 joining distinct vertices

from {u, v} to the vertices x and y in some order. Because of the edge yz, one

of these paths has at least one edge. Thus, we see that G contains a minor of

some graph Whitney-equivalent to H3 as required.

For the reverse implication, let G ∈ K3. Note that since K3 ⊆ K0, Lemma 4.13

implies that G is H0-minor-free. Additionally, if G ∈ K1, then Lemma 4.18

implies that G is {H1, H2}-minor-free. Since every graph in W contains H1 or

H2 as a minor, this shows that G is W-minor-free. Thus we may assume that

G ∈ K3 \ K1. Consequently, G has precisely one 2-cut {x, y} which does not

have property P1.

Suppose for a contradiction that G contains some graph W ∈ W as a minor,

and let J be a fixed W -minor of G. Replacing each {x, y}-bridge of G by a

trivial {x, y}-bridge yields a graph in K1. Since such graphs are W-minor-free,

we deduce that {x, y} must be a 2-cut of J with three non-trivial bridges. Thus,

{x, y} must correspond to one of the two 2-cuts of W which do not satisfy

property P1. Let B be the {x, y}-bridge of G such that the corresponding

{x, y}-bridge in J contains 9 vertices. Since G ∈ K0, one of x and y has degree

1 in B. Suppose this is y and let z be the unique neighbour of y in B. Thus,

{x, z} is a 2-cut of G with precisely 3 bridges, two of which, say B1 and B2, are

contained in B. It now follows that B1∪B2 must contain a minor isomorphic to

H ′1 or H ′2 in such a way that the vertices a and c are identified with the vertices

x and z of G in some order. However, B1 ∪ B2 is a generalised xz-edge with

property P1. Thus, we deduce a contradiction from Proposition 4.17. �
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4.4 Proofs of the Lemmas

In this section we prove Lemma 4.11 and Lemma 4.15. The proofs are similar

to Jackson’s proof in [Jac93] of the result that ω(K) ≥ 32/27, except that the

additional structure of the classes K0 and K1 allows us to make some savings

and get a larger value for ω(K0) and ω(K1). The proofs are fairly long, but

nevertheless rely only on the basic identities introduced in Proposition 2.4 and

Proposition 2.5.

4.4.1 Proof of Lemma 4.11

Lemma 4.11 is statement (e) in the following lemma.

Lemma 4.27 Let G be a graph and let q ∈ (1, 5/4].

(a) If G ∈ K0, and v is a vertex of degree 2 in G with neighbours u and w, then

Q(G, q) ≥ 1
2Q(G/uv, q).

(b) If G is a generalised uw-edge with property P0, and |V (G)| ≥ 4, then Q(G+

uw, q) ≥ 1
2Q(G, q).

(c) If G ∈ K0, and v is a vertex of degree 2 in G with neighbours u and w, then

Q(G/uv, q) > 0.

(d) If G is a generalised uw-edge with property P0, then Q(G, q) > 0.

(e) If G ∈ K0, then Q(G, q) > 0.

Proof. We proceed simultaneously by induction on |V (G)|. If |V (G)| ≤ 4, then

either G = K3 if G ∈ K0, or G = C4 if G is a generalised edge with property

P0. Thus, parts (c), (d) and (e) are easily verified. Part (a) also holds since

Q(K3, q) = (2 − q)Q(K2, q) ≥ 3
4Q(K2, q) >

1
2Q(K2, q). Finally (b) holds when

G = C4 since Q(C4 + uw, q) − 1
2Q(C4, q) =

1
2q(q − 1)((q − 2)2 − (q − 1)) > 0.
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Thus, we may suppose that |V (G)| > 4 and that (a) to (e) hold for all graphs

with fewer vertices.

(a) Set H = G − v. Note that H is a generalised uw-edge with property P0,

and G/uv = H + uw. By Propositions 2.4 and 2.5, we have

Q(G, q) = −Q(G− uv, q) +Q(G/uv, q)

= (1− q)Q(H, q) +Q(H + uw, q). (4.1)

By the induction hypothesis of (d) onH, we haveQ(H, q) > 0. Furthermore,

by the induction hypothesis of (b) on H, we have Q(H+uw, q) ≥ 1
2Q(H, q).

Now, using the fact that q ∈ (1, 5/4], equation (4.1) becomes

Q(G, q) ≥ 2(1− q)Q(H + uw, q) +Q(H + uw, q)

= (3− 2q)Q(H + uw, q)

≥ 1
2Q(H + uw, q)

= 1
2Q(G/uv, q).

(b) Let s = Q(G+uw, q)− 1
2Q(G, q). Also, let H1 and H2 be the {u,w}-bridges

of the graph G + uw, and note that H1, H2 ∈ K0. By Propositions 2.4

and 2.5,

s = Q(G+ uw, q)− 1
2 [Q(G+ uw, q) +Q(G/uw, q)]

= 1
2Q(G+ uw, q)− 1

2Q(G/uw, q)

= 1
2q
−1(q − 1)−1Q(H1, q)Q(H2, q)− 1

2q
−1Q(H1/uw, q)Q(H2/uw, q).

Since the 2-cut {u,w} ofG has property P0, in each ofH1 andH2 at least one

of the vertices u and w has degree 2. Therefore, by the induction hypotheses

of (c) and (e), we have Q(Hi/uw, q) > 0 and Q(Hi, q) > 0 for i ∈ {1, 2}.
Moreover, for i ∈ {1, 2}, the induction hypothesis of (a) on the edge uw of
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Hi implies that Q(Hi, q) ≥ 1
2Q(Hi/uw, q). Now since q ∈ (1, 5/4],

2sq(q − 1) = Q(H1, q)Q(H2, q)− (q − 1)Q(H1/uw, q)Q(H2/uw, q)

≥ Q(H1/uw, q)Q(H2/uw, q)[(
1
2 )

2 − 1
4 ] = 0.

(c) Since v has degree 2, the set {u,w} is a 2-cut of G/uv and uw ∈ E(G/uv).

Thus, the {u,w}-bridges H1 and H2 of G/uv are members of K0, and so

Q(Hi, q) > 0 for i ∈ {1, 2} by the induction hypothesis of (e). Finally, since

H1 and H2 intersect in a complete subgraph, Proposition 2.5 gives

Q(G/uv, q) = q−1(q − 1)−1Q(H1, q)Q(H2, q) > 0.

(d) Let H1 and H2 be the uw-bridges of G + uw, and note that H1, H2 ∈ K0.

Propositions 2.4 and 2.5 give,

Q(G, q) = Q(G+ uw, q) +Q(G/uw, q)

= 1
q(q−1)Q(H1, q)Q(H2, q) +

1
qQ(H1/uw, q)Q(H2/uw, q). (4.2)

By the induction hypothesis of (e), we have Q(Hi, q) > 0 for i ∈ {1, 2}.
Since G is a generalised edge with property P0, the 2-cut {u,w} of G has

property P0, and so in each of H1 and H2, at least one of u or w has degree

2. Thus, by the induction hypothesis of (c), we have Q(Hi/uw, q) > 0 for

i ∈ {1, 2}. Now, by (4.2), we have Q(G, q) > 0 as claimed.

(e) Firstly, note that (a) and (c) have now been proved for a graph with |V (G)|
vertices. Let v be a vertex of degree 2 with neighbours u and w. By (a),

we have Q(G, q) ≥ 1
2Q(G/uv, q), and by (c), we have Q(G/uv, q) > 0.

Therefore, Q(G, q) > 0 as claimed.

�
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4.4.2 Proof of Lemma 4.15

To prove Lemma 4.15 we require a few preliminary results. Recall that t1 ≈
1.225 is the unique real root of the polynomial q4 − 4q3 + 4q2 − 4q + 4 in (1, 2)

and define the constants

γ = 1
4 (t1 − 2)(t21 − 2t1 − 2) ≈ 0.571,

α = (1− γ)(2− t1)(2− t1 − γ)−1 ≈ 1.632,

β = 1− α−1 = γ(t1 − 1)(1− γ)−1(2− t1)−1 ≈ 0.387.

Lemma 4.28 For all q ∈ (1, t1] we have

(i) q(q − 1)−1γ2 − 2γ + 1 ≥ α

(ii) (1− q)γ−1 + 1 ≥ β

(iii) (1− γ)(2− q)β − (q − 1)γ ≥ 0.

Proof. For q ∈ (1, t1], the left hand sides of the three inequalities are decreasing

functions of q. Thus, we only need to verify them for q = t1. Now (iii) follows

immediately from the definition of β. Inequality (i) holds for q = t1 since

substituting in the expressions for γ and α and simplifying gives

1
16 (t

2
1 − 2t1 − 2)(t31 − 4t21 + 4t1 − 4)(t41 − 4t31 + 4t21 − 4t1 + 4) ≥ 0,

which holds with equality by the definition of t1. For inequality (ii) the same

substitution gives

1
16 (2− t1)(t51 − 2t41 − 8t31 + 16t21 − 12t1 + 8) ≥ 0.

This inequality holds loosely which can be checked for example by using a com-

puter algebra package to approximate the roots of the quintic factor. �

The following useful reduction lemma is due to Jackson.
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Lemma 4.29 [Jac93] Let G be a non-separable graph and {u, v} be a 2-cut

such that uv is not an edge of G. If G1 and G2 are non-separable subgraphs of G

such that G1 ∪G2 = G, V (G1)∩V (G2) = {u, v}, |V (G1)| ≥ 3 and |V (G2)| ≥ 3,

then

q(q − 1)Q(G, q) = qQ(G1 + uv, q)Q(G2 + uv, q)

+(q−1)[Q(G1, q)Q(G2, q)−Q(G1+uv, q)Q(G2, q)−Q(G1, q)Q(G2+uv, q)] .

We also use the following proposition of Dong and Koh.

Proposition 4.30 [DK10] If G is a generalised triangle, then for every edge

uv, there is a vertex z such that G − uv = G1 ∪ G2, where G1 is a generalised

uz-edge, G2 is a generalised vz-edge, and G1 ∩G2 = {z}.

Now Lemma 4.15 is statement (e) in the following result.

Lemma 4.31 Let G be a simple graph and let q ∈ (1, t1].

(a) Suppose G = G1 ∪G2 where G1 and G2 are generalised uv-edges such that

G1∩G2 = {u, v}, |V (G1)| ≥ 4 and |V (G2)| ≥ 4. If G1 and G2 have property

P1, then Q(G, q) ≥ αq−1Q(G1, q)Q(G2, q).

(b) Suppose G = G1 ∪ G2 + uv where G1 is a generalised uw-edge, G2 is a

generalised vw-edge and G1 ∩ G2 = {w}. If G1 and G2 have property P1,

then Q(G, q) ≥ βQ(G/uv, q).

(c) If G is a generalised uv-edge with property P1, and |V (G)| ≥ 4, then Q(G+

uv, q) ≥ γQ(G, q).

(d) Suppose G = G1 ∪G2 where G1 and G2 are generalised uw-edges such that

G1 ∩G2 = {u,w}. If G1 and G2 have property P1, then Q(G, q) > 0.

(e) If G ∈ K1, then Q(G, q) > 0.

(f) If G is a generalised uw-edge with property P1, then Q(G, q) > 0.



68 Minor-Closed Classes of Graphs

Proof. We proceed simultaneously by induction on |V (G)|. For the base case,

suppose that |V (G)| ≤ 4. Thus, part (a) is vacuously true. Furthermore, if

G ∈ K1 then G = K3, and if G is a generalised edge with property P1, then

G ∈ {C4,K2}. Thus, parts (e) and (f) are easily verified. Part (b) also holds

since Q(K3, q) = (2 − q)Q(K2, q) >
3
4Q(K2, q) > βQ(K2, q). Part (c) holds

when G = C4 since

Q(C4 + uw, q)− γQ(C4, q) = q(q − 1)[(1− γ)(q − 2)2 − γ(q − 1)] > 0.

