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Variation of Extreme and Fatigue Design Loads on the Main 
Bearing of a Front Mounted Direct Drive System 

Asger Bech Abrahamsen and Anand Natarajan 

Technical University of Denmark, Department of Wind Energy, 
Frederiksborgvej 399, 4000 Roskilde, Denmark 
 

Abstract. The drivetrain of a 10 MW wind turbine has been designed as a direct drive 
transmission with a superconducting generator mounted in front of the hub and connected to 
the main frame through a King-pin stiff assembly by DNV-GL. The aeroelastic design loads of 
such an arrangement are evaluated based on the thrust and bending moments at the main 
bearing, both for ultimate design and in fatigue. It is found that the initial superconductor 
generator weight of 363 tons must be reduced by 25% in order not to result in higher extreme 
loads on main and yaw bearing than the reference10 MW geared reference drive train. A 
weight reduction of 50% is needed in order to maintain main bearing fatigue damage 
equivalent to the reference drive train. Thus a target mass of front mounted superconducting 
direct drive generators is found to be between 183-272 tons.  

1.  Introduction 
 
Some manufacturers of large wind turbines prefer direct drive transmission configuration, implying no 
gearbox and unit transmission ratio. This may enable improved reliability of the transmission system 
due to lesser number of moving parts, but it also results in a large size generator, usually permanent 
magnet or other synchronous types. In order to develop a compact nacelle structure, some of the 
commercial designs such as for the Siemens 6 MW turbine [1] have the generator mounted direct to 
the hub with the entire nacelle in front of the tower. Thus the main bearing(s) supports a large amount 
of the bending moments resulting from asymmetric rotor loads. Another approach as followed in the 
INNWIND.EU project [2] develops the design of a 10 MW drivetrain and nacelle as a front mounted 
generator wherein the generator is again directly mounted to the hub, but in front of the rotor as given 
in Fig. 1. The main questions posed here are 1) Do these hub mounted generator concepts in front of 
the rotor provide any advantage in terms of the extreme loads and fatigue loads at the main bearing 
and yaw bearing and if so, 2) Quantify the sensitivity of the design loads on the mass of the generator. 
Finally a reliability of the main bearing at the 10 MW turbine is investigated based on the drivetrain 
configuration with different overhang masses. 

2.  Design Configuration 
 
Figure 1 is illustrating the King-Pin nacelle tailored for a 10 MW superconducting direct drive 
generator (SCDD) [3]. This configuration has been studied with different superconducting generator 
configurations in order to optimize the Cost of Energy (CoE) of the 10 MW INNWIND.EU turbine[4]. 
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From equation (1) it is possible to estimate the moment of inertia from an electromagnetic generator 
model and to combine that with an initial design of the generator support structure as shown in figure 
1. Since they share the same rotation axis then the resulting moment of inertia for the generator Irotor,gen 
is the sum of moment of the active material Irotor,active and the structural parts Irotor,structural. 
 

, , ,        (2) 
 
Table A2 is showing a series of generator specification in terms of component masses and moment of 
inertia I as found from eq. (2). The configuration denoted superconducting direct drive (SCDD) MgB2 
10 MW is the initial design of the front mounted generator, whereas the following design proposals 
are scaled with a shorter length to finally reach a generator mass that is similar the NbTi generator 
mass (last column). The properties of the 10 MW NbTi generator has been estimated from [9]. 
 
The key design load cases (DLC) that were determined to be design drivers for the 10 MW reference 
wind turbine tower top for ultimate design, that is DLC 1.3, normal operation under extreme 
turbulence and DLC 2.3, that is operating gust with grid loss were re-simulated with the new nacelle 
configuration. Further the fatigue on the main bearing will be quantified using DLC1.2 results; that is 
operation under normal wind turbulence [11]. Further along with the configuration in Fig. 1, three 
variations from table 2 are also simulated in HAWC2 with a decreasing weight corresponding to 75%, 
50% and 40% of the initial direct drive king pin (DDK) generator length. 
 

 
Figure 3. Variation in the extreme load under Design Load Case (DLC) 2.3 for different nacelle configurations: 
Geared – Conventional drivetrain with medium speed gearbox, Direct Drive King-pin (DDK)-100 overhanging 
generator concept with 100 % mass, DDK-40 - overhanging generator with 40% mass, DDK-50 - overhanging 
generator with 50% mass and DDK-75 - overhanging generator with 75% mass (as specified in table 2). 
 
