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We study two-stream instabilities in a nonequilibrium system in which a stream of electrons is injected
into doped graphene. As with equivalent nonequilibrium parabolic band systems, we find that the graphene
systems can support unstable charge-density waves whose amplitudes grow with time. We determine the range
of wave vectors q that are unstable, and their growth rates. We find no instability for waves with wave vectors
parallel or perpendicular to the direction of the injected carriers. We find that, within the small-wave-vector
approximation, the angle between q and the direction of the injected electrons that maximizes the growth rate
increases with increasing |q|. We compare the range and strength of the instability in graphene to that of two-
and three-dimensional parabolic band systems.

DOI: 10.1103/PhysRevB.94.115401

I. INTRODUCTION

Monolayer graphene consists of a single monolayer of
carbon atoms arranged in a honeycomb lattice. There has been
a tremendous amount of interest in graphene, both theoretical
and experimental, since the initial fabrication by Novoselov
et al. was reported [1]. Most investigations on the electronic
properties of graphene have concentrated on the linear re-
sponse regime, in which the system is slightly perturbed from
its equilibrium state (see, e.g., Refs. [2] and [3]). In this
paper, we theoretically investigate a nonequilibrium situation,
in which a stream of carriers is injected into a doped graphene
sample. We show that this results in an instability in the
collective modes of the system, which is analogous to the
two-stream instability in classical plasmas.

Under certain conditions in classical plasmas, when there
are counterstreaming charged particles, some of the col-
lective modes (i.e., charge density waves or plasmons) of
the plasma become unstable, in the sense that they initially
grow exponentially. This phenomenon, called the two-stream
instability [4], can qualitatively be understood by considering
Landau damping, the process in which plasma waves decay in
equilibrium. In equilibrium situations, the interaction between
plasma waves and the charged particles in the plasma result
in a net transfer of energy from the plasma waves to the
individual charged particles, which leads to the decay of the
plasma waves. However, in certain nonequilibrium situations
the inverse can occur: the plasma waves absorb a net amount
of energy from the charged particles and the waves grow in
amplitude.

The possibility of two-stream instabilities in solid-state
systems has been studied theoretically by several investigators.
Pines and Schrieffer [5] considered the possibility of these
instabilities in 3-dimensional solid-state systems in which both
electron and holes are present, such as semimetals or small-
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band-gap semiconductors. A static electric field would cause
the electrons and holes to counterstream in opposite directions
and can in principle produce the instability. However, in
practice, the strong electron-hole scattering in 3-dimensional
systems suppresses the counterstreaming motion of the elec-
trons and holes. Several groups have theoretically investigated
two-stream instabilities in coupled two-dimensional structures
such as closely spaced electron and hole doped quantum
wells to separate the oppositely charged carriers [6–16].
However, even in these systems with reduced electron-hole
scattering due to the spatial separation between the two carrier
species, the strength of electric fields necessary to obtain
sufficient large relative drift velocities of the electron and hole
populations would cause heating of the carriers that suppresses
the instability. Another way of obtaining counterstreaming
carriers with sufficiently large relative drift velocities is by
injection of carriers at high velocities into a doped system.
However, in order to achieve high velocities, for parabolic-
band systems, carriers must be injected at high energies. These
high-energy carriers usually scatter inelastically very quickly,
typically with optical phonons, which makes it difficult to set
a steady-state system with counterstreaming carriers.

In systems with bands that have linear dispersions such
as graphene, the velocity of a carrier is independent of the
energy. Thus, it is possible to obtain large relative drift
velocities without having to inject carriers with large energies
or apply very large electric fields. Therefore, the reasons given
above which tend to suppress the instability in parabolic-band
systems do not apply in linear-band systems. In this paper, we
show that it is in fact possible to obtain two-stream instabilities
in linear-band systems such as graphene.

The outline of this paper is as follows. In Sec. II, we discuss
the formalism that we use to calculate the dispersion and
growth rates of unstable collective modes (i.e., plasmons) both
in a doped parabolic band semiconductor (for comparison)
and in doped graphene, both with an injected stream of carriers.
In Sec. III, we review the two-stream instability in two- and
three-dimensional parabolic-band systems, and in Sec. IV, we
investigate the two-stream instability in graphene and compare
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the results to parabolic band systems. Section V contains our
discussion and conclusion.

