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ABSTRACT: A novel 3D network single-phase Ni0.9Zn0.1O has been designed and synthesized 

by calcining a special metal-organic precursor (MOP) (MeO2C3H6, Me = Ni and Zn, the molar 

ratio of Ni:Zn = 9:1) as the self-sacrificing template for the first time. Comparing with NiO or 

the mixture of NiO and ZnO, the new two-step Li-ion storage mechanism in the 3D network 

single-phase Ni0.9Zn0.1O has been discovered and verified to be: a reversible conversion reaction 

between Ni0.9Zn0.1O and Ni-Zn alloy (Ni0.9Zn0.1), and a reversible Li-alloying reaction between 

Ni-Zn alloy and Ni0.9Zn0.1Li. More remarkably, due to the new mechanism, the anode material 

shows a low initial discharge platform around ~ 0.5 V (vs. Li+/Li). The first discharge voltage is 

lower than typical transition-metal oxides, which generally have higher initial discharge plateau 

around 1.0 V (vs. Li+/Li). It is shown that the novel 3D network single-phase Ni0.9Zn0.1O has 

outstanding electrochemical performances, demonstrating discharge capacities (e. g. 1465.3 

mAhg-1 at 100 mAg-1 and 1055.6 mAhg-1 at 800 mAg-1, respectively), excellent capacity 
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retention and superior rate capability (e. g. capacity retention ratio of 92.9% after 150 cycles at 

800 mAg-1 current density). 

KEYWORDS: bi-metal-oxide, metal-organic precursor, 3D network structure, Li-ion storage 

mechanism, lithium-ion batteries  

INTRODUCTION  

At present, reducing CO2 emissions, increasing renewable energy, and improving energy 

efficiency are the guidelines and requirements of environmental sustainability. Among many of 

them, there are great demand of hybrid electric vehicles (HEVs), electric vehicles (EVs) and 

large scale energy storages, specifically. It requires the development of high performance Li-ion 

batteries (LIBs) in terms of cathode, anode, electrolytes et al. [1-3]. Metal oxides [4,5] including 

Co3O4 [6,7], NiO [8-10], Fe2O3 [11], CuO [12], et al. (conversion reaction mechanism) and ZnO 

[13], SnO2 [14,15], et al. (alloying-dealloying mechanism) have been intensively studied as 

promising candidates of LIBs anode materials. The oxide materials have high theoretical 

capacities exceed the commercial graphite’s (372 mAhg-1). Recently, bi-metal-oxides, a cobalt-

based AB2O4 with spinel structure, (NiCo2O4 [16,17], MnCo2O4 [18,19], ZnCo2O4  [20], 

CuCo2O4 [21], et al.) has received enormous attention by its high electronic conductivity, 

pronounced cycling stability and superior rate-capability than the single-metal oxide Co3O4 [22-

26]. Since the cobalt metal is expensive and rare, the nickel metal is considered as an alternative 

to replace the cobalt in the field of bi-metal-oxides. Ni costs low, and has similar chemical 

property like Co [27,28]. However, differently from Co of the 3+, the main valence state of Ni is 

the 2+, which makes it difficult to form single-phase bi-metal-oxides similar to the above spinel 

structure combining other metal elements. Therefore, most of the relevant researches are focused 
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on the mixed materials with NiO through the synergetic effect between the two components 

currently [29-32]. For instance, ZnO-NiO hybrid hollow microspheres with a Ni/Zn molar ratio 

of 2:1.16 deliver a fairly reversible capacity value (~ 700 mAhg-1) after 200 cycles @ 100 mAg-1 

[29]. Porous ZnO-NiO nanofibers with a Ni/Zn molar ratio of 2:1 present a high discharge 

capacity value (~ 900 mAhg-1) after 120 cycles @ 200 mAg-1 [30]. Self-assembly of NiO-coated 

