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Introduction 
Ozonation as an additional treatment step has become a widely accepted water polishing technology 
(Roselund, 1975; Colberg et al., 1977; Owsley, 1991; Cryer, 1992). The water in low exchange 
recirculating aquaculture systems (RAS) is heavily loaded by organic and inorganic compounds 
(Bullock et al., 1997; Davidson et al., 2011), where proteins, ammonia and heavy metals are the 
most pronounced (Davidson et al., 2011). As water recirculates, those compounds are accumulated 
in high concentrations, creating toxic conditions for aquatic organisms, leading to system failure 
(Bullock et al., 1997; Davidson et al., 2011).  
When ozone is applied to RAS, kills bacteria (Bullock et al., 1997; Davidson et al., 2011; 
Summerfelt et al., 1997; Powell et al., 2015), removes natural dissolved organic matter (DOM), 
increases redox level, stabilizes oxygen concentration, and accelerates protein degradation, while it 
increases water clarity and UV transparency (Davidson et al., 2011), improving coagulation, 
filtration (Antoniou & Andersen, 2012) and nitrification processes.  
However, in a non-meticulously designed system, residual ozone with longer lifetime, will reach the 
culture tanks causing significant harm to cultured specie (Bullock et al., 1997; Davidson et al., 
2011). The risk to lose fish due to overdosing and the high ozonation cost in case of generators 
malfunction are limiting parameters and contribute to a reluctance by the aquaculture industry to 
use ozone. Therefore, ozone should be properly delivered, efficiently dissolved and accurately 
controlled to ensure that it is completely consumed before returning to the culture tanks.  
Residual ozone in water is determined by expensive (Accuvac® test kit, Hach Lange) or 
complicated colorimetric methods (Bader & Hoigné, 1981). It can also be indirectly determined 
with the traditional oxidation/reduction potential (ORP) sensors which are expensive, having slow 
response and limited accuracy (Bullock et al., 1997). Fluorescence spectroscopy is a promising 
technology for both off and on-line monitoring in water treatment applications (Reynolds & 
Ahmad, 1997). 
Fluorescence is able to determine fast and accurately (Hudson et al., 2007; Henderson et al., 2009) 
DOM in wastewater effluents (Carstea et al., 2016), drinking water (Cumberland et al., 2012), fresh 
water (Baker, 2001) seawater (Coble, 1996) and RASs (Hambly et al., 2015). Additionally, total 
organic carbon (TOC) (Carstea, et al., 2016), biological oxygen demand (BOD) (Hudson et al., 
2008), phosphate, nitrogen-based compounds (Baker & Inverarity, 2004) and microbial abundances 
(Cumberland, et al., 2012) can be identified, which are key parameters for the sustainability of a 
RAS. Hambly et al. (2015) support, that fluorescence is an upcoming real-time monitoring 
technique to monitor OM in RAS and therefore optimize the holistic RAS management. According 
to Hambly et al. (2015), the DOC and the feed are proportionally correlated, while fluorescence 
intensity enhancement was observed with increased feed input. 
Ozone is a well-established technology in multiple application having undeniable benefits towards 
water quality. The most obvious effect of ozone addition in organic loaded water samples is the 
decolorization. Therefore, an investigation of the possibility to combine the fluorescence OM 
determination and the bleaching effect of ozone in OM in order to determine the ozone dose will be 
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conducted. The fluorescent properties of aquatic DOM, its high reactivity towards ozone and the 
risk of residual ozone presence in culture tanks, lead to investigate the possibility of fluorescence to 
measure indirectly the residual ozone into water in correlation with the extinction of the oxidized by 
ozone DOM. The present study attempts to determine the ozone demand and dose in water by 
fluorescence spectroscopy, utilizing the natural fluorescence stemming from proteins, which are 
contained into RAS. The principle that the method relies on, derives from the relationship between 
fluorescence intensities and DOM degradation by ozone.   

Methods 
Water samples.Water samples were collected from 2 fish farms, an experimental facility and 2 
aquariums, Den Blå Planet (public aquarium) and the aquarium in Tivoli (amusement park), all 
situated in Denmark, and used for experiments the following day. 
Ozone delivered to water. The experimental set-up for the ozonation was based on a 20 g/h ozone 
generator from O3-Technology AB (Vellinge, Sweden) which was supplied with dry oxygen gas. 
Ozone concentration was determined by the indigo method (Bader & Hoigné, 1981) measured at 
600 nm with a spectrophotometer (Hach Lange). 
Ozone analysis. Water samples were spiked with a volume of ozone stock solution as described in 
Hansen et al. (2016). Ozone dose was determined by adding the same amount of ozone as in the 
sample, in acidified MilliQ water bottles, containing phosphate buffer and a sufficient amount of 
potassium indigotrisulphonate. Afterwards, the absorbance was measured at 600nm and compared 
to the blank.  
Fluorescence. The intensity was determined by a fluorimeter (Cary Eclipse, Varian). The 
composition of RAS water samples in terms of DOM was further analyzed, utilizing a fluorimeter, 
measured in predetermined excitation/emission wavelength pairs (Table 1) provided by literature 
(Hudson et al., 2007). Samples were transferred in a quartz cuvette and subjected to further 
analysis.  