II. FORMALISM

In order to obtain the dispersion relation and growth rates
of the plasmons, we analyze the relative dielectric function
ε(q,ω) of extrinsic graphene in the presence of an injected
stream of carriers. The dielectric function is defined to be
the ratio of an externally induced potential Vext(q,ω) to
the total potential Vtot(q,ω) [the sum of Vext(q,ω) and the
internal potential due to the charge density perturbation in
the system] [17] ε(q,ω) = Vext(q,ω)/Vtot(q,ω). The plasmon
modes of wave vector q are obtained by solving for ωq in
the equation ε(q,ωq) = 0, since this condition implies the
existence of a Vtot(q,ω) without an external perturbation,
indicating a self-sustaining wave. Since the time and spatial
dependence of the density perturbation of the collective mode
is nq exp (i[q · r − ωq t]), if Im(ωq) > 0 then the density per-
turbation grows exponentially (at least initially, until nonlinear
effects become apparent).

The dielectric function ε(q,ω) can be obtained at various
levels of approximation. We use the long-wavelength limit of
the random-phase approximation [18], which can be derived
by solving the quantum-mechanical equations of motion of
the charge carriers under the influence of a mean-field electric
potential, and Poisson’s equation. The long-wavelength limit
gives results that can also be derived using classical plasma
physics, together with the relationship between the velocity
and momentum, i.e., in the case of parabolic band systems,
v( p) = p/m, where m is the effective mass of the carriers,
and, in the case of graphene, v( p) = v0 p/| p|, where v0 is the
speed of the electron in graphene.

We assume that our system is doped at a density n1 of
carriers, and there is no magnetic field. We also assume
that the injected beam of carriers of density n2 is peaked
around a particular momentum p0. In the random phase
approximation, the polarizability of the two charge carriers
confined to the same space is equal to the sum of their
individual polarizabilities, and hence the dielectric function
has the form [18]

ε(q,ω) = 1 − Vc(q)[�1(q,ω) + �2(q,ω)], (1)

where �1(q,ω) and �2(q,ω) are the polarizabilities of the
equilibrium carriers in the doped system and the injected
carriers, respectively, and Vc(q) is the Fourier transform
of the bare Coulomb interaction (statically screened by a
background dielectric) appropriate to the dimension of the
system considered. We shall concentrate on long-wavelength
(small q) collective modes. In this limit the polarizabilities are
given by

�(q,ω) =
∫

d p
q · ∇f ( p)

q · v − ω
, (2)

which is the small q expansion of the random phase approxi-
mation [19]. Here, f ( p) is the distribution function, with the
normalization condition n = ∫

d p f ( p), and v( p) = ∇ pE,
where E( p) is the band kinetic energy.

We assume that the doping carriers (subsystem 1) have
an equilibrium distribution at zero temperature [i.e., f1( p) =

constant for | p| < pF and f ( p) = 0 for | p| > pF ] which is
also appropriate when the temperature is much less than the
Fermi temperature. Then in the small-q, nonzero frequency
limit

�1(q,ω) = C
n1q

2

ω2
, (3)

where C is a constant which is dependent on the system
dimension and energy dispersion E( p).

For the injected carriers, we assume that the distribution
is constant within a certain “distance” (in momentum space)
of p0 and zero otherwise, which in the small-q limit can be
approximated by f2( p) = n2 δ( p − p0). The form of �2(q,ω)
is dependent on the system dimension and the E( p). We
also assume that f2( p) retains its δ-function distribution over
the length of the system. This assumption is of course an
approximation, because this is a nonequilibrium distribution
that is subject to collisions that will thermalize it. We argue
in Sec. V that for a certain experimentally relevant range
of parameters, the thermalization is not significant over the
relevant device length scales, justifying the approximation
the injected electrons retain their δ-function distribution
throughout the system.

In the following sections we investigate the unstable modes
which result from systems with an injected nonequilibrium
beam of charged carriers. Before we present the results for
graphene, we discuss the more familiar case of instability in
three- and two-dimensional solid-state systems with parabolic
energy band. We then compare the dispersion relation, region,
and strength of instability of the parabolic band and graphene
cases.

III. PARABOLIC BANDS

In this section, we review the two-stream instability for
parabolic bands where E( p) = p2/2m, where m is the effec-
tive mass. The three-dimensional case has been well studied
by plasma physicists as it corresponds to a standard classical
plasma where one charge distribution is streaming relative
to another [4]. The two-dimensional case which corresponds
to injection of a nonequilibrium beam of electrons into a
two-dimensional electron gas such as a doped quantum well
has also been considered by various authors [6–13,15].

