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Preface 

This PhD thesis presents research in the field of nanotechnology, with a 

specific focus on consumer exposure to nanomaterials from consumer 

products. The PhD study was conducted in the period from October 2013 to 

October 2016 at the Department of Environmental Engineering, Technical 

University of Denmark (DTU) under supervision of Associate professor 

Steffen Foss Hansen, PhD and co-supervision of Analytical chemist Mikael 

Emil Olsson, PhD. 

The thesis is organized in two parts: the first part puts into context the 

findings of the PhD in an introductive review; the second part consists of the 

papers listed below. These will be referred to in the thesis by their paper 

number written with the Roman numerals I-VII. 

I Hansen, S.F., Heggelund, L.R., Besora, P.R., Mackevica, A., Boldrin, A. 

and Baun, A., 2016. Nanoproducts–what is actually available to European 

consumers? Environmental Science: Nano, 3(1), 169-180. 

II Mackevica, A. and Hansen, S.F., 2016. Release of nanomaterials from 

solid nanocomposites and consumer exposure assessment–a forward-

looking review. Nanotoxicology, 10(6), 641-653. 

III Mackevica, A., Besora, P.R., Brinch, A., and Hansen, S.F., 2016a. 

Current uses of nanomaterials in biocidal products and treated articles in 

the EU. Environmental Science: Nano. In press. 

IV Mackevica, A., Olsson, M.E. and Hansen, S.F., 2016b. Silver 

nanoparticle release from commercially available plastic food containers 

into food simulants. Journal of Nanoparticle Research, 18(1), 1-11. 

V Mackevica, A., Olsson, M.E. and Hansen, S.F., 2016c. The release of 

silver nanoparticles from commercial toothbrushes. Journal of Hazardous 

Materials. In press. 

VI Mackevica, A., Olsson, M.E. and Hansen, S.F., 2016d. Quantitative 

Characterization of Nano-TiO2 Release from Fabrics by Single Particle 

ICP-MS. Manuscript. 

VII Mackevica, A., Olsson, M.E., Mines, P.D., Heggelund, L.R. and Hansen, 

S.F., 2016e. Estimation of dermal transfer of nanoparticles from 

consumer articles by wipe sampling. Manuscript. 
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In this online version of the thesis, paper I-VII are not included but can be 

obtained from electronic article databases e.g. via www.orbit.dtu.dk or on 

request from DTU Environment, Technical University of Denmark, 

Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark, 

info@env.dtu.dk. 

In addition, the following publications, not included in this thesis, were also 

conducted during this PhD study:  

Mackevica, A., Skjolding, L.M., Gergs, A., Palmqvist, A. and Baun, A., 

2015. Chronic toxicity of silver nanoparticles to Daphnia magna under 

different feeding conditions. Aquatic Toxicology, 161, 10-16. 

Nowack, B., Boldrin, A., Caballero, A., Hansen, S.F., Gottschalk, F., 

Heggelund, L., Hennig, M., Mackevica, A., Maes, H., Navratilova, J. 

Neubauer, N., et al., 2016. Meeting the Needs for Released Nanomaterials 

Required for Further Testing- The SUN Approach. Environmental science & 

technology, 50(6), 2747-2753.  

Sakka, Y., Skjolding, L.M., Mackevica, A., Filser, J., Baun, A., 2016. 

Behavior and chronic toxicity of two differently stabilized silver 

nanoparticles to Daphnia magna. Aquatic Toxicology. In press. 

Neubauer, N., Scifo, L., Navratilova, J., Gondikas, A., Mackevica, A., 

Borschneck, D., Chaurand, P., Vidal, V., Rose, J., von der Kammer, F.,  

Wohlleben, W., 2016. Use of polymers containing nanoscale coloristic 

pigments: Upper limits on releases by leaching, in food contact and from 

aged materials. Manuscript. 

Hansen, S.F. and Mackevica, A., 2016. Chapter 11: Methods and Tools for 

Assessing Nanomaterials and Uses and Regulation of Nanosilver in Europe.  

Book: Silver Nanoparticles for Antibacterial Devices: Biocompatibility and 

Toxicity. CRC Press. ISBN:9781498725323. In press.  

mailto:info@env.dtu.dk
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Summary 

During the past decade the number of consumer products that contain 

nanomaterials (NMs) has been rapidly increasing. Materials manufactured at 

the nanoscale exhibit unique physicochemical properties and have greater 

reactivity in comparison to the bulk material. Because of this, NMs are being 

utilized in a wide variety of products, ranging from food and personal care 

products to electronics and large appliances. 

Over the course of the last four years, the number of products claiming to 

contain NMs has increased from 1,200 in 2012 to more than 2,300 in 2016. 

The increasing use of nanoproducts and the uncertainties associated with the 

risks they may pose is raising concerns about consumer safety.  During the 

use of nano-enabled products there is a potential for NM release, which can 

consequently lead to consumer and/or environmental exposure. Consumer 

exposure testing has only recently started to receive some attention, and the 

data currently available in the literature is scarce. Most studies are addressing 

only a narrow range of product categories and a few NM types, having 

experimental setups that are rarely comparable from study to study. 

Moreover, the analytical techniques applied for release testing are rarely 

suitable for reporting NM release with particle number concentration, size 

distribution or surface area concentration, which are known to be of 

toxicological importance.  

The work presented in this thesis addresses the lack of data on consumer 

exposure to NMs from various consumer products. First, data from literature 

and online databases was used to obtain an overview of what nanoproducts 

are available on the EU market, and which nanoproducts have been 

experimentally tested for their potential NM release. Specific focus was 

placed on evaluating suitable analytical methods for NM quantification and 

characterization. The findings showed that single particle inductively coupled 

plasma mass spectrometry (spICP-MS) in combination with other methods is 

a well suited analytical technique that can provide extensive NM 

characterization, such as mass and number concentration, and size 

distribution of NMs. Then, several nano-enabled products were selected for 

experimental testing of NM release, namely four types of food contact 

materials (Ag) and two types of toothbrushes (Ag) for potential oral 

exposure, as well as five types of textiles (TiO2) and five different surface 
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coatings (Ag and CuO) for potential dermal exposure. The NM release was 

characterized by using spICP-MS and transmission electron microscopy 

(TEM), together providing data for NM mass and number concentration, size 

distribution, and morphology. In most cases, it was found that NM release 

from the consumer products was in the ng/g (or ng/cm
2
 where applicable) 

range. Ag release from food contact materials and toothbrushes was tested in 

food simulants (deionized (DI) water, ethanol, acetic acid) and tap water, 

respectively. The results showed that there is a potential for Ag exposure both 

in dissolved and nano-particulate form (up to around 6 µg/L and 40,000 

particles/mL), but the amounts were magnitudes below the permitted Ag 

exposure limits set by European Food Safety Authority (EFSA) and World 

Health Organization (WHO). The TiO2 release was tested for five types of 

textiles that did not openly disclose TiO2 content. The fabrics were immersed 

in DI water, and the resulting amounts of potential Ti exposure were found to 

be up to around 8,000 particles/cm
2
 corresponding to around 24 ng/cm

2
. 

These amounts may be considered negligible compared to the reported Ti 

amounts in a wide range of products available on the market that claim to 

contain nano-TiO2 as an additive, especially when it comes to food products. 

Dermal exposure testing for Ag and CuO surface coatings was done by 

wiping tests and revealed particle release very close to background levels, 

unless the surface was subjected to abrasion before executing the wiping 

tests. In general, all the products that were tested released very low amounts 

of the initial NM content present in the product, indicating that throughout 

long-term use of the products there might be continuous NM release, or most 

of the NMs would end up in solid waste.    

The NM release data obtained both from the literature and from the 

experimental studies presented in this thesis were subsequently used for 

consumer exposure estimation. Several consumer exposure assessment tools 

were identified and their applicability for NM exposure assessment is 

discussed in this thesis. It was concluded that current consumer exposure 

assessment models have not been designed for estimating NM-relevant 

exposures, as they are mainly dealing with mass as a dose metric, without 

taking NM properties into consideration. This highlights the need of 

developing tools that are specifically designed for NM exposure assessment, 

taking into account not only potential exposure in terms of total NM mass, 

but also number concentration and size distribution.  
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All in all, the work presented in this thesis underlined various important 

issues that need to be considered and addressed when completing 

nanoproduct release testing, NM quantification and characterization, data 

reporting, and consumer exposure assessment. Firstly, there is an urgent need 

to apply a combination of characterization methods to gain a better 

understanding about the potential NM exposure. Secondly, standardization of 

NM release testing and data reporting is of key relevance, to ensure that the 

data generated is comparable among studies and can be extrapolated to other 

nanoproducts with similar properties. Finally, standardized data reporting and 

exposure assessment is of utmost importance to move towards harmonization 

of NM exposure and hazard characterization that could further aid NM-

relevant risk assessment. 
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Dansk sammenfatning 

Igennem det seneste årti er antallet af forbrugerprodukter, der indeholder 

nanomaterialer (NM), steget kraftigt. Materialer produceret i nanoskala 

besidder unikke fysisk-kemiske egenskaber og har større reaktivitet 

sammenlignet med materialet i andre størrelser. På grund af dette, bliver NM 

benyttet i en lang række produkter lige fra madvarer og produkter til 

personlig pleje, til elektronik og større husholdningsapparater.  

I løbet af de sidste fire år er antallet af produkter, der hævdes at indeholde 

NM, steget fra 1,200 produkter i 2012 til mere end 2,300 produkter i 2016. 

Det stigende forbrug af nanoprodukter samt usikkerhederne omkring hvilke 

risici de udgør, giver anledning til bekymringer vedrørende forbrugernes 

sikkerhed. Ved brug af nanoprodukter kan NM potentielt frigives, hvorved 

forbrugere og/eller miljøet kan eksponeres. Kun for nyligt er eksponering af 

forbrugere kommet i fokus, og der er på nuværende tidspunkt få data 

tilgængelige i litteraturen. I de fleste studier er kun et begrænset udvalg af  

produktkategorier og få typer NM adresseret, og opsætningen af deres 

eksperimenter kan sjældent sammenlignes. Desuden er de analytiske 

teknikker, der anvendes til at teste frigivelsen af NM, sjældent velegnede i 

forhold til at rapportere antal partikler og deres overfladeareal per volumen 

eller partikelstørrelsesfordelingen, selvom det vides, at disse har en 

toksikologisk betydning.  

Arbejdet i denne afhandling adresserer manglen på data vedrørende 

forbrugeres eksponering for NM i forskellige forbrugerprodukter. Først blev 

data fra litteraturen og online databaser benyttet for at danne overblik over 

hvilke nanoprodukter, der er tilgængelige på det Europæiske marked, samt 

hvilke nanoprodukter, hvis potentielle frigivelse af NM, allerede er blevet 

undersøgt. Specifikt er der lagt vægt på at evaluere hvilke analytiske metoder, 

der er passende for at kvantificere og karakterisere NM. Resultaterne viste at 

metoden single particle inductively coupled plasma mass spectrometry 

(spICP-MS) i kombination med andre metoder er en velegnet analytisk 

teknik, der kan tilvejebringe omfattende karakterisering af NM, såsom 

koncentrationen af partikler som en masse og som antallet af partikler per 

volumen samt NMs størrelsesfordeling. Derefter blev flere nanoprodukter 

udvalgt og deres frigivelse af NM blev undersøgt eksperimentelt. Fire typer 

af materialer i kontakt med fødevarer (Ag) samt to typer tandbørster (Ag) 

blev undersøgt for potentiel oral eksponering, og fem type tekstiler (TiO2) 

samt fem forskellige overfladebelægninger (Ag og CuO) for potentiel 
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hudrelateret eksponering. Frigivelsen af NM blev karakteriseret ved brug af 

spICP-MS og transmissionselektronmikroskopi (TEM). Disse leverer 

tilsammen data om massen af partikler og antal partikler per volumen, 

partikelstørrelsesfordelingen samt morfologi. I de fleste tilfælde var 

frigivelsen af NM fra forbrugerprodukterne i størrelsesordenen ng/g (eller 

ng/cm
2
). Frigivelsen af Ag fra materialer i kontakt med fødevarer samt fra 

tandbørster blev undersøgt i henholdsvis fødevare-lignende væske 

(deioniseret vand (DI vand), ethanol og eddikesyre) og postevand. 

Resultaterne viste at eksponering for Ag i både opløst og nanopartikel form 

(op til omkring 6 µg/L og 40,000 partikler/mL) potentielt kan finde sted, men 

koncentrationerne var dog langt under grænserne for tilladt Ag eksponering, 

som sættes af den Europæiske Fødevaresikkerhedsautoritet (EFSA) og 

Verdenssundhedsorganisationen (WHO). Frigivelsen af TiO2 blev undersøgt i 

fire typer tekstiler, som ikke, ifølge produktinformationerne, skulle indeholde 

TiO2. Tekstilerne blev nedsænket i DI vand og dette resulterede i en potentiel 

Ti eksponering på op til 8,000 partikler/cm
2
 svarende til cirka 24 ng/cm

2
. 

Disse mængder kan betragtes som ubetydelige sammenlignet med de 

mængder af Ti, der kan findes i en lang række produkter på markedet, der 

hævder at benytte nano-TiO2 som tilsætningsstof, særligt når det gælder 

fødevarer. Hudrelateret eksponering fra overfladebelægninger med Ag of 

CuO blev undersøgt ved hjælp af overtørrings-tests (wiping tests) og 

resulterede i en frigivelse af partikler tæt på baggrundsniveauet, medmindre 

overfladen først blev udsat for slitage. Alle de produkter, der blev testet, 

frigav generelt meget lave mængder af NM i forhold til det oprindelige 

indhold af NM. Dette indikerer, at der gennem langvarig brug af produkterne 

kan være en kontinuerlig frigivelse af NM eller at størstedelen af NM vil 

havne i fast affald.  

Frigivelsesdata fra litteraturen og de eksperimentelle forsøg blev 

efterfølgende benyttet til at estimere forbrugerens eksponering. Adskillige 

forbruger-eksponeringsværktøjer blev identificeret og i denne afhandling 

diskuteres deres anvendelighed i forbindelse med at evaluere eksponering for 

NM. Det konkluderes at de nuværende modeller til at vurdere forbruger-

eksponering ikke er designet til at estimere eksponering for NM, eftersom de 

primært arbejder med dosis som en masse uden at tage hensyn til NMs 

særlige egenskaber. Herved fremhæves behovet for at udvikle redskaber 

specifikt designet til at vurdere eksponering for NM, som netop kan udtrykke 

den potentielle eksponering som antal partikler per volumen og deres 

størrelsesfordeling, og ikke kun den totale masse af NM.  
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Alt i alt understregede arbejdet i denne afhandling forskellige vigtige 

problemstillinger, som skal overvejes og adresseres ved udarbejdelse af 

frigivelsestests, NM kvantificering og karakterisering, datarapportering samt 

vurdering af forbrugereksponering. For det første er der et akut behov for at 

anvende en kombination af karakteriseringsmetoder, så der opnås en bedre 

forståelse af den potentielle eksponering for NM. Her virker spICP-MS og 

TEM som en stærk kombination. For det andet er det af største betydning at 

frigivelsestests og datarapportering bliver standardiseret, for at sikre at data 

er sammenlignelige og kan ekstrapoleres til andre nanoprodukter med samme 

egenskaber. Afslutningsvis er det yderst vigtigt at standardisere 

datarapportering og vurdering af eksponering, for at kunne bevæge sig hen 

imod en harmoniseret eksponeringsvurdering og farekarakterisering af NM, 

som yderligere vil kunne understøtte en nano-specifik risikovurdering. 
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1 Background and aims  

Engineered nanomaterials (NMs) are usually referred to as materials that are 

found 1-100 nm in size in at least two external dimensions, and nanoparticles 

(NPs) specifically are known as particles in size range of 1-100 nm in all 

three dimensions (BSI, 2007). These materials exhibit unique properties due 

to the considerably higher surface to volume ratio, such as increased 

reactivity in comparison to the bulk material (Navarro et al., 2008). The 

amount of commercially available consumer products containing engineered 

nanomaterials (NMs) has been markedly increasing during the last decade, 

covering a broad spectrum of applications ranging from electronics and 

appliances to personal care products and food items (PEN, 2016; The 

Nanodatabase, 2016), thereby implying potential environmental and/or 

human exposures through various routes.  

Both the increasing production amounts and the uncertainties regarding NM 

properties and toxicity are raising concerns about human and environmental 

safety (Klaine et al. 2012; Mitrano et al. 2015). Currently, there are a number 

of major knowledge gaps regarding the health and environmental risks posed 

by NMs (Godwin et al., 2009; Lynch, 2015; WHO, 2013). One of the major 

knowledge gaps is the release of NMs from various commercial products. Nm 

release data would assist in characterizing the actual exposure thus helping to 

provide a more realistic hazard assessment and consequently risk assessment 

(Ostertag and Hüsing, 2008). The main concern is uncontrolled release during 

the use and disposal of NM-containing products (Gottschalk and Nowack, 

2011; Nowack and Bucheli, 2007), which is difficult to account for. 

The overall aim of this PhD project is to investigate release of NMs from 

nano-enabled consumer products by applying suitable analytical methods 

for NM analysis with specific focus on the following tasks: 

 Using the available data from the literature to identify the current 

knowledge gaps when it comes to pontential consumer exposure to 

NMs (Paper I, II and III) 

 Identifying and applying suitable analytical methods for quantification 

and characterization of NM release, and test NM release from 

simulated use and anticipated consumer handling of selected consumer 

products (Paper IV, V, VI and VII)  
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 Assessing and evaluating to what extent NM release data from the 

literature can be used for consumer exposure assessment and discuss 

the research needs (Paper II). 

The above was accomplished by reviewing the literature, thus making a 

summary of which consumer products have been experimentally investigated 

to obtain release rates, as well as describing various methods that have been 

used to describe the release. As the next step, a set of various consumer 

products (food containers, toothbrushes, textiles, keyboard covers, painted 

wood) was chosen for experimental determination of the potential release of 

NMs by using such characterization techniques as Electron Microscopy (EM) 

and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The final step 

included discussing challenges regarding integration of the obtained data in 

consumer exposure assessment models and discussing further research needs. 

The flow of the thesis as well as overlapping topics discussed in the papers is 

depicted in Figure 1.  

 

Figure 1: Flow chart reflecting the topics covered through the thesis and overlap of the 

themes addressed by the scientific papers included in the thesis. 
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Papers I, II and III are based on the data found in the literature or online 

resources. Papers I and III are more specifically dealing with nanoproduct 

availability on the EU market. Paper II is a review over the literature that 

provides experimental data with release from NM-containing items, and this 

data is being used for consumer exposure assessment by using various 

models. Papers IV, V, VI and VII are experimental papers assessing the NM 

release from selected consumer products (food contact materials, 

toothbrushes, textiles, and surface coatings). 
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2 Nanomaterials in consumer products 

Nanotechnology in general represents a field of technology that studies and 

utilizes various materials in sizes at the scale of 1 – 100 nm, called 

nanomaterials. Working at the nanoscale allows manipulation of the material 

to acquire properties that may differ from those present at the molecular level 

or in the bulk form of the material. Nanoscale therefore provides opportunity 

for novel applications, some of which can benefit from increased reactivity 

and functionality of the material in the nanoscale because of the greater 

surface-to-volume ratio, whereas for other applications it may be beneficial to 

utilize the optical properties at the nanoscale, or to obtain improved 

dispersions. This provides the basis for development of countless applications 

covering various fields such as medicine and drug delivery, water 

purification, electronics, catalysts, food additives, and personal care products 

to name a few (WHO, 2013). 

