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Abstract   

This paper studies the flexibility available with thermostatically controlled loads (TCLs) to provide 

power system services by demand response (DR) activation. Although the DR activation on TCLs can 

provide power system ancillary services, it is important to know how long such services can be 

provided for when different levels of power reduction are imposed. The flexibility change with 

different levels of power reduction is tested experimentally with domestic fridges used by real 

customers with unknown user interaction. The investigation quantifies the flexibility of household 

fridges and the impact of DR activation in terms of deviation in the average temperature. The 

maximum possible power reduction with the cluster of refrigerators is 67% and the available 

flexibility with the cluster of refrigerators is 10%. The resulting deviation in the average temperature 

is 14%. 
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Abbreviations 

 

BRP: Balance responsible party 

COP: Coefficient of performance 

DR: Demand response 

ICT: Information and communications technology 

QOS: Quality of service 

RES: Renewable energy sources 

TCL: Thermostatically controlled load 

TSO: Transmission system operator 

UFLS: Under-frequency load shedding 

1. Introduction 

The reliability of electric power system operation depends solely on the balance between power 

production and consumption. In a conventional power system, the balance is achieved by 

consumption-driven production. In such a scenario, long-term [1] and seasonal [2]load and change 

forecasting is used to plan new power plants and power production. As the electricity market has 

become unbundled, one-day-ahead demand forecasting helps to schedule the power procurement [3], 

[4]. The transmission system operator (TSO) is responsible for the power system balance. The errors 

in the demand forecast are managed by additional local procurement or consumption at short notice to 

avoid large deviations from the unit commitments of the power plants [5], [6]. Such services are called 

ancillary services and are provided by balance responsible parties (BRPs) and the regulating power 

providers on request from the power system operators. Due to increasing awareness of the negative 

environmental impacts of greenhouse gas emissions from conventional power plants’ exhaust gasses, 

motivation for the usage of renewable energy resources (RESs) in the electric power system is high. 

Therefore, the participation and penetration of RESs increases as time goes on. The RES electricity 



supply varies, as RESs like wind and solar power fluctuate [7]. The fluctuations in the electric power 

production by RESs need to be compensated either by an additional supply of power from fossil based 

power plants [8], [9]or by controlling demand to achieve a balance in the power system[10]. Demand 

response (DR) is a widely accepted operational procedure carried out by power-system operators [11], 

[12].  

Electricity consumers can be broadly classified into three classes: industrial, commercial, and 

domestic [13],[14]. The demand adjustment from industrial consumers is large in comparison to the 

other two segments [14]. Industrial consumers can support only a scheduled demand adjustment, as 

the machinery used may require a complex start-up and shutdown procedure and skilled manpower to 

execute the procedures. But the ancillary service requirement of demand adjustment may arise at 

anytime. Domestic and commercial consumers are suitable for ancillary service provision by DR due 

to their time availability and less complex electrical gadgets, which are easy to control. 

In Nordic countries, the share of domestic electricity consumption is 26%[15] and the domestic 

segment has great potential for DR services[16]. During appliance control, the service provided by the 

appliance should not be affected by the control event. Such a constraint makes thermostatically 

controlled loads (TCLs) most suitable for DR applications. TCLs provide a temperature service. The 

temperature effect is stored in the thermal mass of the TCLs, which can sustain the impact of power 

reduction. In a single household, the flexibility for demand adjustment may be a small quantity. When 

the flexibility from multiple households is aggregated, their potential is very high. To manage the 

massive distributed TCLs, the aggregators can play an important role similar to the BRPs[17]. The 

aggregator may be a separate entity or a part of the BRP.  

When the power system operator requires an ancillary service related to power reduction, the 

aggregator will serve the request by controlling the loads of the consumers. Under control, the service 

provided by the loads to the consumer should not be affected or the deviation in the quality of the 



service should be within the limits guaranteed to the consumers by the aggregator. The service 

provided by the TCLs is quantified in terms of temperature. Therefore, the deviations in the quality of 

service at different power-reduction levels can be analysed with the temperature variation. Also, the 

temperature of the TCL system represents the amount of thermal energy stored within the system, or 

in other words the flexibility available with the TCL. By predicting the temperature profile, the 

duration for which the system can support the service of power reduction can be predicted. Therefore, 

the variation in the available capacity with respect to different levels of power reduction can also be 

analysed. Further, the maximum possible power reduction by respecting the temperature limits of 

individual TCLs can be studied and the deviation in QOS can be analysed.  

