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Abstract
Atopic dermatitis is a common inflammatory skin disease, affecting 20-30% of children
and 3-4% of adults. The disease has a big adverse impact on the patient’s everyday
life, caused by a variety of factors ranging from the esthetic aspects to the lack of sleep
caused by nightly itch. The prevalence of atopic dermatitis is worldwide increasing,
but treatment options for patients with moderate to severe disease are limited, and
the molecular disease mechanisms are still under debate.
In this work I seek to define the molecular basis of atopic dermatitis by harvesting
and combining publicly available and novel gene expression data, as well as evaluating
disease models on the basis of these findings.
The thesis consists of two parts, where the first gives a general overview of the bio-
logical and computational aspects of my work, and the second presents my findings
through three studies.
The first study is a microarray meta-analysis of publicly available gene expression
data of lesional versus non-lesional atopic dermatitis skin samples. In this study I
applied a random effects model to combine the effect sizes of the published studies,
to estimate a combined effect size and to gain sufficient statistical power to detect
even subtle changes in gene expression; this resulted in a robust disease transcrip-
tome. The second study presents a more exhaustive approach, using a laser cap-
ture micro dissection technique to separate atopic dermatitis skin biopsies into their
two main compartments (epidermis/dermis), with subsequent comparative transcrip-
tomics analyses. We find that this approach is substantially more sensitive than
analysis of full-thickness biopsies in terms of detecting compartment specific genes
and generally low expressed genes.
The third study compares the global gene expression of six mouse models to my pre-
vious findings, to enable ranking of the models according to their molecular overlap
with atopic dermatitis. We suggest that not one model is superior, but that the choice
of model should depend on the disease aspects to be covered.
Altogether, the work in this thesis adds substantially to the molecular characteriza-
tion and understanding of atopic dermatitis.



vi



Dansk resumé
Atopisk dermatitis er en meget udbredt inflammatorisk hudlidelse, som rammer 20-
30% af alle børn og 3-4% voksne. Lidelsen influerer negativt på patienternes hverdag,
lige fra de æstetiske aspekter til kronisk søvnmangel pågrund af kløe. Prævalensen
af atopisk dermatitis er steget på verdensplan gennem de sidste mange år, men be-
handlings mulighederne for moderat til svært ramte patienter er begrænsede, og syg-
domsmekanismerne er stadig under videnskabelig debat.
Intentionen med denne afhandling er at definere den molekylære basis af atopisk
dermatitis, ved at kombinere publicerede og nye ekspressions data, samt at evaluere
eksisterende dyremodeller.
Afhandlingen består af to dele, hvor den første giver et overblik over den biologiske og
bioinformatiske baggrund for mit arbejde, og den anden del præsenterer mine studier
og artikler.
I det første studie har jeg gennemført en mikroarray meta-analyse af publicerede gen-
ekspressions datasæt af afficeret of ikke-afficeret atopisk dermatitis hud biopsier. Her
har jeg anvendt en ”random effects model” for at kombinere datasættene, estimere
deres kombinerede effekt størrelse, og for at øge den statistiske power for dermed at
muliggøre påvisningen af meget små ændringer i gen-ekspressionen. Dette har resul-
teret i et robust transkriptom.
I det andet studie har vi anvendt laser-mikrodissektion for at separere hud biopsierne
fra atopisk dermatitis patienter i de to hovedlag (epidermis/dermis), efterfulgt af
komparativ ekspressionsanalyse. Denne fremgangsmåde er mere sensitiv end analyse
af helhuds-biopsier, specielt med hensyn til lagspecifikke og generelt lavt udtrykte
gener.
I det tredje studie evaluerer jeg gen-ekspressionen i seks muse-modeller i forhold til
mine første resultater, for at rangordne modellerne i forhold til deres molekylære
overlap med atopisk dermatitis. Vi finder i dette studie, at der ikke er én ”perfekt”
model, men at man burde vælge modellen efter de sygdomsaspekter man vil belyse.
Sammenlagt bidrager mit arbejde og denne afhandling væsentligt til den molekylære
karakterisering og forståelse af atopisk dermatitis.
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CHAPTER 1
Introduction

Atopic dermatitis (AD) is a common inflammatory skin disease, which has been at-
tributed to a complex interplay of skin barrier disruption and abnormal immune
responsiveness. The main clinical feature, from a patient’s point of view, is severe
pruritus (itch), which has been reported to have a significant impact on the pa-
tient�s quality of life, especially negatively affecting sleep. The prevalence of AD has
increased steadily over the past decades. Therefore the patient individual disease
impact might soon grow to a general economic problem, when work efficiency and
quality is lowered due to, for instance, lack of good sleep. The ongoing (and increas-
ing) efforts to understand the disease mechanisms therefore make great sense not only
from a scientific and patient centric point of view, but also in a larger economic or
socioeconomic perspective.
In the following I will introduce various aspects of the disease starting with a general
overview of the affected organ (the skin) as well as methods to unravel the molecu-
lar nature of the disease, like high-throughput laboratory and computational methods.



2 1 Introduction

1.1 The Human Skin

The human skin is the largest organ of the human organism, spanning 1.5-2 m2 with
a total weight of up to 10 kg. Generally the human skin separates the inside of the
human body from the outside environment. It has a wide and diverse variety of
functions, ranging from protecting the body from loss of liquid, over sensory, commu-
nication, and metabolic functions, to providing an efficient immune barrier to keep
the outside world out of the body. [1, 2, 3, 4]

Epidermis

Dermis

Subcutis

Sweat gland duct

Blood vessel

Lymph vessel

Hair

Figure 1.1: Conceptual overview of the human skin.

Overall the human skin consist of three main layers (see Figure 1.1):

• Epidermis, the outer barrier layer

• Dermis, or Corium, the middle layer

• Subcutis, the innermost (or under-skin) layer

Together, the dermis and epidermis are often referred to as the skin or cutis.
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The epidermis consists of mainly keratinocytes, lipids, a few melanocytes, Langer-
hans and Merkel cells. Its most prominent function is to protect the human body
from loss of liquid, and environmental intruders; it keeps the inside in, and the outside
out. [5, 6, 2, 4, 7, 8]

Stratum corneum

Stratum granulosum

Stratum spinosum

Stratum basale

Dermis

Figure 1.2: Conceptual overview of the epidermal layers.

The keratinocytes in the epidermis are generally organized in four layers (from
innermost to outermost), the stratum basale (the single cell basal layer), the stratum
spinosum (the middle layer), the stratum granulosum (the corneocyte precursor layer),
and the stratum corneum (the corneocyte layer). [2, 4] Figure 1.2 gives a conceptual
overview of the epidermal layers.

The basal layer (stratum basale) consists of a single layer of keratinocytes,
which steadily grow and reproduce to migrate into the prickle cell layer (stratum
spinosum). This stratum spinosum consist of 8-10 layers of keratinocytes, with small
thorn like outgrows (spinosus) connecting the cells to maintain structural stability of
the epidermis. The granular layer (stratum granulosum) consists of 3-5 layers
of keratinocytes, which gradually lose their nuclei and secrete lipids, while migrat-
ing to the outermost horny or cornified layer (stratum corneum). The stratum
corneum consists of 25-30 layers of keratinocytes that have undergone full differentia-
tion (cornification), i.e. lost their nuclei and are filled with keratin to become flattened
corneocytes. These corneocyte layers are organized in a cellular matrix with lipids in
lamellar bilayers in-between the cells, providing amongst other functions an efficient
hydrophobic seal. [9, 10, 11, 2, 3, 8]
Within this main epidermal structure, the bone marrow-derived antigen-presenting
Langerhans cells constitute a first line of defense; the Merkel cells are driving the out-
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most sensory function of the skin; while the Melanocytes synthesize melanin, defin-
ing the skin color and protecting the basal keratinocytes nuclei from UV radiation.
[12, 13, 2, 14, 15]
Some inflammatory diseases like atopic dermatitis or psoriasis show a noticeably
thicker epidermis, caused by keratinocyte hyperproliferation. [16, 17]

The dermis or corium is the comparably thick skin layer right underneath the
epidermis. It consists mainly of a connective tissue matrix, fibroblasts, blood and
lymph vessels, sensory nerve endings, sweat glands, hair follicles, and immune cells.
The main function of the dermis is to generally structure the skin allowing for efficient
response to injuries, and providing nutrition and anchoring to the epidermis. [16, 2, 3]

The dermis is composed of two main layers:

• the papillary dermis, which with its wave like structure is in close contact
with the epidermis.

• the reticular dermis, which is the larger, though less tightly structured, sub-
layer.

The papillary dermis with its wave like structure reaches into the epidermis. It
consists of small collections of compact connective tissue fibrils and fibers, and a con-
siderably large amount of fast-proliferating fibroblastic cells. This connective tissue
matrix contains a high density of nerve endings and tiny blood vessels amongst other
functions supporting nutrient transport to the epidermis. [16, 2, 3]

The reticular dermis structure is defined by much larger fibrils and fibers orga-
nized in big woven bundles, with increasing size towards the subcutis. This structure
adds the flexibility to the skin, which defines its ability to respond to mechanical
stress by temporary deformation. This layer of the dermis contains less densely
packed larger blood vessels and lymph channels, sweat glands and hair follicles.

The main cell type in the dermis is the fibroblast. These cells are responsible for
producing connective tissue proteins, and respond to certain immune mediators. [18,
19, 20] Other prominent dermal cell types are the immune system related monocytes,
macrophages and dermal dendrocytes. [21, 13, 16] The subcutis, or hypodermis,
right below the reticular dermis is a less structured adipose tissue-rich layer, which
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serves the human body as buffer zone to protect against otherwise harmful impact
and temperatures. The adipose tissue of this deepest layer of the skin also stores
energy by accumulating lipids in fat cells. [16, 2, 22, 3]

1.1.1 Lipids and The Barrier Function of The Skin

The main barrier functions of the skin are regulation of transepidermal water loss
(TEWL), protection from environmental intruders (e.g. ultraviolet light, chemicals,
and harmful microorganisms), and mechanical insults; it keeps the inside in, and the
outside out. If it wasn’t for the sophisticated interplay between the corneocytes and
the various lipids in the stratum corneum, we would not even be capable of living
on dry land or in further consequence living at all.[23, 24, 25]
The stratum corneum is comprised of mainly corneocytes and lipid bilayers (lamel-
lar bilayers/membranes). Its structure is often referred to as the �bricks and mortar�
model (associating it to a solid stone wall), where the �bricks� are the corneocytes and
the mortar are the lipid bilayers.
The major protein component of these lipid-corneocyte layers is keratin, which is
expressed extensively during the last differentiation stage of the keratinocytes. Ker-
atins add stability and elasticity to the stratum corneum, by the formation of larger
keratin filaments, a process which is mainly driven by filaggrin (FLG, a filament as-
sociated protein of the S100 family). [26, 25]
The majority of stratum corneum extracellular lipid precursors are metabolized
in keratinocytes, where they, upon increased cellular differentiation, accumulate in
the lamellar bodies together with certain lipid post-processing enzymes. These oval
shaped lamellar bodies, which are bilayer membrane organelles, form increasingly in
the stratum granulosum followed by secretion into extracellular space in the upper
stratum granulosum and stratum corneum. Proper formation of the lamellar
bodies has been shown to depend on the ABCA12 transporter protein (involved in
lipid homeostasis). [27, 24] Secretion of the lipid precursors and enzymes takes place
by fusion of the lamellar bodies with the keratinocyte cell membranes. This secretory
process is significantly influenced by changes in calcium concentration; a reduction
in calcium concentration in the stratum granulosum triggers the secretory process.
[23, 10, 28, 24, 29, 30] Upon secretion the precursor lipids are post-processed into the
three major groups of final extracellular barrier lipids: ceramides, free fatty acids, and
cholesterols. This conversion takes place in extracellular space mainly by co-secreted
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enzymes, where β-glucocerebrosidase and sphingomyelinase produce ceramides from
glucosylceramides and sphingomyelin respectively, and phospholipase releases free
fatty acids from phospholipids. The optimal enzymatic activity of this post-processing
depends on an acidic pH (∼5) of the stratum corneum. [28, 24, 6, 26, 30]
As the final stratum corneum lipids organized in lipid bilayers comprise a major
component of the physical barrier function of the epidermis, changes in their compo-
sition and proportion have been linked to certain conditions with an altered barrier
function. Atopic dermatitis, for example, shows a changed ceramide profile as com-
pared to normal, where an increased amount of short-chain ceramides has been linked
to an altered barrier function. [23, 31, 32] This shift in the epidermal ceramide
population has been linked to an increased expression of IFN-γ, which in turn led to a
decreased expression of elongation-of-very-long-chain-fatty-acids proteins (ELOVLs)
and ceramide synthases (CerS), resulting in a further decreased level of ceramides
with long-chain fatty acids, which might be the mechanism underlying barrier alter-
ation in atopic dermatitis and psoriasis. [32, 33]
In addition to the obvious physical barrier support, some free fatty acids in the upper
epidermis show robust antimicrobial activity (e.g. linoleic acid), together with antimi-
crobial peptides (like cathelicidins, e.g. LL37; and defensins, e.g. hBD1-4) and an
acidic pH (∼5) contributing significantly to the non-specific (innate) immune system
of the epidermis. [5, 34, 35]

1.1.2 Immunity of The Skin

The human skin protects the body from harmful intruders by a complex interplay
between the physical barrier, the innate and the adaptive immune system. [36, 37,
38, 39] The main functionality of the skin immune system is tightly linked to the
functional compositions and locations of its compartments.

The epidermis is the very first line of defense, both by the physical barrier of
the stratum corneum, the secreted antimicrobial substances, and the recruitment
of circulating immune cells. The main immune system related cells in the epidermis
are the keratinocytes, Langerhans cells, and CD8+ T cells. The dermis due to its
incorporated blood and lymph vessels is key in transport, but also recruitment of
circulating immune cells. It is populated by a wider variety of immune cells, includ-
ing CD4+ T cells, dermal dendritic cells, mast cells, and mononuclear phagocytes.
[36, 37, 40, 38] Figure 1.3 gives a conceptual overview of the immune cells of the
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Langerhans cell

CD8+ T cell 

Macrophage

Dermal DC

CD4+ T cell

Mast cell

Unperturbed skin

Stratum corneum

Stratum granulosum

Stratum spinosum

Stratum basale

Dermis

Figure 1.3: Conceptual sketch of the main immune cells of the unperturbed skin.

healthy skin.
Apart from the physical barrier of the skin, its innate (non-specific) immune
system defends the organism by detecting potentially dangerous intruders with a
variety of pattern recognition receptors (PRR), which recognize molecular structures
evolutionary conserved or shared by the majority common pathogens. In the recent
decades the toll-like receptors (TLR) have become the most well known class of PRRs
in the innate immune system. [36, 41, 42, 43]

Important cells of the innate immune system are, monocytes/macrophages, neu-
trophils, eosinophils, basophils, mast cells, natural killer (NK) cells, and the ker-
atinocytes.
Themonocytes/macrophages belong to the group of phagocytes. They engulf and
degrade intruders, and release antimicrobial enzymes. Upon immune response phago-
cytes produce numerous cytokines, like TNF-α, IL-1, IL-6, IL-8, IL-10 and IL-12, trig-
gering adaptive immune system reactions. Furthermore the survival and activity of
monocytes/macrophages can be controlled or influenced by CD4+ T cells. [21, 36, 38]
The neutrophils are short-lived (2-3 days) circulating granulocytes, which invade in-
flamed skin, where they phagocytose and kill bacteria. Neutrophils are attracted to
sites of infection predominantly by the cytokines produced in activated macrophages.
[44, 38]
The eosinophils, like the neutrophils, also belong to the granulocytes, but are tar-
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geting parasite worms (like helminths). Their production is stimulated by Th2 cell
cytokines (like IL-3, IL-5, GM-CSF), while their proliferation is mainly driven by
CCL-11 (Eotaxin-1) and CCL-5 (RANTES). The key cytokines produced and se-
creted by eosinophils are IL-12, IL-13, IL-16, TGF-b1, promoting a switch from Th2
to Th1 immune response. Increased amounts of epidermal eosinophils are correlated
with AD disease severity, and eosinophil products might be used as blood and urine
markers of disease severity and treatment response. [45, 46, 47]
The basophils are another group of granulocytes, circulating in the blood, and mi-
grating to sites of inflammation, secreting both cytotoxic and immune regulating
substances. Activation of the FcϵRI, a high affinity surface receptor for immunoglob-
ulin E (IgE), results in secretion of IL-4 (causing differentiation of macrophages), and
histamines. All this links basophils to allergic or inflammatory skin diseases such as
AD. [48, 49, 38]
The mast cells are resident granulocytes of the dermis in unperturbed skin. They
share key features, like the expression of FcϵRI receptor for IgE, with basophils, and
are also involved in the immediate immune response by secretion of granule content
(e.g. histamine and tryptase) and cytokines (e.g. IL-1, IL-2, IL-5, IL-6, IL-8, IL-9, IL-
13, and TNF) production and secretion upon activation. Mast cells have been linked
to AD, where stimulation with the cytokine thymic stromal lymphopoietin (TSLP)
may play an important role. [49, 38, 50]
The natural killer (NK) cells are a group of lymphocytes contributing to the in-
nate immune system (innate lymphoid cells/ILC) by their cytotoxic and cytokine
producing abilities. NK cells recognize altered cells, and, upon activation, contribute
to regulation of the adaptive immune response. Activation of NK cells is mediated
by certain cytokines (e.g. IL-2, IL-4, IL-12, IL-18, IL-23), which in turn leads to the
secretion of cytokines like TNF-α, TGF-β, IFN-γ, IL-5, IL-10, IL-13, IL-22. NK cells
can be attracted to the site of infection by mast cells. Especially the IL-22 producing
NK cell subset (NK-22) have been proposed to play a role in AD, but this group has
been recently proposed to be classified as ILC3 and not the ILC1 to which the NK
cells belong.[36, 51, 52, 38, 53]
The keratinocytes are, as outlined in the previous sections, main contributors to the
physical barrier via their proliferation and the secretion of barrier function promot-
ing lipids and proteins. Apart from these important barrier functions, keratinocytes
contribute to the innate immune functions of the skin, as they produce various inflam-
matory, activating, inhibiting and modulating cytokines (e.g. IL-1, IL-6, IL-7, IL-10,
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IL-12, IL-15, IL-18, IL-23, TGF-β, TNF-α, GM-CSF). Keratinocytes are involved
in T-cell activation, inhibition, and modulation; in Langerhans cell modulation and
general leukocyte trafficking. [36, 5, 43]