ZnO Nanorods (32.6 wt.% NiO) show an initial discharge capacity value (~ 1000 mAhg-1) @ the 

high rate of 1 C [31]. More remarkably, the design and synthesis of single-phase nickel-based bi-

metal-oxides still remain a significant challenge. On the other hand, metal oxides synthesized 

with the conversion reaction mechanism, mainly transition-metal oxides (e. g. Co3O4, NiCo2O4), 

commonly show the high discharge voltage platform (~ 1.0 V) (vs. Li+/Li), which inhibits their 

practical application as anodes in LIBs [Eqs. (1) and (2)] [28,32]. Meanwhile, the other kind of 

metal oxides with the Li-alloying mechanism (e. g. ZnO, SnO2) possesses a low voltage platform 

(~ 0.5 V) (vs. Li+/Li) [Eqs. (1) and (3)] [33,34]. However, very few reports have been published 

on the charge/discharge mechanism of the typical bi-metal-oxides constituted by two types of 

metals (e. g. Ni-Zn-O or Co-Sn-O system).  

MexOy + 2yLi+ + 2ye- → xMe + yLi2O (1) 

Me + Li2O ↔ MeO + 2Li+ + 2e- (2) 

Me + xLi+ + xe- ↔ LixMe (3) 

Basically, the common synthetic method of metal oxides or bi-metal-oxides is the thermal 

treatment of inorganic metal precursors including Me(OH)2 [35,36], MeCO3 [7,19], 

Me(OH)(CO3)0.5 [37] and others [38-40] (Me = Co, Ni, Fe, Zn, et al.). Interestingly, metal-

organic precursors (MOPs), as effective sacrificial precursors of constructing special micro-
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architectures, are receiving increasing attention [41-46]. For example, coated with three-

dimensional (3D) graphene and prepared by an iron-based metal organic framework (MOF) 

MIL-88-Fe, Fe2O3 delivers a reversible capacity value (~ 750 mAhg-1) after 50 cycles @ 200 

mAg-1 [43]. Carbon-coated ZnO quantum dots (QDs) (~ 3.5 nm), synthesized through one-step 

controlled pyrolysis of MOP, show good electrochemical performance (~ 1200 mAhg-1 after 50 

cycles @ 75 mAg-1) [44]. And porous ZnO/ZnFe2O4 Octahedra powders, synthesized by using 

an iron-zinc-based MOF, show good cycling stability (~ 1000 mAhg-1 after 100 cycles @ a high 

current density of 500 mAg-1) [46]. CuO/graphene composite synthesized from a Cu-MOF 

maintains a stable capacity (~ 600 mAhg-1) up to 40 cycles @ 0.6 Ag-1 [47]. Hence, in order to 

go beyond the horizon of conventional preparation techniques, it is very important to innovate 

and design certain new bi-metal-oxide anodes for LIBs through the MOPs due to the high 

surface area, tunable pore size and controllable structure [44,46].  

Herein, in this paper, a novel 3D network Ni0.9Zn0.1O has been designed and synthesized 

successfully with a simple and special MOP as the self-sacrificing template. More impressively, 

this Ni-Zn bi-metal-oxide is not the mixture or composite of NiO and ZnO, but a unique single-

phase, which is first reported. By evaluating through a series of electrochemical tests, the results 

show that the Li storage mechanism is obviously different from NiO or the mixture of NiO and 

ZnO, especially in initial discharge cycle. Due to the different mechanism, the initial voltage 

platform is lower (~ 0.5 V) than typical transition-metal oxides (~ 1.0 V) (vs. Li+/Li). And what 

is more, the outstanding electrochemical performance including excellent capacity retention and 

superior rate capability is also demonstrated.  
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EXPERIMENTAL SECTION  

Materials. All reagents including Ni(CH3COO)2•4H2O (molecular weight 248.84), 

Zn(CH3COO)2•2H2O (molecular weight 219.51) and 1,3-propanediol (molecular weight 76.10) 

are in analytical grade.  

Materials Preparation. In a typical synthesis, Ni(CH3COO)2•4H2O (2.24 g) and 

Zn(CH3COO)2•2H2O (0.22 g) were dissolved in 180 mL 1,3-propanediol to form a homogeneous 

solution with the ultrasonic wave dissolving technique. The mixed solution was transferred into a 

Teflon-lined stainless steel autoclave (240 mL) for hydrothermal synthesis at 180 °C in an 

electric oven for 12 h. Then, after washed for 3 cycles by pure ethanol, the green precipitate as a 

precursor in the autoclave was dried in a vacuum oven at 40 °C for 24 h. Subsequently, the MOP 

as precursor was thermally treated at 400 °C in air for 12 h with a heating ramp of 2 °C·min-1. 