The aim of this work is to investigate the potential and capacity for power reduction by DR activation 

on TCLs using domestic refrigerators as an example. In Denmark, refrigerators and freezers contribute 

18% of total domestic electricity demand and they are regarded as important DRs in the smart grid 

[18]. Refrigerators are considered for DR study in many research activities [19]–[21]. A simulation 

study with large-scale control of domestic refrigerators for reduction of peak demand in distribution 

systems is presented in [19]. In [20], a simulation study to support the primary reserve by under-

frequency load shedding (UFLS) is studied. The energy consumption optimization of refrigerators is 

studied with a grey-box model developed using time series data from experimental measurements in 

[21].   

The adaptive fridge model presented in [22] is used to predict the fridge behaviour for control 

purposes, as the model requires only two measurements and the prediction errors are within 5% [23]. 

The investigations of the work presented in this paper consist in: 

1. Real world application of refrigerator model. 

A real world application for the black-box model described in [22] to provide power system service by 

load reduction is experimented. The black-box model requires only two measurements and predicts 



TCL temperature close to the actual one when the dynamics of the system are not changing. The 

model is a generalized model suitable for any type of TCLs. Such a model is suitable for experiments 

with a large number of TCLs, where the number of parameters measured is limited. The analysis 

reported in the paper under revision allowed evaluating the range of applicability of the model. 

2. TCL control limitation due to resource synchronization. 

The TCLs operation is synchronized when a group of TCLs is controlled for the aggregated power 

reduction. The higher is the aggregated power reduction the sooner will the TCLs operation get 

synchronised. The analysis presented in this paper defines the limits of the control method using the 

black-box model for aggregated power reduction without TCL operation synchronisation in terms of 

control duration.  

3. TCL flexibility definition and evaluation. 

The thermostatically controlled loads (TCL) are not available for power system service provision 

when the thermostat switched OFF the load. This paper defines the flexibility of the TCLs in such 

scenario without altering the TCL. A correlation between the available flexibility and the aggregated 

power is given under normal operation. The change in the flexibility of group of TCLs is analysed 

when the aggregated power is limited to different levels compared to the normal value. The flexibility 

analysis discussed in the paper can be used to derive a metric about the change in flexibility for a 

larger population of TCLs. 

The rest of this paper is organized as follows. In Section 2 the method of flexibility analysis of power 

reduction with DR activation and the problem outline are introduced. Section 3 explains the 

experimental procedure, experiment platform, the hardware devices used for control and 

measurement, and their configuration. Section 4 discusses the control strategy and practical limitations 

in detail. The results of the experiments are reported in Section 5. The discussion and conclusion are 

presented in Sections 6 and 7 respectively.  



2. Methodology  

The refrigerator is a thermally insulated box fitted with a compressor to pump heat out of the box to 

the ambient. The compressor is controlled by a thermostat. The temperature inside the refrigerator is 

maintained between two limits, namely Tmax and Tmin, by the thermostat. The thermostat switches 

the compressor ON when the temperature is above the temperature limit Tmax. The heat from the 

refrigerator is pumped out to the ambient by the refrigeration system. This causes the temperature 

inside the refrigerator chamber to decrease. As soon as the temperature decreases to the limit Tmin, 

the thermostat switches the compressor OFF. As the ambient temperature is higher than the 

temperature inside the refrigerator chamber, the heat flows from the ambient into the refrigerator 

cooling chamber through the walls and also during opening of the refrigerator door for food exchange. 

The heat flow causes the temperature of the cooling chamber to increase when the compressor is OFF. 