The adaptive (specific) immune system is the slower responding but more specific
(”smarter”) part of the overall immune system. In the skin the adaptive immune sys-
tem is mainly comprised of a group of antigen-presenting cells (APC), which present
antigens to the group of lymphocytes, thus triggering a specific response targeting a
particular foreign intruder.
The adaptive immune cells are mainly comprised of the antigen presenting dermal
dendritic and Langerhans cells, as well as the lymphocyte B- and T-cell groups.
The Langerhans cells (LC) are the main players of initiating an adaptive im-
mune response in the skin. LCs are an antigen-presenting subset of dendritic cells
(DC) resident in the epidermis, which upon perturbation of the skin emigrate into
the lymphatic system to stimulate and recruit naïve T-cells to the site of infection,
via the MHCII surface complex and secretory cytokines. Furthermore LCs secrete
chemokines (like CCR-2 and CCR-6) to attract more LCs, upon perturbation. LCs at-
tach to keratinocytes by E-cadherin mediated adhesion, and are distinguishable from
the majority (but not the small subset of Langerin+ DCs) of other resident skin cells
by the expression of the Ca2+-dependent lectin Langerin (CD-207) and their tennis
rack shaped Birbeck granules. Langerhans cells have been described to be overrepre-
sented in atopic dermatitis lesional skin as compared to normal skin. [36, 12, 54, 43]
The dermal dendritic cells (dDC) are resident APCs of the dermis. These APCs
differ from the LCs by the absence of the Birbeck granules. dDCs can be subdivided
into two major classes based on several cell surface markers (Cluster of Differentiation
Genes/CDs), but the main classes are the dDC Langerin+ and the dDC Langerin-,
where the Langerin expressing dDCs have been described relatively recently, and are
considered the smaller subset. It should be noted that Langerin expression in the
past has been linked to LCs only. [55] Generally dDCs function comparable to, but
quicker than, LCs in the sense, that they, upon perturbation of the skin, migrate
to the lymph nodes (LN) and activate T-cells via the MHCII surface complex and
secretory cytokines. [36, 56, 57]

The B-cells are lymphocytes that play a major role in the humoral immune response,
preventing the spread of infections through specific antibody production. Generally
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B-cells differentiate into plasma cells upon antigen encounter, essentially resulting
in the secretion of immunoglobulins (Ig) and subsequent neutralization of intruders.
These B-lymphocytes have been linked to allergies and inflammatory skin diseases
like atopic dermatitis via Ig secretion. [58, 38] A recent study by Czarnowicki and
co-workers in 2016, showed an increase in B-cell count in AD versus psoriasis patients
and uninvolved skin and blood samples. [59]
B-cells are found mainly in the dermis upon infection, but recent studies have sug-
gested the presence of very few B-cells also in healthy skin. The exact mechanism
of B-cell migration to the site of infection is not completely understood, but cer-
tain ligand-receptor pairs (CCL-3, CCL-4, and CCL-5 with CCR-5; CCL-20 with
CCR-6; CXCL-10 and CXCL-11 with CXCR-3) have been suggested to play a role
in B-cell homing and migration. Furthermore several adhesion molecules (ICAM-1,
VCAM-1, CD-47) have been proposed to be involved in the transmigration of B-cells.
[36, 58, 37, 38]

The T-cells are the group of lymphocytes that are involved in the specific immune
response. In an early development stage they leave the bone marrow as progenitor
cells, and undergo maturation in the thymus, after which they relocate to the sec-
ondary lymphoid tissue where they reside in a mature naïve state.
The naïve T-cells are activated by antigen presenting DCs to differentiate into ef-
fector T-cells, that help to fight foreign intruders. Antigen recognition by T-cells
happens through their T-cell antigen receptor (TCR), a heterodimer surface protein
complex encoded by genes with a highly variable region, which enables antigen spe-
cific recognition. The TCR heterodimer consists of either αβ - or γδ chains, with the
αβ T-cells having the antigen binding properties, whereas the γδ T-cells can directly
bind pathogenic glycoproteins. The αβ T lymphocytes are the predominant type of
T-cells in the skin. Two main lineages of these naïve αβ T-cells are important in the
skin, the CD4+CD8− (CD4 T-cells) and the CD4−CD8+, (CD8 T-cells) differing in
their antigen recognition capabilities. [36, 60, 61, 38, 62]

Activated naïve T-cells proliferate and differentiate to effector T-cells in the sec-
ondary lymphoid tissue, and are subsequently attracted to the site of inflammation
by chemokines (e.g. CCL-17 and CCL-22 with CCR-4 and CCL-27 with CCR-10).
Upon pathogen clearance some of the T-cells differentiate into memory T-cells. Of
these memory T-cells the effector memory T-cells are of special importance for the
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Figure 1.4: Conceptual sketch of the main immune cells of the inflamed skin.

skin, as they home to the both the dermis and epidermis to provide immediate protec-
tion against pathogens. The predominant effector memory T-cells in the dermis are
of the CD4+CD8− phenotype, whereas those with the CD4−CD8+ phenotype reside
mainly in the epidermis. [63, 60, 37, 61] Figure 1.4 gives a conceptual overview of the
most important immune cells present in the skin upon inflammation.
The CD4 and CD8 T-cells can be further subdivided into subsets according to their
cytokine and transcription factor expression. Most prominent in the context of inflam-
matory skin diseases are the Th1, Th2, Th17 and Th22 subsets of the CD4 lineage
(or correspondingly the Tc1, Tc2, Tc17, and Tc22 for CD8).
Th1 cells express IFNγ to activate macrophages, dendritic cells, CD8 T-cells and NK
cells for fighting intracellular intruders. [64, 61, 65]
Th2 cells are characterized by IL-4 expression; they are mainly involved in extracellu-
lar pathogen response, and have been linked to inflammatory skin diseases like atopic
dermatitis. [66, 67, 61, 68]
Th17 cells are characterized by IL-17 expression; they are involved in the protection
against extracellular intruders like fungi and bacteria, and show a major contribution
in the pathogenesis of psoriasis. [69, 70, 61]
The Th22 cells have been recently characterized to express IL-22 and TNF-α but no
IL-17; they are involved in promoting the production of antimicrobial peptides, and
are linked to inflammatory skin diseases like psoriasis and atopic dermatitis via the
IL-22 expression. [71, 72, 73, 74]
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1.1.2.1 Skin Associated Lymphoid Tissues (SALT)

In the early eighties a general model of the skin immunity, termed Skin Associated
Lymphoid Tissues (SALT), was proposed by Dr. Streilein [75]. The main statement
in the proposal is that the components of the immune system acting in the skin,
are unique to the skin, and comprise the unique skin immune system SALT. The
original SALT hypothesis was formulated in four parts: �SALT is comprised of (1) a
specialized set of antigen presenting cells within the epidermis, Langerhans cells; (2)
distinctive populations of recirculating T lymphocytes that preferentially infiltrate
the skin, especially the epidermis; (3) keratinocytes that provide an anatomically dis-
tinct environment for these lymphoreticular cells and secrete into that environment
immune-regulatory molecules that can profoundly affect the immune recognition and
differentiation; and (4) a set of draining peripheral lymph nodes, integrating this mul-
ticellular system, that contain, along with the dermis, blood vessels with endothelial
cells whose surfaces capture lymphocytes passing through the blood.� [75]
The main model of a specialized skin immune system holds true and has been con-
ceptually generally accepted in the field, even though with a few factual updates, e.g.
APCs including dDCs. [76]

1.1.3 Common Inflammatory Skin Conditions

As the skin is one of the largest organs and the outer most layer of defense of the
human organism, it is under constant attack by the outside (and to some degree in-
side) world, and therefore vulnerable to a variety of diseases. Many of the common
skin diseases are linked to harmful intruders, barrier dysfunction and autoimmune
reactions. In the following I will introduce some of the most common inflammatory
skin conditions, namely Allergic Contact Dermatitis (ACD), Hand Eczema,
Pruritus, Psoriasis, Atopic Dermatitis.

Allergic Contact Dermatitis describes immune reactions of the skin caused by
direct contact to substances, and is classified as a delayed-type hypersensitivity.
Common allergens causingACD are fragrance, rubber, and metals (especially nickel).
These allergens are, upon entry into the skin, mistakenly recognized as harmful by
the immune system and an inflammatory immune response is triggered, if the skin
has been in contact with the substances before (i.e. sensitized). The clinical man-
ifestation and symptoms of the disease range from smaller red spots on the skin to
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severe itchy rashes and blisters. [77] Generally, ACD has been considered a Th1/Th2
polarized inflammatory disease. Recent studies have defined the distinct molecular
profiles linked to the various allergen dependent ACD subtypes, suggesting a pro-
nounced Th1/Th17 and Th22 component in nickel ACD, and a predominant Th2
polarization in rubber and fragrance ACD. [78, 72, 77, 79] Furthermore, recently a
pilot study suggested the regulatory importance of certain micoRNAs in ACD. [80]
The most common treatment options for ACD are removal of the irritant, topical
corticosteroid creams or ointments, and in server cases systemic corticosteroids.

Hand Eczema is an inflammatory skin disease found on all parts of the hands,
from the wrist to the fingertips. The severity of the disease ranges from reddish spots
on the affected areas of the skin, to itching blisters, scaly areas and even fissurae.
This non-contagious condition is not trivial to diagnose, as it often co-occurs with
bacterial or fungal infections, and due to its clinical similarity to inflammatory skin
conditions like psoriasis and atopic dermatitis. [81, 82] Recent findings suggest the
atopic dermatitis as the single most common risk factor for hand eczema, [83] while
a link to filaggrin (FLG) mutations has been proposed for chronic appearance of the
disease. [84]
The current treatment options for hand eczema are numerous, ranging from topical
treatments by emollients, calcineurin inhibitors, and steroids; over physical therapies
by UVB or PUVA; to systemic treatments with mainly corticosteroids, ciclosporine,
or methotrexate. [85, 81]

Pruritus or itch is the most common symptom on the skin, usually appearing due
to dermatological (e.g. psoriasis, atopic dermatitis, or fungal infections) or systemic
conditions (e.g. hepatitis, asthma, food, drugs, cancer), but has also been attributed
to psychogenic factors. It is commonly classified into three subgroups 1) on diseased
skin, 2) on non-diseased skin, 3) chronic. [86, 87] Even though the exact pathophys-
iological mechanisms underlying this distressing symptom are yet to be established,
it has been linked to histamine, serotonin (5-HT), acetylcholine, prostaglandins, and
mechanical factors like heat and trans epidermal water loss (TEWL). [88] Pruritus is
increased at night (nocturnal pruritus), which has been attributed especially to heat,
TEWL, and low level of naturally occurring systemic corticosteroids. [89]
Common treatment options of pruritus, apart from treating the causative dermato-
logic or systemic condition, span a wide variety of topical and systemic substances,



14 1 Introduction

like topically applied corticosteroids, antihistamines, menthol, capsaicin, local anes-
thetics, salicylic acid, and cannabinoids; or the systemically applied antihistamines,
antidepressants or opioid agonists/antagonists. [86, 90]

Psoriasis (PSO) is a chronic inflammatory autoimmune disease of the skin. It ap-
pears most commonly on the elbows, knees, hands and scalp, but can also affect many
other parts of the skin and in severe cases nearly the whole body surface. The clini-
cal manifestation is the formation of inflamed, scaly, itching red lesions (or plaques),
which are a direct result of the interplay between a T-cell and dendritic-cell driven au-
toimmune response and epidermal keratinocyte hyper-proliferation. PSO is currently
the best-understood inflammatory skin disease, and is regarded to be a disease with
pronounced T17 and Th1, and some Th22 involvement, i.e. involving IL-17, IFN-γ
and IL-22 producing lymphocytes respectively. The general disease model states that
the release of the cytokine IL-23 by DCs triggers the activation of T17, Th1, and Th22
cells, which in turn produce/release the afore mentioned specific cytokines, resulting
in increased keratinocyte activation and subsequently hyperproliferation. [91, 69, 74]
Common classic therapies include both topical and systemic treatments. In most
cases, topical treatment with the vitamin D derivative calcipotriol, the glucocorticoid
betamethason, or a combination of the two yields good therapeutic results. In se-
vere cases the use of systemic immunosuppressants (like methotrexate or retinoids,
including the calcineurin inhibitor cyclosporine) or physical therapies like UVB or
PUVA treatment are recommended. Generally, moisturizing skin care should be con-
ducted routinely. Current research is focusing on targeting the IL-23/T17 involving
pathways. [91, 69, 74, 92]

1.1.3.1 Atopic Dermatitis

Atopic Dermatitis (AD) or atopic eczema (AE) is the most common chronic in-
flammatory skin disease, with an approximate prevalence of 15-25% in children and
3-4% in adults, and a marked increase in lifetime prevalence over the last decades.
AD has been linked to other atopic diseases like hay fever and asthma, as many
children affected by AD later in life develop either of these atopic diseases; which
is referred to as ”the atopic march”. The clinical manifestations and symptoms of
the disease are red, inflamed and itchy skin, and blisters with oozing and crusting.
It is common that parts of the skin, where no inflammation has occurred recently,
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are dry and rough. Even though rashes may occur anywhere on the skin, the most
common areas for adults are the inside of elbows and knees, whereas in children the
rashes predominantly occur on the face, hands and feet. For AD currently no specific
pathognomonic biomarkers exist. [93, 94, 95]
AD has been linked to both a contribution of immune cells as well as epidermal barrier
defects. The main genetic risk factor has been attributed to various mutations in the
FLG gene, which encodes filaggrin, a protein responsible for epidermal structure that
also serves as a precursor for the natural moisturizing factor (NMF). Note however,
that only approximately 20% of the AD patients carry FLG mutations, and that up
to 60% of the carriers will not develop atopic dermatitis. [17, 96, 97] In addition to
the FLG mutation it is well accepted that multiple other dysfunctions of the epider-
mal barrier play an important role in the disease; among the most prominent are
epidermal hyper-proliferation (i.e. marked thickening and change of structure of the
epidermis) and change of the epidermal lipid composition. [98, 32] Apart from, or in
addition to, the barrier defects, AD is known to be an inflammatory disease linked to
immune dysregulation, with a marked Th2/Th22 polarization and some Th17 contri-
bution.
It is still under discussion which factor is the main driver of the disease, the barrier
dysfunction (”outside-in” model) or the immune abnormalities (”inside-out” model).
This is a ”chicken or the egg causality dilemma”. The true answer is difficult to
determine due to the multi-factorial nature of the disease, and most likely it is the
complex interplay of these two main aspects, where one is dependent on the other,
and one can trigger the other. [54, 99, 100, 95] The most common treatment options
for atopic dermatitis are topical and systemic corticosteroids, systemic immunosup-
pressants (e.g. the calcineurin inhibitors cyclosporine), moisturizing skin care, and
physical therapies like UVB or PUVA treatment. [99, 93, 101]

Atopic dermatitis is, as briefly reviewed above, a skin disease driven by a complex
interplay between skin barrier disruption and abnormal immune responsiveness. In
the recent decade, great effort has been put into unraveling the disease mechanisms,
by detecting possible genetic risk factors and investigating its transcriptome to
describe and understand the barrier and immune aspects of the disease.