Light-green powder was obtained after annealed.   

Materials Characterization. The X-ray powder diffraction (XRD) patterns were collected 

by using multipurpose diffractometer (Rigaku, D/Max-2000) with 2theta ranging of 10°-80° at a 

scanning rate of 1°·min-1. The Nitrogen adsorption data were carried out by the specific surface 

area and porosity analyzer (Quantachrome, NOVA 3200e). The functional groups of MOP were 

determined by Fourier-translation infrared spectrometer (FT-IR) (Perkinelmer, Lambda 950). 

The Thermogravimetric Analysis (TGA) of MOP was carried out by the thermal analyzer 

(Netzsch, 409PC) with a temperature range of 50°-700° at a scanning rate of 5°·min-1. The micro 

morphologies were investigated by scanning electron microscope (SEM) (TESCAN, MIRA3 and 

JEOL); while the micro structures were examined by transmission electron microscope (TEM) 

(FEI, Tecnai G2 F20). Then, the elemental analysis was characterized both by energy dispersive 
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X-ray spectrometer (EDX) equipped on the SEM device (TESCAN, MIRA3) and inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) (Baird, PS-6).  

Electrochemical Measurements. The electrochemical performance of as-prepared 

materials was measured through coin cells at 25 °C. The working electrode was composed of 70 

wt% active material, 20 wt% acetylene black (ATB), and 10 wt% polytetrafluoroethylene 

(PTFE) binder, and the reference/counter electrode was lithium metal. In addition, 1 mol·L-1 

LiPF6 containing ethylene carbonate (EC), diethyl carbonate (DEC), and propylene carbonate 

(PC) in the volume ratio of 3:1:1 was used as the electrolyte. In each coin cell, the weight of 

active material was about 2.00~4.00 mg. The cyclic voltammogram (CV) measurements were 

carried out ranging from 0.01 to 3.00 V (vs. Li+/Li) at a scan rate of 0.1 mV·s-1. The 

galvanostatic charge-discharge testing was conducted on the battery chargers (Land, CT2001A). 

And the electrochemical impedance spectroscopy (EIS) measurements were performed at 5 mV 

AC amplitude over the frequency range of 1 MHz - 0.01 Hz under the open-circuit condition by 

Electrochemical workstation (Princeton, Parstat 2273).  

RESULTS AND DISCUSSION  

The possible schematic illustration for the synthesis of MOP is shown in Scheme 1. The 

metallic centers (Ni2+ and Zn2+) firstly react with organic linkers (-OH) of 1,3-propanediol, and 

form a stable metal-organic complex under the hydrothermal condition at a high reaction 

temperature [Eq. (4)]. Then, the small metal-organic molecules self-assemble into a layered 

structure, as a result of the intermolecular forces and coordination bond between the cationic 

systems acting as electron-withdrawing group and organic ligands acting as electron-donating 

group [48-50]. Subsequently, in order to reduce the interfacial energy, these layers continue to 

form secondary self-assembly, constructing the 3D network MOP [41,47] (Figure S1). Upon 

http://dict.youdao.com/w/electron-donating/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/group/#keyfrom=E2Ctranslation
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pyrolysis, the MOP acts as the self-sacrificing template. On the one hand, the metal components 

serve as an intrinsic metal source to form the special bi-metal-oxide (Ni0.9Zn0.1O) under air 

atmosphere [Eq. (5)]. On the other hand, the morphology and size of the MOP are inherited by 

the corresponding product with a slow heating ramp and a low reaction temperature.  

 

 
(4) 

MeO2C3H6 + 4O2 →  MeO + 3CO2 + 3H2O (5) 

                                (Me = Ni and Zn, the molar ratio of Ni:Zn = 9:1)  

 

Scheme 1.  Possible schematic illustration for the fabrication of MOP.  