Since G is simple, the only graph satisfying part (d) is C4 + uw, and Q(C4 +

uw, q) = q(q− 1)(q− 2)2 > 0 as claimed. Thus we may suppose |V (G)| > 4 and

that (a) to (f) hold for all graphs with fewer vertices.

(a) Applying Lemma 4.29 to G and rearranging, we have

qQ(G, q) =Q(G1 + uv, q)
[
1
2q(q − 1)−1Q(G2 + uv, q)−Q(G2, q)

]
+Q(G2 + uv, q)

[
1
2q(q − 1)−1Q(G1 + uv, q)−Q(G1, q)

]
+Q(G1, q)Q(G2, q). (4.3)

By the induction hypothesis of (c), we have Q(Gi + uv, q) ≥ γQ(Gi, q) for

i ∈ {1, 2}. Together with Lemma 4.28(i), this gives

1
2q(q − 1)−1Q(Gi + uv, q)−Q(Gi, q) ≥

[
1
2q(q − 1)−1γ − 1

]
Q(Gi, q)

≥ α−1
2γ Q(Gi, q). (4.4)

By the induction hypothesis of (f), we have Q(Gi, q) > 0 for i ∈ {1, 2}.
Together with (4.4), this shows that the contents of the square brackets

in (4.3) are positive. Substituting (4.4) into (4.3) and using the induction

hypothesis of (c) finally gives qQ(G, q) ≥ αQ(G1, q)Q(G2, q) as required.

(b) If one of G1 and G2 is a single edge, say G1 = uw, then G/uv = G2 + vw.
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By Proposition 2.4 on uv, and Proposition 2.5,

Q(G, q) = (1− q)Q(G2, q) +Q(G2 + vw, q). (4.5)

The induction hypothesis of (f) gives that Q(G2, q) > 0. Moreover the

induction hypothesis of (c) on G2 gives Q(G2+ vw, q) ≥ γQ(G2, q). Substi-

tuting these inequalities into (4.5) and using Lemma 4.28(ii) we get

Q(G, q) ≥ [(1− q)γ−1 + 1]Q(G2 + vw, q)

≥ βQ(G2 + vw, q)

= βQ(G/uv, q). (4.6)

So suppose that both G1 and G2 have at least 4 vertices. By Proposition 2.4

on uv, and Proposition 2.5, we have

Q(G, q) = −Q(G− uv, q) +Q(G/uv, q)

= −q−1Q(G1, q)Q(G2, q) +Q(G/uv, q). (4.7)

The induction hypothesis of (f) gives Q(Gi, q) > 0 for i ∈ {1, 2}, and the

induction hypothesis of (a) gives q−1Q(G1, q)Q(G2, q) ≤ α−1Q(G/uv, q).

Substituting into (4.7), we have

Q(G, q) ≥ (1− α−1)Q(G/uv, q) = βQ(G/uv, q). (4.8)

(c) Let s = Q(G+uv, q)−γQ(G, q). Since the 2-cut {u, v} of G has property P1,

at least one {u, v}-bridge of G is trivial. Let H be the other {u, v}-bridge
of G and notice that H + uv ∈ K1. By Proposition 2.4 on G, we get

s = Q(G+ uv, q)− γ[Q(G+ uv, q) +Q(G/uv, q)]

= (1− γ)Q(G+ uv, q)− γQ(G/uv, q). (4.9)
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Now using Proposition 2.5, equation (4.9) becomes

s = (1− γ)(2− q)Q(H + uv, q)− γ(q − 1)Q(H/uv, q). (4.10)

Note that H = H1 ∪H2 where H1 is a generalised uw-edge with property

P1, H2 is a generalised vw-edge with property P1, and H1 ∩ H2 = {w}.
Thus, by the induction hypothesis of (d), we have Q(H/uv, q) > 0. Now

by the induction hypothesis of (b), we have Q(H + uv, q) ≥ βQ(H/uv, q).

Substituting these inequalities into (4.10) and using Lemma 4.28(iii) gives

s ≥ [(1− γ)(2− q)β − γ(q − 1)]Q(H/uv, q) ≥ 0.

(d) If one of G1 and G2 is a single edge, then G is either a single edge, or we

can write G = H1 ∪H2, where H1, H2 ∈ K1, and H1 ∩H2 is the edge uw.

By the induction hypothesis of (e) and Proposition 2.5, we conclude that

Q(G, q) > 0. So suppose that both G1 and G2 have at least 4 vertices. By

(a), which has now been proved for a graph on |V (G)| vertices, we conclude
that Q(G, q) ≥ αq−1Q(G1, q)Q(G2, q). By the induction hypothesis of (f),

we have Q(Gi, q) > 0 for i ∈ {1, 2}. Therefore, Q(G, q) > 0 as claimed.

(e) Let {u,w} be a 2-cut of G so that two of the {u,w}-bridges are trivial.

Such a 2-cut is easily found by considering the construction of G from K3

by the double subdivision operation. Let v be a vertex of degree 2 in G with

neighbours u and w. By Proposition 4.30, we may write G = G1 ∪G2 + uv

where G1 is a generalised vw-edge, G2 is a generalised uw-edge, and G1 ∩
G2 = {w}. By the choice of {u,w}, we have in particular that G1 is the

edge vw and G2 is a generalised uw-edge with property P1.

Now we may apply (b) to deduce that Q(G, q) ≥ βQ(G/uv, q). Note that

G/uv = H1 ∪H2 where H1, H2 ∈ K1 and H1 ∩H2 is the edge uw. By the

induction hypothesis of (e), we have thatQ(Hi, q) > 0 for i ∈ {1, 2}. Finally,
Proposition 2.5 gives Q(G/uv, q) = q−1(q − 1)−1Q(H1, q)Q(H2, q) > 0,

whence Q(G, q) > 0.
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(f) Let v be a vertex of degree 2 with neighbours u and w. Let H = G − v
and let z be a cut-vertex of H. Note that H = H1 ∪ H2 where H1 is

a generalised uz-edge with property P1, H2 is a generalised wz-edge with

property P1, and H1 ∩H2 = {z}. Note also that this implies H + uw ∈ K1.

By Propositions 2.4 and 2.5,

Q(G, q) = Q(G+ uw, q)−Q(G/uw, q)

= (2− q)Q(H + uw, q) + (q − 1)Q(H/uw, q). (4.11)

By the induction hypothesis of (e), we have Q(H +uw, q) > 0. If one of H1

or H2 is a single edge, then H/uw is either a single edge or an element of

K1. In either case, we have Q(H/uw, q) > 0. Thus, we may suppose both

H1 and H2 have at least 4 vertices. By the induction hypothesis of (f),we

have Q(Hi, q) > 0 for i ∈ {1, 2}. Now we apply the induction hypothesis of

(a) to get

Q(H/uw, q) ≥ αq−1Q(H1, q)Q(H2, q) > 0. (4.12)

Finally, by (4.11) and (4.12), we have Q(G, q) > 0 as claimed. �
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Chapter 5

Roots of the Tutte

Polynomial

5.1 Introduction

In this chapter we study the Tutte polynomial TG(x, y), a two-variable graph

polynomial whose roots and evaluations encode many interesting graph prop-

erties. In particular, it contains the chromatic polynomial as a special case.

Because of this more general setting, we allow graphs to have loops and multi-

ple edges throughout this chapter. Accordingly, we invite the reader to review

the remarks in Section 1.1.

Let G be a graph with vertex set V and edge set E. Consider the polynomial

ZG defined by

ZG(q, v) =
∑
A⊆E

qk(A)v|A|, (5.1)

where q and v are commuting indeterminates, and k(A) denotes the number of
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components in the graph (V,A). The expression in (5.1) is sometimes called the

random cluster formulation of the Tutte polynomial. However, since we deal

only with this formulation, we will say that ZG(q, v) is the Tutte polynomial

of G. We can retrieve the more classical formulation of the Tutte polynomial

TG(x, y) from ZG(q, v) by a simple change of variables as follows.

TG(x, y) = (x− 1)−k(E(G))(y − 1)−|V (G)|ZG
(
(x− 1)(y − 1), y − 1

)
.

Note that by Definition 1.5, the chromatic polynomial can be obtained from (5.1)

by setting v = −1. In particular, the chromatic roots of a graph also yield roots

of its Tutte polynomial along the line v = −1.

Recall that Theorems 1.9 and 1.10 show that the real chromatic roots of all

graphs consist of 0, 1 and a dense subset of the interval (32/27,∞). Expanding

on this, Jackson and Sokal [JS09] identified a zero-free region R1 of the (q, v)

plane where the Tutte polynomial never has a root. By using a multivariate

version of the Tutte polynomial, their work also further elucidated the origin

of the number 32/27. They conjectured that R1 is the first in an inclusion-

wise increasing sequence of regions R1, R2, . . . , such that for i ≥ 1, the only

non-separable graphs whose Tutte polynomials have a root inside Ri have fewer

than i edges. Jackson and Sokal also conjectured that this sequence converges

to a limiting region R∗, outside of which the roots of the Tutte polynomials

of graphs are dense. The region R∗ is depicted by the unshaded region in

Figure 5.1.

We now state the conjecture of Jackson and Sokal precisely. Following [JS09], let

v+♦ (q) be the function describing the middle branch of the curve v3−2qv−q2 = 0

for 0 < q ≤ 32/27, see Figure 5.1 or [JS09, Figure 2]. Also, let v−♦ (q) be defined

by v−♦ (q) = q/v+♦ (q) for 0 < q ≤ 32/27.

Conjecture 5.1 [JS09] The roots of the Tutte polynomials of graphs are

dense in the following regions:
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(a) q < 0 and v < −2,

(b) q < 0 and 0 < v < −q/2,

(c) 0 < q ≤ 32/27 and v < v−♦ (q),

(d) 0 < q ≤ 32/27 and v+♦ (q) < v < 0, and

(e) q > 32/27 and v < 0.

The union of the regions described in Conjecture 5.1 is illustrated by the shaded

and hatched area in Figure 5.1.

The main result of this chapter shows that the roots of the Tutte polynomial

form a dense subset of large regions of the (q, v) plane, and we prove most

cases of Conjecture 5.1. Our main tool is a technique of Thomassen [Tho97],

which, loosely speaking, describes how to construct graphs whose chromatic

roots are dense in a given interval. Whilst Thomassen’s technique was originally

developed for the chromatic polynomials of graphs, we show that it extends

naturally to the Tutte polynomial, and can be used to prove density results in

regions of the (q, v) plane.

Theorem 5.2 The roots of the Tutte polynomials of graphs are dense in the

following regions:

(a) q < 0 and v < −2,

(b) q < 0 and 0 < v < −q/2,

(c) 0 < q ≤ 32/27 and v < v−♦ (q),

(d) 0 < q ≤ 32/27 and v+♦ (q) < v < 0,

(e) 32/27 < q < 4 and v < 0, and

(f) q > 4 and −q < v < 0.
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Figure 5.1: Regions in Conjecture 5.1.

Thus, the only region of Jackson and Sokal’s conjecture which is not covered

by Theorem 5.2 is the region defined by q > 4 and v < −q. This region is

indicated by a hatched area and question mark in Figure 5.1. We later discuss

the obstructions that arise in this region which are related to an open problem

on the flow polynomials of graphs.

5.2 The Multivariate Tutte Polynomial

In this section we introduce the multivariate Tutte polynomial and briefly de-

scribe the advantages in using this more general version. We refer the reader

to [Sok05] for a more comprehensive introduction. Let G be a graph with ver-

tex set V and edge set E. The multivariate Tutte polynomial of G is the

polynomial

ZG(q,v) =
∑
A⊆E

qk(A)
∏
e∈A

ve, (5.2)
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where q and v = {ve}e∈E are commuting indeterminates, and k(A) denotes the

number of components in the graph (V,A). We say that (G,v) is a weighted

graph, v is a weight-function, and ve is the weight of the edge e. It can be

seen from (5.1) that the Tutte polynomial is obtained by setting all edge weights

equal to a single indeterminate v.

