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Abstract 

Purpose: To study hyperpolarized water as an angiography and perfusion tracer in a large 

animal model.   

Methods: Protons dissolved in deuterium oxide (D2O) were hyperpolarized in a SPINlab 

dissolution-DNP polarizer and subsequently investigated in vivo in a pig model at 3 T. Ca. 

15 mL of hyperpolarized water was injected in the renal artery by hand over 4-5 s. 

Results: A liquid state polarization of 5.3±0.9% of 3.8 M protons in 15 mL of deuterium 

oxide was achieved with a T1 of 24±1 s. This allowed injection via an arterial catheter into 

the renal artery and subsequently high contrast imaging of the entire kidney parenchyma 

over several seconds. The dynamic images allow quantification of tissue perfusion, with a 

mean cortical perfusion of 504±123 mL/100 mL/min. 

Conclusion: Hyperpolarized water MR imaging was successfully demonstrated as a renal 

angiography and perfusion method. Quantitative perfusion maps of the kidney were 

obtained in agreement with literature and control experiments with gadolinium contrast. 
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Introduction 

Magnetic Resonance Angiography (MRA) is an important tool for diagnosing various 

medical conditions such as emboli, stenoses and aneurysms. More specifically, renal 

artery MRA allows detection of renal vascular diseases such as fibromuscular dysplasia, 

venous thrombosis and arterial dissection (1). Sub-millimetre resolution can be obtained 

with proton imaging, and further optimization can be obtained by employing vascular 

contrast agents such as Gd-based blood pool agents (2) or nanoparticles (3). Despite 

significant improvement in scanner technology and reconstruction methods (4–6), MRA 

evaluation of small vessels is still challenging. This is mainly due to the inherent low 

sensitivity of MR, were the signal is proportional to the polarization of protons in the blood 

stream.  

It has been demonstrated that this sensitivity problem can be overcome by hyperpolarizing 

nuclear spins (7). The method has recently been introduced in patients using [1-13C] 

pyruvate (8). By enhancing the polarization of 13C by many orders of magnitude, the 

detected signal is increased dramatically, allowing in situ conversion of metabolic 13C-

containing compounds to be imaged. The procedure of increasing polarization beyond 

thermal level, hyperpolarization (HP), can be achieved by dissolution Dynamic Nuclear 

Polarization (dDNP), where the high polarization of the high-gamma electrons, at 

cryogenic temperature and high magnetic field strength, is transferred to the nuclei by 

irradiation with microwaves. By rapid dissolution in a hot medium, the hyperpolarized 

nuclei can be brought to liquid state and injected into the patient before the polarization is 

lost due to longitudinal relaxation (7). Alternatively, metabolically inert 13C-labeled 



molecules can be used for angiographic imaging (9-11), as demonstrated in rodent and 

porcine models, and for perfusion of rodent organs (12-15) or of tumor models (16,17). 13C 

or 15N labelled molecules for angiography and perfusion imaging exploits the long T1 for 

selected 13C and 15N molecules and the low signal background (18). Despite these 

advantages, these molecules exhibit partial permeability and active transport limitations.  

A more accurate technique for water perfusion measurements has thus been called for 

(19,20). A way to measure the perfusion of water molecules directly exists, using 15O 

labelled water as a tracer for PET imaging (21,22), with the main drawbacks being the use 

of a radio-active tracer and the limited spatial and temporal resolution of PET. Utilizing 

hyperpolarized water for angiographic and perfusion imaging overcomes several of these 

limitations. Water protons for imaging have previously been hyperpolarized by use of the 

Overhauser effect (23). However, the maximum achievable magnetization is limited. 

