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Abstract

In the present work, we confirm the observation from Ianniruberto and Marrucci [1] that entangled melts
of branched polystyrenes behave like linear polystyrenes in the steady state of fast extensional flow, by
measuring a linear, an asymmetric star and a symmetric star polystyrenes with the same span molecular
weight (180 kg/mol). We show that all three melts reach the same extensional steady-state viscosity in
fast extensional flow (faster than the inverse Rouse time). We further measure stress relaxation following
steady extensional flow for the three melts. We show that initially they relax in a similar way, most
likely via arm retraction, at short time, but behave differently at long time due to both the length of
the arm and the branch point. The terminal relaxation is described by a Doi and Edwards based model,
i.e. considering pure orientational relaxation.

1 Introduction

It is well known that the rheological behavior of polymers is intimately related to their molecular structure.
The tube model, which is the most prolific theory proposed by Doi, Edwards, and de Gennes [2, 3], has been
modified for more than three decades and has successfully predicted the linear viscoelastic (LVE) properties
of entangled polymer systems with different molecular structures (e.g. [4, 5, 6, 7]). But the tube model
poorly describes polymer dynamics in nonlinear flows, especially in extensional flow. Recent experimental
and theoretical works on linear polymer chains suggest that the inclusion of anisotropic molecular friction
in the tube model could increase the agreement between model predictions and experimental trends[8, 9,
10, 11, 12, 13, 14].

However, industrial polymers are not always linear polymers. For example, low-density polyethylenes
(LDPEs) are long-chain branched polymers. Although theoretical predictions of the nonlinear rheology for
LDPEs have shown some success [15, 16], the models are quantitatively weak in predicting experimental
observations at large deformation in fast extensional flow [17, 18]. The underlying mechanism governing
the nonlinear response of branched polymers is still unclear due to the lack of experimental data and for
the case of LDPE due to its complex random branched structure. Starting with a well-defined branched
structure is paramount in understanding the contribution of branches to nonlinear extensional flow. Re-
cently, Ianniruberto and Marrucci [1] reported that entangled melts of branched polystyrenes (PS) behave
like linear PS in the steady state of fast extensional flow. This interesting conclusion is based on the data
from Nielsen et al. [19] for a star and a pompom PS, which is, to our knowledge, the only published data
of steady-state viscosity in strong extensional flow for branched polymers of well-defined structures.

In this work, we systematically explore the nonlinear dynamics of model branched polymers starting
from the simplest structure, which are star polymers with three arms. We investigated three PS melts, a
symmetric star, an asymmetric star and a linear PS, in both fast extensional flow and stress relaxation.
We show that the three melts behave identically in the steady state of fast extensional flow, which is in
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agreement with the observation from Ianniruberto and Marrucci [1]. However, in stress relaxation following
steady extensional flow, relaxation of the different samples depends on the presence of the branch point and
the length of the arm.

2 Experimental

2.1 Materials

Three PS melts with different molecular structures, a linear PS Lin180, an asymmetric star PS Star20,
and a symmetric star PS Star90, were synthesized via anionic polymerization. All three PS molecules have
the same backbone of molecular weight 180kg/mol, and an arm located in the center of the backbone of
molecular weight 0kg/mol(Lin180), 20kg/mol(Star20) and 90kg/mol(Star90), respectively. The molecular
structures are illustrated in Figure 1.

Figure 1: Illustration of molecular structures for Lin180, Star20 and Star90.

The details of synthesis for Star20 and Star90 can be found in Ref. [20]. Table 1 summarizes the weight
average molecular weight Mw and the polydispersity index Ð for the two star polymers, where the values
are taken from Table 4 in Ref. [20]. PS lin180 was synthesized by living anionic polymerization under high
vacuum conditions by using sec-BuLi as initiator and the reaction was carried out in benzene overnight
and terminated with nitrogen-sparged methanol. The sample was then further purified by fractionation in
toluene/methanol to remove high molecular weight impurities formed during termination. The size exclusion
chromatography (SEC) analysis has been carried out as reported in Ref. [20] for the stars, and the values
are also listed in Table 1.