For parabolic bands, the polarizability of the equilibrium
distribution subsystem 1 in the nonzero-ω, small-q limit is [20]

�1(q,ω) = n1q
2

mω2
, (4)

and, as shown in the Appendix, the polarizability of the injected
beam of charges is

�2(q,ω) = n2q
2

m(ω − qv0 cos θ )2
, (5)

where θ is the angle between q and v0, the velocity of the
injected carriers.

Using Eqs. (4) and (5) in Eq. (1) and setting ε(q,ω) equal
to zero gives the dispersion relation for three-dimensional
systems with a parabolic band of

1 = 4πe2

mκ

[
n1

ω2
+ n2

(ω − qv0 cos θ )2

]
, (6)
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FIG. 1. (a) Imaginary part of ω (the growth rate) as a function of wave number for different angles θ between wave vector q and injected
carrier momentum p0, for a three-dimensional parabolic band system. The mass is taken to be the bare electron mass, κ = 1, n1 = 1018 cm−3,
n1/n2 = 10, and the energy of the injected electrons is E = 10 meV above the Fermi energy. Panels (b) and (c) show the dispersion relation
for angles θ = 10◦ and θ = 45◦, respectively. The solid lines are the real part of |ω| and the dashed lines are the imaginary part of the modes
that split at around 1.0 × 106 cm−1 and 1.5 × 106 cm−1 in (b) and (c), respectively.

and for two-dimensional systems of

1 = 2πe2q

mκ

[
n1

ω2
+ n2

(ω − qv0 cos θ )2

]
, (7)

where κ is the dielectric constant of the background material.
We note that these dispersion relations can also be obtained
using Newton’s equations of motion and Poisson’s equation,
which is the standard approach that is used in classical plasma
physics [4]. The random-phase-approximation formalism that
we have used, however, can be generalized to include quantum
effects (which are important when q is not small), while the
classical plasma physics method cannot.

Comparing Eqs. (6) and (7), there is an additional factor
of q/2 on the right-hand side of Eq. (7), which arises from
the different forms of the Fourier transform of the Coulomb
interaction in two and three dimensions. This factor of q/2
results in significant differences between the instabilities in
three and two dimensions.

In Eqs. (6) and (7), the equilibrium value of the equilibrium
charge density n1 is not necessarily equal to that of the injected
charge carriers n2. Typically, in standard neutral plasmas, the
densities are equal, since n1 usually corresponds to the density
of the positive ions and n2 to the density of electrons. Since
we are dealing with solid state systems, we assume that there
is a uniform background charge that compensates for any net
charge of the mobile charge carriers including injected charge.

Multiplying Eqs. (6) and (7) by their respective denomina-
tors of the terms on the right-hand side gives a fourth-order
polynomial equation for ω, so four roots are expected. The
instability of the plasma wave is determined by whether the
roots are all completely real or only two are completely real
and two have nonzero imaginary parts. If only two roots are
completely real, the remaining two roots appear as a complex
conjugate pair. The root with a positive imaginary value of
ω [i.e., Im(ω) > 0] indicates the exponentially growing wave,
as can easily be seen by inserting a complex ω into the time
dependence of the wave, exp(−iωt), which results in a factor of

exp[Im(ω)t]. Thus, Im(ω) gives the growth rate of the unstable
wave [4].

The solutions of the roots of Eqs. (6) and (7) were obtained
numerically using MATLAB. We assumed the ratio n1/n2 = 10,
where n1 = 1018 cm−3 and n1 = 1012 cm−2 for the three- and
two-dimensional cases, respectively.

Figures 1(a) and 2(a) show the imaginary part of the
complex root of Eqs. (6) and (7), respectively. It can be
seen that for both three- and two-dimensional systems, the
instabilities occur at low wave number and disappear above a
certain cutoff q. In three-dimensional systems, the peak value
of Im(ω) is the same for any given angle, but the peak wave
number shifts to higher q as the angle θ between q and p0

increases. The reason for this evident when the dispersion
relation Eq. (6) is examined. The only dependence on the
dispersion on q is in the denominator of the second term on
the right, where q is multiplied by cos θ . Therefore, the effect
of changing the angle θ is to “renormalize” the value of q for
θ = 0◦ to q cos θ for θ �= 0◦. In the two-dimensional case, in
addition to a shift in the position of the peak of the growth rate
Im(ω) towards increasing value of q with increasing angle θ

that is seen in the three-dimensional case, the magnitude of
the peak also increases. This is due to the additional factor of
q on the right-hand side of the dispersion relation. Panels (b)
and (c) of both Figs. 1 and 2 show the real and imaginary
parts of the dispersion relations for a representative small
(10◦) and moderately large (45◦) angle of q with respect to
p0. There are four modes, two of which have frequencies that
are always real, which correspond to the standard plasmon
propagating in opposite directions, and two of which come in
complex conjugate pairs below a certain q (which depends on
the angle).