A number of scientific publications and inventories have illustrated that the 

use of nanotechnology in consumer products has been considerably 

increasing in the last decade (e.g. PEN, 2016; The Nanodatabase, 2016; 

Vance et al., 2015). Several inventories have been established to compile the 

available information regarding nano-enabled products on the market. For 

instance, a few publically available databases are the Consumer Product 

Inventory (CPI) by the Project of Emerging Nanotechnologies (PEN), and 

The Nanodatabase established by DTU Environment, The Danish Ecological 

Council and The Danish Consumer Council (Hansen et al. 2016 - Paper I). 

The CPI was the first nanoproduct inventory and it arguably tends to have a 

focus on the North American market and is updated annually it was originally 

launched in 2006 (PEN, 2016; Vance et al., 2015). The Nanodatabase is an 

online inventory of NM-containing products, where the presence of NMs in 

the product is claimed by manufacturers or others (e.g. retailers, product 

reviews). The focus is set specifically on the products that are available on 

the European market. Along with a description of the product, The 

Nanodatabase provides the available exposure and hazard information (The 

Nanodatabase 2016; Hansen et al. 2016 - Paper I). 

One major advantage for The Nanodatabase is the analysis function, which 

allows users to conduct their own independent analysis using the data 

available. By analyzing the ca.2300 products currently listed in the database, 

it becomes apparent that a large fraction (about one half) of all products 

contains nanomaterials that cannot be identified and are thus labelled 



6 

“unknown”.  Apart from that, the most popular nanomaterials found in the 

products are silver, titanium dioxide, carbon-based NMs and silicon dioxide, 

which is a similar pattern to what is also observed in the CPI (see Figure 2). 

 
Figure 2: Nanomaterials claimed to being used in different commercial products in The 

Nanodatabase and in the CPI (Hansen et al. 2016 – Paper I). 

Silver nanoparticles are used as additives for various products mainly due to 

their antimicrobial properties and low production cost (Kaegi et al., 2010). 

Some of the most popular uses involve applying Ag as an additive in fabrics, 

due to its odor fighting functions and for sanitary reasons, as well as for inner 

coatings of various food contact materials to keep the food fresh for longer 

periods of time (PEN, 2016). Titanium dioxide nanoparticles offer a broad 

range of applications due to their antibacterial, optical, UV-protective and 

photocatalytical properties (Bogdan et al., 2015; Radetić, 2013). Large 

amounts are produced and added as a pigment, as TiO2 nanoparticles are 

white and can help make the product matrix more opaque, which is especially 

useful for coatings and paints (Varner, 2010), but is also widely used in food 

products (Peters et al., 2014c). TiO2 is also widely applied as a photocatalyst 

which provides a self-cleaning effect for various surfaces (Bogdan et al., 

2015). Another relatively popular nanomaterial, namely SiO2, is used for 

coatings to provide hydrophobic properties, improve hardness and scratch 

resistance (Zhou and Gu, 2004), as well as in various food products as a 

thickening and anticaking agent (Peters et al., 2012). 

When it comes to looking at NM use across different consumer product 

categories in The Nanodatabase, it becomes apparent that most products fall 
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under “Health and Fitness” category (55%), followed by “Home and Garden” 

(21%) and “Automotive” (12%) (see Figure 3). Silver nanoparticles 

constitute a considerably large fraction of products for most product 

categories, and are found in a wide range of items, such as food supplements 

and food contact materials, personal care products, textiles, household 

appliances, cleaning products, and many more. Advertising nano-Ag as a 

product ingredient usually comes hand in hand with an antibacterial claim. 

Nano TiO2 content, on the other hand, is not advertised as much, although it 

is found mainly in sunscreens and other personal care products, and plenty of 

food items (The Nanodatabase, 2016).  

 
Figure 3: Identity of nanomaterials across different product categories, excluding the 

products where the nanomaterial identity is “unknown”. Individual products may include 

more than one type of nanomaterial (Hansen et al. 2016 – Paper I). 

In this PhD thesis, the focus is set on the use of such NMs as silver, titanium 

dioxide, and copper oxide, which are present in consumer products and may 

lead to human exposure during use. The aforementioned NMs and their 

potential for consumer exposure will be discussed in greater detail later in the 

text. 
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3 Detection, characterization and 

quantification of nanomaterials 

As noted above, engineered NMs have unique properties that are determined 

by their composition, size, shape and surface functionalization, which make 

them different from the bulk materials composed of the same elements. These 

nano-specific properties greatly influence the fate and possible 

transformation of NMs both in the environment and in the biological systems 

(Nowack et al., 2012). As nanotechnology is a relatively new and rapidly 

emerging field of technology, adequate characterization of NMs has become 

a fundamental need for industry, scientific research and risk governance. 

Working at the nanoscale brings a whole set of new challenges when it comes 

to sample preparation and characterization. NM-containing sample analysis 

require a wide range of considerations that may have to cover plenty of 

factors, such as concentration, size distribution, dissolution, aggregation, 

agglomeration, surface transformations, all of which can be quite challenging 

for current characterization methods (Montaño et al., 2014; von der Kammer 

et al., 2012). In this section the available analytical methods will be discussed 

and put into perspective when it comes to analyzing NMs in consumer 

products and the release of NMs from these products during their use.  

Up until recent years, the analytical methods for characterization of NMs 

have been very limited and almost solely focused on analyzing NMs in 

pristine conditions. It is much more complicated to acquire data regarding the 

behavior of NMs in more complex matrices and media at realistic 

concentrations and conditions (Klaine et al., 2012). The behavior of NMs in 

the matrix and in the environment will be affected by a wide range of factors, 

such as particle number and mass concentration, surface properties, 

reactivity, size distribution, state of aggregation, chemical composition, as 

well as structure and shape. Therefore, the analysis of NM is different from 

traditional chemical analysis because both chemical and physical aspects 

must be considered. 

3.1 Chemical analysis and characterization of 

released NMs 
Ideally the analytical methods should provide information on the chemical 

identity of NM, mass and number concentration of the substance, aggregation 

and agglomeration, as well as size and shape of the NM present in the 
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sample. A wide range of analytical tools is available for characterizing NM-

containing matrices to address the aforementioned questions, but they have 

various limitations when it comes to analyzing complex samples containing 

nanomaterials (von der Kammer et al., 2012).  

Depending on what the sample of interest is – solid, liquid, or aerosol – there 

are different set of methods that can be applied to find and characterize NMs 

in a sample. As the work in this thesis has been mainly focusing on 

characterizing NMs suspended in liquids (i.e. NMs released from products 

into liquid media), this section will discuss various analytical tools and 

methods that are applicable for liquid sample characterization.  

Several literature reviews have been published in the past decade to provide 

an overview of the available and developing analytical techniques for NM 

analysis (Hassellöv et al., 2008; Howard, 2010; Pérez et al., 2009; Tiede et 

al., 2008, to name a few). The most recent review by Laborda et al. (2016) 

has provided a very solid description of state-of-the-art techniques that have 

been applied in experimental work for detecting and characterizing NMs in 

various matrices, including consumer products, natural waters, wastewater, 

biological samples, as well as tools for the characterization of release of NMs 

from consumer products, at the same time highlighting a variety of sample 

preparation methods (Laborda et al., 2016). Some of the techniques that are 

commonly applied for detection and analysis of NMs include e.g. electron 

microscopy (SEM and TEM), dynamic light scattering (DLS), atomic force 

microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray 

diffraction (XRD), size exclusion chromatography (SEC), asymmetric flow 

field flow fractionation (AF4), and ultraviolet-visible (UV-vis) spectroscopy 

techniques, among others.  

For the detection and characterization of released fragments or aged surfaces, 

electron microscopy techniques such as TEM and SEM can be used in 

combination with electron dispersive X-ray spectroscopy (EDS) to identify 

the composition of the released materials. TEM and SEM are useful for 

characterizing NMs to provide information regarding size and shape of NMs, 

as well as providing an indication about agglomeration and aggregation of 

NMs in a sample. However, one must keep in mind that sample preparation 

can often result in introduction of artefacts, due to e.g. centrifugation or 

drying of the sample before analysis (Tiede et al., 2008). TEM and SEM are 

powerful tools for imaging and sizing NMs, but not for rapid quantitative 

analysis of particles in the media in which the particles may be released (e.g. 
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water, air, food simulants), mostly because of the low particle number 

concentrations in the media. It may become very time consuming and 

ineffective when attempting to work with environmentally relevant 

concentrations in the μg/L or ng/L range. However, for qualitative analysis of 

“unknown” samples (i.e. samples that are not homogenously distributed 

standard suspensions of NMs in deionized water with known chemical 

identity) it can be very useful to do EM imaging to acquire information 

regarding NM shape and size, and to verify whether the particles are 

occurring as single particles in suspension, or as aggregates/agglomerates, 

and whether or not they are attached to some other molecules, complexes, or 

solids (Mackevica et al. 2016b,c,d,e – Paper IV, V, VI, VII). Information 

regarding physical properties can be particularly useful for verification of 

measurements using other techniques that do particle sizing based on 

assumptions of particles being spherical, such as spICP-MS, AF4-ICP-MS or 

DLS. 

A promising technique that has seen a rapid development in the past decade 

for detection and characterization of NMs is spICP-MS. It has the capability 

to address many of the current analytical challenges, since by using spICP-

MS it is possible to report particle number concentration, particle size, 

particle mass concentration and dissolved fraction in both simple and 

complex matrices. The basis for spICP-MS particle size calculations is the 

information on presumed particle shape, density and composition. The basics 

of the spICP-MS technique were first described by Degueldre & Favarger 

(2003) for analysis of natural metal oxide colloids, and since then it has been 

further developed for different nanoparticle detection in various matrices, as 

described in a recent review over spICP-MS applications and recent 

development and perspectives (Laborda et al. 2013). In brief, the way spICP-

MS operates is that each time an individual particle enters the plasma, the 

particle is ionized and subsequently detected as a pulse. The intensity of the 

pulse is proportional to the number of the detected ions, and therefore also 

the original size of the particle. By collecting what is called time-resolved 

data, it becomes possible to calculate both the number concentration and the 

size distribution of the particles in a sample.  

An inter-laboratory study by Peters et al. (2014b) attempted to analyze 

metallic nanoparticles by applying various methods based on completely 

different physical principles, such as TEM, DLS, Differential centrifugal 

sedimentation (DCS), spICP-MS and Micro-proton induced X-ray emission 

(PIXE). The aim of the study was to estimate whether these techniques can 
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produce similar results for pure and homogenous suspensions of NMs. TEM, 

SEM and spICP-MS were found to be more accurate for the determination of 

particle size compared with NTA, DLS and DCS. However, it was shown that 

spICP-MS and PIXE were most accurate for the determination of mass 

concentrations of nanoparticles in pure suspensions. 

Single particle ICP-MS has low detection limits when it comes to both 

nanoparticle mass and particle number concentrations. Usually it is 

recommended to have particle number concentrations in suspensions below 

10
8
 L

-1
 in order to avoid occurrence of multiple particle events and assure 

single particle events to better represent the conditions of the sample itself 

(Laborda et al., 2011). The lowest measurable particle number concentration 

is limited by the relative frequency of background effects or “false positives”. 

This can be improved by acquisition of more data points and choosing a 

proper detection threshold to avoid including false positives as particle events 

(Tuoriniemi et al. 2012). When working with more concentrated samples, 

dilution might be necessary, but other than that spICP-MS allows rapid 

nanoparticle analysis with little or no sample preparation. By using various 

types of spICP-MS instruments, it has been experimentally determined that 

the optimal concentration range is from 10
3
 to 10

5
 mL

-1
, and, depending on 

the element, experimentally determined lower size detection limits for metal 

and metal oxide particles usually range from 15 to 60 nm, and upper 

detectable size limits are around 200 nm (Laborda et al. 2013; Lee et al. 

2014; Liu et al. 2014). The study by Lee et al. (2014) has presented lower 

size detection limits for 40 different elements and calculated that some 

elements (e.g. Ta, U, Ce) could be detected even in sizes below 10 nm. The 

issue of distinguishing smaller particle signals from background or from the 

dissolved analyte signal has been discussed by many, highlighting the 

importance of detecting smaller particles that might be of higher concern 

when it comes to hazard evaluation to NMs. A study by Cornelis & Hasselöv 

(2014) presented a signal deconvolution method to enable discrimination of 

smaller nanoparticles from the background signal. With this approach it was 

possible to acquire accurate particle number and size measurements for Au 

particles as small as 10 and 15 nm and successfully distinguish between 

overlapping dissolved and NP signals. This method could be of particular 

importance for NPs that tend to dissolve, such as Ag, ZnO or CuO NPs. 

For majority of experimental data reported in the literature, the “window” for 

spICP-MS particle detection capabilities that allows accurate sizing lies 

somewhere between 20 and 250 nm (depending on the NM), which means 
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that there is still a high uncertainty associated with measuring particles below 

and above the size detection limit. However, it must be noted that the upper 

and lower size detection limits are dependent on the density of the particle. 

For instance, when it comes to upper detection limit, particles of lower 

density, low molecular weight of the target analyte, and low boiling point 

tend to vaporize more efficiently in the plasma and thus make it possible to 

detect and accurately measure the diameter of larger nanoparticles, even in 

sizes above 250 nm (Lee and Chan, 2015).  

Most studies using spICP-MS have mostly been focusing on measuring 

homogenously distributed NP suspensions to evaluate the capabilities of the 

spICP-MS analysis. In the cases of heterogeneous samples in matrices other 

than DI water, there are several considerations that need to be taken into 

account. For more complex samples, the spICP-MS measurements would 

probably not represent the “whole picture”, as the total NM content is 

composed of a wide size range of particles, and particles that are too small, 

too big, or aggregated/agglomerated, or attached to other molecules pieces of 

a matrix they have been embedded in, will not be detected (see Figure 4).  

 
Figure 4: Illustrative schematic representation of single particle ICP-MS analysis and the 

challenges and limitations associated with it when assessing the release of nanoparticles 

from consumer products. Dashed lines represent lower and upper size detection limits. 

This is especially important when working with “unknown” samples, like in 

cases of analyzing release of NMs from consumer products. In those cases, 

the sample may contain not only particles and dissolved material, but also 

nanoparticles attached to the pieces of the matrix of the product, which will 

not reach the plasma and will not be analyzed as particles. Several 

publications have illustrated this issue by providing electron microscopy 

images of released fragments, which have nanoparticles attached to them or 

embedded inside (e.g. Mackevica et al. 2016b,c – Paper IV and V). This is 
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why spICP-MS measurements should usually be complemented with EM 

imaging and/or the measurements of the total mass content of the NM. 

As spICP-MS is an emerging analytical technique for nanomaterial 

characterization and is still under development to be established as a routine 

procedure for NM analysis, the information available in the literature is very 

limited when it comes to specific applications. To date, there are 56 

publications available on ISI Web of Science
TM

 (search term “single particle 

ICP-MS”), and most are focusing on analysis of gold or silver nanoparticles. 

The number of publications has been rapidly increasing in the past few years, 

and the focus is shifting towards analyzing nanoparticles in more complex 

matrices and more environmentally relevant conditions.  It has been reported 

in a handful of experimental studies that spICP-MS has been used for the 

analysis of nanoparticle release from various consumer products, such as 

silver and titanium dioxide release from textiles (Wagener et al. 2016, 

Mackevica et al. 2016d – Paper VI), and silver release from washing 

machines (Farkas et al., 2011) and food contact materials (Echegoyen and 

Nerín, 2013; von Goetz et al., 2013a, Mackevica et al. 2016b – Paper IV), 

and toothbrushes (Mackevica et al. 2016c – Paper V). Single particle ICP-MS 

measurements of the released particles, together with other types of 

characterization methods, such as electron microscopy and conventional ICP-

MS analysis are working towards providing an indication of the “whole 

picture” when it comes to assessing what consumers might be exposed to 

while using different products. 

3.2 Identification of NMs in consumer products 
As noted above, there is a large amount of consumer products available on 

the market that claim to be containing NMs. There are many products that 

contain NMs and do not properly label the NM content, even though several 

product groups, such as cosmetics, biocidal products and food items, are 

required to note “nano” in the list of ingredients (Mackevica et al. 2016a – 

Paper III). The verification of the claim that the products in fact contain NMs 

can become quite complicated, depending on what matrix the product 

represents – whether it is a spray (e.g. disinfectants and cleaning products), 

liquid (e.g. dietary supplements, personal care products), or solid (e.g. 

appliances, food contact materials, textiles). Various methods exist to 

characterize the NMs in the product or to extract particles from their product 

matrix that would allow analyzing the NMs that are actually present in the 

product.  
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For example, when it comes to characterization of NMs in liquid samples 

such as sunscreens or other personal care products, suitable analysis 

techniques include electron microscopy in combination with electron 

dispersive X-ray spectroscopy (EDS) to find and identify the nanoparticles 

(Lewicka et al., 2011). Alternatively, spICP-MS may also be utilized as a tool 

for identification and quantification of NM content in such samples 

simultaneously providing size distribution, as described by (Dan et al., 2015) 

for nano-TiO2 analysis in commercial sunscreens. The same method may also 

be applicable for many other personal care products with comparable 

matrices. Similar output can be achieved with other tools such as AF4 

coupled with ICP-MS or UV-Vis (Contado and Pagnoni, 2008; Nischwitz and 

Goenaga-Infante, 2012). Other examples include Ag and ZnO nanoparticle 

characterization by TEM from disinfectant sprays (Hagendorfer et al., 2010; 

Lorenz et al., 2011) and characterization of various dietary supplements for 

Ag, Au, Cu, Si, Zn and other nanoparticle content by both spICP-MS and 

TEM-EDS (Reed et al., 2014). Testing of several food additives in food items 

has also been addressed in the literature, for instance quantification of nano-

TiO2 in commercial food items by AF4-ICP-MS and spICP-MS following a 

digestion procedure with hydrogen peroxide H2O2 (Peters et al., 2014a). 

Another approach is spiking of various food items with nanoparticles in 

laboratory setting, such as e.g. chicken meat spiked with Ag nanoparticles, 

which was subsequently enzymatically digested and analyzed by AF4-ICP-

MS or spICP-MS (Loeschner et al., 2015, 2013; Peters et al., 2014a). 

All in all, even when it comes to analyzing NMs in consumer products with 

complex matrices, there are various methods available to tackle the NM 

characterization and quantification issues. However, many of the methods 

require extensive sample preparation for e.g. NM extraction, which may 

result in particle dissolution or aggregation, and the digestion medium might 

include even more uncertainties during analysis of the samples, which may 

hinder accurate nanoparticle characterization. 

3.3 Current challenges for NM analysis 
Even though there have been great advancements for NM analysis in the 

recent decade, there is still a long way to go until there will be standardized 

procedures for NM characterization and quantification that would be routine 

in the specialized labs working with nanomaterials. To reach this stage, there 

is a great need for additional development of standard methods both for 
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sample preparation and analysis in simple and complex matrices, as well as 

for reference materials. 

Considering current situation regarding NM analysis, there are several well 

established techniques for obtaining physicochemical information about 

inorganic NMs. For quantitative measurements, analytical techniques are 

emerging and existing techniques are rapidly improving and becoming more 

ubiquitously used. Specifically the use of spICP-MS and AF4-ICP-MS are 

becoming more extensively used and new applications are being developed 

for quantitative NM characterization in different matrices (Laborda et al., 

2016).  