Typically, an enhancement of 100 times at 0.35 T can be obtained for pure water (H2O) 

corresponding to a polarization of 0.001%. Higher polarizations have been reached with 

dissolution-DNP using the 3.35 T HyperSense polarizer, where 3-4 mL of 5 M 1H in D2O 

with a polarization of 3-5% have been applied to biomolecular NMR studies (24) or MR 

angiographies in the rat (25). Correcting for the difference in proton concentration, this 

corresponds to an available signal of two orders of magnitude larger than the Overhauser 

experiments. Imaging of hyperpolarized protons allows for the use of coils and pulse 

sequences already available in the clinical setting. Much more effort has gone into 

optimizing pulse sequences for optimal performance for proton imaging than for other 

nuclei. Moreover, the magnetization achievable with hyperpolarized water is superior to 

other nuclei, because of its large gyromagnetic ratio (𝛾1H ≈ 4 ∙ 𝛾13C) and the potentially 

high proton concentration. As a tracer for perfusion, hyperpolarized water has additional 



interesting properties. Water diffuses freely in the vascular bed and intracellularly, and 

hence provides information not obtainable with larger compounds such as Gd-based MR 

contrast agents or larger nuclear tracers. Compared to the slow washout rate of 

conventional MR contrast agents (26), the T1 value of hyperpolarized tracers hampers 

image acquisition, as well as it reduces the spatial range of measurable perfusion. 

However, the signal enhancement of hyperpolarization facilitates higher resolution and 

faster image acquisition, which allow us to trace the permeable protons in detail – with the 

stated limitations.  

The purpose of this study was to demonstrate that hyperpolarized water can be used as a 

tracer to provide sub-second, high resolution angiographies in pigs by intra-arterial 

injection in the renal artery and that accurate perfusion maps can be obtained with good 

signal-to-noise ratio (SNR). 

Methods 

The polarizer and fluid path has been described in detail in (27). Briefly, the dDNP 

polarizer operates at 5 T and ca 0.9 K. The sample and solvent was loaded into a fluid 

path that allows the sample to be polarized in the magnetic field at low temperature under 

microwave irradiation. The solvent was contained in a syringe that connects to the vial via 

two concentric tubes (inner and outer tube) and a valve. The syringe was placed in a 

heater/pressure module outside the polarizer cryostat. During dissolution the 

hyperpolarized solution leaves the polarizer through an exit tube.  

Sample and solvent preparation: A sample of 1 mL 30 mM TEMPO (2,2,6,6-

Tetramethylpiperidine 1-oxyl, 98%, Sigma Aldrich, Denmark) in H2O/glycerol 1:1 (w/w) was 

prepared. The sample was placed in the fluid path vial and frozen in liquid nitrogen. 



Dissolution medium (DM) consisted of D2O with 1 mM calcium disodium 

ethylenediaminetetraacetic acid (EDTA) and 9 g/L NaCl (both Sigma Aldrich, Denmark). 

31.01 g DM (28 mL) was filled in the syringe and degassed by bubbling with helium gas for 

10 minutes. The fluid path was flushed with helium gas for 2 minutes in order to remove air 

and ensure clear passage. 

Polarization: The sample vial was rapidly transferred from the liquid nitrogen bath to the 5 

T magnet in the polarizer (SPINlab, GE Healthcare, Brøndby, Denmark). The sample was 

irradiated with app. 50 mW microwaves at 139.923 GHz for one hour.  

Dissolution: The syringe containing the DM was heated to 130 °C for one hour before 

dissolution while being under pressure. The piston of the syringe was driven with 16 bar 

pressure during dissolution. The dissolved sample was injected via the exit tube into a 

separatory funnel (100 mL) containing 25 mL of heptane (>99%, Sigma Aldrich, Denmark) 

to extract the radical from the aqueous phase. The heptane had been degassed by 

flushing with helium gas in the funnel for 10 minutes. The funnel was shaken heavily 

during dissolution for a total of 10 s from dissolution start. The lower, aqueous phase was 

extracted into a syringe before transferring to the scanner room. The proton concentration 

in the dissolved sample was analyzed by NMR after addition of 2 M formate solution as 

reference.   