The main organic functional groups of MOP are analyzed by FT-IR spectrum as shown in 

Figure 1a. The peaks at ~ 3434 cm-1 and ~ 2931 cm-1 can be attributed to the stretching 

vibrations of the Me2+-O2- groups in MOP and the remaining -OH groups in 1,3-propanediol, 

respectively. And the peak at ~ 1620 cm-1 is assigned to the stretching vibration of -CH2- groups 

in MOP. Moreover, the peak around 1064 cm-1 corresponds to the stretching vibration of the C-O 

bond in this precursor [51,52]. And the thermal behavior of the MOP is investigated by thermo-

gravimetric analysis (TGA) in Figure 1b. The main weight loss of MOP occurs in the 

temperature ranges of 50-150 °C and 250-350 °C under the air atmosphere, and the total weight 
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loss of MOP is approximately 39%, which can be ascribed to the transformation of MOP into 

Ni0.9Zn0.1O.  
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Figure 1.  (a) FT-IR spectrum of the as-prepared MOP.Figure and (b) TGA curve of the as-
prepared MOP under an air atmosphere (5 °C·min-1).  

After calcined, The XRD pattern of the as-prepared sample presents in Figure 2a. The 

diffraction peaks correspond to the cubic phase Ni0.9Zn0.1O (JCPDS no.75-0270, space group 

Fm-3m, a = b = c = 4.188 Å), which is similar to the standard pattern of cubic phase NiO 

(JCPDS no.71-1179, space group Fm-3m, a = b = c = 4.178 Å). Nonetheless, it is obviously 

different from that of the mixture of commercial NiO and ZnO (the molar ratio of Ni:Zn = 9:1) 

(Figure S2). In addition, a unit cell structure of the Ni0.9Zn0.1O crystal as shown in Figure 2b, the 

basic tectonic unit is a cube with the oxygen and metal atoms (Ni and Zn) alternately arranging, 
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while Ni and Zn atoms can randomly substitute each other. Meanwhile, the BET specific surface 

area is about 270.5 m2·g-1 calculated by the N2 adsorption data in Figure S3. 
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Figure 2.  (a) XRD pattern and (b) unit cell of Ni0.9Zn0.1O powders. 

The SEM and TEM images are shown in Figure 3. The typical sample shows an 

interconnected porous 3D network morphology (Figure 3a) self-assembled by many thin layers 

(10-20 nm) (Figure S4). In addition, the SEM micrograph of the as-prepared sample and the 

corresponding EDX mapping images of Ni, Zn and O elements are shown in Figure S5. The 

edges and morphologies of Ni, Zn and O in Figure S5b-S5d are indexed as the morphology 

shown in Figure S5a. And the concentration distributions of Ni and Zn are ultra uniform. Then, 

the representative EDX spectrum (Figure S5e) indicates that the Ni:Zn atomic ratio is about 

0.902:0.098, which matches well with the theoretical value of Ni0.9Zn0.1O. Interestingly, the Ni 

and Zn quality fractions of the NixZnyO sample, measured by ICP-AES, are 70.10% and 8.66%, 

respectively; which agrees well with the EDX result. The 3D Ni0.9Zn0.1O consists of irregular 

nanosheets is further elucidated by TEM (Figure 3b) as seen from SEM images. Shown in the 

high-resolution TEM (HRTEM) images (Figures 3c and 3d), the d-spacings are measured to be 

0.24 nm and 0.15 nm, which are indexed to the (111) and (220) planes of cubic MnCo2O4, 

respectively [20,41,53].  

(a) (b) 
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Figure 3.  (a) SEM, (b) TEM, (c) and (d) HRTEM images of Ni0.9Zn0.1O powders.  

Prompted by the unique single-phase Ni0.9Zn0.1O as anode materials for LIBs firstly, the Li-

ion storage mechanism is researched systematically. The initial discharge and charge profiles of 

the 3D network single-phase Ni0.9Zn0.1O electrodes in the voltage range of 0.01-3.00 V (vs. 