The heating and cooling cycles of the refrigerator can be called thermostatic cycles. The duration of 

the thermostatic cycle for heating and cooling depends on many parameters. The cooling duration 

required for the temperature to reach the value Tmin from the temperature value Tmax depends on the 

compressor power and its coefficient of performance (COP), the ambient temperature, the insulation 

parameters of the refrigerator, and the thermal properties of the cooling chamber’s content (food). The 

duration of heating required for the temperature to rise from the value Tmin to Tmax depends on the 

parameters listed above, except for the compressor specifications. As the refrigerator has the ability to 

store the temperature effect with its thermal inertia, it can be used to provide the power system 

ancillary services. The method described here controls the refrigerators’ state (ON/OFF) in order to 

keep their aggregated power consumption at a given set-point value without violating the temperature 

limits of the individual refrigerators. On controlling the refrigerator, one of the constraints is that the 

temperature Tmax of the refrigerator cool chamber should not be exceeded. The change in the 

available flexibility provided by the refrigerators can be analysed at different levels of power 



reduction from the normal consumption.  

In the presented control architecture in Figure 1, a central controller for refrigerators collects the 

temperature measurements and power consumption from all refrigerators. The central controller can 

predict the temperature of fridges and the duration for which they can be switched OFF or ON without 

violating the temperature boundaries with the use of a simple black-box model [22]. The black-box 

model considers the temperature curves of the thermostatic cycles as a piece-wise linear one and uses 

the slopes of the temperature curves to predict the temperature cycle duration.  

 

Figure 1. Control diagram and information flow. 

In the proposed algorithm, the fridge flexibility is measured by the duration for which the refrigerator 

can be switched OFF without violating the individual refrigerator’s temperature limit. The switch OFF 

time can be calculated by predicting the temperature inside the cooling chamber. In order to calculate 

the prediction of the cooling chamber temperature, the fridge’s thermal behaviour has to be modelled. 

The black-box model [22] used in this study requires only two measurements and predicts a cooling 

chamber temperature close to the actual one when the dynamics of the system are not changing. It is 

also a generalized model suitable for any thermostatically controlled loads such as space heaters, heat 

pumps, air conditioners, refrigerators, and so on. Such a model is suitable for experiments with a large 



number of refrigerators, where the number of parameters measured is limited. 

3. Experimental procedure  

3.1. Test scenarios 

The experiment is conducted for four scenarios with different values of power reduction as shown in 

the Figure 2. 

Scenario 1: Scenario 1 is the base case without any control. The refrigerator power 

consumption and the temperature were observed for 24 hours. The observation without control gives 

an idea about the variation in aggregated power consumption with time. The power limitation set-

point for the control in the following scenarios is derived from the base case scenario 1. 

Scenario 2: In scenario 2, the control objective is to maintain the aggregated power at the 

average value of power consumption in scenario 1without violating the temperature limits of 

individual refrigerators. 

Scenarios 3 and 4: Scenarios 3 and 4 are used to understand the limits of the possible power 

reduction by DR activation on TCLs. The power limits for the controller are set as 50 and 25% of 

scenario 1 average value in scenarios 3 and 4, respectively. 

The proposed method for TCL flexibility analysis is tested with refrigerators in real households with 

unknown user interaction. The following section introduces the experimental set-up and provides a 

description of the information and communication technology (ICT) infrastructure supporting the 

experiment and a description of the gathered measurements. 

 



Figure 2. Scenario description. 

3.2.  Experimental setup 

The experiment utilized the infrastructure and the refrigerators of the participants in the project 

INCAP. The INCAP project has established an ICT infrastructure for the real-time measurement and 

control of temperature and power of domestic fridges in the western part of Denmark for a field 

experiment. Figure 3(a) shows the experimental set-up. The block diagram in Figure 3(b)shows the 

devices installed for control and data collection in each household participating in the project INCAP. 

The devices used for control and data collection are as follows:  

1. Relay unit with power measurement facility to switch the fridge ON and OFF in response to a 

remote command and to measure the active power consumption by the fridge. 