Table 1: Excitation/Emission wavelength pair for fluorophores based on Hudson et al., 2007. 

Fluorophore type Fluorophore name 
(Coble, 1996) 

Excitation/Emission 
wavelength (nm) 

Protein-like (Tyrosine) B 231/315 
Protein-like (Tryptophan) T 231/360 
Humic-like A 249/450 
Protein-like (Tyrosine) B 275/310 
Protein-like (Tryptophan) T 275/340 
Humic-like C 335/450 

 
Experiments 
Water from RAS was subjected to ozonation, in order to investigate the correlation between 
fluorescence indices and DOM degradation. Experiments were conducted in a laboratory. Different 
ozone doses were delivered to water samples, and then the fluorescence degradation was measured. 
The ozone doses varied from 0-14 mg/L. After ozonation, the samples were stored at 15oC for an 
hour. In each experimental batch, one sample was not spiked with ozone to provide reference value 
(blank), however was subjected to the same experimental conditions as the rest of the samples e.g. 
retention time and temperature. Obtained data were analyzed using MS Excel and Prism Graph Pad. 
 
Results and discussion 
The water comes from a raceway trout model farm receiving water from a stream, equipped with 
simple water treatment technology such as airlifts, mechanical and biological filters. 
The degradation kinetics of chromophores and fluorophores in the investigated samples suggest 
one-phase decay (Figure 1). Humic-like fluorescence (green and orange lines) was half when 
approximately 5 mg O3/ L was dosed (Figure 1). Spiking with the same ozone dose (5 mg O3/ L) 
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the already low intensity protein-like fluorescent OM (red, blue, brown and black lines) was almost 
extinct (Figure 1), as it has been previously observed in Świetlik & Sikorska (2004). It has been 
reported that humic-like substances when subjected to ozonation either increased in intensity or 
remained stable, while for protein-like, a decrease in intensity was typical (Henderson et al., 2009). 
The fact that the humic-like fluorescence is easier to detect than the protein-like fluorescence, 
makes the humic-like fluorescence the most promising for the future industrial application (Li et al., 
2016). Additionally based on our findings, it can be concluded that for RAS, relatively low ozone 
does are sufficient to increase water transparency.  
High ozone doses up to 14 mg O3/ L were spiked to investigate fluorescence behavior and if it will 
eventually be completely removed. The addition of 14 mg O3/ L, reduces significantly fluorescence 
intensity but is not able to oxidize it completely. More specifically, the fluorescence (both humic 
and protein-like) in RAS, has a reduction ranging from 90% to 97.7% (Figure 1). 
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Figure 1: Water characterisation based on fluorescence-like matrix. 

 
 
Conclusions 
Fluorescence spectroscopic has great potential to be used as a monitoring tool in RAS because of 
the great sensitivity and selectivity towards OM, fluorophores and consequently ozone, especially in 
low ranges (0-5mg O3/ L). The present work suggests a technique which can be further developed 
in order to manufacture accurate, low-cost, real-time measurement sensors to define dissolved 
ozone into water.  
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Recirculating Aquaculture System (RAS) 
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 16% of animal derived protein is from fish 

 More than 2,6 billion people get more than 20% of their protein 
intake from fish  

 A few years ago: more than 60% of the fish consumed around 
the world is farmed 



RAS implications 
 Low exchange RAS (90% or more of water is 

recycled) 

 Accumulation of:  

 Dissolved organic mater (DOM) 

 Micro-particles 

 Dissolved N-compounds (e.g ammonia) 

 Heavy metals  

 Microbial abundancies 

 

 

 Potentially leading to: 

 Suboptimal conditions 

Cu2+ 

Pb2+ As3+ 

Hg 

Cd2+ 

2 



Dual Functions of Ozone 
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 Disinfection 

 Efficient against 

 Bacteria 

 Viruses 

 Parasite   

 Oxidation 

 Strong oxidizing agent 

 Rapid reactions 

 Removal of natural DOM 

 Acceleration of protein 
degradation 

 Increased water clarity 
and UV transparency  

 Improve  

• coagulation  

• filtration and 

• nitrification processes.  

 



Challenges 
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Ozone overdose 

 Never present in culture tank 

 Significant harm to cultured species  

 > 0.01 mg/L  

 In case of saltwater system: 

 Hypobromous acid formation 

 toxic 

 

 

 Reluctance to use ozone 
due to: 

 Risk of losing fish  

 Cost 

 

Need for an operational method to 
monitor the ozone demand in the 

water phase!!! 