We define a dipole to be the loopless multigraph consisting of two vertices

x and y connected with a number of parallel edges. Thus, a single edge xy is

considered to be a dipole. If F is a dipole with s edges of weights v1, . . . , vs ∈ R,
then from (5.2) it may be seen that

ZF (q,v) = q2 − q + q

s∏
i=1

(1 + vi) . (5.3)

Similarly, if Ps denotes the path with s edges of weights v1, . . . , vs ∈ R, then (5.2)

gives

ZF (q,v) =

s∏
i=1

(q + vi) . (5.4)

Despite being interested in the roots of the Tutte polynomial, we will find it

useful to consider the multivariate version. This viewpoint has proven to be

particularly useful in studying the computational complexity of the evaluations

[GJ08, GJ12, GJ14, JVW90], and the roots of the Tutte polynomial [JS09,

Sok04].

The major advantage of using the multivariate Tutte polynomial is that, in

certain circumstances, one can replace a subgraph by a single edge with an

appropriate weight. Indeed, suppose (G,v) is a weighted graph, {x, y} is a 2-

cut of G and F is an {x, y}-bridge. We let v|F denote the restriction of the

weight-function v to the edges of F . Recall that Fxy denotes the graph formed

by identifying the vertices x and y in F . This may introduce multiple edges,

and any edges between x and y in F become loops in Fxy. Also, let F + xy

denote the graph formed by adding an edge xy to F , and let ZF+xy(q,v|F , w)
denote the multivariate Tutte polynomial of F + xy where the new edge xy has
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weight w. Finally, let vF be the effective weight of F in (G,v), which is the

function defined by

1 + vF (q,v) =
(q − 1)ZFxy

(q,v|F )
ZF+xy(q,v|F ,−1)

=
(q − 1)ZFxy

(q,v|F )
ZF (q,v|F )− ZFxy

(q,v|F )
. (5.5)

The second equality holds since if G is a graph and xy is an edge of G with weight

v ∈ R, then ZG(q,v) = ZG−xy(q,v|G−xy) + v · ZGxy (q,v|G−xy), see [Sok05]. If

F is a graph with x, y ∈ V (F ), then we write vF (q, v) to indicate the effective

weight of the weighted graph F where every edge has weight v. The following

lemma shows that replacing the graph F with a single edge of weight vF only

changes the multivariate Tutte polynomial by a prefactor depending on F .

Lemma 5.3 [DJ11] If (G,v) is a weighted graph and F and H are connected

subgraphs of G such that V (F ) ∪ V (H) = V (G) and V (F ) ∩ V (H) = {x, y},
then ZG(q,v) = 1

q(q−1)ZF+xy(q,v|F ,−1)ZH+xy(q,v|H , vF (q,v)).

We often use Lemma 5.3 in the following way. Suppose that F is a graph with

two non-adjacent vertices x and y, and that F has effective weight vF . If G′

denotes the graph obtained from G by replacing every edge xy with a copy of

F , then by Lemma 5.3, ZG′(q, v) is equal to ZG(q, vF (q, v)) up to a prefactor.

ZG′(q, v) =
[
q−1(q − 1)−1ZF+xy(q, v,−1)

]|E(G)|
ZG(q, vF (q, v)). (5.6)

In particular, if (q, vF (q, v)) is a root of ZG, then (q, v) is a root of ZG′ . For the

readers convenience, we remark that in [GJ14], this operation is referred to as

implementing the point (q, vF (q, v)) from the point (q, v), and it can easily be

composed. Indeed, if we choose non-adjacent vertices x′, y′ ∈ V (G), then the

effective weight of G′ satisfies

vG′(q, v) = vG(q, vF (q, v)). (5.7)

To see this, note that for G′x′y′ and G
′+x′y′, a similar equality to (5.6) holds by

repeated application of Lemma 5.3. These prefactors of these equalities cancel

in (5.5), which gives (5.7).
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We briefly note the effective weights of two common graphs which we will fre-

quently use. See [Sok05] for a more detailed derivation. If F is a dipole with s

edges of weights v1, . . . , vs ∈ R, then the effective weight vF of F satisfies

1 + vF =

s∏
i=1

(1 + vi) . (5.8)

As before, let Ps denote the path with s edges. If the end vertices of Ps are

labelled x and y, and the edges of Ps have weights v1, . . . , vs ∈ R, then the

effective weight vPs of Ps satisfies

1 +
q

vPs

=

s∏
i=1

(
1 +

q

vi

)
. (5.9)

We say that a connected loopless graph F with two vertices labelled x and y is

a two-terminal graph if x and y are not adjacent in F . The vertices x and

y are called terminals. The following lemma shows that these graphs satisfy a

technical condition which will be required later.

Lemma 5.4 Let v ∈ R be fixed. If F is a two-terminal graph, then there exists

q0 > 0 such that 1 + vF (q, v) > 0 for all q > q0. Furthermore, if 1 + vF (q, v) is

a constant function of q, then 1 + vF (q, v) = 1 for all q ∈ R.

Proof. By (5.5), we have

1 + vF (q, v) =
(q − 1)ZFxy

(q, v)

ZF+xy(q, v,−1)
=
qZFxy

(q, v)− ZFxy
(q, v)

ZF (q, v)− ZFxy (q, v)
.

Since xy 6∈ E(F ), the graph Fxy is loopless. Hence, the terms with the highest

powers of q in ZFxy (q, v) and ZF+xy(q, v,−1) are q|V (F )|−1 and q|V (F )| respec-

tively. Thus, 1 + vF (q, v) → 1 as q → ∞, which implies that the desired q0

exists. By the same reason, if 1 + vF is a constant function of q then it is equal

to 1 as claimed. �
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5.3 Strategy

In [Tho97], Thomassen showed that the set of chromatic roots contains a dense

subset of the interval (32/27,∞). In this section we generalise his technique to

the Tutte polynomial. At the heart of Thomassen’s method lies the following

lemma, which is proved implicitly in Proposition 2.3 of [Tho97].

Lemma 5.5 [Tho97] Let I ⊆ R be an interval of positive length, and let a, b

and c be rational functions of q such that 0 < b(q) < 1 < a(q) and c(q) > 0

for all q ∈ I. If there is no α ∈ Q such that log(a(q))/ log(b(q)) = α for all

q ∈ I, then there exist s, t ∈ N such that a(q0)sb(q0)t = c(q0) for some q0 ∈ I.
Moreover, s and t can be chosen to have prescribed parity.

We remark that the proof of Lemma 5.5 proceeds by finding s and t such that

the function a(q)sb(q)t − c(q) has different signs at two points in I. Between

two such points there is a root, and since there are finitely many roots, at least

one of them has odd multiplicity. We will use this extra fact later.

Let F be a two-terminal graph or dipole. For real numbers q and v, we say that

F has one of four types at (q, v) defined by the following conditions.

Type A+: 1 + vF (q, v) > 1,

Type A−: 1 + vF (q, v) < −1,

Type B+: 0 < 1 + vF (q, v) < 1,

Type B−: −1 < 1 + vF (q, v) < 0.

Let A and B be two-terminal graphs or dipoles. Note that if A is a graph of

type A+ or A− at (q, v), then the rational function 1+ vA(q, v) or −1− vA(q, v)
respectively can play the role of a(q) in Lemma 5.5. The corresponding property

holds for a graph of type B+ or B−.
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Definition 5.6 Let A and B be graphs. We say that (A,B) is a comple-

mentary pair at (q, v) if A and B are two-terminal graphs or dipoles, at most

one of A and B is a dipole, and

• A has type A+ and B has type B− at (q, v), or

• A has type A− and B has type B+ at (q, v).

Let G1, . . . , Gn be two-terminal graphs or dipoles. We say that the graph G

formed by identifying all vertices labelled x into a single vertex, and all vertices

labelled y into another is the parallel composition of G1, . . . , Gn. The defi-

nition of complementary pairs is motivated by the following key lemma, which

is based on an argument implicit in [Tho97].

Lemma 5.7 Let q0, v ∈ R be fixed such that q0 6= 1, and let A and B be two-

terminal graphs or dipoles. If (A,B) is complementary at (q0, v), then for all

ε > 0, there is a graph G such that ZG(q1, v) = 0 for some q1 ∈ (q0 − ε, q0 + ε).

Furthermore, G is a parallel composition of copies of A and B.

Proof. Suppose that A has type A−, and B has type B+ at (q0, v). The other

case is analogous. Since the functions vA(q, v) and vB(q, v) are continuous in

q on their domain, there exists an interval I ⊆ R of positive length such that

q0 ∈ I ⊆ (q0 − ε, q0 + ε) and the graphs A and B have types A− and B+

respectively for all q ∈ I. For s, t ∈ N, let G be a parallel composition of s

copies of A, and t copies of B. Using Lemma 5.3 and (5.3), one can see that the

Tutte polynomial of G is

ZG(q, v) = q

(
ZA+xy(q, v,−1)

q(q − 1)

)s(
ZB+xy(q, v,−1)

q(q − 1)

)t
f(q, v),

where f(q, v) = q−1+(1+vA(q, v))
s(1+vB(q, v))

t. Define a(q) = −1−vA(q, v)
and b(q) = 1+ vB(q, v). Moreover, define c(q) = q− 1 or c(q) = 1− q such that

c(q) > 0 for all q ∈ I. In doing this it may be necessary to replace I with a

subinterval of I containing q0. This is possible since q0 6= 1 by assumption. If
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the functions a, b and c satisfy the conditions in Lemma 5.5, then there exist

s, t ∈ N, of any prescribed parity, such that a(q1)sb(q1)t = c(q1) for some q1 ∈ I.
Since f(q, v) is c(q)+(−a(q))sb(q)t or −c(q)+(−a(q))sb(q)t, we may choose the

parity of s and t such that this factor becomes zero for some q1 ∈ I.

It remains to check that a, b and c satisfy the conditions of Lemma 5.5. Indeed,

by assumption, we have that 0 < b(q) < 1 < a(q) and c(q) > 0 for all q ∈ I.
Suppose for a contradiction that there is α ∈ Q such that log(a(q))/ log(b(q)) =

α for all q ∈ I. Equivalently a(q) = b(q)α for q ∈ I. Since a and b are rational

functions and α ∈ Q, it follows that this equality is satisfied for all q ∈ R except

for any singularities. Also, since a(q) > 0 for q ∈ I, we take the principal branch
of any fractional power. Since (A,B) is complementary, at least one of A and

B is a two-terminal graph. If A is a two-terminal graph, then since A has type

A−, we have that 1+ vA(q0, v) 6= 1. By Lemma 5.4, this implies that a(q) is not

constant. Similarly, if B is a two-terminal graph, then b(q) is not constant. Now,

if precisely one of a and b is a constant function, then we immediately deduce

a contradiction. Thus, we may assume that both of A and B are two-terminal

graphs. By Lemma 5.4, we see that a(q) < 0 and b(q) > 0 for large enough q.

This contradicts the assertion that a(q) = b(q)α for all q ∈ R. �

Corollary 5.8 If R is an open subset of the (q, v) plane such that for every

(q, v) ∈ R, there is a complementary pair of graphs, then the roots of the Tutte

polynomials of graphs are dense in R.

To obtain density in some regions we will use planar duality. Let G be a plane

graph and let G∗ be its planar dual. The following relation is easily derived

from (5.2) and Eulers formula, see [Sok05].

ZG∗(q, v) = q1−|V (G)|v|E(G)|ZG(q,
q
v ). (5.10)

Notice that the graphs constructed in Lemma 5.7 are planar if A+xy and B+xy

are both planar. Thus, we have a second corollary of Lemma 5.7.
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Corollary 5.9 Let R be an open subset of the (q, v) plane. If for every

(q, v) ∈ R there is a complementary pair (A,B) such that A + xy and B + xy

are planar, then the roots of the Tutte polynomials of graphs are dense in R∗

where

R∗ = {(q, v) : (q, q/v) ∈ R}. (5.11)

5.4 Complementary Pairs

In this section, we find complementary pairs of graphs for points in several

regions of the (q, v) plane. Combining this with Corollaries 5.8 and 5.9, we

deduce Theorem 5.2. In what follows it will be useful to partition the (q, v)

plane into a number of regions, which are illustrated in Figures 5.2 and 5.3.