Table 1: The properties of the polystyrenes
Sample name Molar mass of long arm Molar mass of short arm Molar mass of polymer

Mw[g/mol] Ð Mw[g/mol] Ð Mw[g/mol] Ð
Lin180 – – – – 187000 1.02
Star20 92400 1.03 20500 1.05 208300 1.03
Star90 92400 1.03 – – 289100 1.03

2.2 Mechanical spectroscopy

The LVE properties of the PS were obtained from small amplitude oscillatory shear (SAOS) measurements.
An 8mm parallel plate geometry was used on an ARES–G2 rheometer from TA instruments. The mea-
surements were performed at different temperatures between 130 ◦C and 160 ◦C under nitrogen. For each
sample, the data was shifted to a single master curve at the reference temperature Tr = 130 ◦C using the
time–temperature superposition (TTS) procedure. As shown in the inset of Figure 2(a), the temperature
shift factor aT for all the PS samples was found to follow the Williams-Landel-Ferry (WLF) equation

log10aT =
−c0

1 (T − Tr)
c0

2 + (T − Tr)
, (1)

2



10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

125 130 135 140 145 150 155 160 165
10

-3

10
-2

10
-1

10
0  Lin180

 Star20

 Star90

 WLF

 

 

a
T

T [°C]

 Lin180 

 Star20 

 Star90 

 Multimode Maxwell Fitting

 G
’ [

P
a
]

ω [rad/s]

(a)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 Lin180 

 Star90 

 PS-285k 

 

G
’, 

G
’’ 

[P
a

]

ω [rad/s]

 Lin180 

 Star20 

 Star90 

 Multimode Maxwell Fitting

 G
’’ 

[P
a
]

ω [rad/s]

(b)

Figure 2: LVE data fitted with the multimode Maxwell spectrum at 130 ◦C for Lin180, Star20 and Star90.
(a) Storage modulus G′ as a function of angular frequency ω; The inset shows the temperature shift factor
aT for the three samples. (b) Loss modulus G′′ as a function of angular frequency ω; The inset shows both
G′ and G′′ for Lin180, Star90 and PS-285k. The data of PS-285k is taken from Ref.[10].
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where c0
1 = 8.99, c0

2 = 81.53K, Tr = 130 ◦C, and T is temperature in ◦C [21]. Figure 2 shows the
storage modulus G′ and loss modulus G′′ as a function of angular frequency ω for all the samples. At high
frequency (approximately ω > 1 rad/s), the G′, G′′ data almost overlap each other, indicating the three PS
samples have similar glass transition temperatures. The LVE behavior for well entangled polymer systems
is characterized by the entanglement density. To be specific, for nearly monodisperse linear polymers, it is
characterized by the number of entanglements per chain Z. In our previous work, we have shown that linear
polymer melts and solutions with the same Z have the same normalized shape of G′, G′′ curves [10, 12, 13].
Since each linear polymer chain has two ends, Z can be also understood as the number of entanglements
per two chain-ends. If we define Ze as the number of entanglements per chain-end, then Lin180 and Star90
have the same Ze. From Figure 2, it can be seen that the G′, G′′ curves of Lin180 and Star90 overlap each
other over a wide frequency range in the viscoelastic regime where G′ > G′′ (see the inset of Figure 2(b)).
This is essentially in accordance with the fact that a symmetric star polymer with arm mass Ma and a
tethered chain of mass Ma have the same Rouse time [1]. By contrast, the G′, G′′ curves of Star90 in the
viscoelastic regime do not overlap with the linear PS-285k (data taken from Ref. [10]) which has the same
molecular weight, due to the fact that PS-285k has a larger Ze. The G′, G′′ curves of Lin180 and Star90
differ in the flow regime at low frequency (approximately ω < 0.002 rad/s) due to the branch point. As for
the asymmetric star PS, the short arm of Star20 is not well entangled (about one entanglement) and thus
relax much faster than the backbone. In the viscoelastic regime, Star20 shows lower G′, G′′ values than
Star90 and Lin180, indicating the relaxed arms behave like a solvent which dilutes the system. In the flow
regime, Star20 shows higher G′, G′′ values than Lin180, also due to the existence of the branch point.