2. Temperature sensor to measure the temperature inside the fridge cooling chamber. 

3. A user interface device with red and green lights and two buttons to communicate with the user. 

4.  A Zigbee-Ethernet gateway device to enable interaction of these devices with the remote server. 

 

Figure 3. Data flow from the fridges to the controller and refrigerator control device installation in a 



house 

 

Develco Products A/S, one of the partners in the project INCAP, provides these devices from its 

Zigbee wireless home automation network products line. The Zigbee-Ethernet gateway device hosts 

the local Zigbee home network as a coordinator, and other devices become the child of the local 

Zigbee network. The Zigbee-Ethernet gateway device establishes the connection to the control server 

through a wired ADSL home Internet connection. Two of the devices, namely the temperature sensor 

and the user interface device, are battery-powered devices, while the other two are mains supply 

powered. For the field experiment in INCAP, devices were sent to the consumers. Once installed, the 

devices sent authorization requests to the server and were authorized by the server to join the Zigbee 

network. The temperature sensor was placed in the cooling chamber of the fridge and the relay unit 

was connected in series with the power input to the fridge. The measurement sampling rates for the 

different devices were configured by the server. 

3.3. Measurement parameters and sampling rate 

The temperature sensor sends the temperature measurements at two-minute intervals. The sampling 

interval was preconfigured by the manufacturer in order to have a longer battery life. This sampling 

rate cannot be changed. As the temperature inside the refrigerator changes very slowly due to the 

thermal inertia of the food content, the two-minute sampling rate is sufficient to appreciate these 

dynamics. The temperature sensor has an accuracy of ±0.5 °C. The relay unit measures the active 

power consumed by the fridge. The resolution of the measurement is 1 W. The RMS voltage is also 

measured with 1 V accuracy. The measurement is taken every 10 seconds and sent to the server. 

4. Controller description 

4.1. Controller architecture 

The controller has the following objectives: a) to predict the switch-OFF time of the fridges using the 

fridge model described in [22], and b) to limit the aggregated power consumption by controlling the 



fridges without violating their temperature limits. The controller execution is carried out according to 

the following Algorithm 1. 

Algorithm 

Initialization: 

 Mark all fridges that are not active for service  

 Create an empty scheduling queue 

Procedure 1: 

 For all fridges{ 

  get fridge cooling chamber temperature 

  if fridge is activated for service{ 

   if temperature is above Tmax { 

    turn the fridge ON 

   } 

  } 

  else{ 

   put the fridge into the scheduling queue 

   sort scheduling queue in descending order by length of OFF time  

  }  

 } 

Procedure 2: 

If aggregated power is higher than the set-point{ 

 calculate the power reduction required   

while power reduction is positive{ 

  get the first fridge from the scheduling queue 

  mark the fridge to be activated for service 

  subtract the fridge power from the power reduction 

} 

} 

Procedure 3: 

If aggregated power is lower than the set-point { 

 calculate the power addition required 

while power addition is positive{ 

  get the first fridge from the activated scheduling queue 

  mark the fridge to be deactivated from service 

  subtract the fridge power from the power addition 

} 

} 

Algorithm 1.Aggregated power control algorithm. 

 

The controller receives temperature measurements from the fridges at two-minute intervals and the 

power measurements at 10-second intervals. As the model described in [22]requires the temperatures 



of the previous heating cycle and cooling cycle, the control software stores those temperature values 

corresponding to previous cycles (heating and cooling) locally. The heating and cooling cycles were 

identified by the compressor power consumption. During cooling the compressor is active and 

consumes power; during heating, there is no power consumption by the compressor. Some of the 

fridges have a power consumption of a few watts for their internal electronic components and for light 

bulb illumination while the fridge door is open. A 30W threshold is used to separate the compressor 

power consumption from the power consumption by the light bulb and other components. 

The aggregated power is calculated every time the power measurement from the refrigerators is 

updated. If the aggregated power is higher than the set limit, the coolest refrigerator among the active 

refrigerators is switched OFF. The procedure continues until the aggregated power reaches the control 

set-point. On the other hand, if the aggregated power is less than the control set-point, the hottest 

refrigerator among the group of controlled refrigerators is switched ON and the procedure continues 

until the aggregated power reaches the control set-point.  