It has long been known that parental inheritance is one important risk factor of AD.
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This has been attributed to both epigenetic and genetic factors, which led to multiple
genome wide association studies (GWAS) of AD, investigating possible genetic causes
of the disease. [102, 103, 104, 101] The most prominent genetic risk factor for AD is
a variety of mutations in the FLG gene, located within the epidermal differentiation
complex (EDC) on chromosome 1 (1p.21), where multiple other important barrier
function genes are also located (e.g. S100�s, FLG2, IVL, LOR). [105, 106, 107, 108]
Other genetic risk factors have since been described by large consortium efforts and
GWAS meta-analyses that found significant disease association with SNPs within
close proximity to epidermal differentiation and proliferation genes and genes within
the cytokine cluster and proposed a number of new AD risk loci. [109, 110, 111]

Another important field of studies is the characterization of the AD transcriptome,
i.e. quantifying mRNA levels to reveal which genes are differentially expressed in
biopsies of diseased tissue (lesional/LS) versus non-diseased or normal control tissue
(non-lesional/NL, normal/NN).
Early transcriptomics studies of AD revealed up-regulation of key immune related
genes like CCL18 in LS versus both NL and NN skin, down-regulation of important
barrier genes (FLG, LCE2B, LOR, CDSN) in LS versus NN skin, and increased expres-
sion of the water channel AQP3. [112, 113] A later study of LS versus NL epidermis
(obtained by epidermal shave) from AD patients, confirmed some of the previous im-
mune and barrier related findings, and suggested an inverse correlation between the
expression of Th2 related biomarkers to barrier genes CLDNs 1 and 23 (i.e. down-
regulation of the barrier genes is correlated with up-regulation of Th2 related genes).
[114] Further work highlighted the progressive activation of the Th2/Th22 axis of the
disease from the acute to the chronic state. [73] Some of the early transcriptional
findings led to investigations of the transcriptional effects of classical AD treatments,
namely UVB phototherapy and betamethasone, in LS skin. [115, 116] Tintle and co-
workers (2011) showed, that UVB phototherapy significantly reverses the transcrip-
tional levels from LS to those of NL skin; especially immune genes (amongst others
the Th2-associated products CCL13, CCL18, CCL26 and IL10) appeared to be down-
regulated after UVB treatment. [116] In line with these results, betamethasone, a
potent anti-inflammatory glucocorticoid, appeared to significantly reduce mRNA lev-
els in LS AD samples to NL state, besides immune genes, noticeably recovering FLG
and LOR expression levels. Recent studies investigated the transcriptional effects of
other AD treatment options, including the broad immunosuppressant cyclosporine A
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(CsA) and the IL4R antagonist dupilumab. [117, 118, 119, 99, 120] CsA significantly
improved the clinical manifestation of AD, and recovered especially activated inflam-
matory pathways to NL levels. [119] The more specific immune modulator dupilumab
(a monoclonal antibody), which prevents IL4 and IL13 signaling by binding to the
alpha subunit of the interleukin-4 receptor, significantly improved the molecular sig-
nature of LS AD samples, especially down-regulation of the important Th2 biomarker
CCL17 points towards the importance of the Th2 axis of the disease. [117, 118]
In the context of detecting transcriptional treatment responses, obviously it is impor-
tant to posses a distinct set of molecular biomarkers and to understand the molecu-
lar basis of the disease subsets. Important efforts have been made on investigating
and defining AD specific biomarkers; a noteworthy study by Suárez-Fariñas and co-
workers in 2011 described the expressional difference between uninvolved samples
from AD patients (NL) and normal control samples (NN), defining the ”molecular
scar” of AD. [121] This study therefore suggests that the treatment effect in AD may
be defined as the normalization towards the untreated NL expression levels, rather
than those of normal control samples.
Recently, a disease classifier on the basis of the expression levels of two genes (NOS2
and CCL27) has been established to distinguish between psoriasis and atopic dermati-
tis. Interestingly, even-though this study included only patients affected by both PSO
and AD, to rule out the high interindividual variability, the researchers were able to
reproduce commonly accepted aspects of each diseases transcription profile, when
contrasting disease specific samples of each patient. [122]
Typically transcription studies in AD are carried out on patients with moderate to
severe disease (i.e. SCORing Atopic Dermatitis [SCORAD] ⩾ 25). The most recent
thorough study in the field by Martel and co-workers (2016), focused on the impor-
tant group of mildly affected patients versus normal controls (SCORAD < 25) with
distinction between intrinsic and extrinsic patients (i.e. patients with low versus high
serum IgE levels), and in comparison to PSO. [123, 124] Overall, this study found that
differential expression of genes involved in inflammation of moderate-severe AD was
also detected in mild AD, but most barrier related DEGs found in moderate-severe
AD did not appear in mildly affected patients. Furthermore the intrinsic type of AD
had a greater overlap of DEGs with PSO than the extrinsic type. [123] Other interest-
ing work by Rodríguez (2014) aimed at linking the gene expression in AD skin samples
to corresponding epigenetics analysis. [125] In this study it was observed that over-
expression of AD related S100s (S100A2, A7, A8, A9, and S100A7A) in LS samples,
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correlated with DNA hypermethylation of a single CpG site within S100A5. Further-
more, overexpression of KRT6A and KRT6B correlated with decreased methylation
of a single CpG site in KRT6A. [125] The findings of this integrated experimental
design are very promising in order to more thoroughly elucidating the molecular basis
of AD, and should be established as a standard method not only in basic research
but also in clinical trials.

Both the transcriptomics and GWAS analyses introduced above have, apart from
the immune related factors, provided support for the established barrier disrup-
tion elements of AD on the molecular level. [23, 24, 126, 127] While much of
the genetics focus has been on FLG mutations, expression analysis identified dysreg-
ulation of a broader set of barrier and cornification genes (e.g. FLG, IVL, CDSN,
and LOR). [128, 107, 96] Recently, the Bouwstra lab in the Netherlands pointed out
the altered lipid composition and organization in AD and the destructive effects on
the epidermal barrier function. [32, 129, 130] The researchers showed that especially
the distribution of free fatty acids (FFA) and ceramides (CER), the main class of
lipids in the stratum corneum, is shifted to the short-chained subgroups in lesional
skin. [32, 130] These findings are in line with the general observations of an impaired
barrier in AD. [126, 131]

Historically, and at least since the identification of IgE and the corresponding Fc-
ϵ receptor in the 1970s, AD has been considered an inflammatory skin disease with
marked immune aspects. [132, 46, 133, 134] A recent major milestone in the charac-
terization of the immune aspects of AD was the detection of IL22+ T cells (Th22),
and their overrepresentation in inflamed skin. [71] The importance of the Th22 cells
in AD was further established by transcriptional studies, showing a progressive activa-
tion of the Th2/Th22 axis from the acute to the chronic state of the disease. [72, 73]
As is the case for the mutations in FLG linked to barrier defects, which are only
found in approximately 20% of the AD patients, the immune aspects of the disease
are not unified neither. Therefore, the disease is commonly stratified with respect
to the serum IgE levels, where intrinsic AD patients are defined as those with no
specific or at least very low levels of IgE for common environmental food allergens,
while extrinsic AD patients are those with high corresponding IgE levels. [100] A
recent flow cytometric analysis of a set of intrinsic/extrinsic stratified AD blood sam-
ples highlighted the importance of this IgE based stratification when investigating T
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cell populations. [135]
The overall model of the immune aspects of AD is still under discussion, especially in
the context of the barrier dysfunction of the disease. But the current model defines
the two IgE based disease subtypes (intrinsic/extrinsic), and states that AD is a dis-
ease with a marked Th2/Th22 component. [136, 95]

The complexity and the multi-factorial nature of AD, pose a great challenge to the
development of disease models for studying treatment effects and mechanisms. The
most common model organisms for studying aspects of AD are murine rodents. Gen-
erally three main types of murine disease models exist: 1) Induced models, where
the mice are epicutaneously (EC) sensitized to allergens like ovalbumin (OVA) or ox-
azolone (OXA) ; 2) Transgenic mutant models, where certain supposedly disease
related genes like FLG are manipulated; 3) Spontaneous mutant models that
spontaneously develop mutations resulting in a disease-like phenotype. [137, 138]
Even though many of the murine models, as for example the OXA sensitized, [139]
are currently used in drug-development, one of the to date most promising models is
the spontaneous NC/Nga mutant. [140, 141]
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1.1.4 Atopic Dermatitis Expression Datasets

In this work I aim at describing the transcriptional aspects of atopic dermatitis, by
the expression analysis pipeline and meta-analytical model described in the following
sections, making use of publicly available and in-house expression data.
Table 1.1.4 presents publicly available AD related expression data sets, from both the
NCBI Gene Expression Omnibus (GEO) and the EMBL-EBI ArrayExpress repos-
itories. These datasets comprise a wide variety of experimental and technological
setups, including lesional (LS), non-lesional (NL), and healthy control (NN) samples
from simple disease assessment studies, compartment specific and treatment studies.
[142, 143]
Overall, 10 studies include both LS and NL samples, 13 studies include LS and NN
samples, and 4 studies include all three tissue types. Of the LS+NL studies five
where carried out on the Affymetrix Human Genome U133 Plus 2.0 Array (GPL570),
where one (GSE27887) was re-analyzed data from a previous study (GSE32924). Two
of the LS+NL studies (E-MTAB-729, GSE60709, GSE5667) where carried out on
different chip types, Illumina HumanHT-12 v3.0 Expression BeadChip (A-MEXP-
1171,GPL6947), Affymetrix Human Genome U133A/B Array (GPL96/GPL97) re-
spectively. The remaining three LS+NL where either epidermis only (GSE60709) or
from co-affected AD+PSO patients (GSE57225).
Seven studies investigated the expression levels in various cell specific setups (GSE13709,
GSE22611, GSE27533, GSE20706, GSE48310, GSE38039, GSE48586).
One recent study (GSE75890) carried out on the Affymetrix Human Gene 2.1 ST Ar-
ray (GPL17692), investigating AD lesions from extrinsic and intrinsic patients versus
NN and psoriasis samples.

In the following I will introduce a set of bioinformatics tools that can be applied
to unravel the transcriptomic nature of both human and murine skin samples, in the
context of disease understanding and molecular marker definition.
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1.2 Gene Expression Analysis

Gene expression analysis essentially describes the technologies capable of quantifying
the expression of genes. This is commonly achieved by measuring the levels of mRNA
transcribed from the template DNA in the tissue of interest. When a global gene ex-
pression analysis is performed - i.e. when one measures all (or at least: the known)
mRNAs - this is called transcriptomics, quantifying the transcriptome. [144, 145, 146]
Of the various technologies, available for gene expression analysis, the most common
are quantitative reverse transcription polymerase chain reaction (qRT-PCR), microar-
rays (”chips”), and RNA sequencing (RNAseq).
qRT-PCR is based on three steps, 1) reverse transcription of mRNA to cDNA, 2)
amplification of the cDNA by PCR, 3) quantification of the PCR products at each
thermal cycle (each cycle comprising a denaturation, an annealing, and an elongation
step). This technology is considered the most sensitive of the three, but is not of high-
throughput nature, even-though it can be applied in semi-high-throughput manner
by low-density arrays (LDAs). [147, 148, 149]
The microarray technology is a true, and the first, high-throughput technology for
measuring gene expression. It is based on probes, sequence fragments that match
their target genes, which are fixed (spotted) in a matrix like pattern on a glass chip.
Essentially fluorescently labeled mRNA or cDNA fragments are added onto that mi-
croarray chip, and if hybridization between a pre-fixed probe and its corresponding
gene fragment has happened, this will result in fluorescence signals upon laser excita-
tion. That way, the analysis of the expression levels of many thousands of genes can
be parallelized. [150, 151, 152, 153, 146]
The most recent technology, RNAseq, is based on reverse-transcription and subse-
quent high-throughput sequencing by a next generation sequencing (NGS) technique.
The main difference compared to the qRT-PCR and microarrays is, that in the best
cases, the only prior knowledge necessary about the investigated transcriptome, is
the reference genome of the organism. [154, 155, 156, 157, 158]

Historically, it has been possible to measures single gene expression for a couple
of decades, using manual and cumbersome northern blotting, but the main break-
through in transcriptomics, however came with the introduction of standardized com-
mercialized microarrays in the 1990’s, which enabled researchers to measure gene
transcription in a high-throughput manner. The commercialization and standardiza-



1.2 Gene Expression Analysis 23

tion of the microarray chips, along with the introduction of public expression data
repositories (especially the NCBI Gene Expression Omnibus[GEO] and the EMBL-
EBI ArrayExpress) and the Minimum Information About a Microarray Experiment
(MIAME) reporting standard, have made it possible to reuse and combine expression
data from different research groups. [142, 144, 143] The reuse of publicly available
data has greatly contributed to research transparency (an important matter in the
times of high-throughput data analysis), and has also led to great new findings in
”old” data. [144] Correspondingly the combination of publicly available data on the
same topic from different research groups, can lead to increased statistical power, and
thereby enable the detection of more subtle changes in expression profiles of different
tissues or conditions. [159, 144, 160]

In this work I focus on evaluating the transcriptional profile of atopic dermatitis,
making use of in-house and publicly available data. Therefore I will here introduce
the various technological and bioinformatical aspects of microarray expression analy-
sis, including relevant down-stream analysis methods.

1.2.1 Microarray Expression Analysis

The essence of the microarray technology, as outlined above, is the fixation of comple-
mentary known sequences (probes or features) on a surface (”chip”), with subsequent
annealing of the fluorescently labeled target sequences (e.g. reverse transcribed mR-
NA/cDNA), and finally, fluorescence excitation and signal detection. [151, 161, 162]
Various adaptations of the microarray technology exist, primarily varying in the pro-
duction method, the probe design, and the labeling of the target sequences. The main
differentiations in the production methods, whether the probes are spotted onto
the surface, or synthesized directly on the surface; with the latter being the preferred
method today. [163, 146] Proper design of the probes is the key element in this
technology, where the primary difference is the sequence length (usually 25-60 bases)
and the thermodynamically optimal probe selection (with respect to the hybridiza-
tion behaviour); but also other fundamental design properties of the chip, defining if
it is an array measuring e.g. gene expression, with special features like splice junction
detection. In order to increase the specificity and sensitivity it is common practice,
that a single gene is covered by multiple probes (located on different areas of the
chip), which span different regions on that gene. This collection of probes is referred
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to as a probe-set. [164, 146, 165]

Chip Raw Image Probe Hybridization

Probe cDNA

Label

Figure 1.5: Sketch of the microarray technology.

Finally, another interesting distinction is the choice of fluorescence labeling and
hybridization, where competitive hybridization and two-color labeling versus single
hybridization and single-color labeling have been commonly applied. For two-color
labeling, two samples, between which an expression contrast is to be measured, are
prepared in parallel being labeled with distinct fluorescence dyes (usually Cy3 and
Cy5, resulting in different wavelength/colors), and hybridized on to the same chip.
The measure of differential expression in this case, is the direct intensity ratio be-
tween the two detected colors, for each probe-set. One-color labeling is carried
out with one chip per sample using only one fluorescence dye. Figure 1.5 gives a
simple conceptual overview of the single-color labeling microarray technology, from
chip, over raw image, to hybridized probes. [151, 163, 166, 146]

In this work I focus on one-color arrays from Affymetrix Inc., mainly the human
expression array Human Genome U133 Plus 2.0 (HGU133-plus2). The measured
fluorescence signals (array image) of these chip types essentially result in one inten-
sity data file (CEL file) per sample, which is the starting point for computational
expression analysis pipelines, including summarization, normalization, differential ex-
pression analysis, and subsequent downstream-analysis. [167, 168, 169, 170, 171, 172]
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1.2.2 Quality Control, Background Adjustment, Normalization and

Summarization

Microarray expression data generation involves many, often manual, preparation
steps, ranging from sampling, processing and mRNA extraction over labeling and
hybridization to scanning, analysis and interpretation. At all these processing and
anlysis steps both random unsystematic variation (noise) and/or systematic
batch effects can be introduced. Naturally the actual non-biological sources of vari-
ation can be manifold, and should be carefully accounted for in an analysis pipeline.
[173, 170, 174] An overview of the microarray data analysis pipeline applied in this
work is given in figure 1.6.

Various methods and software packages for microarray data quality control (QC)
and assessment exist, but I suggest, to always first take a quick look at the log-scaled
array images. [175] Visual inspection of the array images often easily reveals regional
bias on a chip (spatial artifacts), which is often biased target-probe hybridization,
possibly caused by dust, air bubbles, non-uniform washing, temperature or liquid
flow rate. These spatial artifacts can also be systematically detected and adjusted
for by the Harshlight/R package proposed by Suárez-Fariñas and co-workers in 2005.
[176, 177]
Other diagnostic QC plots in this context are: [178, 173]

• Sample-wise boxplots of the log-intensity distributions.

• MA-plots of the gene expression change (M) versus the average gene expression
(A). For single color arrays expression change of one array is often contrasted
against the gene-wise medians for all chips in the experiment.

• Principal Component Analysis (PCA) plots of the first few principal com-
ponents, in order to get a glance on possible outliers, or systematic biases.