Note that taken together, the closure of the regions below is equal to the union

of the regions in Theorem 5.2. Thus, if the roots of the Tutte polynomials of

graphs are dense in these regions, then Theorem 5.2 follows. The regions are

defined as follows.

• Region I: q < 0 and v < −2.

• Region II: 0 < q < 1 and v < −2.

• Region III: 1 < q < 2 and v < −2.

• Region IV: 2 < q < 4, q 6= 3 and v < −q.

• Region V: q > 2 and −q < v < −2.

• Region VI: 2 < q < 4 and −2 < v < −q/2.

• Region VII: q > 2 and −1 < v < 0.

• Region VIII: 0 < q < 32/27 and −2 < v < v−♦ .

• Region IX: 32/27 < q < 2 and −2 < v < −1.
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Figure 5.2: Regions I - VII, I∗ and V∗.

We also define the following dual regions in the sense of (5.11). It is easy to

check that the dual of each region below is contained in the corresponding region

above.

• Region I∗: q < 0 and 0 < v < −q/2.

• Region II∗: 0 < q < 1 and −q/2 < v < 0.

• Region III∗: 1 < q < 2 and −q/2 < v < 0.

• Region V∗: −2 < v < −1 and q > −2v.

• Region VIII∗: 0 < q < 32/27 and v+♦ < v < −q/2.

• Region IX∗: 32/27 < q < 2 and −1 < v < −q/2.

In the following lemma, we show that the path of length s ∈ N gives graphs of

varying types depending on the point (q, v). We impose the condition s > 1
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Figure 5.3: Regions VIII, IX, II∗, III∗, VIII∗ and IX∗.

so that the resulting graphs are two-terminal graphs. We note that parts (ii)

and (iii) are equivalent to Lemmas 21 and 22 in [GJ14] respectively.

Lemma 5.10 Let q and v be real numbers, and let Ps denote the path of length

s where every edge has weight v.

(i) If v < 0 and q < 0, then there is s > 1 such that Ps has type B+ at (q, v).

(ii) If v < −2 and 0 < q < 1, then there is s > 1 such that Ps has type B+ at

(q, v).

(iii) If v < −2 and 1 < q < 2, then there is s > 1 such that Ps has type B− at

(q, v).

(iv) If v < 0 and q > −2v, then there is s > 1 such that Ps has type A+ at

(q, v).

(v) If v < 0 and 2 < q < −2v, then there is s > 1 such that Ps has type A− at

(q, v).
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Proof. By (5.9), the effective weight of Ps is given by

vPs =
q

(1 + q
v )
s − 1

. (5.12)

(i) Since q/v > 0, the denominator of (5.12) tends to infinity with s. Because

q < 0, we deduce that there exists s > 1 such that −1 < vPs < 0. Thus,

Ps has type B+ as claimed.

(ii) The conditions of the lemma imply that 0 < 1+ q
v < 1. Thus, for all ε > 0,

there is s > 1 such that −q − ε < vPs
< −q. Since 0 < q < 1, there exists

s > 1 such that Ps has type B+.

(iii) By the same argument as in (ii), for every ε > 0, there exists s > 1 such

that −q − ε < vPs
< −q. Since 1 < q < 2, there exists s > 1 such that Ps

has type B−.

(iv) The conditions imply q/v < −2. Thus, for any even s we have vPs > 0. It

follows that there is s > 1 such that Ps has type A+.

(v) Since 2 < q < −2v, we have −1 < 1 + q
v < 1. Thus, for s = 2, we have

vPs
< −q. In particular, vPs

< −2. Thus, there exists s > 1 such that Ps
has type A−. �

We will also require some less simple two-terminal graphs. Many of these we

take from [GJ14] and [JS09] where a similar technique is used. The following

lemma is an intermediate step in the proof of Lemma 11 from [GJ14].

Lemma 5.11 If q > 2 and −q < v < −2, then there is a two-terminal graph

of type B+ at (q, v).

Proof. Let F be the dipole having two edges of weight v. Note that by (5.8)

we have vF = v(v + 2) > 0. Now let G be the two-terminal graph consisting of

s copies of F and one edge of weight v in series. By (5.9) we have that

1 +
q

vG
=

(
1 +

q

vF

)s (
1 +

q

v

)
. (5.13)
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By the conditions of the lemma, we have that 1 + q/v < 0. Since 1 + q/vF > 1,

the right hand side of (5.13) tends to minus infinity as s tends to infinity. It

follows that there is s such that −1 < vG < 0, and for this s, the graph G is a

two-terminal graph of type B+ at (q, v). �

Lemma 5.12 Let F be a two-terminal graph with effective weight vF and let

q be a real variable. Also let F (2) be the parallel composition of two copies of

F . If vF (q) < −2, then F (2) has effective weight satisfying vF (2)(q) > 0. If

−2 < vF (q) < −1, then F (2) has effective weight satisfying −1 < vF (2)(q) < 0.

Proof. Let D denote the dipole with two edges of weight vF . By (5.7), the

effective weight of F (2) is equal to the effective weight of D. Thus, by (5.8),

we have vF (2)(q) = vF (q)(vF (q) + 2). If vF (q) < −2, this is positive. If −2 <
vF (q) < −1, then −1 < vF (2)(q) < 0. �

In the following lemma we invoke Lemma 23 of [GJ14], which uses the two-

terminal graph obtained from the Petersen graph by deleting an edge xy.

Lemma 5.13 If 2 < q < 4 is non-integer and v < −q, then there is a two-

terminal graph of type B+ at (q, v).

Proof. By the argument in Lemma 23 of [GJ14], there is a two-terminal graph

F satisfying −q < vF < 0. If −1 < vF < 0, then the result follows immediately.

If −q < vF < −2, then the result follows by Lemma 5.11. If −2 < vF < −1,
then by Lemma 5.12, the two-terminal graph F (2) formed by taking two copies

of F in parallel has effective weight vF (2) satisfying −1 < vF (2) < 0 as required.

Thus, it just remains to consider the cases when vF ∈ {−1,−2}.

Let Js denote the graph consisting of s copies of F in series. The effective weight

of Js is equal to the effective weight of Ps, where Ps denotes the path with s

edges of weight vF . Suppose vF = −1. Thus, by (5.9), we have vJ3 = −1
q2−3q+3 .

It may be checked that for q > 2, we have −1 < vJ3 < 0. So J3 has type B+

as required. Now suppose that vF = −2. By (5.9), we have 1 + q
vJs

= (1− q
2 )
s.
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Since 2 < q < 4, we have that −1 < 1 − q
2 < 0, and so for any ε > 0, there

exists a large and odd s such that −q < vJs < −q+ε. Thus, we can ensure that

−q < vJs < −2. The result now follows by an application of Lemma 5.11. �

The following lemma uses a gadget based on large complete graphs and conse-

quently, the resulting two-terminal graph is non-planar.

Lemma 5.14 [GJ14, Lemma 18] If q > 2 and −1 < v < 0 then there is a

two-terminal graph of type A− or B− at (q, v).

Recall that v+♦ (q) is the function describing the middle branch of the curve

v3−2qv−q2 = 0 for 0 < q < 32/27, and that v−♦ (q) is defined by v−♦ (q) = q/v+♦ (q)

for 0 < q < 32/27.

Lemma 5.15 If 0 < q < 32/27 and −2 < v < v−♦ (q), then there is a two-

terminal graph F of type A+ at (q, v). Furthermore, we can choose F such that

F + xy is planar.

Proof. Let H be the graph consisting of two edges of weight v in parallel.

We claim that vH > v+♦ (q). By (5.8), the effective weight vH of H satisfies

vH = v(v + 2), which is a decreasing function of v for −2 < v < v−♦ . Note that
q
v (

q
v + 2) = v is precisely the equation satisfied by v+♦ (q). Thus, v

−
♦ (q)(v

−
♦ (q) +

2) = v+♦ (q) for 0 < q < 32/27. Since v < v−♦ , it follows that vH = v(v +

2) > v−♦ (q)(v
−
♦ (q) + 2) = v+♦ (q) as claimed. Now by Lemmas 8.5(a) and 8.5(b)

in [JS09], there is a two-terminal graph obtained from H which has type A+. �

Lemma 5.16 [GJ14, Lemma 12] If q > 32/27 and −2 < v < −q/2, then there

is a two-terminal graph F of type A+ at (q, v). Moreover, F + xy is planar.

We now combine the results of this section and Section 5.3 to prove Theorem 5.2.

Proof of Theorem 5.2. We first show that the roots of the Tutte polynomial

are dense in regions I - IX. By Corollary 5.8, it suffices to show that for each

point (q, v) in regions I - IX, there exists a complementary pair of graphs. In
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regions I - V, a single edge of weight v has type A−. By Lemma 5.12, the graph

consisting of two such edges in parallel has type A+. Thus, in regions I - V, it

only remains to find a two-terminal graph of type B+ or B−.

Region I: By Lemma 5.10(i), there is a two-terminal graph of type B+.

Region II: By Lemma 5.10(ii), there is a two-terminal graph of type B+.

Region III: By Lemma 5.10(iii), there is a two-terminal graph of type B−.

Region IV: By Lemma 5.13, there is a two-terminal graph of type B+.

Region V: By Lemma 5.11, there is a two-terminal graph of type B+.

We deal with the remaining regions individually.

Region VI: For (q, v) in region VI, a single edge of weight v has type B−.

By Lemma 5.10(v), there exists a two-terminal graph of type A−. By

Lemma 5.12, taking two copies of this graph in parallel gives a two-

terminal graph of type A+ as required.

Region VII: A single edge of weight v has type B+. By Lemma 5.14 there is

a two-terminal graph F of type A− or B− at (q, v). If F has type A−

then we are done. If F has type B−, then the effective weight vF of F

satisfies −2 < vF < −1. Thus, the point (q, vF ) lies in region VI or V∗.

If (q, vF ) ∈ VI, then we use the argument for region VI to obtain a two-

terminal graph of type A+. If (q, vF ) ∈ V∗, then we use Lemma 5.10(iv)

to obtain a two-terminal graph of type A+.

Region VIII: A single edge of weight v has type B−. By Lemma 5.15, there is

a two-terminal graph of type A+ at (q, v).

Region IX: A single edge of weight v has type B−. By Lemma 5.16, there is a

two-terminal graph of type A+ at (q, v).
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We note that in regions I, II, III, V, VIII and IX, each graph F that we use

has the property that F +xy is planar. Thus, by Corollary 5.9, the roots of the

Tutte polynomials of planar graphs are also dense in the regions I∗, II∗, III∗,

V∗, VIII∗ and IX∗. �

We briefly remark on the region in which we have been unable to prove density,

namely the points satisfying q > 4 and v < −q. For (q, v) in this region, the

sequence of paths Ps, s ∈ N have effective weights converging to the point

−q as s → ∞. Along the line v = −q, the multivariate Tutte polynomial is

nothing other than the flow polynomial F (G, q) multiplied by a prefactor. More

precisely, we have

F (G, q) = q−|V (G)|(−1)|E(G)|ZG(q,−q). (5.14)

Goldberg and Jerrum [GJ14] have shown that ifG is a graph and xy ∈ E(G) such

that FG(q) and FG−xy(q) have opposite signs, then it is possible to implement

a weight v′ satisfying −q < v′ < 0. Using an argument similar to that of

Lemma 5.13, it would then be possible to find a two-terminal graph which has

type B+ at (q, v). It is conjectured [JS13b] that there exists q0 ∈ R such that

FG(q) > 0 for all 2-edge connected graphs G and all q > q0. Thus, it seems

unlikely that this technique can be used to prove density for all q > 4.