Animal protocol: All animal experiments were carried out in compliance with the guidelines 

for use and care of laboratory animals and were approved by the Danish Inspectorate of 

Animal Experiments. Four healthy 30 kg female Danish domestic pigs were pre-sedated 

with intramuscular injection of Stressnil (1 mL/kg), and Midazolam (1 mL/kg), and 

anesthesia was maintained by continuous infusion of Propofol (0.4 mg/kg/h) and Fentanyl 



(8 µg/kg/h). The animals were intubated and mechanically ventilated with a 60 % O2-air 

mix. 

A 6 F introducer sheath was positioned in the left common femoral artery by ultrasound 

guidance to allow access for a 6F, JR 4.0, angiography catheter to be placed in the left 

main renal artery via x-ray guidance. The angiography catheter was repeatedly flushed 

with heparinized sterile water to avoid occlusion. 15 mL HP water was injected over 5 s, 

initiated approximately 22 s after dissolution. 

Through a vein access in the right ear, a bolus of 0.2 mmol/kg Gd-DTPA (Gadobutrol, 

Gadovist, Bayer Schering Pharma, Berlin) was administered manually for conventional T1-

DCE-MRI. 

MRI acquisition: MRI detection was performed on a 3 T GE HDx with an 8-channel cardiac 

array receiver coil (GE Healthcare, Milwaukee, WI, USA). Phantom experiments were 

performed with a gradient echo sequence using a flip angle of 1°, matrix size 128x128, 

FOV = (24 mm)2 in a slab of 40 mm with TR = 3 ms, TE = 0.784 ms. The acquisition time 

of each frame was 450 ms, and images were acquired with a time delay of one second.  

Axial and coronal images were acquired to cover both kidneys to allow for planning of the 

angiography slice for hyperpolarized water imaging. The planning sequence was as 

follows: a 3D T1 weighted sequence with a standard steady state free precession 

sequence (echo time (TE) 1.1 ms, repetition time (TR) 2.7 ms, flip angle (FA) 35°, image 

matrix 256x256, field of view (FOV) 340x340 mm2, in-plane resolution 1.3 mm, slice 

thickness 3 mm). 

Angiographies were acquired in the coronal plane of the left kidney using a gradient echo 

sequence with 5° FA, slice thickness 40 mm, TR = 3.4 ms, TE = 0.984 ms, 256x256 



matrix, FOV = 140x140 mm2. The acquisition time was 870 ms. The Gd-perfusion 

sequence was executed with the following parameters: spoiled gradient echo, inversion 

time = 850 ms, 10° FA, slice thickness 50 mm, TR = 2 s, TE = 1.4 ms, 128x128 matrix, 

FOV = 290x290 mm2. 

MRI post processing: Phantom data were analyzed using MATLAB (Mathworks, Natick, 

MA, USA). Renal perfusion maps were calculated in OsiriX (Pixmeo, Geneva, Switzerland) 

using an open source OsiriX plug-in for DCE-MRI perfusion analysis (29). A pixel-by-pixel 

model-free fast deconvolution was applied, assuming a direct signal enhancement of the 

hyperpolarized water, a hematocrit of 0.45 and a regularization of 0.15. The 

hyperpolarized arterial input function (AIF) was fixed at the end of the arterial bolus (7 s in 

Figure 2), to avoid the injection characteristics of the AIF. The Gd-T1-DCE contrast was 

similarly analysed by a pixel-by-pixel model-free fast deconvolution, assuming a relative 

signal enhancement accounting for the signal modulations by the contrast agent.    

Results 

The average proton concentration in the dissolved sample was 3.84±0.22 M (n=10). 18±1 

mL of dissolved sample was produced. The polarization was measured by placing a 

syringe with dissolved hyperpolarized sample next to a similar syringe of saline and image 

a slab of 40 mm. The signal obtained from the phantoms is plotted in Figure 1. The initial 

hyperpolarized signal was 211 times the mean signal in the thermal phantom of Boltzmann 

polarization 10.5 ppm. Thus, after correction for the proton concentration, the polarization 

was 5.3±0.9 % (n=4). A T1 of 24±1 s was measured. 