The actual preprocessing pipeline of microarray data includes, 1) background cor-
rection, 2) between arrays normalization and 3) probe level summarization.
Background correction is a crucial first step towards proper data analysis; it es-
sentially estimates and removes backgrounds noise to enable better overall sensitivity.
The commonly applied algorithms for doing so (RMA and GCRMA) are implemented
in ways, which keep the background-adjusted signals positive and in GCRMA even
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Figure 1.6: Overview of the microarray data analysis pipeline applied in the context
of this work.

take into account probe sequence information. [179] Between arrays normaliza-
tion is carried out to bring together the distributions of the background-adjusted
expression values of all arrays in an experiment. The most common normalization
method to achieve this is the quantile normalization, implemented in the RMA and
GCRMA algorithms. Generally, the normalization methods assume that only a very
small proportion of the genes are significantly different between the investigated con-
ditions. The final preprocessing step is probe level summarization, which in
essence is combining the intensity measures of single probes into predefined groups
(probe-sets). The three preprocessing steps are commonly implemented together in
a single software package (e.g. MAS5.0, RMA, GCRMA, fRMA), varying slightly in
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the different steps. [180, 181, 179]

1.2.3 Controlling Batch Effects

When comparing microarray expression data of the same type but from different
batches, systematic non-biological variations between the batches (batch-effects) are
frequently observed. The batches and subsequently the batch-effects arise mainly due
to differences in preparation or run-time, location (e.g. laboratory), or responsible
technician. Adjustment for these batch-effects is an important, if not to say manda-
tory, step in the microarray data-analysis pipeline. [182, 169] Multiple algorithms to
perform batch-effect adjustment have been proposed, differing in the underlying sta-
tistical methods. The most common methods are essentially based on either support
vector machines (SVM), mean-centering by gene-wise analysis of variance, singular
value decomposition, scaling by the group-wise geometric mean, or gene-wise empiri-
cal Bayes location and scale adjustment. [182, 169, 183]
These systematic batch-effects are most commonly accessed by PCA or principal com-
ponent variance analysis (PVCA) of the normalized and summarized expression data.
[184, 182, 185]
Chen and co-workers in 2011 found, that the empirical Bayes method implemented in
the ComBat algorithm performed best in terms of sensitivity, specificity, and overall
batch-effect adjustment. [182, 186] Essentially ComBat is a location (mean) and scale
(variance) batch adjustment (L/S method), where the location and scale parameters
for each batch are estimated using an empirical base method, that basically assumes
batch-effects to be comparable between probe-sets, and therefore (for each batch)
”lends” information between probe-sets. [186] ComBat is part of the R/Bioconductor
package SVA. [187, 188, 189]

1.2.4 Differential Expression Analysis

In this work I applied microarray expression analysis to quantify differential gene
expression between groups of skin samples, mainly human lesional (LS) versus non-
lesional (NL) atopic dermatitis samples.
Differential expression (DE) between two groups of samples is usually reported by
an effect size and a significance measure for each gene. Effect size in this context
is defined as the gene-wise (or probe-set-wise) mean difference between the prepro-
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cessed log2-transformed intensities of the two groups, denoted the log2-Fold-Change
(logFCH). The significance measure is most commonly based on a t-statistic (or often
a moderated t-statistic) for calculating a P-value using the Student’s t-distribution.
These P-values are commonly adjusted for multiple testing by the False Discovery
Rate (FDR) procedure proposed by Benjamini and Hochberg to account for the many
genes tested in parallel.[150, 190, 191, 192]
Differential expression analysis can be carried out using various statistical methods,
ranging from simple t-tests, over analysis of variance (ANOVA), to more advanced
linear models with shrinkage methods (as implemented in the R/Bioconductor limma
package). [191, 193, 171] It has been shown that the linear model implementation
in the limma package performs superior, especially for small sample sizes, due to the
build in ability to ”borrow” information across genes or probe-sets in order to shrink
the observed variance. [191]
Historically, in dermatological expression analyses experiments, differentially expressed
genes (DEGs) have been defined with the arbitrary cut-offs fold-change (FCH) ⩾ 2
and adjusted p-value ⩽ 0.05. For comparability with the published data I herein use
the same definitions, but it should be noted, that these cut-offs are arbitrary and not
dynamic with respect to the study specific sample size.

1.2.5 Meta-Analysis

The microarray technologies have evolved and been widely used for differential ex-
pression analysis throughout the past decade(s). This has led to the establishment
of public expression databases (especially the NCBI Gene Expression Omnibus/GEO
and the EMBL-EBI ArrayExpress), which have enabled the research community to
compare and combine expression datasets from different laboratories and batches.
[142, 194, 144, 143]
Strikingly, even-though investigating comparable RNA samples on the same platform,
the results often show a pronounced laboratory effect, which limits direct comparison.
[194, 195, 196, 197] The laboratory effects are manifold, and the batch-effect adjust-
ment methods described in the previous sections are often insufficient to correct for
this. Therefore, meta-analysis methods have been established, to combine the expres-
sion data of different laboratories after laboratory-wise differential expression analysis
has been carried out in a uniform annotation and pre-processing pipeline. This en-
ables the generation of more robust sets of differentially expressed genes, which serve
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as a solid starting point for disease classification and various downstream analyses.
[198, 199, 200, 195]
In the following sections I will give an overview of common microarray meta-analytical
methods, and thoroughly introduce the Random Effects Model (REM), applied in this
work.

1.2.5.1 Overview of Models and Algorithms

Three main types of microarray meta-analysis methods exist, 1) Combining P-
values, 2) Combining rank statistics, and 3) Combining effects.
A variety of meta-analysis methods combining p-values exist. The most classic, and
oldest, of this class of methods was proposed by Sir Ronald Aylmer Fisher in 1925,
and is based on summing the log-transformed p-values (P) of each study (k):

χ2
2k = −2

k∑
i=1

log(Pi) (1.1)

Based on Fishers first introduction of this concept, more suitable methods have been
developed specifically for combining microarray datasets. [199, 160] Song et al. re-
cently suggested the rth Ordered P-value method (rOP) for combining p-values of
multiple microarray studies, by testing whether a gene or probe-set is significantly
differentially expressed in the majority (but not all) of the studies, making use of a
single ordered p-value. [201] This method has been further improved by Li and Gosh,
combining all p-values by adding a weighting that corresponds to their respective
order. [202]

Another approach of defining a consensus set of differentially expressed genes across
multiple microarray datasets is combining rank statistics. The most prominent
method of this class is the rank product method (RankProd), initially introduced by
Breitling et al. (2004). [203] RankProd is based on simply combining the gene or
probe-set wise ranks (in terms of DE evidence) of the included datasets as their prod-
ucts, and is most suitable for detection of consensus DE genes or probe-sets if DE in
at least one of the included datasets. [199, 204]

Especially the p-values methods are both powerful and suitable for a robust com-
bination of multiple microarray studies. However, in the biological context it is often
preferable to gain information of the effect size, i.e. a quantification of the contrast
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between two groups (logFCH). This is possible when datasets with two distinct condi-
tions are investigated, in our context LS versus NL skin samples. To gain information
of the gene or probe-set wise effect sizes across datasets, meta-analysis methods com-
bining effects sizes have been developed. Two main methods for doing so are
generally applied, namely the Random Effects Model (REM) and the Fixed Effects
Model (FEM); where the later is a special case of the REM assuming no difference
other than sampling error between the datasets. [200] In essence the REM estimates
the consensus effect sizes for each gene or probe-set making use of DerSimonian and
Liards point estimate of the between study variance. [200, 205, 206]
As is the case for the rOP, the REM is well suited for detection of differentially
expressed genes or probe-sets if DE in the majority of the included datasets. [199]
An in-depth introduction of the algorithm and statistical basis of the random effects
model is given in the following.

1.2.5.2 The Random Effects Model

In this work I applied the Random Effects Model proposed by Choi et al. (2003) to
estimate probe-set wise consensus effect sizes for atopic dermatitis microarray studies
of lesional and non-lesional full-thickness skin biopsies.

Choi and co-workers define the observed effect size (yji) and the overall mean ef-
fect size (µj) for each probe-set (j = 1, 2, ..., l) and study (i = 1, 2, ..., k) as:

yji = θji + ϵji, ϵji ∼ N(0, s2
ji) (1.2)

θji = µj + δji, δji ∼ N(0, τ2
j ), (1.3)

with the intra-study variance s2
ji and the inter-study (between study) variance τ2

j .
In this model each observed mean effects size yji is defined by the study and probe-set
specific mean difference θji and its corresponding variance s2

ji, where θji is considered
to be drawn from a super-population with mean µj and variance τ2

j . I estimate this
overall mean effect size µj ,with the definitions established by Cooper and Hedges,
and Choi and co-workers: [200, 207]

µ̂j(τ2
j ) =

∑
i=1,..,k

(s2
ji + τ2

j )−1yji∑
i=1,..,k

(s2
ji + τ2

j )−1 , (1.4)
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with its corresponding variance estimate:

V ar(µ̂j(τ2
j )) = 1∑

i=1,..,k

(s2
ji + τ2

j )−1 , (1.5)

based on the DerSimonian-Liard (DL) point estimate of τ2
j , calculated as a meth-

ods of moment estimator making use of the expected value for the Q-statistic (Qj)
introduced by Cochran in 1954: [208, 205]

τ̂2
j = max

{
0,

Q − (k − 1)
Sj,1 − (Sj,2/Sj,1)

}
, (1.6)

where S(j, r =
∑

i=1,...,k

wr
ji and wji = s−2

ji , and the Q-statistic following Cochran’s

definition:

Qj =
∑

i=1,..,k

wji(yji − µ̂j), (1.7)

ignoring the between study variance for the weighted least squares estimator µ̂j =∑
i=1,..,k

(wjiyji)
∑

i=1,..,k

wji. [200, 208]

In order to make this algorithm easily accessible in a pipeline based fashion, e.g. for
use with Biopython packages, I implemented a pandas and numpy based version of
it in a Python (www.python.org) package, which will be submitted to the Biopython
consortium. [209, 210]

1.2.6 Downstream Analysis

Differential expression analyses and as in this work, subsequent meta-analyses, gen-
erally produce lists of gene wise contrasts and corresponding significance measures
between two tissue types. An initial assessment of these lists is the ranking by ef-
fect sizes and/or significance measures, followed by a qualitative investigation of the
interesting, i.e. most significantly respectively over- or under-expressed, genes. As
this approach, even-though thorough, is tedious for the up to thousands of interest-
ing genes, great effort has been put into the development of methods for systematic
and informed grouping of the expression analysis results. Generally, these methods
work on either the pre-processed sample wise expression values or the lists of differ-
entially expressed genes (DEGs). In the following I will give a conceptual overview
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of overrepresentation, gene set enrichment, co-expression networks and classification
methods. Overrepresentation analyses and gene set enrichment methods are
commonly applied on the final list of DEGs and essentially determine whether cer-
tain predefined sets of interesting genes are significantly overrepresented or enriched
in the DEGs list; co-expression network analyses take the pre-processed expres-
sion values as input, and aim at defining groups of genes, that show similar expression
patterns across all samples in one tissue type; and classification algorithms work
on pre-processed expression values to select a small number of genes that stably dis-
tinguish between two tissue types (e.g. lesional and non-lesional, or diseased and
healthy). [211, 212, 213, 214, 215, 216]

1.2.6.1 Overrepresentation Analyses

Overrepresentation analysis in its most simple form seeks to determine whether a set
of genes is significantly overrepresented in a list of DEGs. The sets of interesting genes
(gene-sets) grouped by biological functional features of interest can be obtained from
public sources like the Gene Ontology (GO) consortium, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database and the comprehensive Molecular Signatures
Database (MSigDB). [217, 218, 219]
A classic approach to test for significant overlap between certain gene-sets and a list
of DEGs, is to make use of Fisher’s exact test or the hypergeometric test with a
2x2 (contingency) table. [220] This type of approach, even-though beautifully simple,
is limited by being based on the list of DEGs, which is defined by arbitrary effect size
and significance cut-offs (often absolute logFCH⩾1 and adjusted P-value⩽0.05); hence
with the natural risk of not taking into account smaller but maybe still biologically
important changes in gene expression.
To overcome these limitations, methods considering the contrasts of all measured gene
expressions have been developed. In this work I applied the Gene Set Variation
Analysis (GSVA) algorithm, a Single-Sample based extension to the popular Gene
Set Enrichment Analysis (GSEA) method. [221, 215]
GSEA takes the ranked list of genes from an expression analysis as input, and basically
determines 1) whether a gene-set is significantly overrepresented in this ranked list
and 2) at which end (top or bottom) of the list it is overrepresented. GSEA presents
the level of enrichment and its corresponding significance by an enrichment score
(ES), which is based on an adapted Kolmogorov-Smirnov test statistic. [220, 215] The
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limitations of this method are obviously that it is based on the final contrasts between
all samples of two tissue types, not taking into account possible sample wise variations.
This is of great interest in the context of this work, as I am investigating the contrasts
between LS and NL AD skin samples, which are of paired nature, enabling potential
paired testing.
Due to this limitation I applied the GSVA method, which essentially transforms
a set of gene or probe-set wise expression values, into a set of gene-set wise pseudo
expression values (GSVA scores). So, each sample gets a GSVA score for each gene-set
of interest, resulting in an expression set based on GSVA scores rather than individual
gene or probe-set expression values. Because of this samples wise approach GSVA is
considered a single sample (SS) gene-set enrichment method, which can be readily fit
into a differential expression analysis based on e.g. limma, enabling the investigation
of differential expression of gene-sets between two tissue types.

1.2.6.2 Weighted Gene Co-Expression Analysis

Co-expression analysis is a method of analyzing gene expression values, which seeks to
simplify the large sets of gene expressions by grouping genes with similar expression
values across samples into modules of co-expressed genes. Furthermore, co-expression
analysis provides a gene-wise measure of connectivity, for each module defining highly
connected genes as hub genes. By defining modules and subsequent hub genes, co-
expression analysis reduces the dimensions of a set of expression values, and enables
us to efficiently systematically investigate these large datasets even if only one tissue
type is available (i.e. differential expression analysis is not possible to be carried out).
The core of gene co-expression analysis is the definition of pairwise correlations be-
tween gene profiles across samples. This is commonly carried out by calculating the ab-
solute value of Pearson’s correlation between two genes, defined as sij = abs(cor(xi,xj))
for each gene i and j across all samples. [222, 223]
An extension of the basic gene co-expression analysis is implemented in the popular
Weighted Gene Co-Expression Analysis (WGCNA) R package. [212] Essentially
the WGCNA algorithm introduces a weighting, which favors strong correlations and
penalizes weak ones, thus making it more robust with respect to the often noisy na-
ture of the initial microarray expression data. The weighted networks produced by
WGCNA, are defined by the weighted adjacency matrix:

Aij = (|cor(xi, xj)|)β , (1.8)
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with the power parameter β ⩽ 1. In the WGCNA pipeline, these adjacency matrices
are finally subject to clustering, to define modules of co-expressed genes, which can
be brought into a biological context for instance by the simple gene set enrichment
methods introduced in the previous section. [222, 212, 224]

1.2.6.3 Classification by Gene Expression

One of the ultimate goals of investigative dermatology and translational biomedicine
in the context of AD research is to evaluate the effect of treatments. On a molecular
level the most intuitive treatment evaluation is to investigate whether the expression
profiles of skin biopsies from lesional areas are reverted to those of non-lesional areas.
As outlined in the previous atopic dermatitis section, the reason for comparing to
non-lesional as opposed to normal skin samples is the fact that there is a striking
molecular difference (some researchers in the field consider it a ”molecular scar”) be-
tween these two tissue types. [121]
In the context of treatment effect evaluation there are multiple sub-goals; researchers
could for instance be interested in being able to predict the outcome of a trial after
a shorter period of time than common practice, e.g. predicting the effect of a drug
after 2 instead of 12 weeks. In this work I applied an approach that is a step towards
this more complex treatment response setup, as I here simply aimed at defining an
unbiased distinction (classification) between LS and NL AD samples.
Classification algorithms to achieve these distinctions have been around for a long
time, and been applied on expression data (especially in cancer research) over the
past decades. These algorithms have become more and more complex in the recent
years. [225, 226]
The core concept of an expression value based classifier is, that given a set of ex-
pression values for samples of a known class (in this case LS or NL), select enough
features (genes or probe-sets) to stably distinguish between the classes. The classifier
is commonly build on a subset of the known expression set, and then tested on the
remaining subset that was not used to build the classifier, to get an insight into per-
formance in terms of sensitivity and specificity.
Among the more common (and relatively simple) classification algorithms are the lin-
ear (linear discriminant analysis [LDA], and nearest centroid) and the non-linear (k
nearest neighbor [kNN], artificial neural network [ANN] and support vector machine
[SVM]). [227, 228]
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Here I applied the Multi Threshold Gradient Decent Regularization (multi-TGDR) al-
gorithm, an extension of the meta-TGDR algorithm specifically developed for microar-
ray meta-analysis datasets, proposed by Tian and Suárez-Fariñas in 2013. [229, 230]
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CHAPTER 2
Manuscripts

2.1 A Robust Atopic Dermatitis Transcriptome

2.1.1 Prelude

As the prevalence of the inflammatory skin disease atopic dermatitis (AD) has been
increasing over past decades, dermatological and biomedical research has focused on
unraveling the molecular basis of the disease.
The introduction of high-throughput screening methods like cDNA microarrays has
enabled the researchers to rapidly screen the expression levels of thousands of genes
in parallel. Recently, focus has been on defining the relative expressions between le-
sional (LS) and non-lesional (NL) biopsies from AD patients. Many journals have
established data reporting standards, which require the research to deposit high-
throughput data of this nature in publicly available databases like the NCBI Gene
Expression Omnibus (GEO) or the EMBL-EBI ArrayExpress, making it possible to
mine and re-analyze these data.
In this paper I carried out a systematic review of publicly available microarray ex-
pression data of AD LS and NL samples. I pre-processed the resulting datasets with
a uniform pre-processing pipeline, carried out individual differential expression anal-
yses, and combined the results (effect sizes) by means of the meta-analytical random
effects model (REM).
This study essentially resulted in a robust AD transcriptome, which was able to
identify 86 differentially expressed genes that were not discovered by the individual
included studies. This AD transcriptome furthermore highlighted the lipid abnormal-
ities and Th2 activation of the disease.
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Abstract

Background: Atopic dermatitis (AD) is a common inflammatory skin disease with limited treatment options. Several
microarray experiments have been conducted on lesional/LS and non-lesional/NL AD skin to develop a genomic
disease phenotype. Although these experiments have shed light on disease pathology, inter-study comparisons
reveal large differences in resulting sets of differentially expressed genes (DEGs), limiting the utility of direct
comparisons across studies.