2.3 Extensional stress measurements

The extensional stress was measured by a filament stretching rheometer (FSR) [22]. Prior to making a
measurement, the samples were molded into cylindrical test specimens with a fixed radius of R0 = 2.7mm.
The initial length L0 of the test specimens was controlled by the addition of a given mass of the sample
into the mold. The aspect ratio Λ0 = L0/R0 is between 0.46 and 0.60. The samples were pressed at 150 ◦C
and annealed at the same temperature under vacuum until the polymer chains were completely relaxed.

All the samples were pre–stretched to a radius Rp ranging from 1.1mm to 1.8mm at 150 ◦C prior to
the experiments. After pre–stretching, the temperature was decreased to 130 ◦C for the extensional stress
measurements. The samples were kept under a nitrogen environment during all measurements. They were
checked by SEC again after the extensional stress measurements to ensure that there was no degradation.

During the extensional measurements, the force F (t) is measured by a load cell and the diameter 2R(t)
at the mid-filament plane is measured by a laser micrometer. At small deformation in the startup of the
elongational flow, part of the stress difference comes from the radial variation due to the shear components in
the deformation field. This effect may be compensated by a correction factor as described in Ref. [23]. The
Hencky strain and the mean value of the stress difference over the mid–filament plane are then calculated
as

ǫ (t) = −2 ln (R (t) /Rp) (2)

and

〈σzz − σrr〉 =
F (t) − mf g/2

πR(t)2 ·
1

1 + (R (t) /R0)10/3
· exp (−Λ3

0) / (3Λ2
0)

, (3)

where mf is the weight of the filament and g is the gravitational acceleration. The strain rate is defined as
ǫ̇ = dǫ/dt. A recently updated control scheme [24] is employed in the FSR to ensure accurate constant strain
rate. The extensional stress growth coefficient is defined as η̄+ = 〈σzz − σrr〉 /ǫ̇. In the stress relaxation
phase following the startup of uniaxial extension, the mid-diameter of the filament is kept constant by the
control scheme, giving ǫ̇ = 0. The extensional stress decay coefficient is defined as η̄− = 〈σzz − σrr〉 /ǫ̇,
where ǫ̇ is the strain rate in the startup of the flow.
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3 Results and Discussion

3.1 Startup and steady–state extensional flow

Figure 3(a) shows the extensional stress growth coefficient as a function of time at different strain rates
for the three PS melts. The measurements of the lowest strain rate (0.0003s−1) were originally performed
at 150 ◦C and shifted to 130 ◦C using the TTS procedure. All the other measurements were performed at
130 ◦C directly. The LVE envelope in the figure is calculated by

η̄+(t) = 3
∑

giτi(1 − e−t/τi), (4)

where gi and τi are obtained by fitting the LVE data in Figure 2 with the 10-mode Maxwell relaxation
spectrum. The 10-mode Maxwell relaxation modulus G(t) is given by

G(t) =
10

∑

i=1

gie
−t/τi . (5)

The values of gi and τi are listed in Table 2.

Table 2: Linear viscoelastic spectrum for the PS melts at 130 ◦C
Sample Lin180 Star20 Star90

τi[s] gi[Pa] τi[s] gi[Pa] τi[s] gi[Pa]
0.00068 3.076 · 107 0.00068 3.076 · 107 0.00068 3.076 · 107