These results for the growth rates are reproduced as surface
and contour plots in Figs. 3 and 4 for three-dimensional and
two-dimensional parabolic band systems, respectively, where
it is assumed that the momentum of the injected charge carriers
is in the positive x direction. We see easily from these plots
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FIG. 2. Same as in Fig. 1 for a two-dimensional parabolic-band system with n1 = 1012 cm−2, and other parameters unchanged.

that in the three-dimensional case the instability depends only
on the component of qx (the component of q in the direction
of charge carrier injection) and is independent of qy (which,
by symmetry, is equivalent to any component of q that is
perpendicular to the x direction). This is easily explained by
inspection of the dispersion relation Eq. (6), where the only
dependence on the wave number q occurs as q cos θ , which
is equal to qx . In the two-dimensional case the growth rate is
also dependent on qy , because of the presence of the additional
factor of q = (q2

x + q2
y )

1
2 in the dispersion relation Eq. (7), as

compared to Eq. (6) for the three-dimensional case.
The plots presented in Figs. 3 and 4 also explain what

appears to be a contradictory result in Figs. 1(a) and 2(a).
The range of wave vectors for unstable waves grows as θ

increases from 0◦ to 90◦ but appears to disappear abruptly and
completely when θ = 90◦. Figures 3 and 4 show that there is

no discontinuity when θ → 90◦. What has happened in Figs. 1
and 2 for θ = 90◦ is that the peak of the instability has been
pushed to q → ∞; therefore it does not appear on the plot.
All that is visible is the q → 0 dependence of Im(ω), which
vanishes. We remind the reader that we have used the small-q
approximation and therefore the results presented here are not
reliable at large q.

IV. GRAPHENE

We now investigate the instability when the energy disper-
sion is E(p) = pv0 in a two-dimensional system as in the case
of graphene, where the momentum is taken with respect to
the K and K ′ points in the Brillouin zone. The velocity is
taken to be v0 = 1.0 × 108 cm/s as in graphene. We take the
density of the n1 = 1012 cm−2, which gives a Fermi energy of
εF = �v0

√
πn1 = 120 meV, and the ratio of the density of the
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FIG. 3. Growth rates of the unstable plasmons (Im[ω]) as a function of q for a three-dimensional parabolic-band system, shown as (a) a
surface plot and (b) a contour plot. The parameters used are the same as in Fig. 1. The dark flat region in (a), and correspondingly the region
to the right of qx = 1.0 × 106 cm−1 in (b), is where Im(ω) = 0, i.e., stable waves. In (b), the lowest contour lines are at 2 × 1012 s−1 and the
difference between successive contour lines is 2 × 1012 s−1.
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equilibrium electrons in the system to the injected electrons to
be n1/n2 = 10. We assume that the electrons are injected into
the system at energy of E = 10 meV above the Fermi energy.

For the equilibrium electrons at zero temperature, where
the distribution function is constant for | p| < pF and zero for
| p| > pF , the polarizability for the equilibrium electrons in
the small-q limit is [21]

�1(q,ω) = n1v0q
2

pF ω2
, (8)

and, as shown in the Appendix, the polarizability for a
distribution of density n2 that is peaked around p0 which makes
an angle θ with respect to q is

�2(q,ω) = n2v0q
2 sin2 θ

p0(ω − qv0 cos θ )2
. (9)

Thus setting the dielectric function equal to zero in Eq. (1)
gives the dispersion relation

1 = 2πe2v0q

κ

[
n1

ω2

1

pF

+ n2

(ω − qv0 cos θ )2

sin2 θ

p0

]
, (10)

where κ is the dielectric constant in the 2-dimensional layer.
Equation (10) can be rewritten in the form