Methods: We carried out a meta-analysis combining 4 published AD datasets to define a robust disease profile,
termed meta-analysis derived AD (MADAD) transcriptome.

Results: This transcriptome enriches key AD pathways more than the individual studies, and associates AD with
novel pathways, such as atherosclerosis signaling (IL-37, selectin E/SELE). We identified wide lipid abnormalities and,
for the first time in vivo, correlated Th2 immune activation with downregulation of key epidermal lipids (FA2H,
FAR2, ELOVL3), emphasizing the role of cytokines on the barrier disruption in AD. Key AD “classifier genes”
discriminate lesional from nonlesional skin, and may evaluate therapeutic responses.

Conclusions: Our meta-analysis provides novel and powerful insights into AD disease pathology, and reinforces the
concept of AD as a systemic disease.
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Background
Atopic dermatitis (AD) is the most common inflammatory
skin disease (4–7 % prevalence in adults, and ~15 % in
children), with a large unmet need for safer and more
effective treatments [1–7]. Immune and barrier abnormal-
ities characterize AD, with Th2/Th22 cytokine activation,
increased hyperplasia and significant decreases in differenti-
ation markers. These observations have led to two compet-
ing pathogenic hypotheses [1, 8, 9], although recent studies

characterizing AD primarily as an immune-driven disease
have shown reversal of barrier defects following specific
and non-specific therapeutic interventions [10–13].
Genomic expression profiling using gene-arrays and

real time (RT)-PCR has been widely used to identify
gene alterations in lesional (LS) and non-lesional (NL)
AD compared to normal skin to better understand inter-
actions between activation of cytokine pathways and
epidermal abnormalities [6, 7, 10, 12, 14, 15]. Similar to
other diseases, the AD phenotype/transcriptome can be
defined genomically by differentially expressed genes
(DEGs) between LS and NL skin [15]. A robust tran-
scriptome was established as a powerful tool in iden-
tifying core psoriasis pathogenesis and evaluating the
efficacy of targeted therapeutics at transcriptomic level
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[16, 17]. The high rates of placebo effect in AD patients
contrasts with a worsening of disease phenotype at the
transcriptomic level [10], reinforcing the importance of a
robust disease transcriptome against which therapeutic
effects can be evaluated [18]. Genomic profiling may
also be used to predict therapeutic responses, as in
juvenile idiopathic arthritis, in which profiling correctly
predicted therapeutic responses at 6 months [19].
Nevertheless, high-throughput genomic analyses are

vulnerable to multiple biases, including random noise,
biological heterogeneity, and differences in experimental
procedures (biopsies, hybridization, etc.), leading to re-
markably little overlap between DEGs in similar scale
studies [20–22]. A meta-analysis approach that com-
bines microarray data from independent yet similarly de-
signed studies allows one to overcome these variations,
ultimately increasing the power and reproducibility of
the transcriptome [23–25]. While several meta-analysis
methods exist for combining microarray data from inde-
pendent studies [26], the random-effects model (REM)
has been established as one of the most suitable for het-
erogeneous studies [25, 27, 28].
We applied a REM meta-analysis model including 4

published AD microarray studies (including 97 samples;
54 LS and 43 NL; 41 paired) to determine core pathogenic
elements and new disease associated genes [9, 10, 12, 15],
resulting in the Meta-Analysis Derived AD (MADAD)
disease transcriptome, a robust active disease signature of
595 DEGs, including 86 that were not previously detected
by any individual study.

Methods
Sample collection
All samples were collected according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement [29]. A total of 28 datasets were
detected in Gene Expression Omnibus (GEO), but only
datasets including LS and NL skin samples of AD patients
were retained. Datasets run on platforms other than the
HGU133Plus 2 chip, subject to treatments, or with
non-randomly selected NL or LS samples (e.g. FLG
homozygous/heterozygous loss of function mutation),
and datasets without NL samples were excluded. When
overlapping samples were found between datasets, only
one copy was kept. Four microarray datasets satisfied the
established criteria (GSE32924, GSE36842, GSE58558,
GSE59294) [9, 10, 12, 15], including 97 samples (54 LS
and 43 NL), which coincidently have been carried out by
our group.

Pre-processing and expression analysis
Pre-processing and statistical analyses were performed
using R and Bioconductor packages [30, 31]. Raw expres-
sion data were combined, summarized, and normalized

using GCRMA [32]. Batch effects between datasets were
adjusted for by the empirical Bayes method ComBat/
SVA [32–35]. Agreement of the individual studies raw
microarray data was estimated by the Integrated Cor-
relation Coefficient Analysis, which produces the general
Integrated Correlation Coefficient (ICC), representing
agreement between studies, and can be interpreted in the
same way as Pearson correlation coefficient. The ICC was
used to eliminate background noise prior to the analysis,
by excluding genes with incoherent behavior across
studies [36].
For each study, estimation of differences in expression

levels of LS vs NL skin was performed using the mixed-
effect framework of the limma package.

Meta-analysis
The formal random effects model (REM), described by
Choi [27]. was applied to estimate the true effect size for
each probe (see Additional file 1). These estimation and
calculation steps were performed using the package
GeneMeta. P-values were adjusted for multiple testing
using the Benjamini-Hochberg procedure [37], with cri-
teria for DEGs of absolute fold change (|FCH|) ≥ 2.0 and
a false discovery rate (FDR) ≤ 0.05.

Post-processing
The MADAD transcriptome was subject to multiple
downstream analysis methods. Integration-driven dis-
covery/IDD-DEGs were defined as those not identified
in any of the included studies. To explore functional an-
notations, overrepresentation analysis was carried out
for BP GO-terms and KEGG pathways (both in DAVID)
[38], Ingenuity Pathways (IPA – www.ingenuity.com, as
described) [25], and on previously reported gene-sets [39].
The normalized LS and NL expression data were subject

to Weighted Gene Co-Expression Networks Analysis
(WGCNA) to detect clusters (modules) of correlated
genes and respective hub genes [40]. These modules were
subject to trait correlation and corresponding gene-set
overrepresentation analysis.
Meta Threshold Gradient Directed Regularization

(MTGDR) method [41, 42] was used to select disease-
associated genes while allowing for varied estimates of
those genes across different experiments, as previously
published [41, 42].
Primers and probes were designed for RT-PCR as pre-

viously described (see Additional file 1 and Additional
file 2) [43]. Ribosomal protein, large, P0/RPLP0 normal-
ized RT-PCR expression data was analyzed using a
mixed-effect framework after log2-transformation.
Lipid metabolism genes were defined as genes related to

one of the four groups: Ceramides, Free Fatty Acids,
Sphingolipids, and Cholesteryl Esters in the Gene Cards
database (www.genecards.org). We included all genes with
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a relevance score ≥ 10 [44, 45]. Pairwise Pearson correla-
tions were calculated between the gene and patient
specific deregulations. Multivariate correlations between
sets of genes were calculated making use of the gene set
specific μ-scores calculated by the muStat package [46].

Results
Data collection
Two major repositories (GEO Omnibus and ArrayExpress)
were queried to identify studies with expression profiles
of LS and NL punch biopsies from AD patients. Four
studies (GSE59294, GSE58558, GSE36842, GSE32924;
including 97 samples, with 54 LS and 43 NL, 41 paired)
met all inclusion criteria following the PRISMA guide-
lines (see Methods, Additional file 3: Figure E1 and
Additional file 4: Table E1) [9, 10, 12, 15]. We only used
data from chronic lesions in the analysis. No significant
differences in disease severity (as measured by Scoring
of AD/SCORAD and Eczema Area and Severity/EASI

indices) or IgE levels were found across patients who all
had moderate-to-severe AD (SCORAD> 25; EASI > 12).

Meta-analysis framework
The Venn diagram in Fig. 1a represents the overlap of
DEGs identified by the individual studies, including 25
consensus DEGs (see Additional file 5: Table E2). Be-
sides inter-study variation, sources of inconsistency in
DEGs include choice of model, annotation, cut-off, and
non-uniform pre-processing steps [47]. To combine re-
sults of individual studies and to aggregate robust DEGs
with reliable effect sizes, we chose a meta-analysis ap-
proach [21, 27].
To address these sources of inconsistency, we applied

a uniform pre-processing pipeline to the combined data-
sets, incorporating noise reduction techniques as pro-
posed [23, 25, 36, 47] (see Methods, Additional file 3:
Figure E1C, and Additional file 1). This pre-processing
increased the average of the pairwise maximum canonical

A B

C

Fig. 1 a Approximate area proportional Venn diagram with overlaps of the differentially expressed genes of the four individually analyzed
datasets under the same threshold (|FCH|≥ 2, FDR≤ 0.05). b Ingenuity Canonical Pathway overrepresentations compared between this MADAD
transcriptome and the included dataset from Khattri et al. 2014 (GSE58558). The bars represent –log10 transformed Benjamini-Hochberg adjusted
p-values termed –log(FDR), and the red threshold line indicates the FDR≤ 0.05 cut-off. c Cutaneous localization of the MADAD transcriptome as
compared to the epidermis and dermis related genes defined by Esaki et al. [63]
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correlations between each pair of studies from 0.76
to 0.85.
To combine heterogeneous effect sizes across studies,

a random effects model/REM was chosen over fixed ef-
fects model. The use of REM is supported by the sample
distribution of the Cochran’s Q statistic [27], which de-
parts substantially from the theoretical χ3

2-distribution
under the assumption of homogeneity of study effects.
Furthermore, a Kolmogorov-Smirnov-test also rejected the
equality of these two distributions (p = 2.22−15; D = 0.235)
(Additional file 6: Figure E2).

The Meta-analysis-derived AD (MADAD) transcriptome
Applying the meta-analysis approach to 4 studies and 97
samples, we identified a set of 595 DEGs (387 up- and
208 downregulated) using the classical |FCH| ≥ 2 and
FDR ≤ 0.05 criteria, representing a robust profile defined
as the meta-analysis derived AD (MADAD) trans-
criptome (see Additional file 7: Table E3 for the entire
MADAD DEGs list). Among the highest dysregulated
genes are key AD genes, including markers of general
inflammation (MMP12), specific T helper activation (e.g.
Th2/CCL18, Th1/IFN/CXCL10, Th17/PI3/elafin, Th17/
Th22 S100A7/A8/A9), and markers of epidermal prolif-
eration (KRT16, Mki67).
To show the robustness of the MADAD transcrip-

tome versus a single study, we conducted an over-
representation analysis (see Methods) of ingenuity
canonical pathways (IPA) and of previously published
immune and barrier gene-sets [12, 48]. Figure 1b
illustrates the comparison of the largest available’
dataset (Khattri 2014 – GSE58558) and the MADAD
transcriptome; similar results were obtained for the
other three included datasets. Overall, the MADAD
yields a more significant over-representation of key
immune pathways, such as Granulocyte Adhesion and
Diapedesis, T Cell Receptor Signaling and differenti-
ation, iCOS-iCOSL Signaling, and IL-12, IL-17, and IL-9
signaling. Innate pathways (e.g. Role of Pattern Recog-
nition Receptors in Recognition of Bacteria), which are
associated with AD [49, 50], were also represented
(Fig. 1b and Additional file 8: Tables E4 and Additional
file 9: Table E5). Interestingly, Atherosclerosis Signaling
was the second highest IPA pathway, and includes
genes previously associated with vascular inflammation,
such as IL-37, SERPINA1, S100A8, selectin E/SELE, lipo-
protein lipase/LPL, and MMP1/3/9 [51–62]. An equiva-
lent analysis of previously reported immune and barrier
gene-sets [12] (Additional file 10: Figure E3A) similarly
showed increased sensitivity and representation in the
MADAD transcriptome compared to the largest data set,
including IFNα, IL-4, immune genes, cytokine-treated
keratinocytes and epidermal differentiation gene subsets
(Additional file 10: Figure E3A). Thus, the MADAD

transcriptome provides a more robust AD-specific signal,
consistent with known disease pathology.
Comparison of the MADAD transcriptome to the

recently described epidermal and dermal layer-specific
transcriptomes linked 223 and 231 DEGs to the epider-
mis and dermis, respectively (Fig. 1c, Additional file 7:
Table E3) [63]. Of these, 55.3 % of the upregulated genes
were epidermal, whereas 67.5 % of the downregulated
genes were dermal (P = 2.6 × 10−5, Fisher’s exact test), as
has been previously noted [63].
Of the top 25 up-regulated MADAD DEGs, 17 encode

epidermal components, including key antimicrobial genes
(DEFB4A, PI3/elafin, S100A9) (Additional file 7: Table E3).
Top 25 up-regulated dermal genes include those related to
collagen production (COL4A4, COL6A5) and inflamma-
tion (GZMB, OASL) [64, 65]. Among top down-regulated
epidermal genes are structural/lipid-related genes (LEP,
FABP7, ELOVL3), and genes linked to epidermal differen-
tiation (CLDN8) [66–68]. Several genes associated with
the pathogenesis of AD (e.g. IL-22, OX40L and TSLP) and
reported in the layer-specific AD transcriptomes [63] were
not detected in the MADAD transcriptome, most likely
due to low expression levels of cytokines on whole tissue
microarrays, a known limitation of microarrays [24, 69],
that cannot be overcome by the meta-analysis approach.

Integration-Driven Discovery Genes in the MADAD
transcriptome
The MADAD comprises a subset of IDD-DEGs, which
were not detected by any of the individual datasets using
identical cutoffs [9, 10, 12, 15]. These 86 IDD-DEGs
consist of 45 up- and 41 downregulated genes (Table 1).
Using IPA and GOterm overrepresentation analyses on
the IDD-DEGs, we found in addition to the expected in-
flammatory processes (e.g. Chemokine Signaling), several
pathways related to lipid and fatty acid metabolic pro-
cesses (Additional file 10: Figure E3B, Additional file 11:
Table E6).
We further validated, using RT-PCR, several IDD-DEGs

and top MADAD DEGs with plausible biologic relevance
to AD, including immune (CCL8, CD1E, IL-37, IL-36G),
structural (AQP5, a water channel) and lipid (FAR2,
ELOVL3, FA2H) genes, which encode enzymes involved
in fatty acid and ceramide metabolism (Fig. 2a). Immune-
related genes (e.g. CCL8, LCP2, CD1E) and IL-36G, which
was recently associated with psoriasis pathogenesis [70],
were increased in AD LS skin. The only gene that showed
increased expression in NL vs LS skin was IL-37, a nega-
tive immune regulator [71], consistent with past reports
[72]. All structural and lipid metabolism genes showed
downregulation in LS AD skin (P ≤ 0.05 for all), reinfor-
cing the role of lipids and water channels in preserving
barrier function in AD [73, 74].
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Table 1 Integration-Driven Discovery (IDD) Genes in the MADAD transcriptome, with indication of compartmental allocation as
defined by Esaki et al. [63]
Symbol Description logFC FC Layer

Up

COL6A6 collagen, type VI, alpha 6 2,08 4,22 D

CD1B CD1b molecule 1,84 3,57 D

SPRR1B small proline-rich protein 1B 1,68 3,20 E

CCL22 chemokine (C-C motif) ligand 22 1,65 3,13 D

MMP9 matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase) 1,51 2,84 D

IL13RA2 interleukin 13 receptor, alpha 2 1,46 2,74 D

CCL26 chemokine (C-C motif) ligand 26 1,37 2,59 D

SASH3 SAM and SH3 domain containing 3 1,35 2,56 D

IL36RN interleukin 36 receptor antagonist 1,35 2,55 E

CCL13 chemokine (C-C motif) ligand 13 1,27 2,41 D

KIAA1644 KIAA1644 1,26 2,39 D

IL12RB1 interleukin 12 receptor, beta 1 1,23 2,34 D

XCL2 chemokine (C motif) ligand 2 1,21 2,31 D

CCL5 chemokine (C-C motif) ligand 5 1,21 2,31 D

ADAMDEC1 ADAM-like, decysin 1 1,19 2,29 D

TIFAB TRAF-interacting protein with forkhead-associated domain, family member B 1,18 2,27 D