Another important issue when it comes to NM analysis is the question of how 

to report the data, i.e. which metrics to use for reporting of NM content and 

properties. It has been reportedly pointed out that even if mass concentration 

is generally regarded as the most robust metric for concentration reporting, it 

might not be the most significant metric when it comes to NM exposure or 

hazard assessment. It is usually recommended to report at least one other 

metric alongside with mass content (WHO, 2013). Experimental research 

papers dealing with NM and consumer products (excl. airborne materials and 

sprays) are generally reporting NM content as mass percentage or mass per 

unit volume in case for liquids. As for the release of NMs from products, 

mass concentration is most often the only metric reported, with some papers 

reporting qualitative characterization by electron microscopy (Mackevica & 

Hansen, 2016 – Paper II). In the past couple of years, however, quantitative 

characterization of size distributions and particle number concentration are 

also becoming increasingly popular for reporting in papers, especially when 

applying such experimental techniques as spICP-MS and AF4-ICP-MS for 

particle analysis.  
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4 Nanomaterial release from consumer 

products 

With an increasing variety of consumer products, there is a growing 

opportunity for humans and environment to be exposed to NMs and their 

residuals. Generally, research has been focusing primarily on hazard 

identification, i.e. toxicological impacts of NMs, and exposure assessment 

has received much less attention (WHO, 2013). Environmental or human 

exposure to NMs can occur in various steps, it might be during NM 

production, product formulation, product use and disposal. When it comes to 

NM-enabled consumer products, the end user may be intentionally or 

unintentionally exposed to the NMs. During common use of the products, 

they can be subjected to various controllable and uncontrollable conditions, 

which may increase the potential for the release and transformations of NMs. 

Released NMs are often different from the pristine parent material in terms of 

size, aggregation and agglomeration state, and they can be released either free 

or together with fragments of the product matrix.  

Over the past decade, the use and diversity of NM applications has expanded 

rapidly, leading to more and more questions about uncertainties regarding 

potential human and environmental exposure and toxicity. Therefore, it is of 

utmost importance to investigate and quantify the release of NMs from 

consumer products, to move closer towards understanding NM fate and 

transformations, as well as risks associated with exposure to NMs.  

This section will focus on release of NMs from consumer products, 

discussing such issues as the importance of understanding exposure scenarios 

from a consumer perspective, as well as discussing current guidelines and 

methods that are used for potential consumer exposure measurements, 

highlighting the issues that arise from inapplicability of the current guidelines 

to nano-specific release measurements. 

4.1 Life cycle considerations for nanomaterial 

release 
There are multiple ways in which nanomaterials can be released from 

consumer products along the life-cycle of a given product. As stated before, 

currently there is a high uncertainty over effects of NMs to human health and 

the environment, which is why a comprehensive risk assessment is needed, 

taking into account all the possible exposure scenarios throughout the life-
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cycle of the product that may lead to NM release (Ostertag and Hüsing, 

2008). The life-cycle is generally understood as the life span of a certain 

product, covering production of pristine NM and then manufacturing the NM-

containing products, product use, disposal and possibly recycling (see Figure 

5). The product life cycle determines in what phase and what environmental 

compartment NMs may be released and where they might end up (Som et al. 

2010). 

There is general consensus in the scientific community and regulatory 

agencies that ideally, the potential health and environmental risks of NMs 

should be evaluated over their entire life-cycle (Seager & Linkov 2008; 

Grieger et al. 2012; SCENIHR 2009). The reason behind this is that 

investigating these risks should consider the various life-cycle stages which 

span from extracting the raw materials for producing NM through their end-

of-life stages as a disposed product or material. This would help acquiring a 

more comprehensive and complete overview over all potential risks to human 

health and the environment (Grieger et al., 2012).  

 

Figure 5: Simplified stages of the nano-enabled product life cycle and the fate of the 

released NMs. 

Generally, the release of NMs to the external environment can happen at any 

point of a product’s life cycle (production, use, disposal, Figure 5), but most 

often NMs will enter the environment when they are released from products 

through product use, disposal or weathering (Gottschalk and Nowack, 2011). 

The NM emissions in the production stage are usually easier to characterize, 

as the working environment is more controlled and the working conditions 

have to be regulated. Therefore, uncontrolled and/or unintentional release 
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during use and disposal of NM-containing products is raising more concerns 

(Gottschalk and Nowack, 2011; Nowack and Bucheli, 2007).  Occupational 

exposure has been evaluated relatively extensively, while there is distinct 

lack of understanding for what happens during use and disposal of NMs. In 

this thesis the focus is placed on NM release from consumer products during 

the use phase.  

When it comes to assessing consumer exposure to NMs, the most important 

part of the life-cycle is the use phase, which is basically when a “finished” 

product is available on the market and the consumer is free to use it. As the 

products are different, and the users may have their own interpretation about 

how the products should be used, it is difficult to identify one unifying 

scenario of how a product could be utilized and under what conditions the 

NM release might occur (ECHA, 2012).  

Most research related to NM release from consumer products and consumer 

exposure so far has mainly been focusing on illustrating NM release rates in 

relatively short time frames (short relative to the real-life use of the product) 

and imitating only few scenarios of product use that can represent possible 

NM emissions. The experimental setups that attempt to mimic product use 

are often far from the real-life conditions, which makes it difficult to interpret 

the data in the context of environmental and consumer risk of exposure. As 

an example, washing of textiles without detergent can hardly provide 

characterization of real-life emissions of NMs, but it makes it easier to 

characterize the NM release, as it is a simpler matrix. As it is very time 

consuming and expensive to conduct experimental investigations of the 

whole use phase of the life-cycle of a certain product, it is necessary to find a 

method that would be representative enough for describing the NM release 

rates over a longer period of time. This could eventually make it possible to 

extrapolate the NM release over the whole use phase of the consumer product 

(Mackevica & Hansen, 2016 – Paper II). 

4.2 Nanoproducts and the potential for 

consumer exposure 
Human exposure to NMs from consumer products may occur in various 

different ways. The most obvious one is direct exposure, during consumer use 

of the product, as for instance, application of sunscreen on the skin, or 

ingestion of dietary supplements. Another option is indirect exposure, when 

NMs are released from the products e.g. in the air from disinfectant sprays, or 
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in food items from food contact materials. The way product is used will 

contribute to the extent of exposure, possible exposure routes being 

inhalation, dermal, oral, or a combination (Wijnhoven, 2007).  

The location of NM in the product will have a high influence on the NM 

properties and the potential for NM release that subsequently could lead to 

consumer or environmental exposure. The categorization framework 

presented by Hansen et al. (2007), groups the products based on the location 

of NM in the product, the options being: dispersed in solids, suspended in 

liquids, surface bound, or free airborne particles (Hansen et al., 2007). For 

instance, such products as dietary supplements or cosmetics would fall into 

“suspended in liquids” category and products like coated food contact 

materials would have “surface bound” NMs. The products that have NMs 

“suspended in solids” are e.g. plastics with CNTs or silica fillers to have 

stronger, more durable and abrasion-resistant material, which is useful for 

such products as tennis rackets and tires (The Nanodatabase, 2016). The 

overall use of NM-containing products and potential human exposure is 

schematically depicted in Figure 6. Briefly, the potential consumer exposure 

is dependent on the way a product is being used and the way NM is present in 

the product. For example, spray products are present as liquids to begin with, 

but they will be aerosolized into droplets when the spray is being used and 

therefore it may result in inhalation exposure. In case of disinfectants and 

spray-on coatings, when the spraying is done, the NMs can be present on the 

surface the spray was applied to, which consequently may result in dermal 

exposure, if this surface is being e.g. touched by hands. It must be noted that 

all the exposure scenarios that lead to dermal exposure can also lead to 

inadvertent oral exposure, and all the scenarios that involve formation of 

aerosol droplets or airborne NMs can lead to deposition on the skin, i.e. 

dermal exposure. 
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Figure 6: Nanoproduct categories, examples of representative consumer products, the 

potential human exposure scenarios during intended product use, and the resulting 

potential exposure routes.  

According to The Nanodatabase, around half of the registered products fall 

into the “suspended in liquids” category (49%), the next two main categories 

being products where NMs are “surface bound” (29%) or “suspended in 

solids” (12%). Most products where NM location is “suspended in liquid” are 

personal care products, cosmetics and sunscreens, and the exposure of such 

products is self-evident, given that these products are intentionally applied, 

such as sunscreens applied on the skin as an example. Exposure to NMs from 

solid articles is a bit more complicated to assess, given that the exposure 

scenarios may vary. Health and fitness products have the highest number of 

NM-enabled products, which is why this category should be carefully 

evaluated when it comes to consumer exposure. Apart from the already 

mentioned personal care products, cosmetics and sunscreens, which also fall 

under “Health and Fitness” products, there are a number of additional articles 

where NMs are surface bound or suspended in solids. These articles represent 

such sub-categories as clothing, sporting goods and personal care products, 

which include various items such as hairbrushes, curling irons and other 

small home appliances, toothbrushes, and sports equipment (The 

Nanodatabase, 2016).  
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As already described in Figure 6, most nano-enabled consumer products may 

lead to human exposure in one or more of the exposure routes, namely 

dermal, oral or inhalation. Dermal exposure was found to be the most 

prominent route of exposure for most product categories, apart from “food 

and beverage”, which obviously has the potential for oral exposure for most 

products (see Figure 7). It must be noted though that the fact that there is 

potential for dermal, inhalation or oral exposure, does not necessarily mean 

that exposure will take place while using the product. The likelihood of these 

exposures to occur is dependent both on product properties and on product 

use.  

 

Figure 7: Potential route of exposure for individual product categories. Individual products 

may have more than one route of exposure (Hansen et al. 2016 – Paper I). 

According to the NanoRiskCat framework (introduced by Hansen et al. 

(2014)), exposure potential can be categorized as high, medium, low or 

unknown for individual products. For consumer products and consumer 

exposure, the most important product types are containing surface bound 

NMs, and NMs suspended in liquids. The exposure potential is dependent on 

the way NM is present in a certain product. The exposure potential is 

assumed to be higher for nanoparticles that are airborne or suspended in 

liquids, medium for nanoparticles that are surface bound, the lowest for 

nanoparticles suspended in solids. The different functions of consumer 

products would determine where NMs are present in the product, influencing 

the potential consumer exposure pathways. However, it is not only the 

location of the product influencing the likelihood and extent for human 
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exposure, other factors come in to play as well, such as NM concentration, 

shape, size and chemical composition. 

More than half of the products (64%) found in The Nanodatabase are 

assumed to have a high potential for consumer or environmental exposure. 

However, it must be noted that the exposure evaluation is based merely on 

the product information provided by the manufacturer and evaluation of the 

location of the NMs in the product. Usually there is not much information 

provided by the manufacturer that would allow a more detailed evaluation of 

potential exposure, which is why the issue of the need for experimental data 

has been indicated by several research papers in the past few years (e.g. 

Froggett et al. 2014; Larsen et al. 2015; Koivisto et al. (submitted), 

Mackevica & Hansen 2016 - Paper II). 

In order to better illustrate and investigate the potential human exposure to 

NMs from consumer products, we have chosen to work with a few case 

studies representative of some of the already existing uses of popular NMs. 

As some of the most commonly used NMs are Ag and TiO2, this work will 

primarily focus on these materials as case studies to discuss the potential 

consumer exposures from articles that contain NMs that are “surface bound” 

or “suspended in solids”. 
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5 Experimental determination of 

nanomaterial release from consumer 

products 

When it comes to possible consumer exposure scenarios, the experimental 

testing of NM release is posing a series of significant challenges in terms of 

choosing the right experimental setups, as well as NM detection and 

characterization methods. The understanding of NM physicochemical 

characteristics and particle transformations is essential for assessing potential 

human exposure through such routes as inhalation, ingestion or skin 

absorption (WHO, 2013). 

The release of NM from consumer products depends, to a large extent, on the 

stresses and environmental factors that the product is exposed to, as well as 

NM characteristics and the method for NM embedding in the product. These 

factors will influence both the quantity of the NMs released and the form that 

NMs are released in (i.e. free NMs, embedded or attached to product matrix, 

dissolved material, aggregated or agglomerated NMs) (Vílchez et al., 2015). 

As pointed out by several literature reviews (e.g. Froggett et al. 2014, 

Koivisto et al. (submitted), Mackevica & Hansen, 2016 – Paper II), the 

experimental studies addressing NM release for the most part use very 

different test setups, rarely following any standardized guidelines for testing. 

The review by Mackevica & Hansen (2016 – Paper II) attempted to extract 

data regarding quantitative NM release and characterization from 76 

experimental papers on nano-release to gain a better understanding about 

consumer exposure to NMs. Additionally, a critical review by Koivisto et al. 

(submitted) identified a total of 89 scientific publications that addressed 

quantitative NM release from various nano-enabled items, and in those 

publications they found a total of 320 different scenarios that were used for 

quantitative release measurements. This illustrates how difficult it may be to 

select representative and inter-study comparable test setups for NM release 

investigations. In general, there is a high need for harmonization of the 

release testing methods. Harmonization of testing as well as characterization 

methods would also largely aid nano-specific exposure assessment and 

consequently also support risk assessment. 

For the assessment of potential inhalation exposure, most studies have used 

setups that involve various types of abrasion of NM-enabled items. For 



26 

example, one of the most commonly addressed NM when it comes to 

assessing potential inhalation exposure is TiO2, which is widely used in 

paints as a white pigment. Several studies have measured the emissions of 

airborne particles during sanding of surfaces coated with TiO2 (e.g. Koponen 

et al. 2011; Gomez et al. 2014; Shandilya et al. 2014). However, as with most 

other studies dealing with mechanical treatment (abrasion, sanding, drilling, 

sawing, cutting, crushing) of coated materials or nanocomposites, the 

measurement methods can only go as far as to measure the sizes of the 

particles released, not providing sufficient information regarding chemical 

composition of the airborne particulates (Mackevica & Hansen, 2016 – Paper 

II). Still, these types of measurements provide insight into the extent to which 

a person might be exposed to NM-containing dust, and what fraction of that 

might deposit into their lungs. Most of these studies also do SEM or TEM 

imaging to obtain information on the sizes and shapes of the particles, as well 

as to provide an indication on whether NMs can be found as single entities or 

they are attached to or embedded into the matrix. However, it is usually 

reported that NMs are for the most part released embedded into pieces of 

product matrix after mechanical treatment rather than being released as free 

NMs. To name a few examples, studies by Wohlleben et al. (2011), Hirth et 

al. (2013) and Gomez et al. (2014) investigated the CNT release from CNT-

polymer nanocomposites by sanding, and their SEM-EDS analysis revealed 

that CNTs are released only as integrated parts of the nanocomposite debris.  

Experimental setups that are targeting potential dermal exposure 

measurements most commonly deal with leaching from NM-containing 

textiles. The leaching is usually done either in deionized water (e.g. Benn & 

Westerhoff 2008; Benn et al. 2010; Pasricha et al. 2012), wash water (e.g. 

Geranio et al. 2009; Lorenz et al. 2012; Impellitteri et al. 2009; Mitrano et al. 

2014), or various types of artificial sweat (e.g. Geranio et al., 2009; von 

Goetz et al., 2013b), and the most commonly addressed NM is Ag, with only 

a few cases where the targeted NM is TiO2.  

Consumer products which have a potential for oral exposure are mostly food 

items and food contact materials, and such products as food storage articles 

and ceramic water filters have been addressed in the experimental studies. 

The NMs include Ag, TiO2 and CuO, though the most popular NM is again 

nano-Ag, which is not surprising as it is the one which is more commonly 

present in the products relevant for oral exposure.  
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The experimental work conducted within this PhD project has been dealing 

mostly with experimentally investigating releases from articles that have the 

potential for dermal or oral exposure, so the following two sections will be 

focused on the findings through these experimental investigations 

(Mackevica et al. 2016b,c,d,e – Paper IV, V, VI and VII). 

5.1 NM release from consumer products with 

potential for oral exposure 
Nano-silver is used for a broad range of products that are relevant for both 

direct and indirect oral exposure. These products include food and beverages, 

cosmetics and personal care products and nanocomposites used as food 

contact materials. For children, direct oral exposure can result from many 

more product groups, such as textiles, toys, or any kind of surfaces. Report by 

Larsen et al. (2015) investigated a total of 12 oral exposure scenarios from 

various consumer products, and their findings showed that food items and 

cosmetics represent the sources with the highest oral exposure potential, and 

products as textiles, air purifiers, dental fillings or composite materials likely 

result in low or negligible exposures.  

The use of food supplements and food items would result in self-evident 

dosing, but understanding the dynamics of NM release from various solid 

nanocomposites that might lead to oral exposure is more complex. Unlike 

with food items, it is not enough to know the NM concentration in the 

product and that would be directly related to the dose (i.e. what a person 

ingests is the resulting NM dose). When it comes to solid articles that contain 

NMs, it is important to assess how much of the NM can actually migrate from 

the article and lead to oral exposure.  

According to The Nanodatabase, from the 137 products that have the 

potential for oral exposure, most of them are food items or food contact 

materials, with a few examples of personal care products. More than a third 

(35%) of the products claim to contain nano-silver (The Nanodatabase, 

2016).  

5.1.1 Release from food contact materials  

Nanosilver is applied as an inner coating for various food storage containers, 

mainly due to the antimicrobial activity and the purpose of keeping the food 

fresh for a longer time. Several studies have addressed silver release from 

various lab-made and commercially available food contact materials (von 

Goetz et al. 2013a; Echegoyen & Nerín 2013; Huang et al. 2011; Hauri & 
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Niece 2011; Song et al. 2011; Smirnova et al. 2012; Cushen et al. 2014; 

Artiaga et al. 2015). Most release studies use a European Commission 

directive (10/2011) specifically designed for the purpose of quantifying the 

release of chemicals from plastic food contact materials into food simulants 

(European Commission, 2011). Food simulants usually include acetic acid, 

ethanol and deionized water, to represent various types of food that might 

come in contact with the material. Food contact material is then incubated 

with the food simulant for 10 days at 40°C as a “worst case scenario”, but 

there are different variations of the test setup regarding duration and 

temperature, as well as choice of food simulants. 

A study by Huang et al. (2011) was amongst the first to address Ag release 

from nano-enabled food storage containers. In this study, polyethylene bags 

were incubated with four different food simulants (DI water, 4% acetic acid, 

95% ethanol, and hexane) for 15 days, and SEM-EDS analysis confirmed 

nano-Ag release from the products. A similar setup was used by Hauri and 

Niece (2011) to investigate Ag release from commercial nano-enabled food 

containers, but the characterization of nano-release was lacking and the study 

was limited to reporting only the total Ag release. Other experimental studies, 

e.g. von Goetz et al. (2013a), Artiaga et al. (2015) and Mackevica et al. 

(2016b – Paper IV), have also experimentally tested the migration of Ag NPs 

from commercially available food storage containers. The study by von Goetz 

et al. (2013a) exposed pieces of cut up food containers to food simulants and 

found that the release rates per available surface area were considerably 

lower as compared to intact food containers from the same brand. They also 

noted that distribution of Ag in different parts of containers was 

inhomogeneous, which was shown by total Ag concentrations at different 

areas. Furthermore, it was found that total Ag release dropped up to 10-fold 

between the first and subsequent uses of the food containers. It is an 

important finding as more often than not food containers are re-used multiple 

times. The same trend was observed in the study by Echegoyen and Nerin 

(2013) with multiple uses of food storage containers.  