Angiographies of the arterial system of the left kidney were produced with hyperpolarized 

water in 4 animals (Figure 2). Perfusion maps were calculated for the four animals (Figure 



3). A mean cortical perfusion of 504±123 mL/100 mL/min was found. Some folding of the 

signal from the catheter appears in the images in Figure 3C and 3D. The arterial input 

function is shown in Figure 2 along with the cortical signal curve. The arterial input function 

is heavily modulated by the direct injection, as seen by the flat top of the input from 3-7 s. 

Trimming the AIF to the end of the injection, was found to reproducibly reflect the average 

perfusion found by Gd-T1-DCE analysis of 450 mL/100 mL/min (N=2).   

Discussion 

The main finding of this study was the demonstration of a feasible method for acquiring 

reproducible renal angiograms and perfusion maps using hyperpolarized water with both 

high resolution and high signal to noise ratio in a large animal model resembling human 

renal anatomy and physiology. The produced volume of 15 mL exceeds the previously 

demonstrated volumes of ~4 mL produced on the HyperSense (25), and the SPINlab and 

fluid path technology facilitates sterile samples for clinical applications (10). Good 

agreement was found between the calculated hyperpolarized water perfusion and both the 

reported Gd-based perfusion values in healthy porcine models (30) and with our Gd-based 

perfusion measurements (average of 450 mL/100 mL/min). Further optimization of MRI 

sequence, sample preparation, radical extraction as well as automation and consistency of 

the injection process are likely to enhance image quality and applicability further. A longer 

bolus injection to approximate a Heaviside input function may improve accuracy. The 

primary limitation is the short lifetime of the hyperpolarized water, reducing its applicability 

for highly perfused organs. The use of direct arterial injection imposes challenges on both 

animal handling (future clinical usability) and on the modeling of the perfusion information. 

The angiograms are of excellent quality; however, Gd-based and non-contrast 

angiography of the renal arteries is currently providing sufficient diagnostic quality. On the 



other hand, since the discovery of Nephrogenic Systemic Fibrosis, new MR methods to 

measure perfusion may have a role. In addition to the specific extravasation properties of 

water relative to any other molecule, the signal that can be created by hyperpolarized 1H 

exceeds any other magnetic nucleus (e.g. 13C). 

Both the radical and molecular oxygen in the sample induce dipolar relaxation that reduces 

the longitudinal relaxation time T1. Thus, the radical extraction in the organic phase as well 

as the oxygen removal during preparation are crucial elements for achieving long T1 and, 

ultimately, high polarization after substance transferring. TEMPO was chosen without 

optimization as a good compromise between water solubility and preferential partitioning to 

the heptane phase.The proton concentration was chosen as an optimal compromise 

between limitation of the intermolecular dipolar relaxation between proton nuclei and 

achievement of high signal in the injectable sample.  

The ability to hyperpolarize water protons in a polarizer designed for clinical use, with 

sufficient polarization to allow ultra-fast angiographic and perfusion assessment, shows 

great promise for future clinical translation.  
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Figure Legends 

 

Figure 1: The graph shows ROI signal means of the hyperpolarized 1H in D2O (green, 

decaying signal) and the H2O thermal phantoms (blue, steady signal). The phantoms 

consist of two syringes inside a loading phantom (ring structure). Images (individually 

scaled) are shown at 0 and 200 s. The hyperpolarized MR signal is initially 211 times 

stronger than the thermal H2O signal, and the T1 of the decay is 24 s. The hyperpolarized 

signal decays into the noise since the 1H density is ca 20 times lower than the thermal H2O 

sample. 

 

 

 

Figure 2: Image intensity in the arterial input ROI and cortex ROI for the same pig. Images 

visualize time steps at 3, 5, 7 and 9 s. 

  

 

Figure 3: A, B, C, D show perfusion maps generated from four individual pigs with a mean 

cortical perfusion of 504±123 mL/100 mL/min. C is the same pig as shown in Figure 2. 
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