1 = ε

z2
+ 1

(z − λ)2
, (11)

where

ε = n1p0

n2pF sin2 θ
, (12a)

z = ω

√
κp0

2πe2v0n2q

1

sin θ
= ω

ω∗(q)
, (12b)

λ =
√

κp0v0q

2πe2n2
cot θ = qv0 cos θ

ω∗(q)
, (12c)

and where

ω∗(q) =
√

2πe2v0n2q

κp0
sin θ (12d)

is the long-wavelength plasmon dispersion for a density of
carrier n2 that is injected into the system with momentum p0.
This results in a quartic equation in z,

z4 − 2λz3 + (λ2 − ε − 1)z2 + 2ελz − λ2ε = 0. (13)

Solving analytically, two of the four roots have nonzero imag-
inary parts when [22] λ < (1 + ε1/3)2/3. Since the coefficients
of the quartic equations are real, the complex roots come in
complex conjugate pairs. In Fig. 5, we plot the imaginary part
of the complex root of Eq. (13) [i.e., Im(z) as a function of
λ and ε]. In order to obtain the instability growth rates as a
function of q = (qx,qy) for certain material parameters, one
first obtains λ and ε for that q and the material parameters. The
Im[z(λ,ε)] is obtained from Eq. (11), and the growth rate can
then be obtained from Eq. (12b); i.e., Im(ω) = ω∗(q)Im(z)
where ω∗(q) is given by Eq. (12d). The results for certain
parameters are shown in Figs. 6 and 7. As in the case of the
instability in the parabolic-band case in two dimensions, for a
given qx , the growth rate increases with increasing qy , and the
instability disappears for q perpendicular to the momentum
of the injected carriers, p0. However, there is an important
qualitative difference between the parabolic band and graphene
cases. For parabolic bands, instabilities occur (up to a certain
wave number) for q along the x axis, that is, parallel to the
direction of injection of the carriers. In the case of graphene,
there is no instability along the x axis. Mathematically, this is
because of the presence of the sin2 θ term in the polarizability
�2(q,ω) for the injected carriers graphene, which is absent in
the equivalent polarizability in the parabolic-band case. As in
Figs. 1(b) and 1(c) and 2(b) and 2(c), Figs. 6(b) and 6(c) show
the real and imaginary parts of the dispersion relations for a
small angle (10◦) and a moderately large angle (45◦) of q with
respect to p0, respectively. The major difference between the
graphene and the parabolic-band cases occurs for small angles.
Note that in the graphene case, for the 10◦ graph, the scales
of the wave vector and growth rates are roughly an order of
magnitude smaller than for the 45◦ graph. In the next section,
we discuss the reason for this significant qualitative difference
between the parabolic-band and graphene cases.
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V. DISCUSSION AND CONCLUSION

The absence of instabilities in modes with q in the same
direction of the injected carriers p0 in graphene is due to
the linear energy dispersion. To understand why this is so,
consider the mechanism for the formation of unstable modes.
When there is a small spatial fluctuation in the charge density
(caused by, for example, a thermal fluctuation) the resultant
electric potential perturbation due to this fluctuation causes
a change in the motion of the charge carriers. In systems
that are in equilibrium, the net effect of the change in the
motion of the charge carriers is to reduce the magnitude
of the spatial fluctuation in charge. However, under certain
nonequilibrium situations, as in the case of two-stream
instabilities, a spatial fluctuation in the charge density causes
a change in the motion of the charge carriers which tends
to increase the fluctuation, resulting in a charge fluctuation

that grows (initially) exponentially. Note that in order for this
unstable feedback loop to occur, the spatial fluctuation in the
charge density has to change the motion of the charge carriers.

In the case of a one-dimensional system where the energy
dispersion is linear, the carriers in an injected beam centered on
momentum p0, say in the positive direction, all have the same
velocity v0. As the velocity of the particles is independent of
the momentum, any change in the momentum of the particles
due to the forces caused by the electric potential due to a
spatial fluctuation in the charge will not change the motion of
the particles. Thus, the unstable feedback loop never occurs
and there is no instability.