There have been only a handful of studies quantifying the particulate Ag 

release rather than just total Ag migration from the food contact material. The 

study by von Goetz et al. (2013a) was characterizing the Ag nanoparticle 

release by spICP-MS and their results showed that around 12% of the total 

Ag migration was in nanoparticulate form for one of the food storage box 

samples. However, the detected particle size estimation was particles between 

100 – 350 nm in diameter, which means there is still high uncertainty 
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regarding the fraction of particles that are smaller than 100 nm and 

aggregates that are bigger than 350 nm. The TEM and SEM images revealed 

that released particles can occur as bigger agglomerates with primary particle 

sizes of 20-100 nm, so it is highly plausible that the fraction of particulate Ag 

released could be higher than 12% if particles below 100 nm are taken into 

account. The study by Echegoyen and Nerin (2013) was also using spICP-MS 

to quantify particulate Ag release, and found that particulate Ag was around 1 

to 20% of the total Ag migrated from the food containers, and in all three 

food containers they examined, the migration in acetic acid showed less 

nanoparticle release in comparison to particle migration in ethanol. However, 

this study did not report the sizes of particles that were detected by spICP-

MS, so it is unclear what exactly is meant by “particulate fraction”. 

Moreover, based on the raw data of obtained nanoparticle signals from 

spICP-MS, it is obvious that during the 300s measurements the signal has 

been drifting quite a lot, raising a question about the robustness and 

reliability of the spICP-MS measurements. Their SEM-EDS imaging revealed 

that the sizes of the released silver particles can range from 10-200 nm, 

depending on the type of the food container, and some particles were also 

found still attached to or embedded in to the polymer matrix. It has also been 

reported in Mackevica et al. (2016b – Paper IV) that the released silver 

particles can occur not only as agglomerates or embedded in product matrix 

pieces, but also as free single nanosized released particles (see Figure 8). It 

must be noted though that the electron microscopy investigations can provide 

merely qualitative information about the particle sizes and forms in the 

sample, as in most cases only a small number of particles can be found on the 

TEM grid. Sample preparation for TEM analysis is also prone to introduction 

of artefacts that might lead to misconceptions about the NM behavior in the 

samples.  

Measurements by spICP-MS, as stated earlier in the text, are limited to 

measuring and counting particles somewhere between 20 – 250 nm in size, 

depending on the particle type and sensitivity of the equipment. When it 

comes to particles migrating from food contact materials (and other articles), 

there is a chance that a considerable fraction of released particles will not be 

detected by spICP-MS. For instance, as shown in Figure 8 F and several 

electron microscopy images reported by Echegoyen and Nerin (2013), silver 

particles may be released together with larger pieces of polymers, which may 

decrease the chances that these silver particles will be detected by spICP-MS, 

as the pieces can be too big to reach the plasma during spICP-MS analysis.  
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Figure 8: TEM images for particles released from food storage containers after 10 days in 

3 % acetic acid. A: Fresher Longer
TM

 Miracle Food Storage
TM

 bags, B: Special Nanosilver 

Mother’s milk pack, C, D: The Original Always Fresh Containers
TM

, E, F: Kinetic Go 

Green
TM

 Premium Food Storage Containers. All the presented images were analyzed by 

EDS and confirmed the presence of silver (Mackevica et al. 2016b – Paper IV). 

To fully understand exposure to NMs, spICP-MS measurements can be very 

useful, as they can provide information not only about the particle count, but 

also the size distribution of particles released as well as the dissolved ionic 

fraction which all together can lead to oral exposure. It has been reported that 

size distributions of the released silver nanoparticles can vary depending on 

both the type of food simulant and the type of the food contact material. For 

more acidic substances, such as acetic acid as a food simulant, a larger 

fraction of total Ag may be present as dissolved Ag in comparison to other 

food simulants, such as ethanol or deionized water (Mackevica et al. 2016b – 

Paper IV). The size distributions of released silver particles were quite 

similar for deionized water and 10% ethanol, but the diameter of particles 

released into acetic acid was considerably higher for three out of four food 

container brands investigated, one of which only had dissolved Ag by the end 

of the 10-day test (see Figure 9). Acetic acid clearly is facilitating the Ag NP 

release, dissolution and aggregation/agglomeration, however the possibility 

of formation of particles by released Ag ions cannot be excluded. It is known 

that Ag ion reduction can be facilitated by the hydroxide ion addition (Chou 



31 

et al., 2005), and it has also previously been shown that Ag ions can be 

reduced and hence form Ag NPs when such substances as fulvic (Sal’nikov et 

al., 2009) or humic acids (Akaighe et al., 2011) are present in the solution.  

 

 
Figure 9: Silver nanoparticle size distributions for food containers incubated with food 

simulants after 10 days, measured by spICP-MS (modified from Mackevica et al. 2016b – 

Paper IV). A: The Original Always Fresh Containers
TM

, B: Kinetic Go Green
TM

 Premium 

Food Storage Container, C: Special Nanosilver Mother’s milk pack, D:  Fresher Longer
TM

 

Miracle Food Storage
TM

 bags. The cut-off for the particle diameters is set at 200 nm, 

excluding the larger aggregates from the graphs, frequency represents NP event counts.  

The higher amounts of total Ag released into acetic acid in comparison to 

ethanol or deionized water as observed by several studies (Echegoyen and 

Nerín, 2013; von Goetz et al., 2013a; Mackevica et al. 2016b – Paper IV) 

were expected, knowing that Ag ion release rates tend to increase with 

decreasing pH values (Liu and Hurt, 2010). When comparing the total Ag 

content in the material and total Ag release both on weight/weight basis and 

weight/area basis, no apparent relationship was found between total Ag 

content and release for the various food container types investigated. This 

might be an indication that the manufacturing methods differ and some 

container types would have more loosely bound particles on the inner surface. 

Type of plastic and different sizes and/or coatings of particles could also 

influence the silver ion or NP release. As reported by the atomic force 

microscopy (AFM) analysis in von Goetz et al. (2013a), the inner surface of 

food containers can be relatively rough and have up to 10 µm variations in 

height, which in turn can affect the actual surface area, making it markedly 

different from the measured surface area assuming a smooth surface . 
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5.1.2 Release from toothbrushes  

Other consumer items relevant for potential oral exposure to Ag nanoparticles 

addressed in the literature include ceramic water filters (Bielefeldt et al., 

2013; Ren and Smith, 2013), baby toys and textiles (Quadros et al., 2013) and 

toothbrushes (Mackevica et al. 2016c – Paper V). In the latter case, two types 

of toothbrushes (Ag-infused adult and baby toothbrushes) were tested for 

their whole intended usage period and analyzed for both nanoparticulate 

release and total Ag release. The experimental setup included taking sub-

samples at representative time points, such as 2 min intervals which is 

corresponding to one brushing event. The release was tested in tap water to 

have a closer resemblance to a real life use scenario. Since including the 

toothpaste to the release medium would introduce another degree of 

complexity, it was omitted. From the two toothbrush types that were tested, 

the adult toothbrushes showed a slightly higher Ag release both in terms of 

total Ag release and nano-Ag release. Particle release substantially declined 

after the first 6 minutes of testing for most samples, and after 16 h of  testing 

the total Ag release reached a plateau. It was found that around 1-3% of all 

released Ag was found in particulate form, having median particle sizes of 

around 45 nm measured by the spICP-MS (see Figure 10). The total Ag 

release was corresponding to <0.1% of the total Ag content measured in the 

toothbrush bristles before use, which hence indicates that only a relatively 

negligible fraction of Ag is released and most of the Ag is remaining 

embedded in the polymer matrix (Mackevica et al. 2016c – Paper V). 

Consequently, there is concern about the rest of Ag ending up in solid waste. 

A study by Lee and Kim (2015) addressed this issue by setting up a landfill 

leaching batch test with two types of nano-Ag containing toothbrushes with 

different pH (4.0, 7.3 and 10.0) for 100 days. With continuous leaching over 

time, a maximum of 2.1% from the initial Ag content had been released after 

100 days of testing, and it was found that both ionic and nano Ag were 

present in the leachate solution. Extrapolating these results to the population 

of South Korea and assuming only 5% nano-Ag toothbrush usage ratio within 

the population and use of 3 toothbrushes per person per year, the amounts of 

leached silver in landfills could reach 17 tons over 20 years (Lee and Kim, 

2015). However, there is a great need for more “End of Life”-phase studies 

for nano-enabled consumer products that would provide data for NM leaching 

over longer time periods. 
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Figure 10: Cumulated released silver nanoparticle size distribution after 24 hours of 

testing. A1-3: three adult toothbrushes, B1-3: three baby toothbrushes (Mackevica et al. 

2016c – Paper V). 

The overall results from most of the nano-Ag release experiments done so far 

conclude that oral exposure during nanoproduct use is negligible, as most 

often the leached amounts are very low (in magnitudes of ng/L). Also, most 

of the studies dealing with potential oral exposure to NMs from consumer 

products are presenting release as total Ag rarely using other metrics for nano 

release representation. More studies with extensive NM characterization are 

needed to understand to what extent consumers may be exposed to NMs from 

nano-enabled consumer products, as the information about the total Ag 

exposure is not sufficient to assess the actual risks associated with nano-

enabled product use. It is well known that silver nanoparticles have different 

toxicological properties compared to ionic and bulk Ag.  However, it has 

been reported that toxic effects of Ag NPs are exerted only in mg/kg bw 

concentrations (e.g. Chang et al. 2006; Kim et al. 2010; Kim et al. 2008). For 

this reason, using Ag NP-enabled products would most likely have negligible 

risk of causing adverse health effects, but it cannot be completely excluded as 

long-term study data is lacking. 

5.2 NM release from consumer products with 

potential for dermal exposure 
As shown before in Figure 6, dermal exposure is the most prevalent exposure 

route when it comes to using nano-enabled products. It is especially relevant 

for products from the health and fitness category, as well as personal care 

products. As personal care products have a somewhat self-evident and in 

most cases also intentional dosing (e.g. sunscreens, lotions, cosmetics), it is 

more important to focus on the use of products that may lead to unintentional 

consumer exposure through dermal contact. Most of such products include 

nanocoatings and nano-enabled textiles, the latter of which has also been 
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relatively widely addressed in the literature in terms of nanoparticle release 

through simulated product use that may lead to dermal exposure (i.e. wearing 

the clothing items or washing them).  

It has been a focus of a number studies to investigate to what extent NMs can 

be taken up by the skin and what sizes are able to penetrate deeper layers of 

skin to reach the lymphatic system. Particularly nano-TiO2 and ZnO have 

been the NMs causing concern, as they are commonly used in sunscreens and 

other personal care products. Most experimental and theoretical evidence 

suggests that insoluble NPs are not able to penetrate into or through healthy 

or damaged skin. In the case of TiO2 specifically, a review of the published 

experimental studies (Nohynek et al., 2007) concluded that TiO2 particles do 

not penetrate further than upper layers of stratum corneum, even with 

particles in sizes as small as 20 nm  (as reported in the study by Mavon et al. 

2007). The same conclusion was also reached by a human safety review of 

nano TiO2, where it was stated that, based on the current weight of evidence 

of all available toxicity and exposure data, the risk of using nano-TiO2 in 

cosmetics and sunscreens is negligible (Schilling et al., 2010). Based on all 

this information, as of July 2016 the use nanoscale TiO2 as a UV-filter in 

sunscreens is allowed within the EU at a concentration up to 25% w/w. It can 

be considered that TiO2 is not posing any risk of toxic effects after 

application of the products on healthy, intact or sunburnt skin (European 

Commission, 2016). 

Other NMs in different product groups, however, have not been studied that 

extensively. When it comes to dermal exposure to other commonly used NMs 

such as Ag, the studies are less abundant and there is no definite conclusion 

whether or not the use of the NMs is safe and poses no risk to human health 

(Wijnhoven et al., 2009). A few experimental studies have indicated that Ag 

NPs are able to penetrate through healthy skin. For instance, an in vivo study 

of dermal absorption using human skin discovered that Ag NPs in sizes of 

less than 100nm can penetrate through the skin layers and end up as deep as 

the lower layer of the dermis (George et al., 2014). Additionally, another 

study investigated a more realistic scenario using volunteers wearing Ag NP-

infused textiles and subsequently assessing skin absorption by tape stripping 

method. The findings indicated that Ag NPs in sizes up to 1µm could be 

found in epidermis and dermis (Bianco et al., 2015).  

Generally, information available in the literature suggests that there are still 

some uncertainties associated with understanding the NP behavior and 
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interactions with the skin barrier that lead to dermal absorption, as well as the 

degree of adverse short term and long term effects they may cause (Labouta 

and Schneider, 2013). Especially data is lacking when it comes to proper NP 

characterization and long term exposure to NPs released from nano-enabled 

products.  In the following sections a few product groups that are relevant for 

dermal exposure are addressed, namely textiles and surface coatings that may 

come into contact with skin. Specifically the focus is set on understanding NP 

exposure through quantitative nano-measurements that can aid nano-specific 

dermal exposure assessment. 

5.2.1 Release from textiles 

Around 14% of the nanoproducts are textiles according to the information 

available in The Nanodatabase (2016), and most of them claim to contain 

nano-Ag. Until recently, NM release from textiles and dermal exposure had 

not been addressed extensively in the literature. In the past few years there 

have been an increasing number of studies investigating release from 

commercially available and lab-prepared textiles, mostly with Ag NPs and a 

handful of studies with TiO2 NPs.  

There are four main factors affecting the NP release from the textiles and 

their subsequent transformations, including: 1) NP incorporation into the 

fibers (surface-bound or composite, NP form, textile composition), 2) use of 

textile (sweat, abrasion, UV-light, temperature, and other external factors), 3) 

cleaning/washing (properties of the detergent or bleach), and 4) disposal 

(Mitrano et al., 2015a). Proper characterization of the released NPs is the key 

to understanding the possible consumer exposure during product use of 

various types of nano-enabled textiles.  

Several experimental studies have investigated some of the real-life scenarios 

of nano-Ag textile use by exposing the textiles to artificial sweat at body 

temperature (Kulthong et al., 2010; Stefaniak et al., 2014; von Goetz et al., 

2013b; Wagener et al., 2016; Yan et al., 2012). The released Ag quantities 

were found to be dependent on several factors, such as pH and composition 

of the sweat solution and amounts of Ag in the fabrics, as well as the method 

for incorporation of Ag in the fabrics. Mostly the total Ag release was 

quantified by such techniques as AAS or ICP-OES and ionic Ag fraction 

determined using ultracentrifugation, and having particle characterization 

done by SEM-EDS. These types of measurements provide a good indication 

regarding possible total Ag exposure, but have little indication regarding 

sizes and quantities of particles released. Study by Wagener et al. (2016) 
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addressed this issue by comparing differently functionalized textiles and their 

Ag release with spICP-MS and found released particle sizes of 40 to 60 nm, 

and higher particle number releases for surface-modified textiles (as opposed 

to composite materials). A similar trend was observed in a study by Geranio 

et al. (2009) with washing of different textiles, which led to higher amounts 

of Ag released for surface-modified fabrics. When it comes to speciation of 

Ag species released, it has been shown that Ag can be released both as ions 

and particles, and Ag
+
 can undergo transformations to form Ag

0
, AgCl or 

Ag2S particles (Lombi et al., 2014; Mitrano et al., 2016b, 2014). 

Nano-TiO2 is used as an additive in textiles because of its photocatalytic 

properties, UV-protection, antibacterial and anti-odor effect, and hydrophilic 

surface functionalization (Kohler and Som, 2014). The TiO2 NP release from 

textiles could lead to consumer and environmental exposure, and this issue 

has been addressed by a few studies (von Goetz et al., 2013b; Windler et al., 

2012; Mackevica et al. 2016d - Paper VI). Windler et al. (2012) tested TiO2 

release from six different textiles (all of them synthetic blends) during 

washing and rinsing cycle. Electron microscopy and filtration (0.45 µm filter) 

data confirmed the release of NPs, however mostly in the form of 

agglomerates. The total release of titanium ranged between 0.01-0.06% of the 

initial content in the fabrics, indicating that TiO2 was incorporated in and 

strongly bound to the fibers. Using the same methods, a similar conclusion 

was reached by von Goetz et al. (2013b), where the TiO2 release was tested 

for the same six textiles, but this time in artificial sweat solutions. Only one 

of the textiles released measurable amounts of titanium, and most of it was 

found in particulate form. However, it must be noted that the detection limit 

for Ti in this study was 12.4 µg/g/L. Generally, when it comes to 

characterizing and quantifying TiO2 release it becomes quite complex firstly 

because of the low amounts released, and secondly because 0.45 µm filtration 

only provides information regarding particle size of <450 nm, making it 

difficult to account for the actual particle size distributions, as electron 

microscopy provides merely qualitative information about released particles. 

Several studies using spICP-MS have succeeded to measure sizes of particles 

as well as quantify the mass of the particulate TiO2 in several items, such as 

sunscreens (Dan et al., 2015), drinking water (Donovan et al., 2016), and 

food items (Peters et al., 2014a). When it comes to NP release from textiles, 

spICP-MS has been utilized in a few Ag NP release studies  (e.g. Mitrano et 

al., 2015b; Wagener et al., 2016) and one TiO2 NP release study (Mackevica 

et al.  2016d – Paper VI), revealing size distributions of released NPs. Nano-
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TiO2 release was investigated for five different commerically available 

textiles that were not having labels regarding TiO2 content or UV-protection, 

and four of them were eco-labelled and one was hand-crafted. The main focus 

of the study was to compare the nanoparticulate fraction of released TiO2 

versus the total amount of released Ti (the experimental setup is depicted in 

Figure 11), discussing the challenges that arise when working with very low 

concentrations in ng/L range (Mackevica et al.  2016d – Paper VI). The 

experimental setup highlights the need for a multi-method approach when 

working with nano-exposure estimation, as several techniques have to be 

employed to fully understand the release from the products. 

 
Figure 11: Schematic representation of the experimental setup (Mackevica et al.  2016d – 

Paper VI). 

It was found by spICP-MS analysis that three out of five textiles released 

measurable amounts of nano-TiO2 particles, with median sizes ranging from 

49 to 77 nm. The nanoparticles (sizes from around 25 to 200 nm) represented 

8 to 80% of the total titanium measured by ICP-MS after acid digestion. The 

total Ti release was estimated by using two methods – conventional ICP-MS 

measurements after microwave-assisted acid digestion and nanoparticle 

measurements by spICP-MS. In the latter case, the total Ti content was 

calculated by adding up the masses of all the particles released for a given 

sample, and calculating the corresponding mass concentration according to 

equations presented by Pace et al. (2011).  
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The acid-digested Ti measurements showed a high variation in between 

replicates of the same fabric type, while the spICP-MS measurements were 

more robust for analyzing the particles below 200 nm in size (see Figure 12).  

 

 

Figure 12: Total Ti release from all the samples (n=3) measured by spICP-MS and 

conventional ICP-MS after acid digestion. For A and E samples n=2. Error bars indicate 

standard error of mean (Mackevica et al.  2016d – Paper VI). 

Generally, both nano-Ag and TiO2 release from the textiles (especially 

commercial textiles) is rather low and would arguably cause negligible 

consumer exposure and have little effect on total NP content in the waste 

water treatment plants and the environment. As for nano- TiO2, the consumer 

exposure assessment for TiO2 textiles by von Goetz et al. (2013b) indicated 

that the release from textiles is negligible compared to the input from a wide 

range of food products that are widely available on the market and contain 

nano-TiO2 as an additive. However, even if during the use phase of the 

textiles there is little or negligible NP release, there might be concerns when 

it comes to NP release during the end of life phase, i.e. disposal or recycling. 