0.00322 1.479 · 106 0.00322 1.479 · 106 0.00322 1.479 · 106

0.01525 5.347 · 105 0.02201 6.251 · 105 0.02144 7.509 · 105

Relaxation 0.07226 3.660 · 105 0.11062 2.446 · 105 0.12209 2.817 · 105

spectrum 0.34231 1.328 · 105 0.55594 1.042 · 105 0.69525 1.112 · 105

1.62159 6.097 · 104 2.79398 6.049 · 104 3.95906 5.451 · 104

7.68170 5.108 · 104 14.0417 4.929 · 104 22.5447 4.840 · 104

36.3893 4.872 · 104 70.5689 4.408 · 104 128.380 6.682 · 104

172.381 6.852 · 104 354.657 5.126 · 104 731.056 6.451 · 104

816.595 6.577 · 104 1782.40 3.135 · 104 4162.97 2.725 · 104

It can be seen that at low stretch rates, the three melts behave differently in extensional flow, which
is consistent with their different LVE envelope. However, in the fast extensional flow (i.e. at strain rates
faster than 0.003s−1), the melts with different molecular structures interestingly behave identically. They
show the same extensional stress growth coefficient in the startup of the flow, and reach the same steady-
state viscosity. It is more clear to see the identical behavior of the three melts in Figure 4(a), where the
extensional steady-state viscosity is plotted as a function of the stretch rate. By contrast, with the same
molecular weight, PS-285k (data taken from Ref.[10]) is more strain hardening than Star90 and reaches
higher steady-state viscosity values at the same stretch rates, as shown in Figure 3(b). This difference is
attributed to the different Rouse time. The Rouse time for PS-285k is about 203s at 130 ◦C [10], while for
Star90 is about 87s (the same as Lin180). If we plot the steady stress (normalized by the plateau modulus,
G0

N = 250kPa for all the PS samples) as a function of the Weissenberg number WiR = ǫ̇τR (assuming
Star20 also has the same Rouse time as Lin180 and Star90), a master curve is obtained at WiR > 1 which
scales with WiR

0.5, as shown in Figure 4(b). This observation agrees with the suggestion by Ianniruberto
and Marrucci (Figure 6 in Ref.[1]) that entangled melts of branched PS (stars and pompoms) behave like
linear PS in the steady state of fast elongational flow.

3.2 Stress relaxation following extensional flow

As mentioned above, in fast extensional flow (WiR > 1), the data suggests that the effects caused by the
presence of the arm and the branch point are shielded. Both asymmetric Star20, causing dilution in LVE,
and the symmetric Star90 behave identically with the linear PS Lin180. We now ask whether the three
polymers have the same behavior in stress relaxation, especially at short time scales. To investigate this
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Figure 3: The measured extensional stress growth coefficient as a function of time at different strain rate at
130 ◦C for (a) Lin180, Star20 and Star90; (b) Star90 and PS-285k. Data of PS-285k is taken from Ref.[10].
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Figure 4: (a) The extensional steady-state viscosity as a function of strain rate for Lin180, Star20 and
Star90 at 130 ◦C.(b) The normalized steady stress as a function of Weissenberg number for all the melts.
Data of PS-285k is taken from Ref.[10].
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Figure 5: The measured extensional stress growth/decay coefficient as a function of time at 130 ◦C for
(a) Lin180 and Star20; (b) Lin180 and Star90. For each measurement, the startup of the flow is uniaxial
extension with constant strain rate 0.03s−1. The flow is stopped and followed by stress relaxation at Hencky
strain 3.2. The open symbols are the corresponding data of uniaxial extension taken from Figure 3.
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question, each melt was stretched with the constant strain rate 0.03s−1 at 130 ◦C, which is faster than the
inverse Rouse time 1/τR (about 0.01s−1), until reaching steady state at Hencky strain 3.2 where the flow
was stopped and the stress decay coefficient was measured. When steady state is reached, the relaxation
behavior is unaffected by the imposed Hencky strain [25]. Therefore it is not necessary to stop the flow at
a Hencky strain value higher than 3.2.

Figure 5 shows the results. Each measurement in the figure was repeated at least once to confirm
reproducibility. In the stress relaxation regime shown in Figure 5(a), Star20 initially overlaps Lin180 at
short time. After which, Star20 relaxes faster than Lin180, showing a lower stress decay coefficient. This
faster relaxation of Star20 is most likely due to the relaxed short arm, which behaves like a solvent and acts
to dilute the backbone. At longer times, Star20 relaxes slower than Lin180, which is indicated by the fact
that the Star20 relaxation curve crosses Star90, leading to a quantitatively larger stress decay coefficient.
As mentioned in the LVE discussion, the slower relaxation at long time is most likely due to the branch
point of Star20. In comparison, the relaxation of Star90 and Lin180 are quantitatively similar for much
longer time, as shown in Figure 5(b). However at long time very similar to Star20, Star90 relaxes slower
than Lin180 , which again is argued to be due to the branch point.

