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Abstract. Beam models are used for the aeroelastic time and frequency domain analysis
of wind turbines due to their computational efficiency. Many current aeroelastic tools
for the analysis of wind turbines rely on Timoshenko beam elements with classical cross-
sectional properties (EA, EI, etc.). Those cross-sectional properties do not reflect the
various couplings arising from the anisotropic behaviour of the blade material. A two-
noded, three-dimensional Timoshenko beam element was therefore extended to allow for
anisotropic cross-sectional properties. For an uncoupled beam, the resulting shape func-
tions are identical to the original formulation. The new element was implemented into a
co-rotational formulation and validated against natural frequencies and several static load
cases of previous works.
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1 INTRODUCTION

Beam models are used for the aeroelastic time and frequency domain analysis of wind
turbines due to their computational efficiency. Many current aeroelastic tools for the
analysis of wind turbines rely on Timoshenko beam elements with classical cross-sectional
properties (EA, EI, etc.). Those beam properties do not reflect the various couplings aris-
ing from the anisotropic behaviour of the blade material. The cross-sectional properties
of anisotropic beams are commonly expressed in a 6 × 6 cross-section stiffness matrix.
Theories for determining the cross-section stiffness matrix have been presented by e.g.
Giavotto et al. [1] and Yu et al. [2]. The method by Giavotto et al. invokes the virtual
work per unit beam length to obtain a linear system of second-order differential equa-
tions with constant coefficients that have a homogeneous and particular solution. The
particular solution is used to determine the 6 × 6 cross-sectional stiffness matrix. The
homogeneous solution is related to warping and is generally ignored. The method by Yu
et al. is based on the variational-asymptotic method by Berdichevskii [3].

The anisotropic cross-sectional properties require a suitable beam element for the anal-
ysis. Ghiringhelli’s [4] element formulation uses the cross-section compliance matrix and
beam forces, which vary linearly along length, to obtain the element stiffness by principle
of virtual forces. The two-noded element of Kim et al. [5] assumes polynomial shape func-
tions of arbitrary order. The shape function coefficients are determined by minimizing
the elastic energy of the beam while satisfying the boundary conditions. Both elements
assume small nodal displacements and require a co-rotational or multi-body formulation
for geometric nonlinear analysis. A beam element that directly permits large displacement
analysis is the mixed variational formulation of Hodges [6].

This paper extends the two-noded, three-dimensional Timoshenko beam element by
Bazoune et al. [7]. A cross-section constitutive relationship with a 6× 6 stiffness matrix
was introduced and the 14 coefficients of the polynomial shape functions were eliminated
by two equilibrium equations of the shear force and bending moment relationship and
12 compatibility conditions of the nodal displacements at the element boundaries. With
the displacements and rotations known along the beam, the element stiffness matrix was
obtained by numerical integration along the element. For an uncoupled beam, where
the cross-section stiffness matrix is diagonal, the present formulation is identical to the
original formulation. The new element is implemented into a co-rotational formulation by
Battini and Pacoste [8] to allow for large displacements and rotations. The anisotropic, co-
rotational Timoshenko beam element is validated against natural frequencies and several
static cases of previous works. A new test case with a coupled 45-degree bend cantilever is
also proposed and compared to results obtained with the beam element by Kim et al. [5].

2 METHODS

In this section a Timoshenko beam formulation for the analysis of anisotropic beams
is derived. The present element is an extension of the two-noded, three-dimensional
Timoshenko formulation by Bazoune et al. [7] to allow for fully populated 6 × 6 cross-
section stiffness matrices.