Figure 3 compares the extreme loads for all these 4 configurations compared with the baseline 10 MW 
nacelle configuration under DLC 2.3. As expected the conventional geared configuration has the least 
extreme loads on the main bearing compared to the initial 362 tons overhang generator. However if 
the overhanging generator mass can be reduced 75 %, then the extreme bending and thrust on the main 
bearing can be reduced to the geared configuration. Further reduction can be obtained for the lower 
weight configurations. 
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The extreme loads on the yaw bearings are signficantly higher with the front mounted generator 
concepts in comparison with the conventional nacelle arrangement as seen from Fig. 4. However for 
the 10 MW reference turbine design [4], the yaw bearing extreme loads were driven by DLC 1.3 
(normal operation under extreme turbulence) and even the peak moment of 70 MNm expereinced by 
the heaviest of the king-pin cases in DLC 2.3 is within the design envelope of the reference yaw 
bearing. However it is possible that DLC 1.3 with the new configurations further amplify the extreme 
load magnitude and to mitigate this risk, an appropriate controller algorithm needs to be implemented 
to minimize tower top loads. 
 

 
Figure 4:  Extreme loads on the yaw bearing along with the peak tower top displacement 

4.  Fatigue Load Variation 
 

The loads on the main bearing can be determined from the time series of the aero elastic simulation 
using simple beam theory as proposed in [12]. The axial load Fa on the main bearing is given by the 
rotor thrust, whereas the radial load Fr is given by 

   (3) 

where yg is the distance between the bearings, M1 and M2 are the resulting shaft bending moment 
due to the turbine rotor bending moments.  

 
Eq. (3) is used to determine the rating life Lnm as specified by the bearing manufacture SKF[13] 

 

    (4) 

 
where the constants a1 is the life adjustment factor for reliability and aSKF is the SKF life modification 
factor, C is the basic dynamic load rating, p is the exponent of the life equation and P is the equivalent 
dynamic bearing load. The latter is given related to axial and radial loads of equation (3) by 
determining the load spectrum. 
 
Since the life of the bearing is directly linked to the dynamic bending moments, the corresponding 
damage equivalent bending moments at the main bearing and yaw bearing are compared between the 
different nacelle configurations in Fig. 5 using aeroelastic simulations results of the turbine in normal 
operation under normal turbulence (DLC1.2).  It can be readily seen that there is no significant 
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difference in the yaw bearing fatigue loads, but the main bearing fatigue is significantly higher for the 
case with the front mounted king-pin concept with the 100% mass. Therefore it can be concluded that 
at least a 50% reduction in the front mounted generator mass, that is the 50% DDK model is required.

 
Figure 5: Variation of the damage equivalent moments over a 20 year lifetime for the direct drive king-pin 
100% mass, 40% mass and conventional geared concept. 

The main assumption behind the above conceptual analysis is that the failure mechanism of the large 
diameter bearings is Rolling Contact Fatigue (RCF) and that the greasing of the bearings is considered 
as ideal. This can easily be violated in practical applications and cause premature failures. The 
analysis of such cases will need a detailed description of the greasing systems, which is presently not 
available as the design is conceptual.   
Finally the increased rotary inertia of the front mounted generator concepts can be beneficial also, as 
its effect is to reduce the fundamental support structure natural frequency. As described in [14], the 
reference 10 MW turbine is typically mounted on a jacket type structure for offshore applications, 
which due to its intrinsic stiff properties results in a net support structure frequency that is within the 
3P excitation band.  This implies that the rotor speed can excite the support structure at certain wind 
speeds leading to higher fatigue damage of the support structure.   

5.  Conclusions  

An analysis of different direct drive nacelle configurations for a 10 MW wind turbine was presented, 
along with the corresponding extreme and fatigue loads on the main bearing. It was observed that an 
overhanging superconducting direct drive generator with a mass of 75% of the initial weight of 363 
tons would result in main bearing extreme loads comparable to the a 10 MW gearbox reference drive 
train. Secondly the extreme loads on the yaw bearing were within the load envelope of the reference 
drive train, but the fatigue load on the main bearing is indicating that a mass reduction of 50 % is 
preferable. These findings will provide a valuable guidance on the target weight for further 
development of large front mounted superconducting generators.    
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Appendix A 
 
Table A1. Properties of INNWIND.EU 10 MW reference nacelle as represented in the aeroelastic 
model as well as the King-pin nacelle adapted to hold a 10 MW MgB2 generator. 