As a reference for the nonlinear behavior, we first compare the data with the prediction of the original
reptation based model introduced by Doi and Edwards [2]. The stress tensor of the Doi–Edwards (DE)
model is expressed as

σ (t) =
∫ t

−∞

M(t − t′)SDE(t, t′)dt′. (6)

The original DE model utilizes a specific form of the LVE memory function M(t−t′) developed for monodis-
perse linear polymers. This form from the original DE model will not fit the LVE properties of the star
polymers. Since we focus on the nonlinear properties in extensional flow, here for LVE properties we just
use the multi-mode Maxwell memory function

M(t − t′) =
∑

i

gi

τi
e−(t−t′)/τi , (7)

which corresponds to the experimentally determined relaxation function with parameters gi and τi in table
2. SDE in Eq.6 is the strain tensor given by

SDE(t, t′) =
15
4

1
〈|E · u|〉

〈

E · u E · u

|E · u|

〉

, (8)

where u is the unit vector and E is the relative deformation gradient tensor. The bracket denotes an average
over an isotropic distribution. A K–BKZ representation that closely approximates the rigorous DE model
has been provided by Hassager and Hansen [26].

The dashed lines in Figure 5 show the results of the DE prediction. Since Eq.6 does not include the
evolution of chain stretch, the predicted results do not capture the strain hardening behavior in the startup
of the flow and thus reach a much lower steady-state value. However, in the relaxation regime, the DE
model predicts reasonably well the relaxation behavior of both linear and star PS at long time.

We further analyze the results by re-plotting and scaling the data of the relaxation in Figure 5. We shift
the time t = 0 to the time when relaxation starts, and normalize the stress decay coefficient by the value
at t = 0 (when relaxation starts). The plots are shown in Figure 6(a). Three regions are identified in the
figure. At very short time in Region I (approximately <15s), the relaxation of the three melts are identical.
At intermediate times, Region II (approximately between 15s and 500s), Star90 and Lin180 still behave
identically, while Star20 relaxes faster. At long times, Region III (approximately >500s), the relaxation of
all three melts are different from each other. As mentioned above, the relaxation behavior in Region III is
well described by the DE model. Regarding Region I and II, if we assume the arms relax independently and
simultaneously, and also assume Lin180 as a two-arm star, it is not surprising that three relaxation curves
overlap. These arguments also explain the relaxation behavior of Star20. In Region I Star20 relaxes very
similar (e.g. via arm retraction) as Star90 and Lin180. In Region II, the short arm of Star20 is completely
relaxed, resulting in a lower stress level for the diluted system. However, if we vertically shift the relaxation
curve of Star20 up, the curve of Star20 in Region II overlaps that of Star90 as shown in Figure 6(b). This
strongly suggests that the remaining two arms of Star20 relax via the same mechanisms as Star90 and
Lin180.
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Figure 6: The normalized stress decay coefficient as a function of time at 130 ◦C for (a) Lin180, Star20 and
Star90. The data are taken from the stress relaxation phase from Figure 5. The time t = 0 is shifted to
the time when relaxation starts, and the stress decay coefficient is normalized by the value when relaxation
starts. (b) Star20 and Star90; The data of Star20 is vertically shifted up with a factor of 1.5.
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4 Conclusions

We have shown that linear (Lin180), asymmetric star (Star20) and symmetric star (Star90) PS melts with
the same molecular weight backbone reach the same extensional steady-state viscosity in fast extensional
flow (faster than the inverse Rouse time) at the same Weissenberg number based on the backbone Rouse
time. The effects from the arm and the branch point appear to be shielded causing all PS melts to behave
like linear PS, as previously suggested by Ianniruberto and Marrucci [1]. We further explored the dynamics
in stress relaxation following steady extensional flow. The relaxation at long time (terminal relaxation) is
well described by a Doi and Edwards based model, i.e. considering pure orientational relaxation (via arm
length fluctuation and reptation). At short time, the analysis of the relaxation data suggests that all three
melts relax similarly via arm retraction. More work, e.g. characterization by neutron scattering on quenched
PS samples, are necessary for a full understanding of the nonlinear dynamics of branched polymers.
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