This issue was addressed in a study by Mitrano et al. (2016a), which tested 

leaching of washed and unwashed Ag and Au NP-containing textiles in a 

simulated landfill leaching scenario. Their findings showed that while there 

was relatively high release from unwashed fabrics (up to around 35% of the 

initial content), the washed fabrics released very small amounts of Ag and 

Au, indicating that the NPs most likely stay intact in the textile fibers also 

when disposed of in a landfill. However, as also stated in the paper (Mitrano 

et al., 2016a), the release amounts and properties are highly dependent on the 

characteristics of the release medium, as well as the properties of the NPs and 

the functionalization of the textile.  
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5.2.2 Release from surface coatings 

As already indicated above, nano-enabled surface coatings is one of the 

consumer product groups that has a relatively high potential for consumer 

exposure. One of the pathways for human exposure to NMs from surface 

coatings is direct dermal contact, e.g. hands touching a surface treated with 

nano-containing substance or surface where NMs are deposited. Testing of 

such products has mostly been done in association with environmental 

exposures, such as weathering of paint and leaching into environment. The 

release of other types of NPs, such as TiO2 and Ag, from painted surfaces has 

been investigated by several studies (e.g. Olabarrieta et al. 2012; Kaegi et al. 

2008; Kaegi et al. 2010), which have shown that weathering or abrasion are 

important factors for NP release in the environment.  

When it comes to human exposure to NMs from treated surfaces, the 

information in the literature is scarce. Dermal transfer of NPs through 

simulated skin contact has been addressed by only a few of studies (Platten et 

al., 2016; Quadros et al., 2013). These studies have successfully used 

different wipes as a surrogate for human skin to mimic a real-life scenario of 

hands touching a surface. For example, Quadros et al. (2013) tested dermal 

transfer of Ag NPs from various baby products, such as plush toy, baby 

blanket, disinfecting spray and kitchen scrubber. The results from surface 

wiping experiments revealed that there is considerable Ag transfer from the 

products to the wipes, and therefore there is also a potential for skin exposure 

through the use of those products. More recently, a study by Platten et al. 

(2016) studied the dermal exposure potential of different types of copper 

particle pressure-treated lumber by also using wiping test setup to simulate 

skin contact. Both of these studies provided relevant data for potential dermal 

transfer from NM-containing products, however, the measurements were 

presented as total amount of the chemical that is transferred from the surface 

to the wipes.  

As noted above, the nano-specific effects that might arise from NP exposure 

are not well known at this point, so characterization of the released NPs is an 

essential part for understanding the actual exposure to NPs. In the study 

conducted within this thesis (Mackevica et al. 2016e – Paper VII), it was 

attempted to design and perform a dermal transfer study that allows not only 

reporting the total mass exposure to NMs, but also particle number 

concentration and the sizes of the particles that may come into contact with 

skin. By utilizing spICP-MS, it was found that it is possible to extract most of 

the particles transferred to wipes by ultrasonication and gain quantitative 
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information regarding potential dermal transfer of Ag and CuO NPs (Figure 

13). Each wiping event was conducted as follows: the wipe was wetted with 

artificial sweat, then the surface of the article was wiped three times, and the 

wipe was then immersed in DI water, ultrasonicated, and the resulting 

suspension was immediately analyzed by spICP-MS. This procedure was 

repeated three times on the same surface. This method was tested on several 

nano-enabled surfaces, such as Ag-containing keyboard covers and wooden 

blocks painted with CuO-containing paint (before and after accelerated wear 

and tear). With this setup the dermal wiping tests were able to provide 

information on total mass concentration, particle number concentration, as 

well as the released particle size distribution. 

 
Figure 13: Schematic representation of execution of wiping tests, the procedure depicted 

here is referred to as one wiping event (modified from Mackevica et al. 2016e – Paper 

VII). 

From the three types of commercial Ag-containing keyboard covers that were 

tested in this study, only one showed Ag NP release that was higher than the 

Ag-free control (Figure 14). However, it was concluded that Ag NP transfer 

can be considered negligible, as the total Ag release was in she sub-ng per 

cm
2
 range. It was also observed that Ag NP transfer was slightly decreasing 

with each wiping event, indicating that most likely with increasing frequency 

of keyboard cover use the Ag NPs would gradually detach from the surface 

until no more transfer is possible (Mackevica et al. 2016e – Paper VII).  

The maximum measured Ag nanoparticle transfer was 0.001 ng/cm
2
, 

corresponding to around 2,000 particles per cm
2
. For this sample, the mean 

particle size was 28 nm. The dermal loading from these Ag NP keyboard 

covers may be considered negligible, as the amounts of Ag released are very 

low, also in comparison with dermal transfer from other items that have been 

tested with a similar setup. For example, dermal wiping study by Quadros et 

al. (2013) investigated surface transfer from baby blanket, plush toy, dried 

disinfecting spray, dry surface wipes and kitchen scrubber. The highest Ag 
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release was 2.3 ng/cm
2
, which was measured for the baby blanket sample. 

Even for the highest observed Ag transfer, the authors concluded that the 

amounts of Ag released are below the threshold that could cause damage to 

children. 

 
Figure 14: Ag NP transfer from keyboard covers to wipes. Left – transfer in number of 

particles per cm
2
, Right – mass transfer in ng/cm

2
. Error bars represent standard error of 

mean, n=3 (Mackevica et al. 2016e – Paper VII).  

Dermal transfer testing for the CuO-painted wooden blocks showed that there 

is nearly no CuO NP release from the painted surface when the paint is fresh. 

However, after sanding of the paint surface to simulate accelerated 

weathering and wear and tear, the CuO release was increased considerably 

(Figure 15). The particle count was notably higher when the sanded wooden 

blocks were wiped, resulting in transfer of up to 5 · 10
5
 CuO particles per 

cm
2
, whereas for paint without sanding it was around 2 · 10

5
 particles per cm

2 

(observed in the 2
nd

 wiping event). There were also some differences 

observed between the control samples (coated with paint with no CuO added) 

before and after sanding, indicating that there might be some background Cu 

levels in the paint matrix. The mean sizes of the released particles were 

around 84 nm and 79 nm for CuO-paint without and with sanding, 

respectively, and the mode sizes were 61 nm and 54 nm without and with 

sanding, respectively (Mackevica et al. 2016e – Paper VII). 

The dermal transfer from painted surfaces has not been extensively addressed 

in the literature so far. There has been a recent publication regarding dermal 

transfer of Cu from pressure-treated lumber, which was focusing on 

micronized and ionic copper azole-treated wood (Platten et al., 2016). The 

total released Cu was extracted from the wipes by acid digestion, and showed 

that there were no significant differences in total Cu release for the timber 
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that was impregnated with micronized or ionized Cu. A total of 12 wiping 

events showed that there was higher initial release of Cu from micronized 

Cu-treated timber during the first three wiping events. Additionally, the wood 

that was previously weathered was showing considerably higher total Cu 

release quantities, going up to around 25 mg Cu/m
2
 for the first wiping event 

after wood exposure to weathering. Generally, dermal exposure to copper 

compounds is not known to be of concern apart from potential allergic 

reactions. However, ingestion of copper has been shown to have toxic effects 

(Civardi et al., 2015), which is why hand-to-mouth exposure might be of 

concern when it comes to Cu-treated surfaces that come into contact with 

skin.  

 

Figure 15: CuO NP transfer from painted wooden blocks to wipes. Left – transfer in 

number of particles per cm
2
, Right – mass transfer in ng/cm

2
. Error bars represent standard 

error of mean, n=3 (Mackevica et al. 2016e – Paper VII). 
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6 Consumer exposure assessment to 

nanomaterials 

It has been well established that certain types of NM-containing products 

have the potential to lead to consumer exposure when being used. However, 

quantifying these exposures is quite challenging, as the exposure is dependent 

on many different factors, such as product properties, NM properties, as well 

as consumer behavior (frequency of use, use of personal protection 

equipment, misuse, etc.). The main question associated with pretty much any 

consumer product is whether or not it is safe to use. The presence of a certain 

substance in a product does not necessarily pose a health hazard in itself, it is 

only not safe for use if there is a potential for exposure and a potential hazard 

associated with the substance. Exposure assessment therefore plays a key role 

in understanding whether or not there are any risks of adverse health effects 

from a certain chemical substance or product (Thomas et al., 2006). Exposure 

assessment is therefore an essential and integrated part in risk assessment and 

management. 

As already discussed before, for nano-enabled products the exposure is 

highly dependent on the location of the NM. If the NM is attached to or 

embedded in the product in a manner that aims to minimize the NM release, 

the exposure potential will also be negligible. However, in such cases where 

NMs do have the potential to be released during product use (or misuse), 

exposure might take place via dermal, oral or inhalation route. Consumer 

exposure assessment is therefore of utmost importance to quantify possible 

exposures for various nano-enabled products via likely routes of exposure 

during product use.  

Consumer exposure estimation is often complex as it requires substantial 

understanding of the nature of the product and great detail about the 

circumstances of their foreseeable use and misuse, as well as the amount of a 

certain substance present in the product used per event and the frequency and 

duration of use. Exposures can range from short-term, as low as seconds of 

each event, or long-term going as far as life-time exposure, depending on the 

product. The means of controlling possible consumer exposure are very 

limited and cannot normally be monitored, and suggested product use 

guidelines cannot be enforced beyond the point of sale of the products 

(ECHA, 2012). Because of so many “uncontrollable” and uncertain 

parameters regarding both consumer behavior and the product properties, 
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there is a necessity to consider certain assumptions to obtain a quantitative 

estimate for consumer exposure. Very often the assumptions have to be based 

on already derived default values, to generalize the exposure parameters and 

perform a reasonable exposure assessment. In the following sections several 

models and tools intended to be used for consumer exposure assessment will 

be discussed, as well as their applicability for nano-specific consumer 

exposure assessment. 

6.1 Guidelines and tools for consumer exposure 

assessment 
Exposure assessment tools apply a specific set of parameters into equations 

or decision trees, which are further used to quantify or rank the exposure 

potential of a certain material. Qualitative tools are lower tier tools that are 

commonly used for exposure estimation based solely on assumptions or 

qualitative data. By using simpler equations or decision trees, the final output 

is usually categorization or ranking of exposure potential. Examples include 

several control banding tools and categorization tools, such as NanoRiskCat 

(Hansen et al., 2014) and Swiss Precautionary Matrix (Hock et al., 2013).  

These tools basically provide an indication whether or not there is a high 

likelihood for exposure and further actions needs to be taken. Quantitative 

tools on the other hand, are higher tier tools that use predictive models and 

are based on quantitative or semi-quantitative data. For consumer exposure 

assessment, several quantitative tools have been developed. For instance, the 

European Chemical Agency (ECHA) has developed a number of guidance 

documents to aid risk assessment and management, one of them being a 

guideline for consumer exposure estimation, providing step-wise and iterative 

models for quantifying potential consumer exposure to substances found in 

mixtures, articles, or to substances on their own (ECHA, 2012). A few other 

quantitative tools can be applied for consumer exposure estimation, such as 

ConsExpo (Delmaar et al., 2005) or ECETOC TRA (ECETOC, 2009), both of 

those having very similar properties as the consumer assessment model 

developed by ECHA. These tools provide conservative default values and 

assumptions for worst-case scenarios, for instance, in some cases an 

instantaneous release of substance from the product or release with no 

dilution (in air or liquid). Assuming the worst case scenario, however, 

provides a very crude estimate and does not necessarily reflect a likely real-

life scenario. 
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Consumer exposure assessment according to ECHA provides models for 

various exposure routes, such as inhalation, ingestion and two separate 

scenarios for dermal exposure, namely cases where substance migrates from 

the article in contact with skin, and cases where the product is directly 

applied to skin or certain body parts are dipped in a mixture that contains the 

substance.  Inhalation exposure to NMs is most relevant for products like 

sprays or powders, but, depending on product use and exposure scenario, it 

can also be relevant for solid articles that are subjected to sanding or other 

types of abrasion that may cause airborne particle release. In a quantitative 

manner, inhalation exposure is expressed as the average concentration of the 

substance in the breathing zone atmosphere (mg/m
3
) over a reference time 

period (per day or per event). However, when it comes to exposure to 

airborne NMs, the ECHA guidance suggests to also note the number 

concentration and surface area concentration (i.e. n/m
3
 and cm

2
/m

3
). The 

underlying worst-case assumptions are that 100% of the substance is released 

from the product in a confined room with no ventilation, and the event 

duration is 24h (ECHA, 2012). Oral exposure from consumer products is 

likely in cases where substance can migrate from the product due to sucking, 

chewing, licking, or unintentionally swallowing the article that contains the 

substance. These routes are especially relevant for children’s oral exposure. 

Oral exposure can also result from substance migration from food contact 

materials, such as cutlery or food packaging. In the model oral exposure is 

expressed as the average amount of substance ingested per kg body weight 

per day (mg/kgbw/d), and the worst case assumption is that all the substance is 

released from the article, or, where applicable, the whole article is 

accidentally ingested. In cases of dermal exposure, hand or body contact with 

the product is one of the most common exposure scenarios. Other likely 

exposure options are dipping hands or other body parts in a mixture that 

contains the substance, or directly applying a product on the skin, such as 

sunscreen. Deposition of aerosols on skin or splashes on the skin (e.g. during 

painting) is also considered as a pathway to possible dermal exposure. The 

resulting quantification of exposure is presented as the amount of substance 

per unit skin surface area (mg/cm
2
) or as an external dose (mg/kgbw/d).  

Other quantitative consumer exposure assessment tools (ConsExpo and 

ECETOC TRA) provide similar outputs and are based on some of the same 

principles and algorithms as described in the ECHA guidelines. ECETOC is 

using established exposure prediction models called EASE (Estimation and 

Assessment of Substance Exposure), which includes considerations of 
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specific consumer article use scenarios with specific activities to make a 

more conservative exposure assessment. The outputs are in the same metrics 

as for ECHA equations, resulting in inhalation exposure in mg/m
3
, but oral 

and dermal exposure in mg/kgbw/d. The ECETOC tool requires the user to 

provide information on consumer product and consumer behavior, 

highlighting duration of use and frequency of events, for example. The tool 

includes default values, such as amount of substance used per application, 

exposure duration, surface area, body weight, and these values are consistent 

with the ones used by ConsExpo model. Even though the default values are 

provided, the user of the tool can still choose to insert a different set of values 

into the model (ECETOC, 2009). The same is true for ConsExpo model, 

which is considered to be more of an expert tool and is recommended and 

used by REACH for exposure assessment of industrial chemicals and 

biocides. ConsExpo is a computer program based on algorithms published by 

Delmaar et al. (2005). The program provides models for inhalation, oral and 

dermal exposure routes and consists of both simpler screening models and 

higher tier models for more quantitative and scenario-specific exposure 

estimation. For instance, for all exposure routes, there are models for both 

instantaneous release and constant release over longer periods of time. As an 

example, for dermal exposure, the model allows calculating exposure for 

scenarios where all the substance is directly applied to the skin at once, as 

well as scenarios where the product is applied at a constant rate. Dermal 

exposure can also be assessed to solid surfaces treated with a substance, and 

skin is either in direct contact with the surface or there is migration/diffusion 

of the substance from the material to the skin. The model is coupled to a 

database that contains so-called fact sheets of default values that enable 

obtaining product-specific information regarding circumstances and 

characteristics of possible exposure. However, the model can be considered 

to be quite complex and require a certain level of expertise to perform 

exposure assessments and use own data (as opposed to defaults). Using 

ConsExpo model the user can choose to use distributions rather than point 

values for a number of input parameters, if the mean and standard deviation 

is known. Consequently the program can perform probabilistic (Monte Carlo) 

calculations (Delmaar et al., 2005). 
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6.2 Nano-specific consumer exposure 

assessment tools 
The available tools for quantitative consumer exposure assessment of 

chemicals are all using mass-based metrics for exposure assessment 

calculations, and the output is mass-based as well (i.e. mg/m
3
, mg/cm

2 
or 

mg/kgbw/d). During the past few years, the issue of having the need for nano-

specific consumer exposure assessment tools has been highlighted by many, 

and recently there has been some progress with regard to developing models 

and tools that allow computing exposure to NMs in a way that is more 

representative and elucidating for NM exposure characterization.  

To date, the only model available specifically designed for consumer 

exposure to NMs is ConsExpo nano, developed by RIVM (RIVM, 2016). In 

its current version, it is designed specifically for consumer exposure 

assessment to NMs in spray products. It allows consumer exposure 

assessment based on various default scenarios for different product groups, 

such as cleaning and washing products, cosmetics, disinfectants, painting 

products, pest control products, and do-it-yourself products. To use the 

factsheets already available in the software, the only input for completing the 

calculations is aerosol particle density, weight fraction of the nanomaterial in 

the aerosol, nanomaterial density, shape and diameter. It is also possible to 

specify all the other parameters if the data is available and the factsheets for 

developed default scenarios are not necessary. The model output provides 

information on inhaled dose per event and the alveolar dose per event, and 

dose can be defined by mass, number of nanoparticles, surface area of 

nanoparticles, volume or nanoparticles, number of aerosol particles, surface 

area of aerosol particles or volume of aerosol particles (RIVM, 2016). 

Apart from ConsExpo nano, RIVM have also developed a NanoCosmetics 

tool for risk assessment of nanomaterials in cosmetics, which aims to 

evaluate and manage consumer health risks that may be associated with use 

of nano-containing cosmetics (De Jong et al., 2015). The tool is containing 

the physicochemical characterization of the NMs, as well as the consumer 

exposure estimation, and possible hazards posed by NMs, which all together 

aid the risk assessment. However, even if the tool claims to be aimed at nano-

specific risk assessment, the consumer exposure assessment is based on the 

existing ConsExpo dermal exposure models, which are mass-based. 
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6.3 Applicability of consumer exposure 

assessment tools to nanoproducts 
There have been a handful of attempts to perform consumer exposure 

assessment to several nano-enabled products based on experimental data. 

Generally, when it comes to nano-enabled products, several challenges arise 

when conducting consumer exposure assessment. First of all, unless the 

product is a spray, the exposure assessment will be solely mass-based, and 

there is often very limited information available for using the consumer 

exposure assessment models described above.  

A review study by Mackevica & Hansen (2016 – Paper II) identified 76 

experimental studies that were providing data for release from nano-enabled 

articles, and attempted to apply the aforementioned consumer exposure 

assessment tools to quantify the possible consumer exposure by using these 

products. Out of those 76 studies, 33 provided necessary data for consumer 

exposure assessment using ECHA models. In total, 194 exposure scenarios 

were developed for consumer exposure calculations. The key input 

parameters were the concentration of the substance in product, and the 

fraction of substance that can migrate from the product. An instantaneous 

100% release (worst case scenario) was assumed when other data were not 

provided. For inhalation exposure studies it was particularly difficult to 

obtain data for the fraction of substance released, as data was usually 

reported as particle number concentration per volume of the room. For 

inhalation exposure studies, the most commonly addressed substances were 

CNTs, TiO2 and SiO2 NMs by sanding or abrasion of various 

nanocomposites, surface coatings and paints. Based on the model presented 

by ECHA, the potential inhalation exposures could go up to 40 mg/kgbw/d, for 

sanding of samples such as TiO2-containing coatings and assuming the worst 

case scenario. When actual data of substance mass release is provided, the 

exposure estimation can be several orders of magnitude lower.  Most studies 

relevant for potential oral exposure were dealing with the Ag release from 

food contact materials or ceramic water filters. For most cases, the estimated 

oral exposure was in magnitudes of ng/kgbw/d, rarely reaching levels of 

µg/kgbw/d, and generally the higher exposures were resulting from lab-made 

products with higher amounts of substance applied to the product. Dermal 

exposure was calculated as dose in mg/kgbw/d (rather than mg/cm
2
), and for 

most products and exposure scenarios the resulting dermal exposure was 

negligible. Nearly all of the articles addressed in the reviewed literature were 
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textiles containing Ag NPs. Highest exposure potentials were observed for 

lab-prepared fabrics, and for fabrics that had NPs attached to the surface of 

the fibers rather than embedded in the textile matrix (Mackevica & Hansen, 

2016 – Paper II).   