This explains why there is no instability in two-dimensional
graphene system when q is in the same direction of the
injected carriers p0, since this situation mirrors that of the
one-dimensional system. But since the speed of particles is
the same for any momentum, why does this argument not
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FIG. 6. (a) Imaginary part of ω (the growth rate) as a function of wave number for different angles θ between wave vector q and injected
carrier momentum p0, for a linear-band system such as graphene. Here, v0 = 1.0 × 108 cm/s, κ = 3 (as for graphene on a BN substrate),
n1 = 1.0 × 1012 cm−2, and n1/n2 = 10, and the energy of the injected electrons is E = 10 meV above the Fermi energy. For both θ = 0◦ and
90◦, the imaginary part of ω is zero. Panels (b) and (c) show the dispersion relations for angle θ = 10◦ and θ = 45◦, respectively; as in
Figs. 1 and 2, the solid lines are the real part and the dashed lines are the imaginary part of the mode that splits.
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FIG. 7. (a) Surface plot and (b) contour plot for Im(ω) as a function of q for graphene, with the same parameters as in Fig. 6. In (b), the
lowest contour line is at 5 × 1012 s−1 and the difference between successive contour lines is 5 × 1012 s−1.

work when q is not in the same direction as p0? As can be
seen from the results shown in Figs. 6 and 7, there are robust
regions of instability for q not parallel to p0.

This is because while the speed of the particles is constant,
their velocities (which also include the direction of motion)
depend on the momentum. Therefore, when q is not parallel
to p0, the density perturbation of the wave produces a force
which affects the direction of the particles in the beam centered
at p0, which affects the velocity of the particles. This allows
the unstable feedback loop to occur, resulting in (initially)
exponentially growing waves.

We note that in this paper, we have made several simplifying
assumptions. We have used a small-wave-vector approxima-
tion, which will break down at wave vectors that are on the
order of the smallest characteristic wave vectors of the distribu-
tions of the electrons. Therefore, the unbounded increase in the
instability growth rates with increase in the magnitude of the
wave vectors that are seen in the two-dimensional instabilities
are an artifact of the small-wave-vector approximation. We
have also not taken into account the effect of the lattice
scattering on the distributions and the instability rates. The
lattice scattering will tend to cause diffusive behavior in
the small-wave-vector regime, which will tend to suppress
the instability growth rates.

Experimentally, one possible method for obtaining the
nonequilibrium distribution of injected carriers in doped
graphene that is required for the occurrence of the two-stream
instability is to use a planar tunnel junction attached to an edge
of a doped graphene flake [23]. The detection of the unstable
waves could be achieved by placing, at the opposite side of
the graphene flake from the injection end, several individually
contacted drains which are at different angles with respect the
direction of the injected electrons. There should be a variation
in the magnitudes of currents detected by the drains, with
the largest enhancement occurring for gates that are placed
at roughly 45◦ with respect to the direction of injection of
the electrons, since the growth rates of the unstable waves in
those directions are the largest. Since the frequencies of the
unstable waves range up to the terahertz regime, these waves

may be beyond the usual detection limit of standard electronic
devices. In this case, it may be possible to detect the waves
via a grating coupler in the drain region, which is designed
to couple to the terahertz plasma waves and emit terahertz
radiation [24], which can then be detected [25]. In fact, using
this technique, this instability might potentially be used as a
source of terahertz electromagnetic waves.

The possibility of observing two-stream instabilities in
graphene is enhanced over standard parabolic-band two-
dimensional electron gases. In parabolic-band systems, in
order to obtain the conditions for a two-stream instability, the
nonequilibrium electrons must be injected at high energy to
obtain the necessary speed. This makes them susceptible to the
strong inelastic scattering processes that typically occur at high
energies (such as optic-phonon and electron-electron scatter-
ing), which quickly degrade the current. In graphene, the speed
of the electrons is independent of the energy, and therefore
there is no need to inject the carriers at high energies in order
to obtain the conditions necessary for a two-stream instability.

This fact supports our approximation that the nonequilib-
rium distribution function maintains its form (i.e., it is strongly
peaked at the injection energy) as it passes through the system.
The main contribution to the thermalization is the electron-
electron scattering of the injected carriers with the equilibrium
carriers that are already in the sample. The single-particle
lifetime of an electron in graphene due to electron-electron
scattering with a Fermi sea of electrons at zero temperature
τee is given by [26] τ−1