Li+/Li) at various rates (100, 400 and 800 mAg-1) are shown in Figure 4. Distinctively, in all of 

the first discharge curves, long plateaus (~ 0.50 V) are clearly observed, which is obviously 

lower than the typical voltage platform (~ 1.00 V) of pure transition-metal oxides (NiO, CoO, et 

al.) [4,22,28]. Considering the Zn element, its oxide presents a different mechanism of lithium 

insertion/deinsertion with a low voltage plateau (~ 0.5 V) [51,53,54]. Therefore, a new possible 

Li-ion storage mechanism of Ni0.9Zn0.1O, which is different from either the pure NiO or the 

mixture of NiO and ZnO [8,29,30], is expressed as follows [Eqs. (6)-(9)]. During the typical 

initial discharge curve, the reduction process may involve the reduction of Ni0.9Zn0.1O to Ni-Zn 

alloy (Ni0.9Zn0.1) in the first step [Eq. (6)], and then the reaction to form Li-Zn-Ni alloy 
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(Ni0.9Zn0.1Li) in the second step [Eq. (7)]. In the subsequent charge curve, the oxidation reaction 

occurs between Ni0.9Zn0.1Li and Ni0.9Zn0.1 in the first step [Eq. (8)], and then the further 

oxidation forms Ni0.9Zn0.1O in the second step [Eq. (9)]. In addition, the initial discharge 

capacities at above rates are 1465.3, 1167.9 and 1055.6 mAhg-1, respectively; while the 

corresponding charge capacities are 942.5, 833.9 and 700.7 mAhg-1, respectively. The 

irreversible capacity loss values are between 30% and 35%, which may arise with the formation 

of SEI layer during the initial discharge [5,42,55]. Because an additional reversible capacity may 

be contributed by the SEI film formation and the electrolyte decomposition, some of the specific 

capacities as above are higher than the theoretical capacities of both NiO (718 mAhg-1) and ZnO 

(978 mAhg-1) [34,54,56].  
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Figure 4.  Initial discharge and charge profiles of Ni0.9Zn0.1O electrode in the range of 0.01-3.00 
V (vs. Li+/Li) at different rates of 100, 400 and 800 mAg-1. 

Ni0.9Zn0.1O + 2Li+ + 2e- →Ni0.9Zn0.1 + Li2O (6) 

Ni0.9Zn0.1 + Li+ + e- →Ni0.9Zn0.1Li (7) 

Ni0.9Zn0.1Li →Ni0.9Zn0.1 + Li+ + e- (8) 

Ni0.9Zn0.1 + Li2O →Ni0.9Zn0.1O + 2Li+ + 2e- (9) 
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In order to verify this conjecture, the TEM and HRTEM images of Ni0.9Zn0.1O electrode 

after the initial discharge ranging from 0.01 V to 3.00 V at 100 mAg-1 are shown in Figure 5. It 

can be observed that the 3D network morphology of the active material remains intact in (Figure 

5a) and the formation of Zn nanoparticles with diameter in the range of 3-10 nm can be found in 

Figure 5b. The lattice fringes can be clearly seen from the magnified inset in Figure 5b with the 

interplane spacing of ~ 0.25nm, which is attributed to the (002) crystalline plane of the Zn metal, 

corresponding to the above discharge mechanism. To further evaluate the electrochemical 

mechanism, the first three cyclic voltammogram curves of Ni0.9Zn0.1O electrode were recorded at 

the scan rate of 0.1 mV·s-1 in the range of 0.01-3.00 V in Figure 6. Two pronounced cathodic 

peaks can be observed at 1.20 V and 0.28 V during the first discharge scan, which may belong to 

the reduction of Ni0.9Zn0.1O to Ni-Zn alloy [Eq. (6)], and the alloying reaction between Li and 

Ni-Zn alloy [Eq. (7)], respectively [39,52,57]. And two well-defined anodic peaks are recorded 

at 0.20 V and 2.24 V during the first charge scan, which may be attributed to the de-alloying of 

Ni0.9Zn0.1Li to Ni-Zn alloy [Eq. (8)], and the oxidation reaction of Ni-Zn to Ni0.9Zn0.1O [Eq. (9)], 

respectively [11,26,58]. From the second cycle onwards, the CV profiles remain steady as they 

do not change significantly upon further sweeps, suggesting highly reversible electrochemical 

reactions of this material. 
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Figure 5.  (a) TEM and (b) HRTEM images of Ni0.9Zn0.1O powders after the initial discharge 
ranging from 0.01 V to 3.00 V (vs. Li+/Li) at 100 mAg-1, and the green rectangle region in panel 
(b) magnified as an inset.  
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Figure 6.  First three cyclic voltammogram curves of Ni0.9Zn0.1O electrode at the scan rate of 0.1 
mV·s-1 in the range of 0.01-3.00 V (vs. Li+/Li).  