It is cumbersome to group and rank the exposure potentials for different 

products or product groups, as the data reported in the literature may have 

very different exposure scenarios for selected products. Even within the same 

product groups the exposure dose can vary several orders of magnitude. A 

similar trend was observed by a recent critical review conducted by Koivisto 

et al. (submitted), where 89 scientific publications were identified which 

included measurements of release data from nano-enabled articles and 

products.  Thirty-three out of the 89 studies were identified as viable for 

extraction of quantitative release data, describing 320 different exposure 

scenarios for release from nano-enabled products. The release rates were 

grouped according to the NM release scenarios, including weathering by UV 

irradiation, leaching, abrasion, and spraying. The aim of the study was to 

provide a more harmonized data library for release from nano-enabled 

articles that could serve as a valuable resource for both exposure scenarios 

and occupational, consumer and environmental exposure assessment. 

However, the authors of the aforementioned review also highlight the 

importance of having more nano-specific data, such as size distribution, 

which is crucial for more detailed exposure assessments of nanomaterials.  

A report by the Danish EPA (Larsen et al., 2015) evaluated the existing 

methods for consumer exposure assessment and developed 20 exposure 

scenarios for various product groups that were further used for the actual 

exposure assessment. The product categories included in this assessment 

were food and beverages, cosmetics, cleaning products, coatings, and textiles, 

among others. They reviewed available exposure and risk assessment tools 

that could be applicable for consumer exposure assessment and concluded 

that nano-specific tools are able to provide mostly qualitative information, 

whereas non nano-specific tools were generally more quantitative (including, 

but not limited to, ConsExpo, ECETOC TRA). Then, based on the 

information about specific products available on the market, and the 

information about experimentally determined or modelled exposure 

assessments from products in the same product  categories, it was attempted 

to perform a specific nanomaterial exposure assessment. It was also 

highlighted that the manufacturers of the nanoproducts rarely provide enough 

information about the NMs that are present in the product or specify how 
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they are incorporated in the product and at what quantities they have been 

applied. To build more accurate and relevant specific exposure routes, several 

crucial pieces of information is needed, such as NM identification, surface 

coating, particle size distribution, matrix properties, attachment to the matrix, 

and the product formulation. The report concluded that no single tool was 

suitable for adequate and harmonized exposure assessment for nano-enabled 

consumer products, as the tools are not specifically designed for estimating 

NM exposure. It was also pointed out that using mass-based metrics for NM 

exposure might not be the most relevant, however, it can provide a somewhat 

conservative and reliable estimate of NM exposures, especially when it 

comes to dermal and oral exposure (Larsen et al., 2015).  

From the 20 examples addressed in this report, it was found that highest oral 

exposures were predicted for food items and cosmetics, with oral doses up to 

5.5 mg/kgbw/d. Cosmetics was also the product group that resulted in the 

highest dermal exposure potential, with dermal applications resulting in a 

dermal dose of up to 450 mg/kgbw/d. As for inhalation exposure, sanding and 

spray painting presented the highest exposure potentials with exposure 

concentrations up to 109 mg/m
3
 corresponding to an inhalation dose of 1.5 

mg/kgbw/d. Overall, the highest exposures were estimated for food items 

(oral), sunscreens (dermal and oral), surface coatings and paints (dermal and 

inhalation), as well as construction materials (dermal and inhalation) and 

wound dressings (dermal). Relatively very low exposure potentials were 

found for food contact materials, composite materials and textiles, among 

others (Larsen et al., 2015). 

Several experimental papers presenting release from nanoproducts have 

attempted to assess potential consumer exposure. For example, when it comes 

to oral exposure to silver from food containers, von Goetz et al. (2013a) and 

Mackevica et al. (2016b – Paper IV) estimated potential consumer exposure 

that might result from using a nanosilver-containing food container by storing 

food for 10 days without prior washing or pre-treatment of the container. 

Based on experimental data for total Ag release, the resulting maximum 

exposures were calculated to be 4.2 µg Ag (for storing 100mL of food) and 2 

µg Ag (for storing food corresponding to 250 mL of volume), respectively. 

For one time use of a toothbrush (2 min) the maximum observed release in 15 

mL of volume was found to be around 2.7 ng Ag, containing 3.8 x10
4
 Ag 

particles with median size of 46 nm (Mackevica et al. 2016c – Paper V). 

Arguably, the actual consumer exposure would be in even lower amounts, 
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given that only a negligible fraction would get ingested and most of the 

released Ag would end up in the wastewater. 

To have an indication whether or not it is considered a high exposure or not, 

we can compare it to Ag ingestion limits provided by the authorities, e.g. 

European Food Safety Authority (EFSA) has set the limit for total permitted 

Ag migration from food contact materials to 0.05 mg per kg of food (EFSA, 

2006). Based on this information, the Ag exposure from selected food 

containers tested in aforementioned studies may be regarded negligible, but it 

has to be noted that the Ag exposure limits are not taking NMs into 

consideration. There is still some degree of uncertainty when it comes to 

understanding potential health hazards that might be caused by nano-Ag, 

especially when it comes to long term exposures (Hansen and Baun, 2012; 

SCENIHR, 2009). 

Taking all this into consideration, it is apparent that we do not only we need 

more studies that are suitable for nano-specific exposure estimation, but that 

we also need to make sure that we have suitable models addressing he 

specific NM properties. Along with the mass-based metrics there is also a 

need for NM characterization data, such as particle number concentration and 

size distribution as a minimum. Future studies should aim at reporting results 

that are not only scientifically relevant, but also regulatory relevant and can 

be used when it comes to consumer exposure assessment. 
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7 Discussion 

Even though nanomaterial use in consumer products has become increasingly 

ubiquitous, there is still a lack of understanding whether the use of these 

products is safe for consumers and the environment. Additionally, there is 

currently no widely accepted systematic approach for assessing potential 

consumer risks that are associated with nano-enabled product use. Current 

methods for NM analysis are promising, but there is still some development 

needed to have a standardized set of analysis tools and methods for NM 

characterization and quantification. Even with extensive NM 

characterization, it is unclear in what manner this kind of data could be used 

for exposure assessment and risk evaluation. Moreover, understanding of 

exposure conditions and pathways are of utmost importance when it comes to 

developing realistic and relevant exposure scenarios that could be 

representative for a larger population of consumers.  

The overall aim of this thesis was to investigate the release rates of NMs 

from consumer products to gain an understanding regarding various issues 

associated with proper characterization of NMs and consumer exposure 

assessment. The literature review of current state-of-the-art of NM release 

testing highlighted a number of knowledge gaps for both testing methods and 

exposure assessment tools. Moreover, until now research has been mostly 

focused on a narrow range of products (e.g. textiles, paints, coatings) and 

NMs (Ag, TiO2, CNTs), and the data is difficult to extrapolate to other 

product groups or NM types. Prioritization of NMs and specific product 

groups is needed to assess risks that can be associated with various items. As 

suggested by Dekkers et al. (2016), focus should be set on NMs that are 

produced in large quantities, and that have the potential for hazardous effects 

(or when the toxic effects are not known or not sufficiently investigated). 

Moreover, there is a need for more quantitative and well characterized NM 

exposure data, addressing a larger variety of consumer product groups and 

NM types.  

Additionally, research done so far has been mostly investigating NM release 

rates in relatively short time frames (relative to the real-life use of the 

product) and imitating only a small number of consumer use scenarios. The 

experimental setups for NM release testing are often far from real-life 

scenarios, which make it even more difficult to extrapolate the data in the 

context of possible environmental and consumer exposures (Mackevica & 

Hansen, 2016 – Paper II). Also quantification of NM release is a complex 
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issue considering that NM characterization usually requires a multimethod 

approach. As discussed earlier in the thesis, the available NM 

characterization methods are still in developing stage, and it will take time 

until there are standardized widely accepted and widely used set of methods 

for NM measurements. A few of the techniques for NM characterization have 

been applied in connection with the work done within this thesis (Mackevica 

et al. 2016b,c,d,e – Paper IV, V, VI, VII), namely electron microscopy and 

spICP-MS. The advantages and limitations of using spICP-MS have been 

increasingly discussed in literature, and this technique offers high throughput 

analysis of such parameters as particle mass, size distribution and particle 

number concentration. However, it must be noted that it is a relatively new 

analysis technique that has received a lot of attention in the past five years, 

which means that there is still a long way to go before it becomes a 

standardized analytical technique. The American Society of the International 

Association for Testing and Materials (ASTM) is currently working on 

developing a standard guideline for spICP-MS analysis of NMs. The aim for 

this guide is to “cover information on the optimization, calibration, and 

operational guidance for Inductively Coupled Plasma Mass Spectrometers 

(ICP-MS) for the analysis of nanoparticles containing metallic elements in 

various matrices by the technique of Single Particle ICP-MS” (ASTM, 2016). 

A standardized procedure for NM characterization would aid researchers to 

report data in a more uniform format, which could provide better inter-study 

comparisons and a more solid basis for consumer exposure estimations. As 

evidenced by the experimental research conducted for this thesis, there is still 

a high degree of uncertainty associated with NM characterization when it 

comes to NM release measurements.  

By using the information from nanoproduct inventories and the nano-

exposure research presented in the literature, as well as experimental data 

gathered from experimental studies presented in this thesis, several issues 

were identified when it comes to exposure assessment of NMs to consumer 

products. In the following sections, the aim is to discuss the issues related to 

exposure scenarios, consumer exposure assessment, and the exposure metrics 

for data reporting. In the following, knowledge gaps and future research 

needs will be discussed, reflecting on the findings presented throughout the 

thesis, putting it in the context of what the future research needs are.   
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7.1 Exposure scenarios  
As shown throughout the thesis, NMs in general have a very broad range of 

applications in consumer products. During product life cycle, it is more 

specifically the use phase that may result in uncontrolled and, in many cases 

unintentional, NM releases. The release of NMs from consumer products is 

an inevitable outcome from consumer activities, and may lead to both 

environmental and human exposure. The assessment of exposure requires 

identification of relevant scenarios for NM release that are representative of 

intended product use and foreseeable consumer behavior. This is why it is 

essential to develop relevant exposure scenarios to determine possible NM 

releases. 

Potential exposure is often application-specific and is highly dependent on 

NM physicochemical properties, their incorporation in the product and the 

way the product is being used. For instance, NMs in textiles may lead to 

dermal exposure through sweat, abrasion and skin contact, whereas 

nanoparticles suspended in spray products such as disinfectants could result 

in both inhalation and dermal exposure. The quantities and characteristics of 

NM release from consumer products highly depend on the external stresses 

and environmental factors that the product is exposed to. These factors will 

influence both the quantity of the NMs released and the properties of released 

NMs (i.e. free occurring NMs, embedded or attached to product matrix, 

dissolved, aggregated or agglomerated NMs) (Vílchez et al., 2015). For the 

consumer products addressed in this work, it was observed that the properties 

of media that are in contact with the product can highly influence the NM 

release – as evidenced in Ag NP leaching from food containers (Mackevica et 

al. 2016b – Paper IV). The release rates were also observed to change over 

time, when the whole intended use period of the product was taken into 

account, as shown when testing Ag NP release from toothbrushes over time 

that corresponds to regular use over 3 months (Mackevica et al. 2016c – 

Paper V). Repeated uses of nano-enabled consumer products have rarely been 

addressed in the literature, but the available studies have shown that surface-

bound particles have a tendency to show high initial release and relatively 

lower subsequent releases from re-used products. A few examples include 

multiple use testing of food containers (Echegoyen and Nerín, 2013; von 

Goetz et al., 2013a) and sequential washing textiles (Reed et al., 2016; 

Windler et al., 2012). The release rates can, to some extent, be dependent on 

the amounts of NM present in the product. For lab-prepared articles, the 

relationship is usually more pronounced, as both the matrix effects and the 
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NM content can be controlled (Wagener et al., 2016). When it comes to 

commercial products, it is rarely possible to simply relate the initial NM 

content to NM release. As shown in the case of nano-TiO2 release from 

commercial textiles, the release was dependent not only on the initial TiO2 

content, but also on product matrix – having higher observed releases from 

synthetic fabrics compared to natural ones (Mackevica et al. 2016d – Paper 

VI).  

Both selecting a representative set of products and choosing relevant 

exposure scenarios, is posing a series of significant challenges. As the 

products are very different, and the users may have their own interpretation 

about how the products should be used, it is difficult to identify one unifying 

scenario for release testing. To date, most studies are relying on guidelines 

that have been developed for assessing release of conventional chemicals, or 

they are simply developing their own test setups that may represent relevant 

consumer use. Several literature reviews have pointed out that, all in all, the 

experimental studies addressing NM release use very different test setups that 

are rarely comparable, and they are seldom following any standardized 

guidelines for release testing (e.g. Froggett et al. 2014, Koivisto et al. 

(submitted), Mackevica & Hansen, 2016 – Paper II). The most recent review 

identified 89 experimental studies addressing release from NM-containing 

articles (Kooivisto et al. (submitted)), and inter-study comparison was 

concluded to be particularly cumbersome due to the large variety of 

experimental setups and analytical methods applied. The harmonization of 

release testing and adequate NM-relevant reporting of the results would be 

highly beneficial for more realistic and relevant consumer exposure 

assessment.  

In this regard, several suggestions have been brought up by various reports in 

the past couple of years. For example, some suggestions can be found in a 

report from a workshop entitled Quantifying Exposure to Engineered 

Nanomaterials (QEEN, 2015), specifically from discussions dealing with 

consumer exposure studies. The concluding recommendations were, “When 

dealing with consumer products the first step in quantifying exposure to 

ENMs should be to characterize the intact products to confirm that ENMs are 

indeed present, and to characterize the ENMs within the product in terms of 

the following: composition, size and shape, where they are located, how 

much ENM is present (mass and, if possible, number concentration), how 

they are dispersed or attached to the product matrix”. Thereafter, it is 

suggested not to assume the worst case scenario where all of the NM is 



57 

released from the product, but perform tests considering situations of 

foreseeable use and misuse, examples including UV-degradation of coatings 

and composites, leaching from food contact materials, temperature extremes 

in cookware, and mechanical stresses in sporting equipment. The key 

dimensions of exposure to be considered include material characteristics, 

expected duration and magnitude of exposure, and receptor characteristics 

(QEEN, 2015).   

7.2 Exposure assessment  
Performing an actual consumer exposure assessment to NMs is often 

associated with a lot of uncertainties. Very often instead of using real 

measurement data, one has to rely on assumptions and default values 

provided by various exposure assessment models. At this point, NM-relevant 

exposure assessment tools are scarce, and most are developed for 

occupational exposure specifically. Both the lack of nano-specific modelling 

tools and the lack of guidelines for exposure data reporting hinder the 

consumer exposure assessment to NMs. 

Several suggestions have been provided in the literature when it comes to 

working towards a NM-relevant consumer exposure assessment. As an 

example, a more extensive set of data that should be provided to aid 

reasonable nano-specific consumer exposure assessment was given in a report 

by Larsen et al. (2015), which clearly illustrates the magnitude of different 

parameters that would facilitate the understanding of nano-exposures. 

Quantitative parameters that would ideally provide data for exposure 

assessment of nanoproducts were identified to be:  

 Size distribution of particles and fraction in nano-size 

 Concentration of nanomaterial in the product 

 Volume used per use event 

 Retention rate of product (e.g. dermal exposure or fraction ingested) 

 Degree of liberation/ migration of nanomaterial from a matrix (dermal 

exposure, oral exposure) 

 Body surface area exposed (dermal exposure) 

 Article surface area in contact (dermal exposure, oral exposure) 

 Volume released to air (inhalation) 

 Concentration in air (inhalation) 

 Duration of exposure 

 Frequency of exposure. 
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According to these recommendations, proper consumer exposure assessment 

would require a very detailed characterization of the NM in the product, as 

well as development of the likely exposure scenarios and the parameters 

influencing NM release and magnitude of exposure. This extent of 

information is difficult to come by, and at this point it is unclear how this 

data could be incorporated in consumer exposure assessment with the models 

that are available at this point. For the proper use of the existing models, it 

was concluded that the minimum set of key data needed would be weight of 

the product, concentration of substance in the product, and released amount 

(or fraction released) (Mackevica & Hansen, 2016 – Paper II). This set of 

data in combination with default values from the models for specific 

exposure scenarios can provide somewhat quantitative exposure assessment 

from different products, though it would not take NM-specific properties into 

consideration. There is still research needed for understanding which metrics 

are the most suitable and practical to use to characterize and quantify the 

exposure to NMs, and new models should be developed for nano-specific 

consumer exposure assessment. The harmonization of nano-specific hazard 

and exposure assessment models for integration into risk assessment and 

management is essential for understanding the real risks associated with the 

use of NMs. 

7.3 Exposure metrics 
To date, when it comes to reporting experimentally determined potential 

exposures to NM-containing items, it has been mostly mass-based reporting 

of a substance from the product (Mackevica & Hansen, 2016 – Paper II, 

Koivisto et al. (submitted)). Mass-based exposures provide a good indication 

with regard to quantities of a certain chemical that consumers might be 

exposed to, but they cannot provide necessary characterization of NM-

specific exposures. In the past few years, there has been increased abundance 

of experimental studies reporting more than just mass-based releases, going 

beyond the well-established paradigm of measuring the potential exposures to 

chemicals. Parameters such as particle size, shape, speciation, number 

concentration, surface area, agglomeration, and surface properties are being 

recognized as relevant factors and are consequently reported in an increasing 

number of experimental studies. The “base set” of NM characterization has 

been discussed much in the past and is being increasingly discussed also in 

current scientific publications, raising the same issues. As an example from 

more than a decade ago, from a hazard assessment perspective, Oberdorster et 

al. (2005) suggested that toxicity studies should measure at least three 
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primary metrics for nanoparticles, namely mass, surface area, and particle 

number, to have a well characterized material which can facilitate 

quantitative interpretation of data. When it comes to human exposure 

measurements, the recommendations for characterizations that are to be 

considered “essential” were size distribution, shape, composition, 

physicochemical structure, agglomeration state, and concentration 

(Oberdörster et al., 2005). In more recent papers (e.g. Larsen et al. 2015; 

Mackevica & Hansen, 2016 – Paper II) similar recommendations were 

presented, highlighting the importance to report more than just the mass-

based release, and also including particle number concentration and surface 

area measurements to provide more nano-relevant specifications.   

The development of new characterization methods for NMs allows reporting 

more relevant NM characterization than before. As illustrated by the 

experimental work presented in this thesis (Mackevica et al. 2016b,c,d,e – 

Paper IV, V, VI, VII) as well as other scientific publications, utilizing state-

of-the-art methods for NM characterization can aid in understanding 

consumer exposures to NMs from consumer products. For example, knowing 

the size distributions of the particles allows estimating whether there is a high 

likelihood of NMs to penetrate human skin or cells, where they can 

potentially dislocate within the body and cause damage. Knowing particle 

number concentrations and the fractions of dissolved vs. particulate material 

also provides an understanding about what a consumer can potentially be 

exposed to. This, in turn, helps characterizing the overall risks that may arise 

from using different consumer products. Well-characterized exposure can 

enable quantitative interpretation of data when it comes to risk assessment, 

provided that hazard data can be interpreted by using the same metrics. The 

nano-toxicology studies are therefore urged to transition to facilitate an 

improved understanding of how such parameters as particle size, particle 

number concentration, and surface area affect the hazard potential (Hull et 

al., 2012). Harmonization in terms of metrics across the exposure and hazard 

characterization is essential for risk management, as working with the same 

metrics will allow understanding the overall risks associated with NM 

exposure. 