4.2. Control task timings 

The temperature measurement from each fridge is received at two-minute intervals. The switch-OFF 

time for the active fridges (in which the compressor is ON) is calculated using the fridge model [22] 

every time the temperature is updated. The fridges are sorted in an order based on their switch-OFF 

time; the fridge that would otherwise turn off soonest would be the first priority. Although the fridge 

power is measured every 10 seconds, there is a time delay of 10 seconds when sensing a change in 

power from the fridges. When the aggregated power is limited to the reference value, the fridges 

which have to be switched OFF are marked internally in the software. The switch-OFF command is 

sent to the fridge every time, while the corresponding fridge’s power measurement is received. If the 

temperature of the fridge reaches its Tmax, then the corresponding fridge is removed from the control 

list. 



5. Experimental results 

The experiment was conducted for 24 hours for each scenario. After the experiment for one scenario, 

24 hours’ relaxation time was allowed for the refrigerators to return to their normal thermostatic 

cycles before conducting the experiment for the next scenario. Twenty-five refrigerators participated 

in the experiment. The maximum aggregated compressor capacity of the refrigerators is 2500 W.  

The aggregated power consumption of refrigerators in scenario 1 without control is shown in of 

Figure 4(a) and the instantaneous temperature average of refrigerators is shown in Figure 4(b).  

 

Figure 4. Aggregated power and instantaneous temperature average – Scenario 1 

 

 

Figure 5. Aggregated power and instantaneous temperature average – Scenario 2 

 

  Their average values are marked on the respective plots as a red line. The average value of the 



aggregated power consumption of the refrigerators is 836 W. The average value of the instantaneous 

temperature average is 7.1 °C. The maximum value of the aggregated power is 1575 W. Therefore the 

experiment for scenario 2 is conducted with the power limit set at a value of 800 W for the controller. 

The power limit value is close to 50% of the maximum power value (1575 W) and close to the 

average value (836 W) of scenario 1. The aggregated power consumption of the refrigerators in 

scenario 2 is shown in Figure 5(a). The instantaneous temperature average of the refrigerator is shown 

in of Figure 5(b). Their average values are marked as a red line on the respective plots. The average 

value of the aggregated power is 801 W and the average value of the instantaneous temperature 

average is 7.2 °C. 

 

Figure 6. Aggregated power and instantaneous temperature average – Scenario 3 

 

The experiments for scenarios 3 and 4 help to understand the change in flexibility of the overall 

population of refrigerators participating in the experiment. The experiment for Scenario 3 is conducted 

with a power limit value of 400 W for the controller. Similarly the experiment for Scenario 4 is 

conducted with a power limit value of 200 W for the controller. The aggregated power consumption 

for scenario 3 is shown in Figure 6(a). The instantaneous temperature average is shown in Figure 

6(b).The power average and average of instantaneous temperature average are marked as a red line on 

the respective plots. The average value of the aggregated power value for scenario 3 is 607 W and the 



average value of the instantaneous temperature average is 8.1 °C. 

 

Figure 7.Aggregated power and instantaneous temperature average – Scenario 4 

 

Similarly, the aggregated power consumption for scenario 4 is shown in Figure 7(a). The average 

aggregated power consumption for scenario 4 is 526 W. The instantaneous temperature average is 

shown in Figure 7(b). The average value of the instantaneous temperature average is 8.0 °C. The 

experimental results of the four scenarios are summarized in Table 1. The overall energy consumption 

for scenario 1 is 20.1 kWh and that for scenario 2 is 19.2 kWh. The difference in energy consumption 

is only 4.5%, taking scenario 1 as the base. In scenario 2, the controller maintains the aggregated 

power close to the average value of the aggregated consumption in scenario 1, which is the normal 

consumption. In scenario 3, when the power reduction is 50%, the overall average temperature of the 

population increases by 14%. The overall temperature average of the population is 8.1 °C. Although 

the controller aims to maintain the aggregated power at close to 50% (400 W) of the average 

consumption of scenario 1, the achieved average aggregated power value is 73% (607 W). This is due 

to one of the control constraints: that the temperature of every individual refrigerator must not exceed 

its Tmax value. The objective of conducting the experiment for scenario 4 is to understand the 

maximum limit of power reduction without violating the temperature conditions of the individual 

refrigerator of the population. The controller is provided with an objective power set-point value of 



200 W, which is close to 25% of the average power consumption in scenario 1 (836 W). The 

achievable average power reduction in scenario 4 is 37% instead of 75%. The average aggregated 

power consumption in scenario 4 is 526 W.  The temperature elevation is 13% and the average 

temperature of the population is 8.0 °C. 