Figure 7a represents the systematic cycling performance of 3D network single-phase 

Ni0.9Zn0.1O electrodes at 400 and 800 mAg-1. Under the low rate (400 mAg-1), the reversible 

capacity of the initial 10 cycles (except the 1st cycle) decreases slowly and gradually from ~ 830 

mAhg-1 to ~ 760 mAhg-1, which may be ascribed to the formation of the SEI film by consuming 

a certain amount of active materials [28,59,60]. Then, the reversible capacity keeps constant 

(750-760 mAhg-1) until approximately the 160th cycle, and the charge capacity retention ratio 

(vs. the initial charge capacity) is maintained as 91.6%. During the last 40 cycles, the reversible 

capacity begins to fall slowly to 610 mAhg-1, and the corresponding capacity retention ratio is 

still about 73.5%. As a contrast, under the high rate (800 mAg-1), the trend of discharge/charge 

http://dict.youdao.com/w/systematic/
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capacity vs. cycle number is very similar to the case of the low rate. For the initial 20 cycles, the 

reversible capacity declines from ~ 700 mAhg-1 to ~ 630 mAhg-1; then, the reversible capacity 

keeps stable (630-660 mAhg-1) up to the 150th cycle, and the corresponding capacity retention 

ratio is up to ~ 92.9%; during the last 50 cycles, the reversible capacity goes down to ~ 450 

mAhg-1. Except the initial cycles, the stable and good reversibility of the electrochemical 

processes is also confirmed by the high Coulombic efficiencies, which can be stabilized to ~ 

98.5% at 400 mAg-1 and ~ 97.3% at 800 mAg-1, respectively. For further investigation of the rate 

capability, the Ni0.9Zn0.1O electrode was measured at various rates between 400 and 6400 mAg-1. 

As shown in Figure 7b, the specific capacity fades with the increasing current density, and the 

ranges of corresponding charge capacity are 771.7-811.7, 643.2-661.8, 491.1-513.7, 263.5-317.6 

and 125.9-144.7 mAhg-1 at 400, 800, 1600, 3200 and 6400 mAg-1, respectively. However, the 

reversible capacity goes up from 520.1 mAhg-1 to 588.5 mAhg-1 when the rate recovers to 800 

mAg-1; while it retains to a high specific capacity (~ 680.0 mAhg-1) after 120 cycles when the 

rate goes back to the low current density (400 mAg-1), dramatically. The work’s electrochemical 

performances and other previously reported results are summarized in Table 1. To our 

knowledge, the 3D network single-phase Ni0.9Zn0.1O material is one of the best with long-term 

cycling stability and rate capability among various NiO, ZnO, mixtures of NiO/ZnO and ZnO-

based electrode materials. Hence, the novel Ni0.9Zn0.1O anode illustrates high reversible 

capacities, excellent capacity retention and superior rate capability due to: 1) the special Li-ion 

storage mechanism, 2) the highly acceptable volume expansion accommodated by the large 

interior space among the network accommodating the volume expansion greatly, and 3) the short 

diffusion lengths of Li-ions [42,50,61].  
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Figure 7.  (a) Cycling performance of Ni0.9Zn0.1O electrodes at 400 and 800 mAg-1; (b) Rate 
capability of Ni0.9Zn0.1O electrode at various rates.  
 
Table 1.  Comparison of this work’s electrochemical performances and other previously reported 
results 

Electrode 
material Morphology 

Specific 
Capacity 
(mAhg-1) 

Current 
density Cycles Ref. 