The dual of the unsolved region lies inside region VII. Unfortunately, the graphs

we used to prove density in region VII are non-planar, and so we cannot use

duality as we have done above. However, if we allow ourselves to use all ma-

troids instead of all graphs, then we can apply the duality argument, since

every matroid has a dual. It is easy to define the Tutte polynomial for matroids

by replacing the term qk(A) with qr(G)−r(A)+1 where r is the rank function,

see [Sok05].



Chapter 6

Density of Chromatic Roots

6.1 Introduction

For many natural classes of graphs G, we do not know the topological closure of

R(G). The class of planar graphs is a prominent example of this, despite the fact

that the chromatic polynomial was initially introduced and studied for planar

graphs. In one of the first monographs on the subject of chromatic polynomials,

Birkhoff and Lewis [BL46] proved that all chromatic roots of planar graphs are

less than 5.

Theorem 6.1 [BL46] The interval [5,∞) is zero-free for the class of planar

graphs.

In the same monograph, the authors made the following conjecture which is still

an open problem.

Conjecture 6.2 [BL46] The interval [4, 5) is zero-free for the class of planar

graphs.
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In fact, the only point at which we know that Conjecture 6.2 holds is q = 4,

which is equivalent to the four colour theorem.

At the other end of the number line, it is clear from Theorem 1.9 that there

are no non-trivial chromatic roots of planar graphs below 32/27. In addition,

Thomassen [Tho97] used the method described in Chapter 5 to prove the fol-

lowing density result.

Theorem 6.3 [Tho97] If G denotes the class of planar graphs, then we have

[32/27, 3] ⊆ R(G).

Thomassen also conjectured a natural extension of Theorem 6.3 which, if true,

implies that the only remaining unknown interval is that in Conjecture 6.2.

Conjecture 6.4 [Tho97] If G denotes the class of planar graphs, then we

have [3, 4] ⊆ R(G).

Royle [Roy08] proved Conjecture 6.4 for the point 4.

Theorem 6.5 [Roy08] For all ε > 0, there is a planar triangulation with a

chromatic root in the interval (4− ε, 4).

In this chapter, we build on Royle’s result by proving Conjecture 6.4 except in

a small interval around τ + 2, where τ is the golden ratio.

Theorem 6.6 If G denotes the class of planar graphs, then [3, t`] ∪ [tr, 4] ⊆
R(G) where t` and tr are real numbers with t` ≈ 3.618032 and tr ≈ 3.618356.

We first show that for certain classes of graphs G, the set R(G) of chromatic

roots is closely related to the set of real numbers q0 such that P (G, q0) < 0 for

some G ∈ G. This new observation makes it much easier to apply the method

of Thomassen discussed in Chapter 5, and we use this to deduce Theorem 6.6.
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An intriguing conjecture of Beraha [Ber75] suggests a connection between chro-

matic roots and the sequence of numbers defined by Bn = 2 + 2 cos(2πn ), now

known as the Beraha numbers. Indeed, in light of the results mentioned

above, it is plain to see that the numbers B1 = 4, B2 = 0, B3 = 1, B4 = 2,

B5 = τ2, B6 = 3 and B10 = τ + 2 are of significance. While Beraha’s conjec-

ture has been interpreted in several ways, see [JS13a], the version presented by

Jackson [Jac03], and by Jensen and Toft [JT95] is as follows.

Conjecture 6.7 There exists a planar triangulation with a real chromatic

root in (Bn − ε,Bn + ε) for all n ≥ 1 and all ε > 0.

Conjecture 6.7 trivially holds for B2, B3, B4 and B6 by considering the chromatic

polynomial of K4, say. Theorem 6.5 settles the case B1, and Beraha, Kahane

and Weiss [BKW80] solved the cases B5 and B7. They also proved that B10

is an accumulation point of complex chromatic roots of planar triangulations.

Nonetheless, the conjecture remains open for n ≥ 8. Interestingly, Salas and

Sokal [SS01] proved that no non-integer Beraha number is a chromatic root

except possibly B10, which is not the chromatic root of any planar graph by a

result of Tutte.

It seems that the condition of being a triangulation in Beraha’s conjecture arises

only because of the applications to physics and the study of lattice graphs

therein. Thus, we find the question of Beraha to also be of interest for gen-

eral planar graphs. Since Bn ∈ (3, t`) ∪ (tr, 4) for n ≥ 8, n 6= 10, a consequence

of our density result is that there are planar graphs with real chromatic roots

arbitrarily close to each Bn, n ≥ 8, except possibly for B10 = τ + 2. Moreover,

our methods can be used to show that if there are planar graphs with real chro-

matic roots arbitrarily close to B10, then there are planar triangulations with

the same property.

After considering the planar graphs, we also investigate the classes of K5-minor-

free graphs and K3,3-minor-free graphs. It is well known that there is a nice
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interplay between these three graph classes, starting with Wagner’s equivalence

theorem [Wag37], which says that the four colour theorem is equivalent to Had-

wiger’s conjecture for k = 5. The chromatic root distribution of these three

classes will further strengthen this interplay. We also briefly consider the den-

sity of chromatic roots of graphs on surfaces, bipartite graphs and the roots of

the flow polynomial.

6.2 A Method Revisited

In this section, we reinterpret the technique of Chapter 5 for the chromatic

polynomial. For this reason, we fix v = −1 for the rest of this chapter and

define ZG(q) = ZG(q,−1). Recall the definition of effective weights and com-

plementary pairs from Section 5.3. Since v = −1, the effective weight vF of a

two-terminal graph F with terminals x and y is a function only of q. Thus, we

write vF (q) to mean vF (q,−1). Note that accordingly, we have

1 + vF (q) =
(q − 1)ZFxy

(q)

ZF (q)− ZFxy
(q)

=
(q − 1)P (Fxy, q)

P (F, q)− P (Fxy, q)
. (6.1)

Since we now deal exclusively with the chromatic polynomial, we only consider

loopless graphs. Also, multiple edges have no effect on the chromatic poly-

nomial, which is reflected in the properties of (5.1) when v = −1. For this

reason, the polynomial ZFxy
(q) in (6.1) is nothing other than ZF/xy(q). Thus,

by Proposition 1.3, the effective weight of F at q is given by

1 + vF (q) =
(q − 1)P (F/xy, q)

P (F + xy, q)
. (6.2)

Let G be a class of graphs. We let Ro(G) be the set of all chromatic roots of

odd multiplicity of graphs in G. We also denote by N(G) the set of all real

numbers q0 such that the chromatic polynomial of some graph in G is negative

at q0. Theorem 2.3 implies the following fact.
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Proposition 6.8 Let G be a class of graphs. If G contains connected graphs

G and H such that |V (G)| and |V (H)| are at least 2 and have different parity,

then N(G) ∩ (−∞, 1] = (−∞, 0) ∪ (0, 1).

We now demonstrate a relationship between the sets Ro(G) and N(G).

Lemma 6.9 If G is a class of graphs, then Ro(G) ⊆ N(G).

Proof. Let q0 be a real number such that q0 ∈ Ro(G). For some graph G in

G, the chromatic polynomial P (G, q) is of the form (q − q0)rS(q) where r is an

odd natural number and S is a polynomial such that S(q0) 6= 0. By continuity,

S(q) is non-zero in an interval (q0 − ε, q0 + ε) for some ε > 0. Now, for any ε′

such that 0 < ε′ < ε, it follows that one of P (G, q0 − ε′) and P (G, q0 + ε′) is

negative. Thus, q0 is in the closure of N(G). �

For two graphs G and H, and an integer k ≥ 2, a k-clique sum of G and H is

any graph formed by identifying a clique of size k in G with a clique of size k

in H. We say that G is closed under taking k-clique sums if all k-clique sums of

graphs G,H ∈ G are members of G.

In fact, if G satisfies certain conditions, then the sets Ro(G) and N(G) have

essentially the same closure.

Theorem 6.10 Let G be a class of graphs such that C4 ∈ G. If G is closed

under edge deletion and taking 2-clique sums, then Ro(G) ∩ [2,∞) = N(G) ∩
[2,∞).

Proof. By Lemma 6.9, it suffices to show that N(G) ∩ [2,∞) ⊆ Ro(G), so
suppose that q0 ∈ N(G) ∩ [2,∞). Thus, there is a graph G ∈ G, such that

P (G, q0) < 0. This implies that q0 6= 2, because the chromatic polynomial of

any graph evaluated at a positive integer is non-negative. Assume that G is

edge-minimal with this property, so for each edge e we have P (G − e, q0) ≥ 0.

Note that G is not edgeless, since the chromatic polynomial of a graph with no
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edges is positive at any q0 > 0. By the deletion-contraction formula, we have

P (G− e, q0) = P (G, q0) + P (G/e, q0).

Hence P (G/e, q0) > 0, and P (G/e, q0) ≥ −P (G, q0). Since q0 > 2, we have

by (6.2) that F = G− e satisfies 1 + vF (q0) < −1. In other words, F has type

A−. By (6.2) or (5.9) it is easy to deduce that P3, the path with three edges, is

of type B+ for q > 2. Thus, (F, P3) is a complementary pair. For every ε > 0,

Lemma 5.7 implies that there is a graph H such that P (H, q1) = 0 for some

q1 ∈ (q0 − ε, q0 + ε). By the remark following Lemma 5.5, these roots have odd

multiplicity. Furthermore, each graph H is a parallel composition of copies of

F and P3. Hence, such graphs can also be formed by taking the 2-clique sum of

copies of G and C4, and then subsequently deleting the edge xy. The conditions

on G ensure that all graphs obtained by this construction stay in the class G. �

For a minor-closed class of graphs G, we denote by Forb(G) the minor-minimal

graphs not in G. By the Robertson-Seymour theory [RS04], the set Forb(G) is
finite. If G is minor-closed, and all graphs in Forb(G) are 3-connected, then G
satisfies the conditions of Theorem 6.10.

Corollary 6.11 If G is a minor-closed class of graphs, and all graphs in

Forb(G) are 3-connected, then Ro(G) ∩ [2,∞) = N(G) ∩ [2,∞).

Suppose that G is minor-closed, and all graphs in Forb(G) are 3-connected. Let

Gmax denote the set of edge-maximal graphs in G. Equivalently, a graph G ∈ G
is in Gmax if the addition of any edge produces a graph which is not in G. If

G ∈ Gmax, then it is easy to see that G has no cut-vertex. Indeed, if x is a cut-

vertex and we add an edge e between two neighbours of x in distinct components

of G−x, then the resulting graph G+e does not have a minor in Forb(G). This is
because, as all graphs in Forb(G) are 3-connected, such a minor would also exist

in G. Thus, G+ e ∈ G, which contradicts the maximality of G. Moreover, if x

and y are vertices such that G−x−y is disconnected, then x and y are joined by
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an edge in G. Otherwise, we could add the edge xy and obtain a contradiction

as above. Therefore, G is a 2-clique sum of the 3-connected graphs in Gmax and

triangles. We let G3max denote the set of graphs in Gmax which are 3-connected

or K3.

Theorem 6.12 Let G be a minor-closed class of graphs. If all graphs in

Forb(G) are 3-connected, then

N(G) ∩ (1,∞) = N(Gmax) ∩ (1,∞) = N(G3max) ∩ (1,∞).

Proof. As the three sets are decreasing, it suffices to prove that any real

number q0 in N(G) ∩ (1,∞) is also in N(G3max). To this end, let G be a graph

in G such that P (G, q0) < 0 and, subject to this, G has as few vertices as

possible. Subject to these conditions, assume further that G has as many edges

as possible. We claim that G is in Gmax, so suppose for a contradiction that this

is not the case. Thus, there are vertices x, y ∈ V (G), such that G+ xy is in G,
and since G is minor-closed, this implies that G/xy is also in G. Now, by the

deletion-contraction formula, we have

P (G, q0) = P (G+ xy, q0) + P (G/xy, q0).