P2RY1 purinergic receptor P2Y, G-protein coupled, 1 1,16 2,23 E

PIK3CG phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma 1,15 2,22 D

FAM124B family with sequence similarity 124B 1,14 2,21 D

SLAMF8 SLAM family member 8 1,12 2,18 D

CXADR coxsackie virus and adenovirus receptor 1,12 2,17 E

GPSM3 G-protein signaling modulator 3 1,11 2,16 D

HCK hemopoietic cell kinase 1,09 2,13 D

LOC100288860 uncharacterized LOC100288860 1,09 2,12 E

MMP3 matrix metallopeptidase 3 (stromelysin 1, progelatinase) 1,08 2,11 D

CD1E CD1e molecule 1,07 2,10 D

KLRK1 killer cell lectin-like receptor subfamily K, member 1 1,06 2,09 D

GBP1 guanylate binding protein 1, interferon-inducible 1,06 2,09

IL23A interleukin 23, alpha subunit p19 1,05 2,08 D

LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog 1,05 2,07 D

C5orf20 chromosome 5 open reading frame 20 1,05 2,06 D

CCL8 chemokine (C-C motif) ligand 8 1,04 2,06 D

RELB v-rel avian reticuloendotheliosis viral oncogene homolog B 1,04 2,06

ACPP acid phosphatase, prostate 1,03 2,05 E

TRAT1 T cell receptor associated transmembrane adaptor 1 1,03 2,04 D

PTX3 pentraxin 3, long 1,03 2,04 D

CD48 CD48 molecule 1,03 2,04 D

FPR3 formyl peptide receptor 3 1,02 2,03 D

TGM3 transglutaminase 3 1,02 2,03 E

CXCL11 chemokine (C-X-C motif) ligand 11 1,02 2,03

MAP4K1 mitogen-activated protein kinase kinase kinase kinase 1 1,02 2,02 D
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Table 1 Integration-Driven Discovery (IDD) Genes in the MADAD transcriptome, with indication of compartmental allocation as
defined by Esaki et al. [63] (Continued)

CD6 CD6 molecule 1,02 2,02 D

SELPLG selectin P ligand 1,01 2,02 D

ZC3H12D zinc finger CCCH-type containing 12D 1,01 2,01 D

C15orf48 chromosome 15 open reading frame 48 1,00 2,00 E

Down

PM20D1 peptidase M20 domain containing 1 −2,63 −6,19

KRT79 keratin 79 −2,04 −4,13

GAL galanin/GMAP prepropeptide −2,02 −4,06

ELOVL3 ELOVL fatty acid elongase 3 −1,71 −3,26

CYP4F8 cytochrome P450, family 4, subfamily F, polypeptide 8 −1,64 −3,11

HAO2 hydroxyacid oxidase 2 (long chain) −1,63 −3,10

FADS2 fatty acid desaturase 2 −1,49 −2,80

ANGPTL7 angiopoietin-like 7 −1,40 −2,63 D

CUX2 cut-like homeobox 2 −1,36 −2,56

PON3 paraoxonase 3 −1,35 −2,55 E

SGK2 serum/glucocorticoid regulated kinase 2 −1,32 −2,50

MSMB microseminoprotein, beta- −1,31 −2,47 E

FADS1 fatty acid desaturase 1 −1,30 −2,46 D

BPY2 basic charge, Y-linked, 2 −1,29 −2,45

FAR2 fatty acyl CoA reductase 2 −1,29 −2,44 D

MUC7 mucin 7, secreted −1,23 −2,35

FA2H fatty acid 2-hydroxylase −1,20 −2,30

ABHD12B abhydrolase domain containing 12B −1,18 −2,27 E

PNPLA3 patatin-like phospholipase domain containing 3 −1,18 −2,27 E

ACOX2 acyl-CoA oxidase 2, branched chain −1,11 −2,16 D

PSORS1C2 psoriasis susceptibility 1 candidate 2 −1,10 −2,15 E

KRT19 keratin 19 −1,08 −2,11

ATP6V1B1 ATPase, H+ transporting, lysosomal 56/58 kDa, V1 subunit B1 −1,07 −2,10

SCGB2B2 secretoglobin, family 2B, member 2 −1,07 −2,09

MOGAT1 monoacylglycerol O-acyltransferase 1 −1,07 −2,09

NSUN7 NOP2/Sun domain family, member 7 −1,07 −2,09 E

COCH cochlin −1,05 −2,07 E

IL20RA interleukin 20 receptor, alpha −1,05 −2,07 E

SEMA3B sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3B −1,03 −2,05 D

RHPN2 rhophilin, Rho GTPase binding protein 2 −1,03 −2,05

AWAT1 acyl-CoA wax alcohol acyltransferase 1 −1,03 −2,04

TMC4 transmembrane channel-like 4 −1,03 −2,04

GPRC5A G protein-coupled receptor, class C, group 5, member A −1,02 −2,03

TRHDE-AS1 TRHDE antisense RNA 1 −1,02 −2,03

AQP5 aquaporin 5 −1,02 −2,03

LINC00663 long intergenic non-protein coding RNA 663 −1,02 −2,02

ZNF471 zinc finger protein 471 −1,01 −2,02
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Suppression of lipid-related genes is coupled to increased
Th2 activation
While we have previously shown inverse correlations
between immune activation and terminal differentiation
genes in AD lesions [11, 15], the relationship between
immune activation and lipid metabolism genes has not
been assessed in skin.
We thus investigated the relationship between expres-

sion of Th2-specific and epidermal lipid metabolism
genes in the MADAD transcriptome. First we performed
an unbiased database search for lipid related terms (see
Methods) and chose genes with highest relevance scores.
The correlation structure between lipid metabolism and
immune genes in LS and NL skin is shown in Fig. 2b.
Unsupervised clustering identified two main sub-

clusters in the Th2 gene-set and three main sub-clusters
in the lipid metabolism gene-set. Cluster 3 consists only
of SPTLC2, the only lipid metabolism gene with up-
regulated expression in the MADAD transcriptome. This
gene encodes serine palmitoyltransferase (SPT), a rate-
limiting enzyme in sphingomyelin synthesis, whose
elevated expression has been associated with increased
barrier defects, including in AD [75–77].
Multivariate u-statistics correlate the dysregulation of

immune and lipid metabolism genes [46]. Overall, an
inverse correlation of −0.46 (p = 0.003) was obtained
between Th2 and lipid subsets, supporting a proposed
model of Th2 cytokine effects on lipid suppression [78].
Among Th2 genes, cluster 1 showed the highest negative
correlation with lipid metabolism genes (−0.49; p = 0.001),
and includes key AD genes (CCL22, IL-7R, and IL-4R)
[63, 79–81]. Targeting IL-4R shows promise in early clin-
ical trials as a possible therapeutic target for moderate-to-
severe AD, and is now in phase 3 clinical trials for this
disease (NCT02277743) [10, 18].

Weighted gene co-expression network analysis
Weighted gene co-expression network analysis (WGCNA)
offers insights into disease pathogenesis by studying
weighted co-expression of genes within tissue samples
[40]. This technique requires a large sample size [40, 82],
which we were able to apply here for the first time in AD
(see Methods).
Using WGCNA, 21 distinct sub-networks were identi-

fied, and each was correlated with age, IgE level, and dis-
ease severity (measured by Scoring of Atopic Dermatitis/

SCORAD) index (Fig. 3a-b, Additional file 12: Tables E7
and Additional file 13: Table E8). In LS skin, several
networks showed significant positive correlations with
SCORAD, including viral (M13) and innate immune
response processes (M17), emphasizing cutaneous im-
mune reactions to viral and/bacterial pathogens in LS
AD skin. Proliferation and epidermal processes were also
correlated with SCORAD (M10, M11), with a trend for
negative correlations between SCORAD and structural
epidermal modules (M4, M12). In NL skin, immune-
related networks such as cytokine receptor signaling
pathway and innate immune response modules (M4, M2)
[63, 83] were also positively correlated with SCORAD,
while extracellular matrix (ECM) organization (M10) and
ECM-receptor interaction (M9) modules were negatively
correlated (Fig. 3b). Interestingly, a trend for a positive
correlation was observed between SCORAD and Staphy-
lococcus aureus (S.aureus) infection in NL skin (M8), with
possible clinical relevance, since AD patients are often
colonized with S.aureus, even in NL skin [4, 84]. Similar
but weaker correlations were seen with IgE, while minimal
correlations where found with age (Fig. 3a-b).

A robust genomic AD classifier
Because clinical trials with specific and broad therapeu-
tics are being tested in AD [5, 85], establishing a reliable
gene set to discriminate between diseased and normal-
appearing skin in AD is crucial. Here, we applied the
classification algorithm Meta Threshold Gradient Di-
rected Regularization (MTGDR) [41, 42], to determine
the smallest set of genes that distinguishes LS from NL
AD skin (see Methods). The final model identifies 19
genes (Fig. 3c and Table 2), including both epidermal
and dermal genes, emphasizing the importance of both
compartments to the disease model.
To assess the translational validity of these 19 discrimin-

ating genes, we investigated the effect of various therapies
on gene expression using previously published studies
with Dupilumab (300 mg, 4 weeks of treatment) [10],
Cyclosporin A (CsA; at 2 and 12 weeks) [12], and narrow
band UVB/NB-UVB (12 weeks of treatment) [11], shown
in Table 2. Reversal of disease phenotype to the NL state
was observed in 18 of the 19 discriminating genes. Over-
all, a higher reversal was seen with CsA, a broad immune
suppressant [86, 87], particularly after 12 weeks of treat-
ment, with an average recovery of 94.64 % (see Table 2).

Table 1 Integration-Driven Discovery (IDD) Genes in the MADAD transcriptome, with indication of compartmental allocation as
defined by Esaki et al. [63] (Continued)

CYP2J2 cytochrome P450, family 2, subfamily J, polypeptide 2 −1,01 −2,02 E

MEGF10 multiple EGF-like-domains 10 −1,01 −2,01

FAXDC2 fatty acid hydroxylase domain containing 2 −1,00 −2,01 D

SLC13A2 solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 2 −1,00 −2,01
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Fig. 2 a Barplot representing means ± SEM of RT-PCR expression values for selected MADAD DEGs, normalized by hARP and log2 transformed.
Underlined genes represent those not detected in any of the included datasets (IDD-genes). b Multivariate correlation between lipid and Th2-related
genes dysregulations. Stars indicate the corresponding significance levels (+ ≤0.1, *≤ 0.05, ** ≤0.01), while the correlations are shown from negative
(−0.05, dark blue) to positive (0.05, dark red). The correlation data structure was assessed with Euclidean distance and complete agglomeration
hierarchical clustering. Note that the right section gives a schematic overview of the gene set analysis and the corresponding correlation coefficients
for the overall Th2 vs Lipid comparison and the sub-comparisons of C1 vs Lipid and C2 vs Lipid (see Additional file 15: Table E10 for corresponding BH
adjusted p-values)
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Among the genes down-regulated with treatment are
inflammatory genes (S100A9, SELE) previously associ-
ated with AD [9, 59, 88]. Genes up-regulated with treat-
ment (particularly with long-term CsA) include perilipin
[89] and hydroxysteroid dehydrogenase [90], which are
involved in lipid and steroid metabolism, respectively.
The LS and NL dysregulation in the MADAD

correlates with the treatment change induced by CsA
(r = 0.99; p = 2.5*10−14), dupilumab (r = 0.45; p = 0.189),
and UBV (r = 0.90,p = 0.001) treatments, leading to res-
toration of gene expression similar to that seen in NL
skin (Additional file 14: Figure E4).

Discussion
A meta-analytic approach utilizes statistical processing
and analysis to merge microarray studies from various
populations and investigators, resulting in a single value
that represents the estimated differential expression level
of a gene between LS and NL skin. Combining multiple
studies in a meta-analysis produces findings that more

precisely reflect the differential expression of genes in a
population, representing an accurate molecular charac-
terization of a disease with increased power compared to
individual analyses.
To address potential issues regarding meta-analysis ap-

plication in gene expression studies, including laboratory
effects, variations between probes and differential plat-
forms, we planned this analysis beginning with data se-
lection, through pre-processing and filtering, and finally
to the meta-analysis model. This pipeline included the
adjustment for study-related batch effects to minimize
superficial inter-study discordance caused mainly by ran-
dom noise and technical differences. Although in general
this adjustment risk may confound true biological dif-
ferences, we found no differences in disease severity, IgE
and age across the four cohorts and thus feel confident
that true biological differences are unlikely to be con-
founded. The resulting list of DEGs is presented here as
a Meta-Analysis Derived Atopic Dermatitis (MADAD)
transcriptome, utilizing 4 separate microarray studies for

Fig. 3 Module eigen-genes from weighted gene co-expression network analysis (WGCNA), correlated with Age, SCORAD and IgE, including
annotation of top overrepresented BP GO-terms, KEGG Pathways or curated inflammatory skin diseases related gene-sets in (a) Lesional and
(b) Non-lesional co-expression networks. Numbers in each cell represent the correlations with the respective trait and the associated p-values (see
Additional file 16: Tables E11 and Additional file 17: Table E12 for corresponding BH adjusted p-values). c Radviz plots showing the separation of the
lesional (LS) and non-lesional (NL) samples, as defined by the 19 genes signature identified by the MTGDR classifier (see Additional file 18: Table E13 for
raw MTGDR results)
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Table 2 MTGDR robust classifier genes, compared to treatment response, and indication of compartmental allocation as defined by Esaki et al. [63]
SYMBOL LAYER logFCH

(MAD-AD)
logFCH
(Dupilumab,
300 mg, W4)

logFCH
(Cyclosporin,
W2)

logFCH
(Cyclosporin,
W12)

logFCH
(UVB, W12)

Genename Recovery
(Dupilumab,
300 mg, W4)

Recovery
(Cyclosporin, W2)

Recovery
(Cyclosporin, W12)

Recovery
(UVB, W12)

IGFL1 E 3.5 −2.4a −2.6a −3.6a −2.3a IGF-like family member 1 68.60 74.81 101.60 64.33

OASL D 2.9 −2.7a −2.7a −3.3a −1.8a 2'-5'-oligoadenylate
synthetase-like

93.07 93.24 112.20 60.33

SELE D 2.4 −2.9a −1.6a −1.6a −2.3a selectin E 121.06 66.99 66.24 94.94

AKR1B10 E 3.2 −1.3 −3.2a −4.0a −3.0a aldo-keto reductase family 1,
member B10 (aldose reductase)

42.39 100.29 127.48 95.22

MS4A14 D 1.4 −2.0a −1.2a −1.4a 0.0 membrane-spanning 4-domains,
subfamily A, member 14

149.43 84.71 102.42 0.00

NUF2 E 1.4 −2.2a −1.4a −1.4a −0.9 NUF2, NDC80 kinetochore
complex component

155.33 96.79 96.65 59.46

S100A9 E 3.8 −1.1 −3.7a −4.5a −2.2a S100 calcium binding protein A9 27.95 96.75 116.47 57.26

SERPINB3 E 3.8 −1.9 −3.2a −3.8a −2.4a serpin peptidase inhibitor, clade B
(ovalbumin), member 3

50.29 85.47 101.40 62.98

C15orf48 E 1.0 −0.9 −1.0 −1.3a −2.1a chromosome 15 open reading frame 48 93.70 103.85 131.53 211.69

MMP3 D 1.1 −4.0a −2.0a −0.9 −0.3 matrix metallopeptidase 3
(stromelysin 1, progelatinase)

374.65 181.39 81.06 25.91

MUC7 −1.2 −0.1 0.0 0.0 1.1 mucin 7, secreted −9.82 0.00 0.00 87.60

HSPB7 D −1.6 1.6 0.6 1.7a 0.2 heat shock 27 kDa protein family,
member 7 (cardiovascular)

102.98 37.95 107.88 13.51

SCGB1D2 D −1.2 0.3 0.5 1.2a 0.0 secretoglobin, family 1D,
member 2

25.96 43.28 100.97 0.00

BTC E −2.1 −0.1 1.0 1.3a 1.3a betacellulin −6.53 48.15 65.56 65.17

CIDEC −1.7 2.1 1.2a 1.8a 0.0 cell death-inducing DFFA-like
effector c

126.22 72.11 106.23 −2.38

HSD11B1 E −2.3 −1.8 0.1 2.1a 1.0a hydroxysteroid (11-beta)
dehydrogenase 1

−77.60 5.69 91.93 44.65

PLIN1 −1.9 1.9 1.7a 2.0a 0.3 perilipin 1 98.89 85.20 103.82 12.83

SCGB2A1 D −1.8 −0.1 0.9 1.7a 1.5a secretoglobin, family 2A,
member 1

−7.33 50.36 92.70 80.79

WIF1 D −2.2 0.7 1.2 2.1a 1.3a WNT inhibitory factor 1 29.58 52.56 92.11 58.40

E = Epidermis,
D = Dermis
(Esaki et al. [63])