Both exposure potential and hazard assessment are essential parts for 

performing appropriate risk assessment. When it comes to NMs, hazard 

assessment is usually done by using pristine NMs, i.e. NMs in an early stage 

of their life cycle. It is well known that NMs are likely to undergo various 

transformations through their life cycle, especially if NMs are incorporated in 
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consumer products and then are released through various processes, such as 

weathering, abrasion or just simply normal/intended use of a consumer 

product, as discussed in a few examples during this thesis. These 

transformations are rarely taken into account when doing hazard testing, 

which leaves a major gap between exposure assessment and hazard 

assessment of NMs. 
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8 Conclusion and outlook 

The focus of this thesis was to investigate release of NMs from consumer 

products by applying different methods and setups. Subsequently, reflecting 

on both data found in the literature and data generated in this thesis, it was 

discussed how the data fits into current paradigm of consumer exposure 

assessment, and what are the current issues and knowledge gaps regarding 

nano-relevant exposure assessment.  

Different experimental setups and methods for characterization of NM release 

from various consumer products were applied in order to better understand 

strengths and limitations of the current paradigm of consumer exposure 

assessment to NMs. Through both theoretical and experimental 

investigations, issues and challenges associated with determining the release 

of NMs from nano-enabled products currently available on the market and 

potential consumer exposures that may be a result of their normal use was 

investigated.  

The consumer products that were investigated in this thesis were Ag NP-

containing food containers, toothbrushes, keyboard covers, TiO2 NP-

containing textiles, and CuO NP-containing paint. It was found that 

commercially available items rarely have high NP release, in most cases 

having rather low potential for consumer exposure. However, due to the high 

degree of uncertainty associated with nano-specific hazardous effects it still 

remains unclear whether or not these nanoproducts are “safe” to use.   

However, the work done in this thesis highlights the necessity to apply a 

combination of methods for NM characterization to gain a better 

understanding about exposure to NMs. Specifically the focus was set to 

evaluating strengths and limitations, and perspectives of the use of spICP-MS 

in combination with other characterization techniques. The findings showed 

that spICP-MS is a powerful technique that can provide extensive NM 

characterization, such as mass and number concentration, and size 

distribution of NMs. However, there is still a need for standardization of 

spICP-MS analysis and data reporting, as well as the need for supporting the 

obtained data with measurements by other techniques. 

Most existing consumer exposure assessment tools are mainly based on mass-

metrics, rarely taking NM-specific properties into account. The models 

available at this point have limited applicability to estimate exposures to 

NMs. There is currently a lack of standardized guidelines targeting NMs for 
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consumer exposure testing and exposure assessment. Future research should 

be directed to testing NMs that are produced in high production volumes 

and/or may exert risk to human and environmental health. The exposure 

testing should also benefit from development of exposure scenarios for 

selected groups of articles that can be extrapolated to a larger set of products 

covering important parts of their life-cycle. Standardization of experimental 

setups, measuring methods and data reporting, as well as exposure modelling, 

is of utmost importance to move towards harmonization of NM exposure and 

hazard characterization that could further aid NM-relevant risk assessment. 

  



63 

9 References 
Akaighe, N., MacCuspie, R., Navarro, D., 2011. Humic acid-induced silver nanoparticle 

formation under environmentally relevant conditions. Environ. Sci. Technol. 45, pp 

3895–3901.  

Artiaga, G., Ramos, K., Ramos, L., Cámara, C., Gómez-Gómez, M., 2015. Migration and 

characterisation of nanosilver from food containers by AF4-ICP-MS. Food Chem. 

166, 76–85.  

ASTM, 2016. WK54613 New Guide for Standard Guide for the Analysis of Nanoparticles 

by Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) 

[WWW Document]. URL 

https://www.astm.org/DATABASE.CART/WORKITEMS/WK54613.htm (accessed 

9.18.16). 

Benn, T., Cavanagh, B., Hristovski, K., Posner, J.D., Westerhoff, P., 2010. The Release of 

Nanosilver from Consumer Products Used in the Home. J. Environ. Qual. 39, 1875.  

Benn, T.M., Westerhoff, P., 2008. Nanoparticle Silver Released into Water from 

Commercially Available Sock Fabrics. Environ. Sci. Technol. 42, 4133–4139. 

Bianco, C., Kezic, S., Visser, M.J., Pluut, O., Adami, G., Krystek, P., 2015. Pilot study on 

the identification of silver in skin layers and urine after dermal exposure to a 

functionalized textile. Talanta 136, 23–28.  

Bielefeldt, A.R., Stewart, M.W., Mansfield, E., Scott Summers, R., Ryan, J.N., 2013. 

Effects of chlorine and other water quality parameters on the release of silver 

nanoparticles from a ceramic surface. Water Res. 47, 4032–4039.  

Bogdan, J., Jackowska-Tracz, A., Zarzyńska, J., Pławińska-Czarnak, J., 2015. Chances and 

limitations of nanosized titanium dioxide practical application in view of its 

physicochemical properties. Nanoscale Res. Lett. 10, 57.  

BSI, 2007. Terminology for nanomaterials, PAS 136:2007. BSI Br. Stand. 

Chang, A.L.S., Khosravi, V., Egbert, B., 2006. A case of argyria after colloidal silver 

ingestion. J. Cutan. Pathol. 33, 809–811. 

Chou, K., Lu, Y., Lee, H., 2005. Effect of alkaline ion on the mechanism and kinetics of 

chemical reduction of silver. Mater. Chem. Phys. 94, 429–433. 

Civardi, C., Schwarze, F.W.M.R., Wick, P., 2015. Micronized copper wood preservatives: 

An efficiency and potential health risk assessment for copper-based nanoparticles. 

Environ. Pollut. 200, 126–132. 

Contado, C., Pagnoni, A., 2008. TiO2 in Commercial Sunscreen Lotion: Flow Field-Flow 

Fractionation and ICP-AES Together for Size Analysis. Anal. Chem. 80, 7594–7608. 

Cornelis, G., Hasselöv, M., 2014. A signal deconvolution method to discriminate smaller 

nanoparticles in single particle ICP-MS. J. Anal. At. Spectrom. 29, 134-144. 

Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., Cummins, E., 2014. Silver migration 

from nanosilver and a commercially available zeolite filler polyethylene composites 

to food simulants. Food Addit. Contam. Part A 31.  

 



64 

Dan, Y., Shi, H., Stephan, C., Liang, X., 2015. Rapid analysis of titanium dioxide 

nanoparticles in sunscreens using single particle inductively coupled plasma-mass 

spectrometry. Microchem. J. 122, 119–126.  

De Jong, W.H., Delmaar, C., Gosens, I., Nijkamp, M., Quik, J., Vandebriel, R., Van 

Kesteren, P., Visser, M., Park, M., Wijnhoven, S., 2015. Description of a 

NanoCosmetics Tool for Risk Assessment. RIVM Briefrapport 2015-0157. National 

Institute for Public Health and the Environment, Bilthoven, The Netherlands. 

Degueldre, C., Favarger, P.-Y.Y., 2003. Colloid analysis by single particle inductively 

coupled plasma-mass spectroscopy: A feasibility study. Colloids Surfaces A 

Physicochem. Eng. Asp. 217, 137–142.  

Dekkers, S., Oomen, A.G., Bleeker, E.A.J., Vandebriel, R.J., Micheletti, C., Cabellos, J., 

Janer, G., Fuentes, N., Vázquez-Campos, S., Borges, T., Silva, M.J., Prina-Mello, A., 

Movia, D., Nesslany, F., Ribeiro, A.R., Leite, P.E., Groenewold, M., Cassee, F.R., 

Sips, A.J.A.M., Dijkzeul, A., van Teunenbroek, T., Wijnhoven, S.W.P., 2016. 

Towards a nanospecific approach for risk assessment. Regul. Toxicol. Pharmacol. 80, 

46–59.  

Delmaar, J., Park, M., Van Engelen, J., 2005. Cons Expo 4.0 – consumer exposure and 

uptake models - program manual. RIVM report 320104004/2005 [WWW Document]. 

Natl. Inst. Public Heal. Environ. Bilthoven, Netherlands. URL http://www.rivm.nl/ 

(accessed 9.7.16). 

Donovan, A., Adams, C., Ma, Y., Stephan, C., Eichholz, T., Shi, H., 2016. Single particle 

ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during 

drinking water treatment. Chemosphere 144, 148–153.  

ECETOC, 2009. Technical Report No. 107: Addendum to ECETOC Targeted Risk 

Assessment Technical Report No. 93. Brussels, Belgium. 

ECHA, 2012. Guidance on information requirements and chemical safety assessment, 

Chapter R. 15: Consumer exposure estimation. European Chemicals Agency, 

Helsinki, Finland. 

Echegoyen, Y., Nerín, C., 2013. Nanoparticle release from nano-silver antimicrobial food 

containers. Food Chem. Toxicol. 62, 16–22.  

EFSA, 2006. Opinion of the Scientific Panel on food additives, flavourings, processing 

aids and materials in contact with food (AFC) on a request related to a 12th list of 

substances for food contact materials. European Food Safety Authority, EFSA J 395–

401:1–21. 

European Commission, 2016. Commission Regulation (EU) 2016/1143 of 13 July 2016 

amending Annex VI to Regulation (EC) No 1223/2009 of the European Parliament 

and of the Council on cosmetic products. Off. J. Eur. Union L 189/40. 

European Commission, 2011. Commission Regulation (EU) No. 10/2011 of 14 January 

2011 on plastic materials and articles intended to come into contact with food. Off. J. 

Eur. Union 50, 1–89. 

Farkas, J., Peter, H., Christian, P., Gallego Urrea, J.A., Hassellöv, M., Tuoriniemi, J., 

Gustafsson, S., Olsson, E., Hylland, K., Thomas, K.V., 2011. Characterization of the 

effluent from a nanosilver producing washing machine. Environ. Int. 37, 1057–1062.  

 



65 

Froggett, S.J., Clancy, S.F., Boverhof, D.R., Canady, R.A., 2014. A review and perspective 

of existing research on the release of nanomaterials from solid nanocomposites. Part. 

Fibre Toxicol. 11, 17.  

George, R., Merten, S., Wang, T.T., Kennedy, P., Maitz, P., 2014. In vivo analysis of 

dermal and systemic absorption of silver nanoparticles through healthy human skin. 

Australas. J. Dermatol. 55, 185–190.  

Geranio, L., Heuberger, M., Nowack, B., 2009. The behavior of silver nanotextiles during 

washing. Environ. Sci. Technol. 43, 8113–8118. 

Godwin, H.A., Chopra, K., Bradley, K.A., Cohen, Y., Harthorn, B.H., Hoek, E.M.V., 

Holden, P., Keller, A.A., Lenihan, H.S., Nisbet, R.M., Nel, A.E., 2009. Decreasing 

Uncertainties in Asessing Environmental Exposure, Risk, and Ecological Implications 

of Nanomaterials. Environ. Sci. Technol. 43, 6453–6457. 

Gomez, V., Levin, M., Saber, A.T., Irusta, S., Dal Maso, M., Hanoi, R., Santamaria, J., 

Jensen, K.A., Wallin, H., Koponen, I.K., 2014. Comparison of dust release from 

epoxy and paint nanocomposites and conventional products during sanding and 

sawing. Ann. Occup. Hyg. 58, 983–94.  

Gottschalk, F., Nowack, B., 2011. The release of engineered nanomaterials to the 

environment. J. Environ. Monit. 13, 1145–1155. 

Grieger, K.D., Laurent, A., Miseljic, M., Christensen, F., Baun, A., Olsen, S.I., 2012. 

Analysis of current research addressing complementary use of life-cycle assessment 

and risk assessment for engineered nanomaterials: have lessons been learned from 

previous experience with chemicals? J. Nanoparticle Res. 14, 958.  

Hagendorfer, H., Lorenz, C., Kaegi, R., Sinnet, B., Gehrig, R., Goetz, N. V., Scheringer, 

M., Ludwig, C., Ulrich, A., 2010. Size-fractionated characterization and 

quantification of nanoparticle release rates from a consumer spray product containing 

engineered nanoparticles. J. Nanoparticle Res. 12, 2481–2494.  

Hansen, S.F., Baun, A., 2012. When enough is enough. Nat Nano 7, 409–411. 

Hansen, S.F., Jensen, K.A., Baun, A., 2014. NanoRiskCat: a conceptual tool for 

categorization and communication of exposure potentials and hazards of 

nanomaterials in consumer products. J. Nanoparticle Res. 16, 2195.  

Hansen, S.F., Larsen, B.H., Olsen, S.I., Baun, A., 2007. Categorization framework to aid 

hazard identification of nanomaterials. Nanotoxicology 1, 243–250.  

Hassellöv, M., Readman, J.W., Ranville, J.F., Tiede, K., 2008. Nanoparticle analysis and 

characterization methodologies in environmental risk assessment of engineered 

nanoparticles. Ecotoxicology 17, 344–361. 

Hauri, J.F., Niece, B.K., 2011. Leaching of Silver from Silver-Impregnated Food Storage 

Containers. J. Chem. Educ. 88, 1407–1409. 

Hirth, S., Cena, L., Cox, G., Tomović, Ž., Peters, T., Wohlleben, W., 2013. Scenarios and 

methods that induce protruding or released CNTs after degradation of nanocomposite 

materials. J. Nanoparticle Res. 15, 1504.  

Hock, J., Epprecht, T., Furrer, E., Gautschi, M., Hofmann, H., Höhener, K., Al, E., 2013. 

Guidelines on the Precautionary Matrix for Synthetic Nanomaterials. Version 3.0. 

Federal Office of Public Health and Federal Office for the Environment, Berne, 

Switzerland. 



66 

Howard, A.G., 2010. On the challenge of quantifying man-made nanoparticles in the 

aquatic environment. J. Environ. Monit. 12, 135–142.  

Huang, Y., Chen, S., Bing, X., Gao, C., Wang, T., Yuan, B., 2011. Nanosilver Migrated 

into Food-Simulating Solutions from Commercially Available Food Fresh Containers. 

Packag. Technol. Sci. 24, 291–297.  

Hull, M., Kennedy, A.J., Detzel, C., Vikesland, P., Chappell, M.A., 2012. Moving beyond 

Mass: The Unmet Need to Consider Dose Metrics in Environmental Nanotoxicology 

Studies. Environ. Sci. Technol. 46, 10881–10882.  

Impellitteri, C.A., Tolaymat, T.M., Scheckel, K.G., 2009. The Speciation of Silver 

Nanoparticles in Antimicrobial Fabric Before and After Exposure to a 

Hypochlorite/Detergent Solution. J. Environ. Qual. 38, 1528.  

Kaegi, R., Sinnet, B., Zuleeg, S., Hagendorfer, H., Mueller, E., Vonbank, R., Boller, M., 

Burkhardt, M., 2010. Release of silver nanoparticles from outdoor facades. Environ. 

Pollut. 158, 2900–2905.  

Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., 

Brunner, S., Vonmont, H., Burkhardt, M., Boller, M., 2008. Synthetic TiO2 

nanoparticle emission from exterior facades into the aquatic environment. Environ. 

Pollut. 156, 233–239.  

Kim, Y.S., Kim, J.S., Cho, H.S., Rha, D.S., Kim, J.M., Park, J.D., Choi, B.S., Lim, R., 

Chang, H.K., Chung, Y.H., Kwon, I.H., Jeong, J., Han, B.S., Yu, I.J., 2008. Twenty-

Eight-Day Oral Toxicity, Genotoxicity, and Gender-Related Tissue Distribution of 

Silver Nanoparticles in Sprague-Dawley Rats. Inhal. Toxicol. 20, 575–583.  

Kim, Y.S., Song, M.Y., Park, J.D., Song, K.S., Ryu, H.R., Chung, Y.H., Chang, H.K., Lee, 

J.H., Oh, K.H., Kelman, B.J., Hwang, I.K., Yu, I.J., 2010. Subchronic oral toxicity of 

silver nanoparticles. Part. Fibre Toxicol. 7, 20.  

Klaine, S.J., Koelmans, A.A., Horne, N., Carley, S., Handy, R.D., Kapustka, L., Nowack, 

B., von der Kammer, F., 2012. Paradigms to assess the environmental impact of 

manufactured nanomaterials. Environ. Toxicol. Chem. 31, 3–14.  

Kohler, A.R., Som, C., 2014. Risk preventive innovation strategies for emerging 

technologies the cases of nano-textiles and smart textiles. Technovation 34, 420–430. 

Koponen, I.K., Jensen, K.A., Schneider, T., 2011. Comparison of dust released from 

sanding conventional and nanoparticle-doped wall and wood coatings. J. Expo. Sci. 

Environ. Epidemiol. 21, 408–418.  

Koivisto, A.J., Jensen, A.C.Ø., Kling, K.I., Nørgaard, A., Brinch, A., Christensen, F., 

Jensen, K.A. (submitted). Quantitative material releases from articles containing 

manufactured nanomaterials: A critical review. 

Kulthong, K., Srisung, S., Boonpavanitchakul, K., Kangwansupamonkon, W., 

Maniratanachote, R., 2010. Determination of silver nanoparticle release from 

antibacterial fabrics into artificial sweat. Part. Fibre Toxicol. 7, 8.  

Laborda, F., Bolea, E., Cepriá, G., Gómez, M.T., Jiménez, M.S., Pérez-Arantegui, J., 

Castillo, J.R., 2016. Detection, characterization and quantification of inorganic 

engineered nanomaterials: A review of techniques and methodological approaches for 

the analysis of complex samples. Anal. Chim. Acta 904, 10–32.  

 



67 

Laborda, F., Bolea, E., Jimenez-Lamana, J., 2014. Single Particle Inductively Coupled 

Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Anal. Chem. 86, 

2270–2278. 

Laborda, F., Jiménez-Lamana, J., Bolea, E., Castillo, J.R., 2013. Critical considerations for 

the determination of nanoparticle number concentrations, size and number size 

distributions by single particle ICP-MS. J. Anal. At. Spectrom. 28, 1220–1232.  

Laborda, F., Jiménez-Lamana, J., Bolea, E., Castillo, J.R., 2011. Selective identification, 

characterization and determination of dissolved silver(i) and silver nanoparticles 

based on single particle detection by inductively coupled plasma mass spectrometry. 

J. Anal. At. Spectrom. 26, 1362.  

Labouta, H.I., Schneider, M., 2013. Interaction of inorganic nanoparticles with the skin 

barrier: current status and critical review. Nanomedicine Nanotechnology, Biol. Med. 

9, 39–54.  

Larsen, P.B., Christensen, F., Keld, C., Jensen, A., Brinch, A., Mikkelsen, S.H., 2015. 

Exposure assessment of nanomaterials in consumer products. Danish Environ. Prot. 

Agency, Environ. Proj. No. 1636, 2015. 

Lee, S., Bi, X., Reed, R.B., Ranville, J.F., Herckes, P., Westerhoff, P., 2014. Nanoparticle 

Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. 

Technol. 48, 10291–10300. 

Lee, W.-W., Chan, W.-T., 2015. Calibration of single-particle inductively coupled plasma-

mass spectrometry (SP-ICP-MS). J. Anal. At. Spectrom. 30, 1245–1254.  