Table 1.Effect of control on the aggregated power of the refrigerators. 

Scenario 
Power 

reduction  
[%] 

Power 
limit  
[W] 

Average 
temperature 

[°C] 

Average 
power 
[W] 

Energy 
consumption 

[kWh] 

1 NA – 7.1 836 20.1 

2 Pavg 800 7.2 801 19.2 

3 
50% of 

Pavg 
400 8.1 607 14.6 

4 
25% of 

Pavg 
200 8.0 526 12.6 

 

Figure 8(a) shows the average value of the aggregated power of refrigerators for every 15 minutes in 

scenario 3. Similarly the plot for scenario 4 is shown inFigure 8(b). The controller set-point is marked 

as a red line in both plots. The controller is able to limit the aggregated power consumption up to 

02:00 hours in the case of scenario 3. The synchronized thermostatic operation of the refrigerators 

starts from 02:00 hours, as most of the refrigerators reach their maximum temperature limit. 

Therefore, the controller was not able to limit the aggregated power after 02:00 hours. Similarly, in 

scenario 4, the refrigerators reach their maximum temperature limit much earlier, in less than 2 hours 

(at 23:45 hours), as the controller set-point is much lower. The hours of controllability are circled in 

green on both plots in Figure 8. Due to the synchronization of temperature cycles, as the temperature 

of all refrigerators reaches the maximum, the refrigerators are switched ON at the same time. Their 

aggregated power consumption increases, which is unavoidable. When the temperature of the 

refrigerators decreases, the refrigerators are switched OFF until the aggregated power limit set by the 

controller is reached. 



 

Figure 8. Aggregated power plotted with 15-minute average values for scenarios 3 and 4. 

 

The histograms of the four experimental scenarios are shown in Figure 9. The histograms show the 

occurrences of aggregated power values as a probability distribution function (PDF) in the given range 

from 0 to 1600 W along with the mean value and the standard distribution. In scenario 1, the 

distribution is even around the mean value and the standard deviation is high. Scenario 2 has more 

occurrences around the mean, and the standard deviation decreases. The mean value is also close to 

the controller set-point (800 W).When control is enabled to reduce aggregated power consumption by 

50% in scenario 3, the number of occurrences close to the controller set-point value (400 W) 

increases, but the standard deviation increases in comparison to scenario 2. The mean value is higher 

than the controller set-point value. Similarly, in scenario 4, the standard deviation increases and the 

occurrences around the mean value are evenly distributed. In both scenario 3 and scenario 4, the 

average power consumption is higher than the controller set-point. This is due to the synchronization 

of the refrigerators’ temperature cycles, as shown in Figure 8. As the controller set-point of scenario 4 

is lower than that of scenario 3, a greater number of refrigerators are switched OFF in scenario 4 and 

consequently the overall average of the aggregated power consumption is low in scenario 4. This is 

visible on the histogram of the aggregated power consumption of scenario 4. The number of 

occurrences of aggregated power below 600 W is higher for scenario 4 than for scenario 3. 



 

Figure 9. Histograms of the aggregated power in four scenarios. 

6. Discussion 

6.1. Definition and quantitation of flexibility 

As the refrigerators’ operations are controlled by thermostats, the refrigerator compressor will be 

switched OFF as soon as the temperature of the refrigerator reaches Tmin. Once the refrigerator 

compressor is switched OFF, the refrigerator is not available for control until the thermostat switches 

the compressor ON after the temperature reaches the limit Tmax. Thus, any refrigerator is available 

for control only during the cooling part of the thermostatic cycle, as shown in Figure 10.  

 

Figure 10. Flexibility change during natural thermostatic cycle. 