Since the left hand side is negative, at least one of P (G+xy, q0) and P (G/xy, q0)

is also negative. Therefore, either G+xy contradicts the edge maximality of G,

or G/xy contradicts the vertex minimality of G.

We next claim that G is in G3max. Otherwise, the remarks above imply that G

is the union of two graphs G1, G2 ∈ G, such that |V (G1)| ≥ 3, |V (G2)| ≥ 3, and

the intersection G1 ∩G2 is a single edge. Now Proposition 1.6 gives that

P (G, q0) = P (G1, q0)P (G2, q0)/q0(q0 − 1).

Since the left hand side is negative and q0 > 1, it follows that one of P (G1, q0)

and P (G2, q0) is negative. Therefore, one of G1 and G2 contradicts the mini-
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mality property of G. This completes the proof. �

In the following sections, we apply Corollary 6.11 and Theorem 6.12 to three

classes of graphs, namely the planar graphs, the graphs having no K5-minor,

and the graphs having no K3,3-minor. We find that for each of these classes,

the chromatic roots are essentially the same in the sense that the closures are

essentially the same.

We conclude this section with a remark about multiplicities. It is easy to see that

a chromatic root of odd multiplicity is also a chromatic root of even multiplicity.

For if G is a graph in G and 2G denotes the union of two copies of G, then

P (2G, q) = P (G, q)2, and hence all chromatic roots of 2G have even multiplicity.

Consider the chromatic roots of graphs in G which are not chromatic roots of

a graph in G of odd multiplicity. We do not know if such roots exist, but the

next observation implies that we can say something about them if G3max is well

understood. As we later show, this is indeed the case for the three classes of

graphs that we focus on.

Theorem 6.13 Let G be a minor-closed class of graphs. If all graphs in

Forb(G) are 3-connected, then R(G) ⊆ R(G3max) ∪N(G).

Proof. The proof is a repetition of the proof of Theorem 6.12. Let q0 ∈ R(G).
By Theorem 1.9, we may clearly assume that q0 > 1. Now let G be a graph in

G such that q0 is a chromatic root of G. Subject to this, assume that G has as

few vertices as possible, and further, that G has as many edges as possible. If

G ∈ Gmax, then q0 is a chromatic root of a graph in Gmax and hence also of a

graph in G3max by the same argument as above using Proposition 1.6 and the

fact that q0 > 1. Otherwise, there are vertices x, y ∈ V (G), such that G+ xy is

in G. By the deletion-contraction formula, we have

P (G, q0) = P (G+ xy, q0) + P (G/xy, q0).
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Now, if P (G+xy, q0) = P (G/xy, q0) = 0, thenG+xy contradicts the maximality

property of G. Therefore, one of P (G+xy, q0) and P (G/xy, q0) is negative, and

thus q0 ∈ N(G). �

An application of Corollary 6.11 yields the following.

Corollary 6.14 If G is a minor-closed class of graphs such that all graphs

in Forb(G) are 3-connected, then R(G) ∩ [2,∞) ⊆ R(G3max) ∪Ro(G).

6.3 Planar Graphs

Before the solution of the 4-colour problem, Tutte [Tut70] proved a fascinating

result regarding the chromatic polynomials of planar triangulations at the num-

ber τ + 2 = (5+
√
5)/2 ≈ 3.618033, where τ is the golden ratio. A consequence

of Tutte’s result is the following theorem.

Theorem 6.15 [Tut70] If G is a planar triangulation, then P (G, τ +2) > 0.

Tutte’s result gave new hope of an analytic solution to the 4-colour problem.

However, regarding the interval (τ + 2, 4), Read and Tutte wrote in [RT88]:

“It is tempting to conjecture that the chromatic polynomial of a

triangulation must be positive throughout this interval, but coun-

terexamples are known.”

Theorem 6.5 shows that there is no interval of the form (4− ε, 4) which is zero-

free for planar graphs. Theorem 6.6 shows that there are no such intervals in

most of the interval (3, 4). However, since τ + 2 is in the interval (t`, tr), it is

possible that Tutte’s result can be extended to a small neighbourhood around

τ + 2. There is strong evidence that this is not the case. Indeed using the

results of this chapter, Royle (Private communication, 2016) has shown that
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p1 p2

q0 567438039 -152643002
q1 -2138431325 543148340
q2 3863934525 -923047942
q3 -4454394269 996884682
q4 3673360947 -766835653
q5 -2299985643 445549685
q6 1131241573 -202024440
q7 -445623415 72739711
q8 141942413 -20939539
q9 -36631145 4811140
q10 7622430 -873498
q11 -1263582 122848
q12 163358 -12934
q13 -15902 961
q14 1098 -45
q15 -48 1
q16 1

Figure 6.1: Coefficients of the polynomials p1 and p2.

the chromatic roots of planar graphs are dense in the interval (t`, τ + 2).

Let G be a class of graphs. We say that a real number q0 is G-positive if

P (G, q0) > 0 for every graph G in G. We let A(G) denote the real numbers

which are G-positive. If G is minor-closed, then a repetition of the proof of

Theorem 6.12 shows that A(G) = A(Gmax). From this, one may deduce that

Tutte’s theorem [Tut70], which was originally stated for planar triangulations,

also holds for all planar graphs.

Theorem 6.16 If G is a planar graph, then P (G, τ + 2) > 0.

Now Conjecture 6.2 is equivalent to the statement that all real numbers in [4,∞)

are G-positive when G denotes the class of planar graphs.

Conjecture 6.17 If G denotes the class of planar graphs, then τ + 2 is the

only G-positive real number less than 4.
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Figure 6.2: The graphs K and L with distinguished 4-cycles in bold.

By Wagner’s theorem, the planar graphs are precisely the {K5,K3,3}-minor-

free graphs. Since K5 and K3,3 are 3-connected, Corollary 6.11 shows that

Conjecture 6.17 implies Conjecture 6.4. In this chapter we prove a statement

only slightly weaker than Conjecture 6.17. Let p1 and p2 be the polynomials

whose coefficients are listed in Figure 6.1. Let t` ≈ 3.618032 be the largest real

root of p1, and let tr ≈ 3.618356 be the second largest real root of p2. Note that

τ + 2 ∈ (t`, tr).

Theorem 6.18 For every q ∈ (3, t`) ∪ (tr, 4), there is a planar graph whose

chromatic polynomial is negative at q.

Theorem 6.18 and Corollary 6.11 imply Theorem 6.6. To prove part of Theo-

rem 6.18, we use an infinite class of planar triangulations X(n), n ∈ N. These

graphs are formed from the graphs K,L and W depicted in Figure 6.2 and Fig-

ure 6.3. The graph K is part of a graph found by Woodall, and the graph L

is a layer of the triangular lattice, see [Roy08]. In Section 6.9, we use a trans-

fer matrix approach to analyse the chromatic polynomials of X(n), n ∈ N and

obtain the following result.

Lemma 6.19 For every q ∈ (3.7, 4), there exists a natural number n such that

P (X(n), q) < 0.
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Let F be the graph in Figure 6.3. This graph was found by a computer search

in order to prove Theorem 6.18.

Proof of Theorem 6.18. Let q ∈ (3, t`) ∪ (tr, 4) be fixed. If q ∈ (3.7, 4),

then Lemma 6.19 implies that there exists n ∈ N such that P (X(n), q) < 0 as

claimed.

Let G1 be the unique graph obtained from the union of F and W by identify-

ing the two distinguished 4-cycles. Using a computer algebra package such as

Maple, it may be calculated that G1 has chromatic polynomial

q(q7 − 18q6 + 141q5 − 619q4 + 1627q3 − 2525q2 + 2107q − 714),

which is negative in the interval (3, 3.6).

Now let K be the graph in Figure 6.2. Let G2 denote the planar triangulation

formed from K and two copies of F , say F1 and F2, by identifying the two

distinguished 4-cycles in K with the distinguished 4-cycles in F1 and F2 respec-

tively. We do this in such a way that the vertices of degree 3 in F1 and F2 are at

distance 2 in G2. Again, using Maple, it may be computed that this graph has

chromatic polynomial q(q − 1)(q − 2)(q − 3)3p1(q), where p1 is the polynomial

in Figure 6.1. Among other places, the polynomial P (G2, q) is negative in the

interval (3.5, t`).

Finally, let G3 be the unique planar triangulation formed from the disjoint union

of F , K and W by identifying the two distinguished 4-cycles in K with those in

F and W respectively. It may be computed that the chromatic polynomial of

this graph is q(q−1)(q−2)(q−3)2p2(q), where p2 is the polynomial in Figure 6.1.

The polynomial P (G3, q) is negative in the interval (tr, 3.8). This completes the

proof. �
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Figure 6.3: The graphs F and W with distinguished 4-cycles in bold.

(−∞, 0) (0, 1) (1, 32/27] (32/27, 3)

N(G) (−∞, 0) (0, 1) (1, 32/27] (32/27, 3)
Consider K1 Consider K2 Consider K3 Consider K3,K4

A(G) ∅ ∅ ∅ ∅
Consider K1 Consider K2 Consider K3 Consider K3, K4

R(G) ∅ ∅ ∅ (32/27, 3)
Theorem 2.3 Theorem 2.3 Theorem 2.3 Theorem 6.3

(3, 4) (4, 5) (5,∞)

N(G) Contains (3, t`) ∪ (tr, 4) Unknown ∅
Theorem 6.18 Theorem 6.1

A(G) Contains τ + 2 Unknown (5,∞)
Theorem 6.16 Theorem 6.1

R(G) Contains (3, t`) ∪ (tr, 4) Unknown ∅
Theorem 6.6 Theorem 6.1

Figure 6.4: A summary of known results regarding N(G), A(G) and R(G),
where G denotes the class of planar graphs. In each case, the
intersection of this set with an interval of R is given, along with a
reason or theorem number in this thesis.
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6.4 K5-Minor-Free Graphs

The proof of Wagner’s equivalence theorem [Wag37] is based on a complete

description of the setW of 3-connected graphs with no K5-minor. That charac-

terisation says that the elements of W are 3-clique sums of 3-connected planar

graphs and one other graph, J , which is a cycle of length 8 with the four diag-

onals added. The graph J is sometimes called the Wagner graph.

Let F denote the class of graphs with no K5-minor. Since J has no triangle,

it follows that F3max consists of K3, J , and 3-clique sums of maximal planar

graphs.

Proposition 6.20 If G denotes the class of planar graphs, and F denotes the

graphs with no K5-minor, then N(F3max) = N(G3max) and R(F3max)∩ [3,∞) =

R(G3max) ∩ [3,∞).

Proof. Since both F3max and G3max contain K3 and K4, we have

N(F3max) ∩ (−∞, 3) = N(G3max) ∩ (−∞, 3) = (−∞, 3) \ {0, 1, 2}.

Since G3max ⊆ F3max, it only remains to check that N(F3max) ∩ [3,∞) ⊆
N(G3max) and R(F3max) ∩ [3,∞) ⊆ R(G3max).

First let q0 ∈ N(F3max) ∩ [3,∞). Note that J has chromatic polynomial

q(q − 1)(q − 2)(q3 − 5q2 + 12q − 14)(q2 − 4q + 5),

which is negative only in the open intervals from 0 to 1, and from 2 to ap-

proximately 2.43. Thus, since q0 ≥ 3, we may assume that P (F, q0) < 0 for

some graph F which is a 3-clique sum of maximal planar graphs. If F is

planar then we are done. Otherwise, by Proposition 1.6 we have P (F, q) =

[q(q − 1)(q − 2)]
1−s∏s

i=1 P (Fi, q), where F1, . . . , Fs are maximal 3-connected

planar graphs. Since q0 > 2 and P (F, q0) < 0, it follows that P (Fi, q0) < 0 for
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some i ∈ {1, . . . , s}. Thus q0 ∈ N(G3max) as required.