Average 76.78 72.61 94.64 57.51

aIndicate FDR ≤ 0.05
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a total of 97 samples. It is our hope that the MADAD
will prove helpful to investigators who may benefit from
our robust characterization of the AD phenotype.
Similar to the MAD psoriasis transcriptome, our

meta-analysis approach resulted in a more concise num-
ber of DEGs than that found in the individual studies
[25]. However, this set of DEGs provides a more bio-
logically relevant and powerful AD phenotype compared
with previous studies [12], since important inflammatory
and barrier pathways are more significantly enriched
compared to individual studies, as is often observed with
meta-analysis derived transcriptomes [91].
Our transcriptome is the first association of AD gen-

omic fingerprinting with the atherosclerosis signaling
pathway, which includes genes associated with vascular
inflammation (SELE, IL-37, S100A8) [63, 77]. SELE has
been independently associated with coronary heart dis-
ease and carotid artery atherosclerosis, and its expres-
sion in the vascular endothelium of the dermis of AD
patients has also been observed [51, 88]. This supports
the emerging view of AD as a systemic disease, which,
like psoriasis, extends far beyond the skin [92, 93].
We have recently shown increased systemic immune

activation in blood of moderate-to-severe AD patients
among both skin homing and systemic T-cell subsets
[94]. Furthermore, when comparing blood moderate-to-
severe psoriasis and AD patients, we have shown that
AD is associated with systemic activation and increased
polar differentiation of effector and memory T-cell
subsets, with higher and persistent activation within skin
homing subsets. (Czarnowicki et al.-In press) AD patients
also demonstrated higher levels of ICOS activation in
circulating skin-homing subsets, (Czarnowicki- In press)
consistent with the significant overrepresentation of ICOS
signaling in our IPA analysis.
In large cohort studies, AD has also been recently asso-

ciated with a variety of systemic diseases including inflam-
matory bowel disease [95, 96], Type 1 Diabetes Mellitus
[97], and ADHD [98], providing further evidence for its
systemic nature. Additionally, AD, like psoriasis, was
recently shown to be associated with increased vascular
inflammation using CT imaging [99–101]. The association
of AD with systemic involvement emphasizes the great
unmet need among severe AD patients for systemic
therapeutic approaches, which are now in clinical trials
(NCT00638989) [10, 18].
An interesting association between barrier defects and

vascular inflammation in AD may be represented by the
gene SPTLC2, which encodes a SPT, the rate-limiting
enzyme in de novo synthesis of sphingomyelin and cera-
mides, and which has also been shown to influence
atherosclerosis. Plasma sphingomyelin level was found
to be an independent risk factor for coronary artery dis-
ease and is associated with subclinical atherosclerosis in

humans [102, 103]. In ApoE knockout mice, inhib-
ition of SPT resulted in improved lipid profiles and
prevented the development of atherosclerotic lesions
[104]. Sphingomyelin is proposed to affect atherosclerosis
by influencing lipid metabolism and regulating cell pro-
liferation and apoptosis to modulate plaque growth and
stability [105]. SPTLC2 increases with epidermal barrier
abnormalities [75], as was observed in our MADAD tran-
scriptome, and may be related to the previously un-
acknowledged systemic vascular inflammation in AD.
Lipid and differentiation abnormalities represent the

hallmark of defective barrier function in AD [106, 107].
The Th2 cytokine effects on inhibition of terminal dif-
ferentiation genes (e.g. filaggrin, loricrin) have been well
documented by in vitro [1, 78] and in vivo studies [15, 108].
While the effects of Th2 cytokines on suppression of
epidermal lipids have become recently available in model
systems [78], our paper is the first to show negative
correlations between expression of Th2 cytokines and
epidermal lipids. It is established that AD LS skin shows
alterations in lipid composition of the stratum corneum
[109], with decreases in long-chain ceramides and free
fatty acids in addition to disorganized lipid structure
[107]. While Th1 cytokines, including TNFα and IFNγ,
have been shown to induce ceramide synthesis, Th2 cyto-
kines (including IL-4) inhibit the production of ceramides
necessary for proper barrier function [76, 110]. Our find-
ings support these in vitro models, and show significant
negative correlations between increased Th2 cytokine
production and decreased lipid expression.
We also identified for the first time as differentially

expressed in AD several genes involved in lipid meta-
bolism. These include FA2H, encoding protein essential
to the de novo synthesis of specific ceramides that are
critical in maintaining the permeability barrier of the
epidermis [111, 112], and ELOVL3, encoding a protein
involved in the elongation of long chain fatty acids
and essential in prevention of transepidermal water loss
[113, 114]. While not involved in fatty acid synthesis,
aquaporin 5/AQP5 is a water channel that was found to
be decreased in LS AD skin [115–117].
The network analysis of MADAD DEGs shows a signifi-

cant correlation between AD disease activity/SCORAD
and the S. aureusmodule in NL skin, emphasizing the role
of colonization and infection in the onset of immune
activation in background skin. S. aureus colonization/
infection has been shown to occur at significantly higher
rates in both LS and NL AD skin compared to healthy
controls [118–120], and was shown to induce Th2 and
Th22 immune activation [84, 121–123]. In LS skin, viral
and innate immune process modules were significantly
positively correlated with SCORAD, emphasizing the
association between reactions to external pathogens and
active inflammation in AD [121].
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The treatment effect on the 19 discriminatory genes
highlights the diverse mechanistic effects of these therap-
ies with several observations worth mentioning. First,
MMP3, a marker of general inflammation, displays an im-
pressive recovery with the targeted therapy dupilumab
compared to the more nonspecific immune suppressant
treatments. This inflammatory gene improved over 300 %
in only 4 weeks of treatment with dupilumab, while long-
term treatment with CsA and UVB did not reach 100 %
recovery. This may suggest the ability of dupilumab to
suppress immune dysregulation in AD in a shorter time-
frame than with less specific agents. Another noteworthy
gene is Selectin E, encoding a protein involved in
leukocyte extravasation, which also showed higher levels
of recovery in dupilumab compared to CsA and UVB
therapy. The difference in these markers may be related to
the mechanism of action of each drug; UVB has direct
effects on keratinocytes and thus mainly mediates signals
originating there, while CsA is a nonspecific inhibitor of
T-cells, B-cells and related pathways. Dupilumab more
specifically modulates IL-4/IL-13 signaling, which has
been implicated in the pathogenesis of AD, and this may
account for the impressive recovery seen in genes central
to the inflammatory response generated by AD.

Conclusions
This meta-analysis provides a stable and robust AD tran-
scriptome worthy of future biomarker selection and evalu-
ation of treatment response. The value of a standardized
AD transcriptome will only increase with the bench-to-
bedside translational approach, as a standardized measure of
treatment response that cannot be confounded with placebo
effects. This meta-analysis provides an integrative model of
AD, emphasizing both immune and barrier abnormalities
and also highlighting the systemic nature of the disease.
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2.2 Laser Capture Microdissection of Atopic Dermatitis

2.2.1 Prelude

The molecular signature of atopic dermatitis has been investigated by various groups
using microarray expression analyses. However, no comparative layer specific expres-
sion analysis had been carried out on the disease.
In this work we applied laser capture microdissection to separate the epidermis from
the dermis of lesional, non-lesional, and normal samples. The subsequent microarray
expression analysis identified the differential expression of numerous novel barrier
and immune related genes like IL34, IL22 or CLDNs 4 and 8, not detectable in full-
thickness microarray analyses.
Overall this study adds layer specificity to the AD transcriptome, and reveals in-
creased detection sensitivity.



Atopic dermatitis and skin disease

Identification of novel immune and barrier genes in atopic
dermatitis by means of laser capture microdissection
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Background: The molecular signature of atopic dermatitis (AD)
lesions is associated with TH2 and TH22 activation and epidermal
alterations. However, the epidermal and dermal AD
transcriptomes and their respective contributions to abnormalities
in respective immune and barrier phenotypes are unknown.
Objective: We sought to establish the genomic profile of the
epidermal and dermal compartments of lesional and nonlesional
AD skin compared with normal skin.
Methods: Laser capture microdissection was performed to
separate the epidermis and dermis of lesional and nonlesional
skin from patients with AD and normal skin from healthy
volunteers, followed by gene expression (microarrays and
real-time PCR) and immunostaining studies.
Results: Our study identified novel immune and barrier genes,
including the IL-34 cytokine and claudins 4 and 8, and showed
increased detection of key AD genes usually undetectable on
arrays (ie, IL22, thymic stromal lymphopoietin [TSLP], CCL22,
and CCL26). Overall, the combined epidermal and dermal
transcriptomes enlarged the AD transcriptome, adding 674

upregulated and 405 downregulated differentially expressed
genes between lesional and nonlesional skin to the AD
transcriptome. We were also able to localize individual
transcripts as primarily epidermal (defensin, beta 4A [DEFB4A])
or dermal (IL22, cytotoxic T-lymphocyte antigen 4 [CTLA4], and
CCR7) and link their expressions to possible cellular sources.
Conclusions: This is the first report that establishes robust
epidermal and dermal genomic signatures of lesional and
nonlesional AD skin and normal skin compared with whole
tissues. These data establish the utility of laser capture
microdissection to separate different compartments and cellular
subsets in patients with AD, allowing localization of key barrier
or immune molecules and enabling detection of gene products
usually not detected on arrays. (J Allergy Clin Immunol
2015;135:153-63.)

Key words: Atopic dermatitis, laser capture microdissection, IL-34,
claudins 8 and 4, immune, barrier

Atopic dermatitis (AD) is themost common inflammatory skin
disease.1,2 Although its pathogenesis is not fully understood,
both barrier and immune components have been suggested to
play key roles in AD, as indicated by the ‘‘outside-in’’ and ‘‘in-
side-out’’ hypotheses.3-10 Whereas barrier-related molecules
are largely epidermal, inflammatory responses are derived from
both the epidermal (ie, keratinocytes and Langerhans cells
[LCs]) and dermal (ie, T cells and dendritic cells [DCs])
compartments.

Using genomic analyses on whole tissue/bulk samples, we
have previously shown that the AD phenotype/transcriptome
is associated with polar immune activation of TH2/TH22, as
well as TH1 and TH17, pathways and corresponding
epidermal alterations (epidermal hyperplasia and abnormal
differentiation).11-14 However, bulk sample genomic analysis
(by using microarrays and real-time PCR [RT-PCR]) presents
some limitations. First, it is difficult to determine whether
altered gene expression is due to expansion (hypertrophy)
of one tissue compartment versus altered gene expression at
the cellular level. Second, it cannot localize a particular
gene/transcript to an epidermal/dermal compartment. Finally,
low-abundance genes are often present at less than the detec-
tion level of conventional microarrays because of dilution of
mRNA within full-thickness samples with more dominant
products.

Laser capture microdissection (LCM) is an established
technique for procuring subpopulations of tissues/cells of interest
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Abbreviations used
AD: Atopic dermatitis
CE: Cornified envelope

CLDN: Claudin
CSF-1R: Colony-stimulating factor 1 receptor
CTLA4: Cytotoxic T-lymphocyte antigen 4

DC: Dendritic cell
DEFB4A: Defensin, beta 4A

DEG: Differentially expressed gene
EDC: Epidermal differentiation complex
FCH: Fold change
FDR: False discovery rate
FLG: Filaggrin

GZMB: Granzyme B
ICOS: Inducible T-cell costimulator
LC: Langerhans cell

LCM: Laser capture microdissection
LOR: Loricrin
MX1: Myxovirus (influenza virus) resistance 1, interferon-

inducible protein p78 (mouse)
PI3: Peptidase inhibitor 3, skin-derived

RT-PCR: Real-time PCR
SPRR: Small proline-rich protein

TJ: Tight junction

under direct microscopic visualization to study alterations in
disease states.15 Our group has previously demonstrated that
epidermal and dermal separation of lesional and nonlesional
samples from patients with psoriasis and normal samples by
using LCM complemented by microarrays largely increases the
detection of low-abundance genes compared with whole-tissue
analyses.16,17 Despite the pathogenic relevance of separating
the epidermal and dermal compartments, such studies are
unavailable in patients with AD.

In this study we sought to determine the molecular phenotypes
of the epidermal and dermal compartments of lesional and
nonlesional AD skin (compared with skin from healthy subjects).
Overall, our results (1) enlarged the AD transcriptome; (2)
detected low-abundance genes (which are usually present at
less than detection levels on whole-tissue microarrays [eg, IL22
and thymic stromal lymphopoietin [TSLP]); and (3) identified
novel immune and barrier genes (ie, IL34, claudin 4 [CLDN4],
and CLDN8) and suggested possible cellular sources of immune
markers (ie, CCR7).

METHODS
Skin samples

Paired nonlesional and lesional AD skin biopsy specimens were collected
from 5 patients with moderate-to-severe chronic AD (3 male and 2 female
patients; age, 27-59 years; mean age, 39.4 years; see Table E1 in this article’s
Online Repository at www.jacionline.org) under institutional review
board–approved protocols. Normal skin samples from healthy volunteers
(n 5 10) that had been collected for a prior LCM publication18 were also
included. Paired epidermal, dermal, and full-thickness lesional and
nonlesional samples were used for RT-PCR and microarray analysis (n 5 5
in each group). Lesional and nonlesional expression values were compared
with 10 epidermal, 6 dermal, and 6 bulk corresponding normal samples. For
RT-PCR confirmation, 3 normal paired epidermal and dermal samples were
used because of the limited available mRNA.

Slide preparation and LCM
LCM was performed according to the manufacturer’s protocol for the

CellCut system (Molecular Machines & Industries, Haslett, Mich; see the
Methods section in this article’s Online Repository at www.jacionline.org).

RNA extraction
Total RNA was extracted with the RNeasy Micro Kit (Qiagen, Valencia,

Calif), according to the manufacturer’s protocol, with on-column DNase
digestion.

Sample preparation for gene chip analysis
Target amplification and labeling was performed according to the

Affymetrix protocols for 2-cycle cDNA synthesis by usingAffymetrix Human
Genome U133 Plus 2.0 arrays (Affymetrix, Santa Clara, Calif), as previously
reported.16

Sample preparation for quantitative RT-PCR
Reverse transcription to cDNA fromRNA of LCM samples was carried out

by using the High Capacity cDNA Reverse Transcription kit (Applied
Biosystems, Foster City, Calif), cDNA was amplified with TaqMan PreAmp
Master Mix (Applied Biosystems), and the preamplified cDNA product was
analyzed with TaqMan Gene Expression Master Mix, according to the
manufacturer’s instructions. The RT-PCRs for each assay were run in
triplicate, and all data were normalized to human acidic ribosomal protein
P0. The primers and probes used in this study are listed in Table E2 in this
article’s Online Repository at www.jacionline.org.

Immunohistochemistry and immunofluorescence
Immunohistochemistry and immunofluorescence were performed on

frozen skin sections, as previously described.19 The antibodies used in this
study are listed in Table E3 in this article’s Online Repository at www.
jacionline.org.

Statistical analysis
Preprocessing and statistical analysis of microarray data were conducted

with R (R-project.org) and Bioconductor software packages.20 Full details of
the pipeline and downstream analysis are described in the Methods section in
this article’s Online Repository. Succinctly, the Harshlight package21 was used
to quality control the images, and expressionvalueswere obtained by using the
GCRMA algorithm.22 Batch adjustments were carried out with the ComBat
algorithm, and mixed-effect models in the limma package were used to model
differential expression.23-25 Genes with a false discovery rate (FDR) of less
than 0.05 and a fold change of greater than 2 were considered significantly
differentially expressed. Similar models were used to analyze log2-trans-
formed values of normalized RT-PCR data.

RESULTS
LCM localizes genes selectively expressed in the
dermis and epidermis

Weperformed LCM to collect epidermal and dermal (papillary,
reticular, and inflammatory aggregate) cells in frozen sections of
lesional, nonlesional, and normal skin samples, as shown in
Fig 1,A. Microarray profiling of lesional, nonlesional, and normal
epidermal and dermal tissues was performed with Affymetrix
HGU133Plus2.0 microarrays to define the epidermal and dermal
transcriptomes. A heat map of epidermis- and dermis-specific
genes shows clear separation of differentially expressed genes
(DEGs) localized to the epidermis and dermis across lesional,
nonlesional, and normal samples (see Fig E1 in this article’s
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Online Repository at www.jacionline.org). A principal
component analysis of expression values illustrates the lack of
outliers and that samples cluster in accordance with tissue type
(Fig 1, B). Markers primarily considered dermal (CXCL12,
CD93, and collagens [COL1A2 and COL6A3]) were highly

represented in the dermis (see Tables E4, A, and E5, A, in this
article’s Online Repository at www.jacionline.org), and
epidermalmarkers (filaggrin [FLG], loricrin [LOR], late cornified
envelope [LCE], and small proline-rich proteins [SPRRs])
were localized to the epidermis, which is consistent with the clear

FIG 1. A, Representative hematoxylin and eosin staining of lesional (LS) and nonlesional (NL) AD skin. LCM
was performed in the indicated zones (green: epidermis [E]; yellow: papillary dermis [PD], reticular dermis
[RD], and inflammatory aggregates [ICs]).B, Principal component [PC] analysis plot showing clear separation
ofgroups.C andD,mRNAexpressionofFLG (Fig 1,C) andCXCL12 (Fig 1,D) in theepidermis (E)anddermis (D)
of lesional (LS) and nonlesional (NL)AD and normal (N) skin. Values are presented asmeans6 SDs. **P < .01.
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FIG 2. A, Heat map of immune-related genes organized by compartment. FCHs comparing lesional (LS),
nonlesional (NL), and normal (N) skin in bulk samples (B) and the epidermis (E) dermis (D) are shown
(n 5 5 AD specimens and n 5 6, 10, and 6 normal bulk, epidermal, dermal specimens, respectively). B-E,
mRNA expression, as determined by using RT-PCR, of CCL19 (Fig 2, B), CTLA4 (Fig 2, C), CCR7 (Fig 2, D),
and IL22 (Fig 2, E) in the epidermis (E) and dermis (D) of lesional (LS) and nonlesional (NL) AD skin and
normal (N) skin. Values are presented as means 6 SDs in Fig 2, B through E. *P < .05, **P < .01, and
***P < .001.
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FIG 3. A and B, Representative staining of IL-34 (Fig 3, A) and langerin (Fig 3, B) in lesional (LS) and
nonlesional (NL)AD and normal (N) skin. C-E, Representative double immunofluorescence for coexpression
of IL-34 (red) versus CD3 (green; Fig 3, C), CD11c (green; Fig 3, D), and CD163 (green; Fig 3, E) in lesional (LS)
skin. F and G, mRNA expression of IL34 (Fig 3, F) and its receptor, CSF1R (Fig 3, G), in the epidermis (E) and
dermis (D) of lesional (LS), nonlesional (NL), and normal (N) skin. Values are presented as means 6 SDs.
**P < .01.
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epidermal-dermal separation (see Tables E4, B, and E5, B). The
accuracy of the LCM separation was validated by using RT-
PCR, with greater than 69.7-fold and greater than 846.2-fold
enrichment of the mRNA expressions of FLG and CXCL12 in
the epidermis versus dermis, respectively, in normal tissues
(Fig 1, C and D).