Low Dosage High Dosage 

Oxidation Disinfection 

(Need of free  

concentration) 

 



Traditional residual ozone determination 
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 Dissolved (actual) ozone into water 

 Off-line colorimetric method (e.g. DPD, indigo trisulfonate) 

 Spectrophotometer  

• complicated method 

 Test kits 

• expensive 

 

 

 Online measurement 

 Potentiometric principle probe  

• quite expensive  

 Oxidation potential reduction (OPR)  

• cheap 

• do not measure ozone 

• non specific (cannot distinguish e.g. O3 from Cl2) 

• risk of failure when exposed to high ozone concentration 

 



Delivered Ozone determination 
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We propose a new method to determine how much ozone 

dosage is added into water 

 Fluorescence 

 Based on natural fluorescence of DOM  

 rapid detection 

 precise characterization of DOM composition 

 Tested in wastewater, river water, seawater, etc. 

 Never used to control ozone in aquaculture until now 



Fluorescence 
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(Fluorescence principle) 

 DOM contains: 

 Chromophores (absorb light) 

 Fluorophores (re-emit light)  

 Humic substaces (plant origin) 

• Refered as humic-like 

 Amino acids (proteins) 

• Refered as protein-like 
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Fluorescence transitions 
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Fluorophore type Excitation/Emission wavelength (nm) 

Protein-like (Tyrosine-like) 231/315 

Protein-like (Tryptophan-like) 231/360 

Humic-like 249/450 

Protein-like (Tyrosine-like) 275/310 

Protein-like (Tryptophan-like) 275/340 

Humic-like 335/450 

 

 Based on fluorescence transitions published in an wastewater 
overview paper (Hudson et al., 2007) 

 To characterized micro-pollutants in waste water 

 We use the same wavelength pairs  



Our Aim 
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 Does naturally fluorescent DOM exist in RAS? 

 Is the natural fluorescence in RAS reacting 

with ozone? 

 How could this knowledge be implemented in 

real life applications? 

 



Sampling sites 
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Model trout 
farm 

Tivoli 
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Eel fish farm 
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Experimental setup-lab scale 
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Stock solution of 
ozone 

1 h 

Fluorescence analysis 

 Ozone doses 

 0 to 20 mg O3/L 

 

 

 

Water characterization 

1 mL 15 mL 2 mL 5 mL 



Water characterization based on fluorescence 
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Fluorescence profile in different water samples 
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 Fish-farms: humic-like fluorescence dominates 

 Aquariums: more diverse fluorescence 

 
 High ozone sensitivity in low concentrations 
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Humic-like fluorescence calibration curve 
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 Slopes among samples varied 
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Protein-like fluorescence calibration curve 

15 

0 5 10 15
0

1

2

3

4

5

6

7

Ex275Em310

Model trout farm

first

second

Ozone dosage (ppm)

F
lu

o
re

s
c
e

n
c
e

 I
n

te
n

s
it
y

0 1 2 3 4 5
0

1

2

3

4

5

6

7

Ex275Em310

R
2
=0,9587

Model trout farm

Slope:-0.7428

Ozone dosage (ppm)

F
lu

o
re

s
c
e

n
c
e

 I
n

te
n

s
it
y

0 5 10 15

0

2

4

6

8

10

Ex275Em310

Eel fish farm

first

second

Ozone dosage (ppm)

F
lu

o
re

s
c
e
n
c
e
 I
n
te

n
s
ity

0 1 2 3 4 5

0

2

4

6

8

10

Ex275Em310

R2=0,9638

Slope: -0.467

Eel fish farm

Ozone dosage (ppm)

F
lu

o
re

s
c
e
n
c
e
 I
n
te

n
s
ity

 Slopes among samples varied 

 Other OM contained in water are competing fluorescence 

  Unlike to have a universal sensor controlling ozone into water 



Application #1: Determination of delivered ozone dose 

16 

Sludge

(N and P removal)

Biologi

-cal

filter

NH3

Make up water

Air

O3
PSA

Air blower

Monitor of:

O2

Salinity

Temperature

pH etc.

CO2 Foam

Skimmer

Drum

filter

     O3

Dissolver
Biologi

-cal

filter

Pump

 Validation of ozone generator 

 Without sensor installation 

 

 Calibration curve in the lab 
based on fluorescence  

 Grab samples before and after 
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 Does the generator deliver the 
ozone dose that the 
specifications promise? 

 How does it work? 

In 

Out 

In 

Out 

Delivered ozone 
dose=3,7 g/m3 



Application #2: On-line control of flow through systems 
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 Ozone dosage is based on: 

Fluorescence in the inlet 
might alter but their 
difference should be the same 

 Sensor in the inlet 

 Evaluate water quality via 
fluorescence 

 Based on it ozone dosage is 
determined 

 

e.g. dilution due to rainfall 

 Sensor in the outlet 

 Adjustment of the ozone 
dose 

 Ensure water quality 
suitable to be discharged in 
the recipient. 
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Take-home message 
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 Fluorescent DOM does exist in aquaculture water 

 Fluorescence is highly sensitive to ozone mostly in low ranges 

(0-5 mg O3/L) 

 Fluorescence can be used as: 

 Off-line control verifying ozone dosage and evaluating 

ozone generator leading to a more robust operation 

 On-line sensor in flow through system controlling ozone 

dose by keeping fluorescence within predetermined 

ranges 
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