Ni0.9Zn0.1O 3D network 610.0 400 mAg-1 200 This work 

NiO Nanosheets 800.0 400 mAg-1 150 9 

NiO/Carbon Nanosheets 848.0 400 mAg-1 50 10 

NiO/ZnO Microspheres 1176.0 100 mAg-1 200 29 

NiO/ZnO Nonofibers 949.0 200 mAg-1 120 30 

NiO/ZnO Nanorods 960.0 1 C 15 31 

ZnO/ZnFe2O4 Microcubes 800.0 1000 mAg-1 200 39 

ZnO Quantum dots ~1200.0 75 mAg-1 50 44 

ZnO@Si Nanoparticles ~1500.0 0.05 C 260 57 
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To gain additional insight into the charge-transfer procedure, the EIS measurements were 

tested in a frequency range of 1 MHz - 0.01 Hz with the 5 mV AC amplitude after the 1st, 100th 

and 200th cycle at 800 mAg-1 under the open-circuit condition (Figure 8). These Nyquist plots 

are all composed of a high-frequency semicircle and a low-frequency approximate sloping 

straight line. The former may be explained as the charge transfer resistance and the SEI 

resistance; while the latter corresponds to the Warburg impedance relating to the diffusion of 

lithium-ions [7,35,62]. And the equivalent circuit used to fit the spectra is presented in the inset. 

In this work, Rs represents the intrinsic resistance of active materials and ionic resistance in 

electrolyte. Rsf and Csf denote the SEI film resistance and the corresponding capacitance, 

respectively; while Rct and Cdl are the charge-transfer resistance and the double-layer 

capacitance, respectively. In addition, Q represents the constant phase element [31,52]. When the 

cycling number increases from 1 to 100, the corresponding Rct value is experiencing merely no 

change in the range of 210.4-240.2 Ω, which shows that the charge transfer resistance value 

grows up slowly. Until the 200th cycle, the corresponding Rct value increases to 474.8 Ω. To sum 

up, the Ni0.9Zn0.1O electrode displays a good electrode conductivity, which indicates that doping 

Zn element may greatly enhance the electronic conductivity of the special bi-metal-oxide [34,63-

66]. Remarkably, in Figure 9, the Ni0.9Zn0.1O shows negligible change in morphology after 200 

cycles at 800 mAg-1, which displays an attractive stability in micro-structure. So this unique 3D 

network structure may prevent the particles from fragmentation and agglomeration [42,67-70]. 
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Figure 8.  Nyquist plots of the Ni0.9Zn0.1O electrode after different cycles at 800 mAg-1 measured 
with the 5 mV amplitude over the frequency range from 1 MHz to 0.01 Hz under the open-circuit 
condition. The fitting lines were obtained using the equivalent circuit in the inset.  

 

 

Figure 9.  SEM images of the Ni0.9Zn0.1O electrode (the mixture of Ni0.9Zn0.1O/ATB/PVDF) after 
200 cycles at 800 mAg-1.  

CONCLUSIONS  

In summary, the novel single-phase Ni0.9Zn0.1O has been designed and synthesized through 

a special MOP (MeO2C3H6, Me = Ni and Zn, the molar ratio of Ni : Zn =9 :1) as the self-

sacrificing template. Its unique porous 3D network morphology is self-assembled by many thin 

layers (10-20 nm), and the specific surface area is about 270.5 m2·g-1. Comparing with NiO or 

the mixture of NiO and ZnO, the new two-step Li-ion storage mechanism in the 3D network 
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single-phase Ni0.9Zn0.1O has been discovered and verified to be: a reversible conversion reaction 

between Ni0.9Zn0.1O and Ni-Zn alloy (Ni0.9Zn0.1), and a reversible Li-alloying reaction between 

Ni-Zn alloy and Ni0.9Zn0.1Li. More remarkably, due to the new mechanism, the anode material 

shows a low initial discharge platform around ~ 0.5 V (vs. Li+/Li). The first discharge voltage is 

lower than typical transition-metal oxides, which generally have higher initial discharge plateau 

around 1.0 V (vs. Li+/Li). In addition, due to the large interior space among the network, the 

short diffusion lengths of Li-ions, and the doping of active Zn element, it is shown that the novel 

3D network single-phase Ni0.9Zn0.1O has outstanding electrochemical performances, 

demonstrating high discharge capacities (e. g. 1465.3 mAhg-1 at 100 mAg-1 and 1055.6 mAhg-1 

at 800 mAg-1, respectively), excellent capacity retention and superior rate capability (capacity 

retention ratio of 91.6% after 160 cycles at low 400 mAg-1 current density and 92.9% after 150 

cycles at high 800 mAg-1, respectively) 
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