Nacelle properties DTU 10 MW SCDD 10 MW 
Distance along Shaft from Hub Center to Yaw Axis (m) 7,07 6,09
Distance along Shaft from Hub Center to Main Bearing (m) 2,7 2,1
Hub Mass (kg) 105520 163669
Hub Inertia about Low-Speed Shaft (kg m2) 3,26E+05 1,40E+06
Nacelle Mass (kg) 446036 140813
Nacelle Inertia about Yaw Axis (kg m2) 7,33E+06 2,87E+06
Nacelle Inertia about rotation axis vertical (kg m2)  3,60E+06
Nacelle Inertia about rotation axis horizontally (kg m2)  1,14E+06
Nacelle CM Location Downwind of Yaw Axis (m) 2,68 3,31
Nacelle CM Location above Yaw Bearing (m) 2,45 2,34

Tilt of shaft,   (degrees)  5 5
DRIVE TRAIN  
Rated Rotor Speed (rpm) 9,6 9,6
Rated Generator Speed (rpm) 480 9,6
Gearbox Ratio 50:1 None
Electrical Generator Efficiency (%) 94 94
Generator Inertia About Medium-Speed Shaft (kg m2) 1501 1,15E+06
Fully-Deployed Medium-Speed Shaft Brake Torque (N-m) 52254 None
Medium-Speed Shaft Brake Time Constant (sec) 0,74 None

 
Table A2. Mass and moment of inertia properties of 10 MW MgB2 superconducting direct drive 
generator which is reduced in mass by reducing the length down to 40% of the initial design in order 
to approach the generator weigh proposed by the 10 MW NbTi machine of GE [9]. 
Generator rotor SCDD 

MgB2 10MW  
SCDD   

75 % Lgen 
SCDD   

50 % Lgen 
SCDD 

40%Lgen 
GE NbTi 

10 MW 
Length        [m] 2,44 1,83 1,22 0,98 1,88 

Radiusouter   [m] 3,264 3,264 3,264 3,264 2,415 

Radiusmid    [m] 3,146 3,146 3,146 3,146 2,291 

Radiusinner   [m] 3,006 3,006 3,006 3,006 2,164 

Densityouter  [kg/m3] 7200 7200 7200 7200 7750 

Densityinner [kg/m3] 7200 7200 7200 7200 6865 

Fill factorout 1,00 1,00 1,00 1,00 1,00 

Fill factorin 0,59 0,59 0,59 0,59 1,00 

Massouter     [kg] 4,17E+04 3,13E+04 2,09E+04 1,67E+04 2,67E+04 

Massinner     [kg] 2,80E+04 2,10E+04 1,40E+04 1,12E+04 2,29E+04 

Massactive total [kg] 6,98E+04 5,23E+04 3,49E+04 2,79E+04 4,96E+04 

Masssuport    [kg] 7,00E+04 5,25E+04 3,50E+04 2,80E+04  

Masstotal      [kg] 1,40E+05 1,05E+05 6,99E+04 5,59E+04 4,96E+04 

Iouter            [kg m2] 4,29E+05 3,22E+05 2,14E+05 1,71E+05 1,48E+05 

Iinner            [kg m2] 2,65E+05 1,99E+05 1,33E+05 1,06E+05 1,14E+05 

Iactivetotal       [kg m2] 6,94E+05 5,21E+05 3,47E+05 2,78E+05 2,62E+05 
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Irotor support    [kg m2] 4,58E+05 3,44E+05 2,29E+05 1,83E+05  

Irotor total       [kg m2] 1,15E+06 8,64E+05 5,76E+05 4,61E+05 2,62E+05 

Generator stator      

Massstator active     [kg] 8,32E+04 6,24E+04 4,16E+04 3,33E+04 1,73E+04 

Massstator support  [kg] 7,00E+04 5,25E+04 3,50E+04 2,80E+04 3,81E+04 

Massstator total     [kg] 153284 114963 76642 61314 55319 

Gen active mat      

Massrotor active    [kg] 6,98E+04 5,23E+04 3,49E+04 2,79E+04 4,96E+04 

Massstator active   [kg] 8,32E+04 6,24E+04 4,16E+04 3,33E+04 1,73E+04 

Massactive total    [kg] 153000 114750 76500 61200 66886 

Gen support mat      

Massrotor support   [kg] 1,40E+05 1,05E+05 6,99E+04 5,59E+04 3,81E+04 

Massstator support  [kg] 7,00E+04 5,25E+04 3,50E+04 2,80E+04 3,81E+04 

Masssupport total   [kg] 2,10E+05 1,57E+05 1,05E+05 8,39E+04 7,61E+04 

Massgenerator total [kg] 362836 272127 181418 145134 143000 

Positiona          [m] 10,74 10,44 10,13 10,01 10,46 
aGenerator center of mass position along y-axis with respect to yaw axis. 
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