 

At the beginning of the cooling, when the temperature is near Tmax, the flexibility is 0%. At the end 

of the cooling, when the temperature is close to Tmin, the flexibility is 100% as the refrigerator can 

support the maximum duration of control. All of the above statements about flexibility are valid only 



when the compressor is ON. If the compressor is switched OFF by the thermostat, then the refrigerator 

is not available for control anymore. Therefore, the refrigerators that are switched OFF by the 

thermostat are considered to have no flexibility.  

 

Figure 11. Change in available capacity without control 

 

6.2. Impact on flexibility 

Figure 11(b) shows the variation in the flexibility during normal consumption without control. The 

aggregated consumption is shown in Figure 11(a). It is interesting to notice that the aggregated power 

and the flexibility of the population follow a similar trend. A scatter plot of the aggregated power 

consumption versus flexibility is shown in Figure 12. As the power consumption increases, a greater 

number of refrigerators become available for control and the flexibility also increases. The coefficient 

of the correlation is 0.68. The overall average flexibility of the population of refrigerators is 28%. 

Table 2 summarizes the achieved average power consumption, average temperature, and quantized 

flexibility as percentages for the four different scenarios. The change in the flexibility during different 

levels of power reduction is shown in Figure 13. The change in the flexibility for scenario 2 is shown 

in Figure 13(a). The overall average of the flexibility for scenario 2 is 43%. 



 

Figure 12. Correlation between aggregated power and flexibility 

 

Table 2. Change in flexibility in different control scenarios. 

Scenario 
Power 
limit  
[W] 

Achieved  
average power 

[W] 

Average 
temperature 

[°C] 

Available 
flexibility 

[%] 

1 - 836 7.1 28 

2 800 801 7.2 43 

3 400 607 8.1 10 

4 200 526 8.0 5 

 

In scenario 2, the controller maintains the aggregated power close to the average value of the 

aggregated consumption in scenario 1, and the flexibility of the population increases from 28% to 

43%. Therefore, flexibility in scenario 2 increases by 54% compared to the base case, scenario 1. This 

phenomenon is due to the control of a greater number of refrigerators to maintain the aggregated 

power close to the set value.  The flexibility of a refrigerator is available when it is switched OFF by 

the controller, since it can be switched ON again if needed. On the contrary, in scenario 1, the 

flexibility becomes unavailable when the refrigerator is switched OFF by the internal thermostat as 

shown in Figure 10.The overall average temperature of the population increases by 1% in scenario 2 

in comparison with scenario 1.  In scenario 3, when the power reduction is 50%, the flexibility 

decreases by 64% in comparison with scenario 1. The flexibility of the population is 10%. The 



flexibility of the population decreases to 5% in scenario 4, which can be considered as a residual 

capacity which cannot be utilized further. The residual capacity is due to the minimum switch-off time 

requirement of the refrigerator in order to avoid compressor damage due to fast switching and the high 

in-rush current during start-up. 

 

Figure 13. Change in available capacity with different power reductions. 

 

7. Conclusions and future work 

This paper studied the impact of DR activation on TCL flexibility variation with different levels of 

power reduction through a field experiment using refrigerators as an example case. The normal 

operation of refrigerators shows large variations in power consumption. The flexibility available with 

the refrigerators under normal operation is 28%. Due to the natural thermostatic cycles, half of the 

population is not available for control. The flexibility available with the population of refrigerators in 

terms of flexibility increases by 54% when the refrigerators are controlled for the average aggregated 

consumption. Therefore, if the aggregator has direct access to the compressor control, an average 

flexibility of 50% is possible. When the refrigerators are controlled to reduce their power to 50% of 

their average consumption, as seen in scenario 1, the overall average temperature of the population 

increases by 14% and the flexibility decreases to 10%. If the aggregated consumption is reduced by 

75%, due to the temperature limit restriction, the maximum possible reduction is 37%. This causes the 



maximum reduction in the flexibility: to the value of 5%.It will be interesting to carry out a further 

study by changing the selection criteria of the refrigerator. The controller ability for refrigerator 

selection can be modified by considering the available watt-hour capacity of individual refrigerators 

or by considering the available percentage flexibility of the individual refrigerator instead of making a 

selection based on the length of the switch-OFF time. The new resource selection strategy may 

improve the performance by avoiding refrigerator synchronization. 
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