ee = −2 Im[�ret] = ξ 2

4πεF
[ln( 8εF

ξ
) − 1

2 ],
where �ret is the on-shell retarded self-energy, εF is the Fermi
energy, and ξ is the energy of the electron relative to εF .
For ξ = 10 meV and εF = 120 meV, corresponding to the
parameters used in Figs. 6 and 7, this gives τee = 2.4 ps,
which translates to a mean-free path of 2.4 μm. This is
considerably larger than the wavelengths of a good portion
of the unstable modes. Furthermore, the τee represents the
single-particle lifetime, which takes into account all scattering
out of a given momentum state, regardless of how small the
momentum transfer is. Due to the long-ranged nature of the
Coulomb scattering, the small-momentum scattering events
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dominate, but these events are very inefficient at degrading
the nonequilibrium distribution function. A more appropriate
measure of the rate of thermalization of the distribution
is the transport lifetime, which weights scattering events
by the momentum loss of the electron. We are not aware
of any calculations of the transport relaxation rate due to
electron-electron scattering in graphene, but if we assume
that charged-impurity scattering rates are an acceptable proxy
for electron-electron scattering, then the transport lifetime
can be over an order of magnitude larger than the single-
particle lifetimes [27]. This furthers bolsters the validity of
our approximation of a constant distribution function for the
injected electrons across the device [28].

Finally, we contrast the two-stream instability described
here with the more well-known Dyakonov-Shur (DS) insta-
bility [29], which has been studied experimentally in field-
effect transistors [30] and theoretically in graphene [31–33].
The DS instability occurs in two-dimensional electron gases,
such as field effect transistors, which have a certain range
of drift velocities and are subject to boundary conditions
of constant total current at one end and constant electric
potential at the other. This leads under appropriate conditions
to the amplitudes of density perturbations inside the two-
dimensional electron gas being enhanced when they reflect
off the boundaries, resulting in unstable waves. The two-
stream instability on the other hand is a bulk effect, and the
boundaries of the sample do not drive the effect. Another major
difference is that the DS instability is based on a hydrodynamic
theory, which assumes that the electron-electron scattering
dominates to the extent that the distribution function is locally
a drifted thermalized distribution. This is the opposite limit
from the two-stream instability, where it is crucial that the
electron-electron scattering is at a low enough level to prevent
thermalization of the nonequilibrium injected electrons.

In conclusion, we have studied two-stream instabilities in
two-dimensional systems with linear energy dispersions, such
as in graphene, in which a beam of electrons is injected into a
doped system. The range of wave vectors in which instabilities
occur in the case of graphene is qualitatively different from
that of conventional three- and two-dimensional parabolic-
band systems. In particular, there is a complete absence of
instabilities in waves with wave vectors that are parallel to the
direction of injection of the nonequilibrium electrons.
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APPENDIX: DERIVATION OF EQUATIONS (5) AND (9)

The expressions for the polarizability in Eqs. (5) and (9)
are derived from substituting the sharply peaked distribution
n( p) = n2δ( p − p0) into Eq. (2). Let q = q x̂, and p0 make
and angle of θ with respect to the x axis, so that p0,x = p0 cos θ

and | p0,⊥| = p0 sin θ , where p⊥ are the components of p that
are perpendicular to the x axis. Then,

�2(q,ω) = n2

∫ ∞

−∞
dpx

∫
all p⊥

d p⊥

×
q ∂

∂px
δ(px − p0,x) δ( p⊥ − p0,⊥)

qvx(px, p⊥) − ω

= n2

∫ ∞

−∞
dpx

q ∂
∂px

δ(px − px,0)

qvx(px,p0,y) − ω

= n2q
2
∫ ∞

−∞
dpx δ(px − p0,x)

× ∂vx(px,p0,y)

∂px

1

[qvx(px,p0,y) − ω]2

= n2q
2 1

[q vx( p0) − ω]2

[
∂vx(px, p0,⊥)

∂px

]
px=p0,x

,

(A1)

where in the above we have integrated by parts to obtain the
third equality.

For parabolic bands, vx = px/m, so that ∂vx

∂px
= 1

m
. Substi-

tuting this into Eq. (A1) gives Eq. (5). For a linear bands in 2

and 3 dimensions, vx = v0
px√

p2
x+p2

⊥
, and therefore ∂vx

∂px
= v0

p2
⊥

| p|3 .

Substituting this into Eq. (A1), and using | p0,⊥| = p0 sin θ ,
gives Eq. (9).

Note that for linear bands in one dimension, vx is constant
and therefore ∂vx

∂px
= 0. (This reflects the fact that in one-

dimensional systems with a linear band, the motion of the
particles does not depend on forces it experiences.) Therefore,
two-stream instabilities do not occur in one-dimensional
systems with linear bands.
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