By an analogous argument, if q0 ∈ R(F3max)∩[3,∞), then there is a 3-connected

maximal planar graph G such that P (G, q0) = 0. Thus, q0 ∈ R(G3max) as

required. �

As we now show, Proposition 6.20 together with Theorems 6.10, 6.12, 6.13 and

Corollary 6.14 demonstrates a close relationship between the class of planar

graphs and those with no K5-minor. We use several facts about the chromatic

roots of planar graphs, and accordingly we invite the reader to view the summary

of these results provided in Figure 6.4.

Theorem 6.21 If G denotes the planar graphs, and F denotes the graphs

with no K5-minor, then

(a) N(F) = N(G).

(b) A(F) = A(G).

(c) R(F) = R(G).

Proof.

(a) Using Proposition 6.8 it is easy to see thatN(F)∩(−∞, 1] = N(G)∩(−∞, 1].
By Theorem 6.12, we have N(F)∩ (1,∞) = N(F3max)∩ (1,∞) and N(G)∩
(1,∞) = N(G3max) ∩ (1,∞). Thus, Proposition 6.20 implies the result.

(b) By considering the graphs K3 and K4, it is easy to see that A(F) ⊆ A(G) ⊆
(3,∞). Now let q0 ∈ A(G), and suppose for a contradiction that q0 6∈ A(F).
Thus, q0 ∈ R(F)∪N(F). Part (a) gives a contradiction if q0 ∈ N(F), so we

may assume that q0 ∈ R(F). Now, a similar argument and Theorem 6.13

imply that q0 ∈ R(F3max). Finally, by Proposition 6.20, and because q0 ≥ 3,

we deduce that q0 ∈ R(G3max) ⊆ R(G), a contradiction.
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(c) Note that since G ⊆ F , we have R(G) ⊆ R(F). Theorems 2.3 and 6.3 now

imply that

R(F) ∩ (−∞, 3] = R(G) ∩ (−∞, 3] = {0, 1} ∪ [32/27, 3].

Let q0 ∈ R(F) with q0 ≥ 3. It suffices to show that q0 ∈ R(G). First

note that by Corollary 6.14, we have that q0 ∈ R(F3max) ∪ Ro(F). If

q0 ∈ R(F3max), then by Proposition 6.20 we have q0 ∈ R(G3max) ⊆ R(G).
If, on the other hand, q0 ∈ Ro(F), then by continuity, q0 ∈ N(F), and so

q0 ∈ N(G) by part (a). Theorem 6.10 now implies that q0 ∈ Ro(G), which
proves part (c). �

By Theorem 6.21(b) and Theorem 6.16, we deduce as a consequence that τ + 2

is F-positive when F denotes the class of graphs with no K5-minor.

6.5 K3,3-Minor-Free Graphs

It is an easy exercise to prove that, if a graph has a K5-minor, then it also

has either a K5-subdivision or a K3,3-subdivision. It is also easy to prove that

if a 3-connected graph G contains a K5-subdivision, then G contains a K3,3-

subdivision unless G = K5. From these observations it follows that, if F denotes

the class of graphs having no K3,3-minor, then F3max consists of K3, the 3-

connected maximal planar graphs and just one more graph, namely K5. From

these remarks we obtain the following fact.

Proposition 6.22 If G denotes the planar graphs and F denotes the graphs

with no K3,3-minor, then N(F3max) = N(G3max) ∪ (3, 4) and R(F3max) =

R(G3max) ∪ {4}.

We now show that Proposition 6.22 and the results of the previous sections

imply the following close relationship between the class of planar graphs, and
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those with no K3,3-minor. Again, we invite the reader to view the summary of

these results provided in Figure 6.4.

Theorem 6.23 If G denotes the planar graphs, and F denotes the graphs

with no K3,3-minor, then

(a) N(F) = N(G) ∪ (t`, tr).

(b) A(F) = A(G) ∩ (4,∞).

(c) R(F) ∩ (−∞, 4] = {0, 1} ∪ [32/27, 4] and R(F) ∩ [4,∞) = R(G) ∩ [4,∞).

Proof.

(a) By Proposition 6.8, it is easy to see that N(F)∩ (−∞, 1] = N(G)∩ (−∞, 1].
Now by Theorem 6.12, we have N(F) ∩ (1,∞) = N(F3max) ∩ (1,∞) and

N(G) ∩ (1,∞) = N(G3max) ∩ (1,∞). Proposition 6.22 and Theorem 6.18

now imply the result.

(b) By considering the graphs K4 and K5, it is easy to see that A(F) ⊆ (4,∞).

Furthermore, since G ⊆ F , we have A(F) ⊆ A(G). Now, it only remains to

show that A(G) ∩ (4,∞) ⊆ A(F). So let q0 ∈ A(G) ∩ (4,∞) and suppose

for a contradiction that q0 6∈ A(F). Thus, q0 ∈ R(F) ∪ N(F). Part (a)

yields a contradiction if q0 ∈ N(F), so we may assume that q0 ∈ R(F).
By the same argument, Theorem 6.13 implies that q0 ∈ R(F3max). Finally,

by Proposition 6.22, and because q0 > 4, we deduce that q0 ∈ R(G3max) ⊆
R(G), a contradiction.

(c) Theorems 2.3 and 6.3 imply that R(F) ∩ (−∞, 3] = {0, 1} ∪ [32/27, 3].

Furthermore, the graphK5 shows that (3, 4) ⊆ N(F), whence Theorem 6.10

gives that [3, 4] ⊆ R(F).

Since R(G) ⊆ R(F), it suffices to show that R(F) ∩ [4,∞) ⊆ R(G). To

this end, let q0 ∈ R(F) with q0 ≥ 4. By Corollary 6.14, we have that

q0 ∈ R(F3max) ∪ Ro(F). If q0 ∈ R(F3max), then by Proposition 6.22, we
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have q0 ∈ R(G3max) ∪ {4} ⊆ R(G). If, on the other hand, q0 ∈ Ro(F), then
by continuity q0 ∈ N(F), and so q0 ∈ N(G) by part (a). Theorem 6.10 now

implies that q0 ∈ Ro(G), which proves part (c). �

6.6 Graphs on a Fixed Surface

For three important minor-closed classes of graphs, we have obtained insight into

the root distribution of chromatic polynomials using real numbers at which some

chromatic polynomials are negative. In this section, we comment on another

important minor-closed class, namely the graphs that can be embedded in a

fixed surface S. We call this class of graphs G(S). By surface we mean the

sphere with g handles added, denoted Sg, or the sphere with k crosscaps added,

denoted Nk. If S is distinct from the sphere and the Klein bottle N2, then we

can characterise completely N(G(S)) and the G(S)-positive numbers. Ironically,

we have no density results for chromatic roots, except those for planar graphs.

The Heawood number H(k) is defined as H(k) = b(7+
√
1 + 24k)/2c. We shall

need the following facts:

(i) Every graph which can be embedded on Sg, g > 1, contains a vertex of

degree at most H(2g)− 1.

(ii) Every graph which can be embedded on Nk, k ≥ 1, contains a vertex of

degree at most H(k)− 1.

(iii) The complete graph KH(2g) can be embedded in Sg.

(iv) The complete graph KH(k) can be embedded in Nk, except that K7 cannot

be embedded in the Klein bottle N2.

Facts (i) and (ii) are easy consequences of Euler’s formula. Facts (iii) and

(iv) constitute the solution by Ringel and Youngs of the Heawood Map Colour

Problem, see [MT01].
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Theorem 6.24 Let g, k ∈ N.

(a) If g > 0, then A(G(Sg)) = (H(2g)− 1,∞) and

N(G(Sg)) = (−∞, H(2g)− 1) \ {0, 1, . . . ,H(2g)− 2}.

(b) If k 6= 2, then A(G(Nk)) = (H(k)− 1,∞) and

N(G(Nk)) = (−∞, H(k)− 1) \ {0, 1, . . . ,H(k)− 2}.

(c) (6,∞) ⊆ A(G(N2)) and N(G(N2)) ∩ (−∞, 5) = (−∞, 5) \ {0, 1, . . . , 4}.

The statements about the G(Sg)-positive numbers and the G(Nk)-positive num-

bers follow from a recursion formula discovered for matroids by Oxley [Oxl78]

and rediscovered for graphs in [Woo97] and [Tho97]. That formula implies that,

if G is a minor-closed class of graphs in which each graph has a vertex of degree

at most d, then every real number greater than d is G-positive. The statements

regarding N(G(Sg)) and N(G(Nk)) follow by considering the complete graphs

which can be embedded on Sg and Nk.

We cannot use Theorems 6.10, 6.12 and Corollary 6.14 to get insight into the

chromatic root distribution for G(S) when S is distinct from the sphere because

Forb(G(S)) contains graphs that are not 3-connected. This is well-known and

also easy to see as follows: Let d be the largest natural number such that dK5

(the union of d pairwise disjoint copies of K5) can be embedded in S. If S is

distinct from the sphere, then d > 0. Now (d + 1)K5 is a disconnected graph

which belongs to Forb(G(S)). Thus, density results for the chromatic roots of

graphs in G(S) would require a new construction.

Question 6.25 Is there a surface S, and an interval in [4,∞) where R(G(S))
is dense?
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6.7 Bipartite Graphs

Since the chromatic polynomial enumerates the proper colourings of a graph,

it is natural to ask how chromatic roots behave under assumptions about these

colourings. If G is a graph of chromatic number k, then it is clearly true that

P (G, q) > 0 for all q ∈ N with q ≥ k. However the same is not necessarily true

for q ∈ R. Indeed Woodall [Woo77] showed the following, which can also be

found in [DKT05].

Theorem 6.26 For every q ∈ R \ N such that q > 2, there exist m,n ∈ N

such that P (Km,n, q) < 0.

Using Theorem 6.26 and the above remarks, Woodall deduced that all integers

q ≥ 2 are limit points of the chromatic roots of bipartite graphs. In particular,

there is no upper bound on the chromatic roots of graphs with bounded chro-

matic number. In terms of lower bounds, Dong and Koh [DK08b] proved that

ω(G) = 32/27 for the class of bipartite graphs G. This can also be derived from

a result of Jackson and Sokal as we shall see.

Using Woodall’s result and the techniques of this section, we are able to deduce

a stronger version of these results.

Theorem 6.27 If G denotes the class of bipartite graphs, then R(G) = {0, 1}∪
[32/27,∞).

We shall require the following result of Jackson and Sokal regarding the double

subdivision operation defined in Section 2.1.

Lemma 6.28 [JS09] Let G be a copy of K2, and for k ∈ N, let Gk denote the

weighted two-terminal graph ♦k(G), where every edge has weight −1. For all

q > 32/27, there exists k ∈ N such that vGk
(q) > 0.
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Proof of Theorem 6.27. By Theorem 6.26, we have that [2,∞) ⊆ N(G).
Furthermore, G is closed under edge deletion and taking 2-clique sums. Thus,

by Theorem 6.10, we have that [2,∞) ⊆ R(G).

Let q ∈ (1.5, 2). If P denotes the path of length 2, then by (5.12) we have

vP (q) = 1/(q − 2). Thus, P has type A− at q. Moreover, by Lemma 5.12, the

two-terminal graph P (2), obtained by placing two copies of P in parallel, has type

A+. If Ps denotes the path of length s, then by (5.12) we have vPs
(q) = q

(1−q)s−1 ,

so for large and even s, the two-terminal graph Ps has type B−. It follows that

for every q ∈ (1.5, 2), there exists an even s ∈ N such that the pair (P (2), Ps)

is complementary. Furthermore, the parallel composition of these two graphs

results in a bipartite graph. Thus, by Lemma 5.7, we have [1.5, 2] ⊆ R(G).