Lee, Y., Kim, J., 2015. Leaching of silver from commercial toothbrush products containing 

silver nanoparticles into pH controlled solution, in: 10thInternational Conference on 

the Environmental Effects of Nanoparticles and Nanomaterials. p. Poster.  

Lewicka, Z.A., Benedetto, A.F., Benoit, D.N., Yu, W.W., Fortner, J.D., Colvin, V.L., 

2011. The structure, composition, and dimensions of TiO2 and ZnO nanomaterials in 

commercial sunscreens. J. Nanoparticle Res. 13, 3607–3617.  

Liu, J., Hurt, R.H., 2010. Ion Release Kinetics and Particle Persistence in Aqueous Nano-

Silver Colloids. Environ. Sci. Technol. 44, 2169–2175.  

Liu, J., Murphy, K.E., MacCuspie, R.I., Winchester, M.R., 2014. Capabilities of Single 

Particle Inductively Coupled Plasma Mass Spectrometry for the Size Measurement of 

Nanoparticles: A Case Study on Gold Nanoparticles. Anal. Chem. 86, 3405–3414.  

Loeschner, K., Navratilova, J., Grombe, R., Linsinger, T.P.J., Købler, C., Mølhave, K., 

Larsen, E.H., 2015. In-house validation of a method for determination of silver 

nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and 

inductively coupled plasma mass spectrometric detection. Food Chem. 181, 78–84.  

Loeschner, K., Navratilova, J., Købler, C., Mølhave, K., Wagner, S., von der Kammer, F., 

Larsen, E.H., 2013. Detection and characterization of silver nanoparticles in chicken 

meat by asymmetric flow field flow fractionation with detection by conventional or 

single particle ICP-MS. Anal. Bioanal. Chem. 405, 8185–8195.  

Lombi, E., Donner, E., Scheckel, K.G., Sekine, R., Lorenz, C., Goetz, N. Von, Nowack, 

B., 2014. Silver speciation and release in commercial antimicrobial textiles as 

influenced by washing. Chemosphere 111, 352–358.  

 



68 

Lorenz, C., Hagendorfer, H., von Goetz, N., Kaegi, R., Gehrig, R., Ulrich, A., Scheringer, 

M., Hungerbühler, K., 2011. Nanosized aerosols from consumer sprays: experimental 

analysis and exposure modeling for four commercial products. J. Nanoparticle Res. 

13, 3377–3391.  

Lorenz, C., Windler, L., Goetz, N. Von, Lehmann, R., 2012. Characterization of silver 

release from commercially available functional (nano) textiles. Chemosphere 89(7), 

817-824. 

Lynch, I., 2015. Compendium of Projects in the European NanoSafety Cluster. European 

Commission 2015 Edition. 

Mavon, A., Miquel, C., Lejeune, O., Payre, B., Moretto, P., 2007. In vitro Percutaneous 

Absorption and in vivo Stratum Corneum Distribution of an Organic and a Mineral 

Sunscreen. Skin Pharmacol. Physiol. 20, 10–20.  

Mitrano, D., Limpiteeprakan, P., Babel, S., Nowack, B., 2016a. Durability of nano-

enhanced textiles through the life cycle: releases from landfilling after washing. 

Environ. Sci. Nano 3, 375–387.  

Mitrano, D., Lombi, E., Dasilva, Y.A.R., Nowack, B., 2016b. Unraveling the Complexity 

in the Aging of Nanoenhanced Textiles: A Comprehensive Sequential Study on the 

Effects of Sunlight and Washing on Silver Nanoparticles. Environ. Sci. Technol. 50, 

5790–5799.  

Mitrano, D., Motellier, S., Clavaguera, S., Nowack, B., 2015a. Review of nanomaterial 

aging and transformations through the life cycle of nano-enhanced products. Environ. 

Int. 77, 132–147.  

Mitrano, D., Rimmele, E., Wichser, A., Erni, R., Height, M., Nowack, B., 2014. Presence 

of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS 

Nano 8, 7208–7219.  

Mitrano, D., Arroyo Rojas Dasilva, Y., Nowack, B., 2015b. Effect of Variations of 

Washing Solution Chemistry on Nanomaterial Physicochemical Changes in the 

Laundry Cycle. Environ. Sci. Technol. 49, 9665–9673.  

Montaño, M.D., Lowry, G. V, von der Kammer, F., Blue, J., Ranville, J.F., 2014. Current 

status and future direction for examining engineered nanoparticles in natural systems. 

Environ. Chem. 11, 351–366. 

Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.-J., Quigg, A., 

Santschi, P.H., Sigg, L., 2008. Environmental behavior and ecotoxicity of enginieered 

nanoparticles to algae, plants and fungi. Ecotoxicology 17, 372–386. 

Nischwitz, V., Goenaga-Infante, H., 2012. Improved sample preparation and quality 

control for the characterisation of titanium dioxide nanoparticles in sunscreens using 

flow field flow fractionation on-line with inductively coupled plasma mass 

spectrometry. J. Anal. At. Spectrom. 27, 1084.  

Nohynek, G.J., Lademann, J., Ribaud, C., Roberts, M.S., 2007. Grey Goo on the Skin? 

Nanotechnology, Cosmetic and Sunscreen Safety. Crit. Rev. Toxicol. 37, 251–277.  

Nowack, B., Bucheli, T.D., 2007. Occurrence, behavior and effects of nanoparticles in the 

environment. Environ. Pollut. 150(1), 5-22.  

 



69 

Nowack, B., Ranville, J., Diamond, S., 2012. Potential scenarios for nanomaterial release 

and subsequent alteration in the environment. Environmental Toxicology and 

Chemistry 31(1), 50-59. 

Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., 

Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, 

D., Yang, H., 2005. Principles for characterizing the potential human health effects 

from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 

2, 8.  

Olabarrieta, J., Zorita, S., Peña, I., Rioja, N., Monzón, O., Benguria, P., Scifo, L., 2012. 

Aging of photocatalytic coatings under a water flow: Long run performance and TiO2 

nanoparticles release. Appl. Catal. B Environ. 123, 182–192.  

Ostertag, K., Hüsing, B., 2008. Identification of starting points for exposure assessment in 

the post-use phase of nanomaterial-containing products. J. Clean. Prod. 16, 938–948.  

Pace, H.E., Rogers, N.J., Jarolimek, C., Coleman, V.A., Higgins, C.P., Ranville, J.F., 2011. 

Determining Transport Efficiency for the Purpose of Counting and Sizing 

Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. 

Anal. Chem. 83, 9361–9369.  

Pasricha, A., Jangra, S.L., Singh, N., Dilbaghi, N., Sood, K.N., Arora, K., Pasricha, R., 

2012. Comparative study of leaching of silver nanoparticles from fabric and effective 

effluent treatment. J. Environ. Sci. 24, 852–859.  

PEN, 2016. The Project on Emerging Nanotechnologies: Consumer Products Inventory 

[WWW Document]. URL http://www.nanotechproject.org/cpi (accessed 7.4.16).  

Pérez, S., Farré, M. la, Barceló, D., 2009. Analysis, behavior and ecotoxicity of carbon-

based nanomaterials in the aquatic environment. TrAC - Trends Anal. Chem. 28, 820–

832. 

Peters, R., Kramer, E., Oomen, A., Rivera, Z.H., 2012. Presence of nano-sized silica 

during in vitro digestion of foods containing silica as a food additive. ACS Nano 6, 

2441–2451. 

Peters, R.J., Herrera Rivera, Z., van Bemmel, G., P Marvin, H.J., Weigel, S., 

Bouwmeester, H., 2014a. Development and validation of single particle ICP-MS for 

sizing and quantitative determination of nano-silver in chicken meat. Anal Bioanal 

Chem 406, 3875–3885.  

Peters, R.J., Rivera, Z.H., Bouwmeester, H., Weigel, S., Marvin, H.J.P., 2014b. Advanced 

analytical techniques for the measurement of nanomaterials in complex samples: a 

comparison. Qual. Assur. Saf. Crop. Foods 6, 281–290. 

Peters, R.J., Van Bemmel, G., Herrera-Rivera, Z., Helsper, H.P.F.G., Marvin, H.J.P., 

Weigel, S., Tromp, P.C., Oomen, A.G., Rietveld, A.G., Bouwmeester, H., 2014c. 

Characterization of titanium dioxide nanoparticles in food products: Analytical 

methods to define nanoparticles. J. Agric. Food Chem. 62, 6285–6293.  

Platten, W.E., Sylvest, N., Warren, C., Arambewela, M., Harmon, S., Bradham, K., 

Rogers, K., Thomas, T., Luxton, T.P., 2016. Estimating dermal transfer of copper 

particles from the surfaces of pressure-treated lumber and implications for exposure. 

Sci. Total Environ. 548, 441–449.  

 



70 

QEEN, 2015. Quantifying Exposure to Engineered Nanomaterials (QEEN) from 

Manufactured Products: Addressing Environmental , Health , and Safety Implications. 

Workshop Proceedings. Consumer Product Safety Commission in collaboration with 

the National Nanotechnology Initiative. Arlington, VA, USA. 

Quadros, M.E., Pierson, R., Tulve, N.S., Willis, R., Rogers, K., Thomas, T.A., Marr, L.C., 

2013. Release of Silver from Nanotechnology-Based Consumer Products for 

Children. Environ. Sci. Technol. 47, 8894–8901.  

Radetić, M., 2013. Functionalization of textile materials with TiO2 nanoparticles. J. 

Photochem. Photobiol. C Photochem. Rev. 16, 62–76.  

Reed, R.B., Faust, J.J., Yang, Y., Doudrick, K., Capco, D.G., Hristovski,  K., Westerhoff, 

P., 2014. Characterization of Nanomaterials in Metal Colloid-Containing Dietary 

Supplement Drinks and Assessment of Their Potential Interactions after Ingestion. 

ACS Sustain. Chem. Eng. 2, 1616–1624. 

Reed, R.B., Zaikova, T., Barber, A., Simonich, M., Lankone, R., Marco, M., Hristovski, 

K., Herckes, P., Passantino, L., Fairbrother, D.H., Tanguay, R., Ranville, J.F., 

Hutchison, J.E., Westerhoff, P.K., 2016. Potential Environmental Impacts and 

Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles. Environ. Sci. 

Technol. 50, 4018–4026. 

Ren, D., Smith, J.A., 2013. Retention and Transport of Silver Nanoparticles in a Ceramic 

Porous Medium Used for Point-of-Use Water Treatment. Environ. Sci. Technol. 47, 

3825–3832.  

RIVM, 2016. ConsExpo nano [WWW Document]. URL https://www.consexponano.nl/ 

(accessed 9.8.16). 

Sal’nikov, D., Pogorelova, A., Makarov, S., 2009. Silver ion reduction with peat fulvic 

acids. Russ. J. Appl. Chem. 82, 545–548. 

Schilling, K., Bradford, B., Castelli, D., Dufour, E., Nash, J.F., Pape, W., Schulte, S., 

Tooley, I., van den Bosch, J., Schellauf, F., 2010. Human safety review of “nano” 

titanium dioxide and zinc oxide. Photochem. Photobiol. Sci. 9, 495.  

Scientific Committee on Emerging and Newly Identified Health, Risks (SCENIHR), 2009. 

Risk assessment of products of nanotechnologies. European Commission Health and 

Consumer Protection Directorate-General, Directorate C— public health and risk 

assessment, C7—risk assessment. European Commission, Brussels, Belgium. 

Seager, T.P., Linkov, I., 2008. Coupling Multicriteria Decision Analysis and Life Cycle 

Assessment for Nanomaterials. J. Ind. Ecol. 12, 282–285. 

Shandilya, N., Le Bihan, O., Bressot, C., Morgeneyer, M., 2014. Evaluation of the Particle 

Aerosolization from n-TiO2 Photocatalytic Nanocoatings under Abrasion. J. 

Nanomater. 2014, 1–11. 

Smirnova, V. V, Krasnoiarova, O. V, Pridvorova, S.M., Zherdev, A. V, Gmoshinskiĭ, I. V, 

Kazydub, G. V, Popov, K.I., Khotimchenko, S.A., 2012. [Characterization of silver 

nanoparticles migration from package materials destined for contact with foods]. 

Vopr. Pitan. 81, 34–9. 

Som, C., Berges, M., Chaudhry, Q., Dusinska, M., Fernandes, T.F., Olsen, S.I., Nowack, 

B., 2010. The importance of life cycle concepts for the development of safe 

nanoproducts. Toxicology 269, 160–169.  



71 

Song, H., Li, B., Lin, Q.-B., Wu, H.-J., Chen, Y., 2011. Migration of silver from 

nanosilver–polyethylene composite packaging into food simulants. Food Addit. 

Contam. Part A 49, 1–5.  

Stefaniak, A.B., Duling, M.G., Lawrence, R.B., Thomas, T.A., LeBouf, R.F., Wade, E.E., 

Abbas Virji, M., 2014. Dermal exposure potential from textiles that contain silver 

nanoparticles. Int. J. Occup. Environ. Health 20, 220–234.  

The Nanodatabase, 2016. The Nanodatabase [WWW Document]. URL http://nanodb.dk/ 

(accessed 7.4.16). 

Thomas, T., Thomas, K., Sadrieh, N., Savage, N., Adair, P., Bronaugh, R., 2006. Research 

Strategies for Safety Evaluation of Nanomaterials, Part VII: Evaluating Consumer 

Exposure to Nanoscale Materials. Toxicol. Sci. 91, 14–19.  

Tiede, K., Boxall, A.B.A., Tear, S.P., Lewis, J., David, H., Hassello, M., 2008. Detection 

and characterization of engineered nanoparticles in food and the environment. Food 

Addit. Contam. 25, 795–821.  

Tuoriniemi, J., Cornelis, G., Hasselov, M., 2012. Size Discrimination and Detection 

Capabilities of Single-Particle ICPMS for Environmental Analysis of Silver 

Nanoparticles. Anal. Chem. 84(9), 3965-3972. 

Vance, M.E., Kuiken, T., Vejerano, E.P., McGinnis, S.P., Hochella, M.F., Hull, D.R., 

2015. Nanotechnology in the real world: Redeveloping the nanomaterial consumer 

products inventory. Beilstein J. Nanotechnol. 6, 1769–1780.  

Varner, K., 2010. State of the Science Literature Review: Nano Titanium Dioxide 

Environmental Matters. EPA/600/R-10/089. Environmental Protection Agency, 

Washington, DC, USA. 

Vílchez, A., Fernández-Rosas, E., González-Gálvez, D., Vázquez-Campos, S., 2015. 

Nanomaterials Release from Nano-Enabled Products, in: Viana, M. (Ed.), Indoor and 

Outdoor Nanoparticles: Determinants of Release and Exposure Scenarios. Springer 

International Publishing, Switzerland.  

von der Kammer, F., Ferguson, P.L., Holden, P.A., Masion, A., Rogers, K.R., Klaine, S.J., 

Koelmans, A.A., Horne, N., Unrine, J.M., 2012. Analysis of engineered 

nanomaterials in complex matrices (environment and biota): General considerations 

and conceptual case studies. Environ. Toxicol. Chem. 31, 32–49.  

von Goetz, N., Fabricius, L., Glaus, R., Weitbrecht, V., Günther, D., Hungerbühler, K., 

2013a. Migration of silver from commercial plastic food containers and implications 

for consumer exposure assessment. Food Addit. Contam. Part A 30, 612–620. 

von Goetz, N., Lorenz, C., Windler, L., Nowack, B., Heuberger, M., Hungerbühler, K., 

2013b. Migration of Ag- and TiO2-(Nano)particles from Textiles into Artificial 

Sweat under Physical Stress: Experiments and Exposure Modeling. Environ. Sci. 

Technol. 47, 9979–9987. 

Wagener, S., Dommershausen, N., Jungnickel, H., Laux, P., Mitrano, D., Nowack, B., 

Schneider, G., Luch, A., 2016. Textile Functionalization and Its Effects on the 

Release of Silver Nanoparticles into Artificial Sweat. Environ. Sci. Technol. 50, 

5927–5934.  

WHO, 2013. Nanotechnology and human health: Scientific evidence and risk governance. 

Report of the WHO expert meeting 10–11 December 2012, Bonn, Germany. 



72 

Wijnhoven, S., 2007. Nanomaterials in consumer products. Availability on the European 

market and adequacy of the regulatory framework. RIVM/SIR Advis. Rep. 11014 

(IP/A/ENVI/IC/2006- 193, 49. 

Wijnhoven, S.W.P., Peijnenburg, W.J.G.M., Herberts, C.A., Hagens, W.I., Oomen, A.G., 

Heugens, E.H.W., Roszek, B., Bisschops, J., Gosens, I., Van De Meent, D., Dekkers , 

S., De Jong, W.H., van Zijverden, M., Sips, A.J.A.M., Geertsma, R.E., 2009. Nano-

silver – a review of available data and knowledge gaps in human and environmental 

risk assessment. Nanotoxicology 3, 109–138.  

Windler, L., Lorenz, C., Goetz, N. Von, Hungerbühler, K., Amberg, M., Heuberger, M., 

Nowack, B., 2012. Release of titanium dioxide from textiles during washing. Environ. 

Sci. Technol. 46, 8181−8188. 

Wohlleben, W., Brill, S., Meier, M.W., Mertler, M., Cox, G., Hirth, S., Von Vacano, B., 

Strauss, V., Treumann, S., Wiench, K., Ma-Hock, L., Landsiedel, R., 2011. On the 

lifecycle of nanocomposites: Comparing released fragments and their in-vivo hazards 

from three release mechanisms and four nanocomposites. Small 7, 2384–2395.  

Yan, Y., Yang, H., Li, J., Lu, X., Wang, C., 2012. Release behavior of nano-silver textiles 

in simulated perspiration fluids. Text. Res. J. 82, 1422–1429.  

Zhou, S., Gu, G., 2004. Study on the morphology and tribological properties of acrylic 

based polyurethane / fumed silica composite coatings. Physics (College. Park. Md). 9, 

1593–1600. 

 

 

  



73 

10 Papers 

I Hansen, S.F., Heggelund, L.R., Besora, P.R., Mackevica, A., Boldrin, A. 

and Baun, A., 2016. Nanoproducts–what is actually available to European 

consumers? Environmental Science: Nano, 3(1), 169-180. 

II Mackevica, A. and Hansen, S.F., 2016. Release of nanomaterials from 

solid nanocomposites and consumer exposure assessment–a forward-

looking review. Nanotoxicology, 10(6), 641-653. 

III Mackevica, A., Besora, P.R., Brinch, A., and Hansen, S.F., 2016a. 

Current uses of nanomaterials in biocidal products and treated articles in 

the EU. Environmental Science: Nano. In press. 

IV Mackevica, A., Olsson, M.E. and Hansen, S.F., 2016b. Silver 

nanoparticle release from commercially available plastic food containers 

into food simulants. Journal of Nanoparticle Research, 18(1), 1-11. 

V Mackevica, A., Olsson, M.E. and Hansen, S.F., 2016c. The release of 

silver nanoparticles from commercial toothbrushes. Journal of Hazardous 

Materials. In press. 

VI Mackevica, A., Olsson, M.E. and Hansen, S.F., 2016d. Quantitative 

Characterization of Nano-TiO2 Release from Fabrics by Single Particle 

ICP-MS. Manuscript. 

VII Mackevica, A., Olsson, M.E., Mines, P.D., Heggelund, L.R. and 

Hansen, S.F., 2016e. Estimation of dermal transfer of nanoparticles from 

consumer articles by wipe sampling. Manuscript. 

 

 

 

  



74 

 