2.1 Kinematic Assumptions

The element coordinate system has its origin at the first node of the element. The
beam axis x is along the length of the beam, pointing towards the second node. Axes y
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and z define the cross-sectional plane of the beam. The lateral displacements u, v and
w of the beam axis are expressed as a function of the cross-sectional coordinate x along
the element length L. A first order polynomial is assumed for displacement u along the
beam axis and third order polynomials are assumed for displacements v and w in the
cross-sectional plane.

u(x) = c1x+ c2 (1)
v(x) = c3x

3 + c4x
2 + c5x+ c6 (2)

w(x) = c7x
3 + c8x

2 + c9x+ c10 (3)

For torsional displacements along the beam a first order polynomial is assumed

θx(x) = c11x+ c12 (4)

The rotational displacements θy and θz around the beam cross section axes follow from
Timoshenko’s assumption that the curvature of the beam equals the slope plus a contri-
bution from shear deformation

θy(x) = −∂w
∂x

+ c13 (5)

θz(x) = ∂v

∂x
− c14 (6)

To express the displacements and rotations along the beam, the shape function coefficients
ck for k ∈ {1, . . . , 14} in the equations above have to be determined.

2.2 Constitutive Relations

By introducing the beam strain vector

ε =
{
∂u

∂x
,
∂v

∂x
− θz,

∂w

∂x
+ θy,

∂θx
∂x

,
∂θy
∂x

,
∂θz
∂x

}T

(7)

and the 6× 6 cross-section stiffness matrix

Kcs =



K11 K12 K13 K14 K15 K16
K22 K23 K24 K25 K26

K33 K34 K35 K36
K44 K45 K46

sym. K55 K56
K66


(8)

the cross-section constitutive relation is

F = Kcs ε (9)

where F = {Fx, Fy, Fz,Mx,My,Mz}T are the beam forces and moments in the cross-
section.

3
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2.3 Equilibrium and Compatibility

The 14 shape function coefficients ck are eliminated by introducing two equilibrium
equations of the shear force and bending moment relationship

∂My

∂x
− Fz = 0, ∂Mz

∂x
+ Fy = 0 (10)

and 12 compatibility conditions (6 nodal displacements + 6 nodal rotations) at the element
boundaries x = 0, L

u(0) = u1 u(L) = u2
v(0) = v1 v(L) = v2
w(0) = w1 w(L) = w2
θx(0) = θx1 θx(L) = θx2
θy(0) = θy1 θy(L) = θy2
θz(0) = θz1 θz(L) = θz2

(11)

where un, vn, wn and θxn, θyn, θzn for n = 1, 2 are the nodal displacements and rotations at
the first and second node of the element. With the displacements known along the beam,
the elastic energy is

V = 1
2

∫ L

0
εTKcsε dx (12)

The element stiffness Kel is obtained by creating the Hessian of the elastic energy V with
respect to the nodal degrees of freedom.

2.4 Implementation

For implementation in a finite element code the beam element derived above is rewritten
in matrix notation. The beam displacements and rotations u(x) = {u, v, w, θx, θy, θz}T of
Equations (1) – (6) can be expressed as

u(x) = A(x)c (13)

where A(x) is the coefficient matrix of the displacements and rotations with respect to
the shape function coefficient vector c = {c1, . . . , c14}T . And similarly for their derivative
with respect to the beam axis du(x) = {∂u

∂x
, ∂v
∂x
, ∂w
∂x
, ∂θx

∂x
, ∂θy

∂x
, ∂θz

∂x
}T

du(x) = dA(x)c (14)

The equilibrium and compatibility Equations (10) and (11) can be written as

E(x)c = T d (15)

where E(x) is the coefficient matrix of the equilibrium and compatibility equations with
respect to the shape function coefficient vector and

T =
 0

2×12
I

12×12

 (16)
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is a transformation matrix in which 0
2×12

is a 2 × 12 zero matrix and I
12×12

is a 12 × 12
identity matrix. The nodal displacements are expressed in the vector

d = {u1, v1, w1, θx1, θy1, θz1, u2, v2, w2, θx2, θy2, θz2}T (17)

Substituting Equation (15) into (13) and (14), the beam displacements and their deriva-
tives can be expressed as

u(x) = N (x)d (18)
du(x) = dN (x)d (19)

where N (x) = A(x)E(x)−1T and dN (x) = dA(x)E(x)−1T . Finally, the beam strains
ε are expressed in terms of nodal displacements and rotations

ε = B(x)d = [dN (x) + TNN (x)] d (20)

where B(x) = dN (x) + TNN (x) is the strain displacement matrix and

TN =



0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(21)

a transformation matrix. The element stiffness matrix Kel of the anisotropic Timoshenko
beam element is obtained by numerical integration over the beam length L

Kel =
∫ L

0
B(x)TKcsB(x) dx (22)

A consistent mass matrix for the above element is obtained from

Mel =
∫ L

0
N (x)TMcsN (x) dx (23)

where Mcs is the cross-section mass matrix containing mass and inertia of the cross-section
with respect to the beam displacements and rotations.