Similarly, we have that P has type B− for q ∈ (32/27, 1.5). Also, for each

q ∈ (32/27, 1.5), Lemma 6.28 implies that there exists k ∈ N such that Gk
has type A+. It follows that the pair (Gk, P ) is complementary. Since any

parallel composition of these two graphs is bipartite, we have by Lemma 5.7

that [32/27, 1.5] ⊆ R(G). �

6.8 Flow Roots

The flow polynomial of a graph G is a polynomial F (G, q) such that for each

q ∈ N, the number of nowhere-zero Zq-flows of G is precisely F (G, q). It can

be verified that this function is indeed a polynomial as was done in Section 1.3

for the chromatic polynomial. We say that a real number q is a flow root of a

graph G if F (G, q) = 0.

For planar graphs, the flow polynomial and chromatic polynomial are dual,

see [Sok05]. Indeed, if G∗ denotes the planar dual of G, then

P (G, q) = qF (G∗, q). (6.3)
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From Theorem 2.3 and (6.3), it follows that that no bridgeless planar graph has

a flow root in the set (−∞, 0) ∪ (0, 1) ∪ (1, 32/27]. Wakelin [Wak94] removed

the planarity assumption.

Theorem 6.29 [Wak94] If G is a bridgeless graph with n vertices, m edges,

b blocks, and no isolated vertices, then

(i) (−1)m−n+1F (G, q) > 0 for q ∈ (−∞, 1).

(ii) F (G, q) has a zero of multiplicity b at q = 1.

(iii) (−1)m−n+b+1F (G, q) > 0 for q ∈ (1, 32/27].

By (6.3) and Theorem 6.3, the flow roots of bridgeless planar graphs are dense

in the interval (32/27, 3). In the same way, we deduce the following corollary

from Theorem 6.6.

Corollary 6.30 The flow roots of planar graphs contains a dense subset of

the set (3, t`) ∪ (tr, 4).

Jacobsen and Salas [JS13b] showed that tf ≈ 5.235260 is an accumulation point

of real roots of the flow polynomial. Currently these are the largest known such

roots, and it would not be surprising if the roots of the flow polynomial are

dense in (32/27, tf ). However, unless Conjecture 6.2 is false, it will require the

use of non-planar graphs to prove this.

6.9 Proof of Lemma 6.19

Let L and K be the graphs in Figure 6.2. We denote by Ln the graph obtained

from n copies of L, say L1, . . . , Ln, by identifying the inner 4-cycle of Li with

the outer 4-cycle of Li+1 for each i ∈ {1, . . . , n − 1}. The resulting graph is

planar and has two distinguished 4-cycles. Also let W denote the wheel on 5
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p3 p4 p5 p6

q11 1 1 1
q10 -34 -34 -34
q9 1 538 538 538
q8 -28 -5244 -5244 -5246
q7 362 35078 35078 35148
q6 -2846 -169490 -169490 -170548
q5 15036 604806 604806 613920
q4 -55448 -1595807 -1595807 -1645010
q3 142716 3051803 3051803 3222645
q2 -246724 -4024676 -4024676 -4397342
q1 258889 3286881 3286881 3753346
q0 -124884 -1255163 -1255163 -1511254

Figure 6.5: Coefficients of the polynomials p3, . . . , p6, see [Roy08, Table 1].

vertices, see Figure 6.3, and let K ′ denote the graph formed from K by adding

a single edge, triangulating one of the distinguished 4-cycles. In this section, we

analyse the class of planar triangulations X(n), n ∈ N, formed by identifying

the distinguished 4-cycles of Ln with the distinguished 4-cycles of W and K ′

respectively.

The graphs X(n), n ∈ N were first studied by Royle [Roy08], who took inspi-

ration from a graph found by Woodall and from graphs studied in the field of

statistical mechanics. Indeed, the class of graphs Ln, n ∈ N can be viewed as

4 × n strips of the infinite triangular lattice, see [Roy08, Figure 1], where one

side of the strip is wrapped around and identified with the other. A standard

technique to compute the chromatic polynomial of such graphs is the so-called

transfer matrix approach, see [SS01]. We employ this technique in the form used

by Royle [Roy08], and give here a fairly condensed analysis. A more detailed

presentation can be found in [Roy08].

Let A be a graph with a distinguished 4-cycle a1a2a3a4. We may partition the

colourings φ of A into four types.

Type 1: φ(a1) = φ(a3) and φ(a2) = φ(a4),
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Type 2: φ(a1) = φ(a3) and φ(a2) 6= φ(a4),

Type 3: φ(a1) 6= φ(a3) and φ(a2) = φ(a4),

Type 4: φ(a1) 6= φ(a3) and φ(a2) 6= φ(a4).

Let Pi(A, q) denote the number of q-colourings of A of type i. Note that iden-

tifying the vertices a1 and a3, say, gives a graph whose colourings correspond

bijectively to the colourings φ of A such that φ(a1) = φ(a3). Alternatively,

adding the edge a1a3 produces a graph whose colourings correspond bijectively

to the colourings φ of A such that φ(a1) 6= φ(a3). Thus, for computational pur-

poses, we have for example that P2(A, q) = P (A/a1a3+a2a4, q). We collect this

information in a vector S(A, q) called the partitioned chromatic polynomial

S(A, q) =


P1(A, q)

P2(A, q)

P3(A, q)

P4(A, q)

 .

Let 〈q〉k denote the k’th falling factorial q(q−1) · · · (q−k+1) and let p3, . . . , p6
be the polynomials whose coefficients are listed in Figure 6.5. The partitioned

chromatic polynomials of W and K ′ are given below. The formula for S(W, q)

is trivial, whereas the formula for S(K ′, q) appears in [Roy08] and was verified

by the author.

S(W, q) =


〈q〉3
〈q〉4
〈q〉4
〈q〉5

 S(K ′, q) =


〈q〉5 · p3(q)
〈q〉4 · p4(q)
〈q〉4 · p5(q)

〈q〉4 · (q − 3) · p6(q)


In a similar way, for a graph with two distinguished 4-cycles, we may define

a square matrix whose entries capture the types of colourings on those two

4-cycles. More precisely, we let the element in the ith row and jth column

be the number of q-colourings of the graph which are of type i on the outer

distinguished 4-cycle and type j on the inner distinguished 4-cycle. The matrix
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M corresponding to the graph L in Figure 6.2 is as follows. The expression

appears in [Roy08] and was verified by the author.
〈q〉4 〈q〉5 〈q〉5 〈q〉6
〈q〉5 〈q〉4 + 2〈q〉5 + 〈q〉6 〈q〉4 + 2〈q〉5 + 〈q〉6 4〈q〉5 + 4〈q〉6 + 〈q〉7
〈q〉5 〈q〉4 + 2〈q〉5 + 〈q〉6 〈q〉4 + 2〈q〉5 + 〈q〉6 4〈q〉5 + 4〈q〉6 + 〈q〉7
〈q〉6 4〈q〉5 + 4〈q〉6 + 〈q〉7 4〈q〉5 + 4〈q〉6 + 〈q〉7 M44

 ,

where M44 = 2〈q〉4 + 16〈q〉5 + 20〈q〉6 + 8〈q〉7 + 〈q〉8.

Lemma 6.31 [Roy08] Let A and B be graphs with distinguished 4-cycles. If

XA,B(n) denotes the graph obtained from Ln by identifying its two distinguished

4-cycles with those of A and B respectively, then the chromatic polynomial of

XA,B(n) is the sole entry of the 1× 1 matrix S(A)TD(MD)nS(B), where

D =


1/〈q〉2 0 0 0

0 1/〈q〉3 0 0

0 0 1/〈q〉3 0

0 0 0 1/〈q〉4

 .

The matrix MD is called the transfer matrix of the graph L, as it describes

how colourings transfer from one 4-cycle to the other. As we let n tend to

infinity, the matrix (MD)n is determined by the spectral properties of MD.

Indeed let λ1, . . . , λ4 and v1, . . . , v4 denote the eigenvalues and eigenvectors of

MD respectively. Furthermore, let ‖v‖ denote the norm of the vector v with

respect to the inner product 〈u, v〉 = uTDv. Royle proves the following.

Lemma 6.32 [Roy08] If A and B are graphs with distinguished 4-cycles, and

q0 is a fixed real number in (τ + 2, 4) , then

P (XA,B(n), q0) =

4∑
i=1

αiβiλ
n
i ‖vi‖2,

where αi‖vi‖2 = S(A, q0)
TDvi and βi‖vi‖2 = S(B, q0)

TDvi for i ∈ {1, 2, 3, 4}.
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In essence, Lemma 6.32 says that if λi > 0 is the eigenvalue of largest magnitude,

then in the limit as n tends to infinity, the chromatic polynomial of XA,B(n)

has the sign of αiβi. Moreover, this sign can be determined simply by looking

at the partitioned chromatic polynomials of A and B and the eigenvector vi.

With this in mind we first find the eigenvalues and eigenvectors ofMD. Indeed,

if a is the polynomial q4 − 10q3 + 43q2 − 106q + 129, then we have that λ1 = 2,

λ2 =
1

2
(q − 3)(q3 − 9q2 + 33q − 48− (q − 4)a(q)1/2),

λ3 =
1

2
(q − 3)(q3 − 9q2 + 33q − 48 + (q − 4)a(q)1/2),

and λ4 = 0. The corresponding eigenvectors are v1 = (1,−1,−1, 1)T ,

v2 =


(q2 − 7q + 15 + a(q)1/2)/(2(q − 2)(q − 3)2)

(q2 − 9q + 21 + a(q)1/2)/(4(q − 3)2)

(q2 − 9q + 21 + a(q)1/2)/(4(q − 3)2)

−1

 ,

v3 =


(q2 − 7q + 15− a(q)1/2)/(2(q − 2)(q − 3)2)

(q2 − 9q + 21− a(q)1/2)/(4(q − 3)2)

(q2 − 9q + 21− a(q)1/2)/(4(q − 3)2)

−1

 ,

and v4 = (0, 1,−1, 0)T .

We remark that in the notation of this section, the graphs X(n) in Lemma 6.19

can be denoted XK′,W (n). We can now prove Lemma 6.19.

Proof of Lemma 6.19. Let q0 be a fixed real number in (3.7, 4). At q0,

we have λ1 > λ2 > λ3 > λ4 = 0. For i ∈ {1, 2, 3, 4}, let αi be such that

αi‖vi‖2 = S(K ′, q0)TDvi, and let βi be the corresponding value for the graphW .

It may be calculated that α1‖v1‖2 = 0 and β1‖v1‖2 = 0. Thus, by Lemma 6.32,

the dominant term in the expression for P (X(n), q0) is α2β2λ
n
2‖v2‖2, and for

large enough n, the sign of P (X(n), q0) depends on the sign of α2β2. Let b be
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c d

q13 1
q12 -38
q11 676 1
q10 -7473 -33
q9 57452 506
q8 -325572 -4770
q7 1405168 30784
q6 -4698525 -143070
q5 12224002 489214
q4 -24510275 -1231299
q3 36830333 2234215
q2 -39168919 -2778891
q1 26277660 2126441
q0 -8337189 -755627

Figure 6.6: Coefficients of the polynomials c and d.

the polynomial q3 − 9q2 + 25q − 24, and let c and d be the polynomials defined

in Figure 6.6. It may be calculated that

α2‖v2‖2 =
d(q0)a(q0)

1/2 − c(q0)
2(q0 − 3)

,

and

β2‖v2‖2 =
(q0 − 2)a(q0)

1/2 − b(q0)
2(q0 − 3)2

.

From these expressions, a short calculation gives that α2‖v2‖2 < 0 for q0 ∈
(3.7, 4) and β2‖v2‖2 > 0 for q0 ∈ (3, 4). This implies that α2β2 is negative in

(3.7, 4). Therefore, there is n ∈ N such that P (X(n), q0) < 0. �

We remark that the calculation of chromatic polynomials in this chapter was

done with Maple. The calculation of eigenvalues and eigenvectors of the matrix

MD was performed with Matlab and cross-checked with the series expansion

expressions presented in [Roy08].
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