3 RESULTS

The proposed element is validated by comparing the results of different test cases with
those of previous publications. To allow for large displacements and rotations, the beam
element above was combined with an implementation of the co-rotational formulation
proposed by Battini and Pacoste [8]. The system was solved using a Newton-Raphson
procedure.

3.1 Eigenfrequencies of a coupled cantilever
In the first example, the natural frequencies of a coupled cantilever box beam proposed

by Hodges et al. [9] were investigated. The beam is 2.54 m long, has a height of 16.76 mm
(0.66 in) and a width of 33.53 mm (1.32 in). The wall thickness is 0.84 mm (0.033 in)
with six layers of unidirectional lamina stacked (20/−70/20/−70/−70/20) from outside
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to inside. The material is T 300 / 5208 Graphite / Epoxy with properties provided by
Stemple and Lee [10]. The material density is given by Hodges et al. as 1604 kg/m3

(1.501 · 10−4 lbsec2/in4). The cross-section stiffness matrix was taken from Hodges et al.
and converted to SI units

Kcs =


5.0576 · 106 0 0 −1.7196 · 104 0 0

7.7444 · 105 0 0 8.3270 · 103 0
2.9558 · 105 0 0 9.0670 · 103

1.5041 · 102 0 0
sym. 2.4577 · 102 0

7.4529 · 102

 (24)

The cantilever was discretised with 16 elements. In Table 1 the results of the present
model are compared with beam models by Hodges et al. [9] and Armanios and Badir [11]
as well as a finite element shell model by Kim et al. [5].

3.2 Tip displacements and rotations of a coupled cantilever
A test case for the static analysis of a coupled cantilever was taken from Wang et al.

[12]. The stiffness matrix is provided in the original study as

Kcs =


1368.17 0 0 0 0 0

88.56 0 0 0 0
38.78 0 0 0

16.96 17.61 −0.351
sym. 59.12 −0.370

141.47

 · 103 (25)

The beam has a length of 10 m and was discretised by 10 elements. A tip load of 150 N
was applied to the cantilever. The tip displacements and rotations (in Wiener-Milenkovic
Parameter) are shown in Table 2.

3.3 Curvature and twist of a coupled cantilever

Chandra et al. [13] conduct experiments on box beams with different layups. The
cross-section has a dimension of 13.6×24.2 mm (0.537×0.953 inch) with a wall thickness
of (6 plies) 7.6 mm (0.03 inch). The length of the cantilever is 76.2 cm (30 inch). The
symmetric layup with (45)6 in the flanges and (45/− 45)3 in the webs under a tip load of
4.448 N (1 lb.) was chosen for comparison. As the material properties of the AS4/3501-6
Unidirectional Graphite/Epoxy are incomplete in the original publication, the following

Mode Freq. [Hz] Rel. Diff. [%]

Present Hodges Armanios Kim Hodges Armanios Kim

1 vert. 2.94 3.00 2.96 2.98 2.0 0.7 1.4
1 horiz. 5.07 5.19 5.10 5.12 2.4 0.6 1.0
2 vert. 18.38 19.04 18.54 18.65 3.6 0.9 1.5
2 horiz. 31.72 32.88 31.98 32.02 3.7 0.8 0.9
3 vert. 51.37 54.65 51.92 52.17 6.4 1.1 1.6
3 horiz. 88.43 93.39 89.55 93.39 5.6 1.3 5.6
1 tors. 180.10 180.32 177.05 - 0.1 -1.7 -
2 tors. 542.04 544.47 531.15 - 0.4 -2.0 -

Table 1: Eigenfrequencies of a coupled cantilever obtained with the present model compared to results
by Hodges et al. [9], Armanios and Badir [11] (both beam models) and Kim et al. [5] (FEM model).
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u1 u2 u3 θ1 θ2 θ3

Present -0.09013 -0.06320 1.22950 0.18447 -0.17987 0.00523
Wang -0.09064 -0.06484 1.22998 0.18445 -0.17985 0.00488
Rel. Diff. [%] 0.57 2.59 0.04 -0.01 -0.01 -6.77

Table 2: Tip displacements and rotations (in Wiener-Milenkovic Parameter) of a coupled cantilever
obtained with the present model compared to results by Wang et al. [12].

properties were assumed for this study

E11 = 142 GPa E22 = 9.81 GPa
G12 = 6.00 GPa G23 = 3.77 GPa
ν12 = 0.30 ν23 = 0.42

(26)

The cross-sectional properties were determined using BECAS, an implementation of the
theory by Giavotto et al. [1], as

Kcs =


11.387 · 105 2.909 · 105 0 −30.458 12.674 0

4.189 · 105 0 −11.932 8.689 0
3.122 · 105 0 0 12.302

62.692 −21.741 0
sym. 35.146 0

80.594

 (27)

Smith and Chopra [14] compare the experimental results by Chandra et al. to an an-
alytical formulation and a finite element beam model. Figures 1 and 2 show the slope
and twist along the beam obtained with the present model, the experimental results by
Chandra et al., and the beam model used by Smith and Chopra. The experimental and
beam model data was obtained by digitizing the plots of Smith and Chopra.

3.4 Pre-bend cantilever

This example illustrates a truly three-dimensional response and was initially presented
by Bathe and Bolourchi [15]. It comprises a 45◦ bend cantilever with a radius of 100 m as
shown in Figure 3. A square unit cross section with a modulus of elasticity of 107 N/m2

was used. Bend-twist coupling was introduced by setting K45 = −0.3
√
K44K55 of the

cross-section stiffness matrix. With a tip load of 300 N, the solution converges with 5
iterations on average. Table 3 shows the tip displacement of the uncoupled beam compared
to results by Simo & Vu-Quoc [16]. And the coupled beam compared to results obtained
with the element proposed by Kim et al. which was implemented in the co-rotational
formulation used in the present study.

4 DISCUSSION

A linear Timoshenko beam element with anisotropic cross-sectional properties was
derived by extending an existing formulation. The beam model was implemented into a
co-rotational formulation to allow for geometric nonlinear analysis and several test cases
were analysed. A Python implementation of the proposed beam element, together with
the element by Kim et al. and the co-rotational formulation by Battini and Pacoste is
available on GitHub 1.

1https://github.com/alxrs/eccomas 2016.git
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Figure 1: Comparison of slope along the beam obtained from experiments by Chandra et al. [13], beam
model by Smith and Chopra [14], and present formulation.
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Figure 2: Comparison of twist along the beam obtained from experiments by Chandra et al. [13], beam
model by Smith and Chopra [14], and present formulation.

Displacement [m] Rel. Diff. [%]

x y z x y z

Simo & Vu-Quoc -11.87 -6.96 40.08 - - -
Present uncpl. -12.15 -7.15 40.49 2.3 2.7 1.0

Present cpl. -10.66 -6.53 38.68 - - -
Kim et al. cpl. -10.66 -6.53 38.70 0.1 0.0 0.0

Table 3: Comparison of pre-bend cantilever tip displacements original and bend-twist coupled beam.
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Alexander R. Stäblein and Morten H. Hansen

F = 300 N
45◦

r = 100 m

y

z

x

Figure 3: Prebend cantilever.

The present beam element is in good agreement with other formulations. The eigen-
values of a coupled cantilever beam of the first three vertical and horizontal modes and
the first two torsional modes are within 2% of another beam formulation and within 6%
of a finite element shell model. The tip displacements and rotations of a different coupled
cantilever with a tip load are within 3% and 7% of the original study. The curvature and
twist along a third cantilever is in good agreement with previous beam model results but
deviates somewhat from experiments. The tip displacements of an uncoupled prebend
cantilever are within 3% of previous studies. The tip displacements of a coupled prebend
cantilever a nearly identical with the results obtained from a different beam element that
has been implemented.
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