LCM enlarges the AD transcriptome and increases
detection of low-abundance immune genes on
microarrays

To characterize the AD phenotype within each compartment,
we defined the lesional epidermal and dermal transcriptomes as
the set of DEGs between lesional and nonlesional tissue within
each compartment, respectively, by using the classical criteria of
an FCH of greater than 2.0 and an FDR of less than 0.05.
Combining the epidermal and dermal transcriptomes, many more
compartment-specific DEGswere identified (860 upregulated and
495 downregulated, see Fig E2 in this article’s Online Repository
at www.jacionline.org), adding 674 upregulated and 405 downre-
gulated DEGs to the recently defined AD transcriptome.11,12,26

The bulk transcriptome consists of 710 upregulated and 487
downregulated DEGs, whereas the LCMepidermal transcriptome

contains 566 upregulated and 268 downregulated DEGs, and the
LCM dermal transcriptome contains 330 upregulated and 244
downregulated DEGs. Little overlap was observed between the
epidermal and dermal transcriptomes (only 36 upregulated and
17 downregulated DEGs were detected in both).

Overall, the top 25 upregulated and downregulated genes in
each of the epidermal and dermal lesional transcriptomes
included many genes that have been shown to contribute to the
AD phenotype (see Tables E6 and E7 in this article’s Online
Repository at www.jacionline.org).11,12 The top 25 upregulated
genes in the lesional epidermal transcriptome consisted of
proliferation-related (KRT6A, KRT6B, and KRT16), epidermal
differentiation complex (EDC; S100 genes), inflammatory (ma-
trix metalloproteinase 12 [MMP12]), and antimicrobial
peptide–derived (defensin, beta 4A [DEFB4A] and peptidase
inhibitor 3, skin-derived [PI3]/Elafin) genes (see Table E6, A).
The top 25 upregulated genes in the lesional dermal transcriptome
included T-cell activation (granzyme B [GZMB] and IL-2 recep-
tor a [IL2RA]), TH2-related (CCL17,CCL22, andCCL26), TH22/
TH17-related (IL22, S100A8, CXCL1, and CXCL2), and collagen
(COL6A6, COL6A5, and COL4A3) genes (see Table E6, B). IL22
expression was significantly increased in the lesional dermal tran-
scriptome (12.46 FCHs and FDR < 0.001), whereas it was present

FIG 4. A, Heat map of barrier-related gene FCHs comparing lesional (LS), nonlesional (NL), and normal (N)
skin in bulk, epidermal, and dermal specimens (n 5 5 AD specimens and n 5 6, 10, and 6 normal bulk,
epidermis, and dermis specimens, respectively). B-D, Representative CLDN4 (Fig 4, B), CLDN8 (Fig 4, C),
and CLDN23 (Fig 4, D) staining in lesional (LS), nonlesional (NL), and normal (N) skin. Arrows, Increased
stratum corneum (black), decreased lesional stratum corneum (blue), and increased normal skin basal layer
(red) staining. E and F, Expression of CLDN8 (Fig 4, E) and CLDN23 (Fig 4, F) in the epidermis (E) and dermis
(D) of lesional (LS), nonlesional (NL), and normal (N) skin. Values are presented as means 6 SDs. *P < .05
and ***P < .001.
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at less than detection levels in previous reports,11,12,26 indicating
that LCM is a useful method to increase the sensitivity of detect-
ing low-abundance genes.

Key inflammatory and barrier genes were uniquely detected in
the LCM epidermal (see Table E8, A, in this article’s Online
Repository at www.jacionline.org) and dermal (see Table E8, B)
transcriptomes. The unique lesional epidermal transcriptome
included IL-17–related (DEFB4A and CCL20) and inflammatory
(CXCR4, signal transducer and activator of transcription 3
[STAT3], and IL8) genes (see Table E8, A). Key TH2 (CCL17,
CCL22, and CCL26) and TH22 (IL22) markers and T-cell
migration/activation markers (CCR7 and inducible T-cell
costimulator [ICOS]) were found within the unique lesional
dermal transcriptome (see Table E8, B). Although the LCM
approach detected an appreciably larger number of genes within
bulk tissues, there was a subset of DEGs that were not identified
in the corresponding epidermal and dermal transcriptomes (429
upregulated and 381 downregulated genes; Fig 2 and see Table
E8, C). A deeper analysis of these data suggests that most of
this discrepancy is created by increased or decreased gene
abundance because of differing contributions of the epidermis
and dermis in lesional versus nonlesional skin (see the Results
section and Fig E3 in this article’s Online Repository at www.
jacionline.org).

We further explored the compartmental distribution of immune
DEGs in lesional, nonlesional, and normal skin using our
previously curated and reported immune gene subset,19,26,27 as
shown in a heat map (Fig 2, A, and see Table E9 in this article’s
Online Repository at www.jacionline.org). Among significantly
upregulated genes in the lesional dermal transcriptome were
T-cell (cytotoxic T-lymphocyte antigen 4 [CTLA4] and CD28),
DC (integrin aX, complement component 3 receptor 4 subunit
[ITGAX]/CD11c and CD1A), lymphoid-organizing chemokine
(CCR7 and its ligands [CCL19 and CCL21]), and TH2-related
(CCL11, CCL13, CCL17, CCL22, CCL26, TNF receptor
superfamily, member 4 [TNFRSF4/OX40], and IL4R) genes.
Significant increases in TH2-related (IL7R), TH17-related (PI3,
lipocalin 2 [LCN2], CCL20, and STAT3), TH22/TH17-related
(IL22, S100A8, and S100A9), and TH1-related (29-59-oligoadeny-
late synthetase-like [OASL], myxovirus [influenza virus]
resistance 1, interferon-inducible protein p78 [mouse] [MX1],
IL12RB2, IFN-g receptor 2 [IFNGR2], and interferon regulatory
factor 1 [IRF1]) products were found. Using RT-PCR, we vali-
dated the primarily dermal mRNA expression of selected
markers, including IL22, CTLA4, CCR7, and CCL19. High
IL22 mRNA levels were characteristic of only lesional skin
(Fig 2, B-E). A list of DEGs in all comparisons is presented in
Table E8.

FIG 5. The cell-specific map of the LCM epidermal and dermal transcriptomes and bulk transcriptome. The
cellular source of the epidermal transcriptome was mainly keratinocytes, whereas activated T cells were
only significantly enriched in the LCM dermal transcriptome. iDC, Immature dendritic cell; KC, keratinocyte;
LEC, lymphatic endothelial cell; mDC, mature dendritic cell; MVEC, microvascular endothelial cell.
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IL-34: A novel cytokine identified by means of LCM
IL-34 was significantly downregulated in lesional compared

with both nonlesional and normal epidermis (Fig 2, A, and see
Table E9). IL-34 is a recently identified cytokine in mice
and normal human skin28 and is suggested to regulate LC
differentiation in steady states. It has been identified as an
alternative ligand to the colony-stimulating factor 1 receptor
(CSF-1R), which has been shown to be expressed in epidermal
LCs, dermal monocytes, and DCs.29 IL-34 has not been
previously reported in human skin diseases. We performed
immunohistochemical staining of IL-34, which showed
stronger epidermal staining in normal and nonlesional skin
compared with lesional skin and stronger dermal staining in
lesional skin (Fig 3, A).

Because IL-34 was reported to induce LC differentiation only
in steady states,29 langerin (CD207) staining for LCs was
performed. Many fewer LCs were detected in lesional compared
with both nonlesional and normal skin (Fig 3, B). To identify the
cellular distribution of IL-34 expression in the dermis, we
performed double immunofluorescence for IL-34 (red) with
CD31/T cells (green; see Fig E4, A, in this article’s Online
Repository at www.jacionline.org), CD11c1/DCs (green; see
Fig E4, B), and CD1631/macrophages (green; see Fig E4, C) in
normal, nonlesional, and lesional skin. Few double-positive
IL-341/CD31 cells were found. Many IL-341 cells colocalized
with CD11c1 and CD1631 cells (Fig 3, C-E). Thus IL-34 in
the dermis is preferentially expressed by myeloid DCs and
macrophages.

We validated the lower expression of IL-34 in lesional
epidermis using RT-PCR, with significantly lower IL34 mRNA
expression observed in lesional versus both nonlesional and
normal epidermis and with slightly lower dermal mRNA
expression (Fig 3, F). We also measured CSF1R mRNA
expression, which was significantly higher in the dermis,
regardless of tissue (Fig 3, G).

LCM highlights tight junction defects in patients
with AD

Because defective barrier function is a hallmark of AD,1 we
evaluated for EDC and cornified envelope (CE) markers. A heat
map of EDC and CE genes (including S100A genes) is shown
in Fig E5 in this article’s Online Repository at www.jacionline.
org. The majority of S100 genes (S100A8/S100A9/S100A12/
S100A13), IL-17–induced PI3/Elafin, and SPRRs (SPRR1A)
showed a primarily epidermal expression and higher expression
in lesional versus both nonlesional and normal skin (FDR <
0.001 for most markers), whereas a few S100 genes (S100A4/
S100A6/S100A10) showed predominantly dermal lesional
expression. As previously reported in bulk tissues,26 the
differentiation genes (LCE, LOR, FLG, and periplakin [PPL])
showed decreased expression in lesional versus nonlesional and
normal epidermis (see Fig E5 and Table E10 in this article’s
Online Repository at www.jacionline.org). Claudins, another
crucial barrier component, are essential for tight junction (TJ)
formation. Twenty-three claudins have been identified in human
subjects; however, their contribution to AD is not fully
defined.30,31 To gain insight into which claudins are expressed
in patients with AD, we evaluated a subset of TJ genes, the
expression profiles of which are visualized in a heat map (Fig 4,
A, and see Table E11 in this article’s Online Repository at

www.jacionline.org). Downregulation of claudins 1 and 23 was
observed in lesional versus nonlesional and normal epidermis,
as well as downregulation of claudins 4 and 8, which were
previously unreported in patients with AD (FDR < 0.001).32 We
also detected dermal claudins (5 and 11), expression of which
was significantly downregulated in the lesional versus normal
skin comparison, which was previously not reported in patients
with AD.

The differential expression of claudin genes in the epidermal
and dermal compartments was validated by using immunohisto-
chemistry and RT-PCR. CLDN4, CLDN8, and CLDN23 stained
all epidermal layers, except the stratum corneum (Fig 4, B-D),
with highly attenuated staining in lesional versus both nonlesional
and normal epidermis. The reduced staining was particularly
evident in the granular layer. CLDN8 showed increased intensity
of basal layer staining in normal epidermis (Fig 4,C). The mRNA
expression of CLDN8 and CLDN23 was also significantly
reduced in lesional epidermis (P < .05; Fig 4, E and F).

Markers associated with activated T cells and other
inflammatory cells are enriched by using LCM

Using individual cell-culture expression data (keratinocytes,
fibroblasts, activated and unactivated T cells, DCs, and LCs),33-35

we explored the distribution of DEGs identified in epidermal,
dermal, and bulk AD transcriptomes27 using a Gene Set
Enrichment Analysis. Whereas only the keratinocyte gene subset
was enriched in the epidermal transcriptome (Fig 5 and see Table
E12,A, in this article’s Online Repository at www.jacionline.org),
the dermal transcriptome showed enrichment of key inflamma-
tory subsets, including activated and unactivated T cells, various
DC subsets (immature and mature DCs), macrophages,
fibroblasts, and lymphatic endothelial cells (Fig 5 and see Table
E12, B). The bulk transcriptome showed a significant enrichment
for keratinocytes, fibroblasts, and inflammatory subsets, with no
enrichment for activated T cells and mature DCs (Fig 5 and see
Table E12, C).

The Gene Set Enrichment Analysis also linked key mediators
(IL22, TNF superfamily, member 4 [TNFSF4/OX40L], and
CTLA4) detected in the dermal transcriptome to the gene
signature of activated T cells (see Table E12,B). Among the genes
found to be associated with both activated and unactivated T cells
in the dermal transcriptome were GZMB, ICOS, and CD27.

CCR7, which is associated with T-cell trafficking and
cutaneous lymphoid aggregates,36,37 was shown to be expressed
by various cells types, including T cells and DCs. To investigate
the predominant cellular expression of CCR7, we performed
double immunofluorescence staining for CD31 T cells (green)
or CD11c1 myeloid DCs (green) with CCR7 (red) in lesional,
nonlesional, and normal skin. CCR7 colocalized mainly with
CD11c, showing increased expression in lesional versus
nonlesional and normal dermis and some colocalization with
CD3, primarily in lesional dermis (see Fig E6 in this article’s
Online Repository at www.jacionline.org). Thus CCR7 is
preferentially expressed by myeloid DCs rather than T cells.

DISCUSSION
Evolving disease concepts associate the AD phenotype with

barrier and immune abnormalities.1,2 In this model altered
proliferation and differentiation of keratinocytes result from
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cytokines derived from distinct T-cell subsets.2,12 It is important
to understand the relative contributions of the epidermal and
dermal compartments in creating the abnormal lesional
phenotype to fully understand the pathogenic mechanisms
driving AD.26

This is the first report that establishes robust epidermal and
dermal genomic signatures of lesional and nonlesional AD and
normal skin compared with corresponding whole-tissue finger-
printing. Using bulk skin, we have associated the AD phenotype
with TH2/TH22 immune activation and abnormal epidermal
differentiation.11-14 However, in bulk genomic profiling we could
not determine which compartments are responsible for individual
gene expression or locate their cellular sources.4,12,27 Further-
more, because of a dilution effect in bulk tissues, which are
composed of functionally heterogeneous cells, many genes linked
to AD pathogenesis are present at less than the detection level on
microarrays.11,12,26,27 Additionally, because a large subset of
genes are expressed in either the epidermis or dermis only,
some of the measured differential gene expression between
lesional and nonlesional skin appears to be an artifact of the
unequal contribution of epidermal expansion in lesional skin
rather than because of true changes in gene expression at the
cellular level. The previous disease model for AD, which has
relied on bulk tissue genomic profiling, is limited by the inability
to distinguish between these differences. A large proportion of
DEGs found only in bulk tissue seem to derive from unequal
contributions of lesional epidermis and dermis compared with
nonlesional epidermis and dermis. Overall, we believe that the
differences in cellular physiology created by AD are best detected
in the LCM-generated DEGs.

Using the LCM method followed by genomic and cellular
studies, we have identified a largely increased AD transcriptome,
with an additional 674 upregulated and 405 downregulated genes
compared with prior reports.11,12,26,27 By separating the 2
compartments, we have also identified key immune and barrier
markers that are usually undetectable on arrays (ie, IL-22 and
TSLP) and obtained more robust genomic differences for most
immune genes when comparing lesional, nonlesional, and normal
tissues. Through this approach and previously acquired pathways
and cell-specific genomicmaps,11-14,26,27 we have localizedmany
immune and barrier genes to the epidermis or dermis (or both),
leading to a deeper understanding of inflammatory circuits and
the cellular subset involved in creating the AD phenotype. For
example, dermal expression of CCL19 and CCL21 likely attracts
CCR71/CD11c1 DCs and might organize lymphoid tissue in
the dermis. Our LCM and genomic approach also led to
enrichment of gene products associated with activated T cells
and inflammatory DCs that play a role in effector responses in
patients with AD.37

Our data are the first to identify IL-34, the newly identified
cytokine in mice models, and its receptor, CSF-1R, in a human
skin disease. The mouse studies demonstrated a critical role for
IL-34 in differentiation and proliferation of LCs in the epidermis
during steady states, whereas repopulation of LCs in inflamma-
tory states was independent of IL-34.28 Although IL-34 is mainly
produced by keratinocytes, its receptor, CSF-1R, originates from
dermal macrophages and mononuclear cells.29 Our data show
decreased epidermal expression of IL-34 in lesional epidermis
compared with that seen in both nonlesional AD and normal
epidermis (Fig 3, B and C). This confirms the role of IL-34 in
the maintenance phase, corresponding to prior mouse data.28

Thus the IL-34 cytokine might function as a negative regulator,
and its induction in nonlesional skin might inhibit the propagation
of the inflammatory cascade toward development of active skin
lesions. Additionally, we found that IL-34 expression in lesional
dermis colocalizes most commonly with myeloid DCs and
macrophages. Future studies are needed to evaluate the possible
functions of the IL-34/CSF-1R cytokine-receptor complex in
background and diseased AD skin and whether strategies of
increasing levels of this cytokine might be able to prevent
development of skin lesions.

Separating the 2 compartments, we also identified 2 novel
barrier genes, CLDN4 and CLDN8, for the first time in the AD
transcriptome. Claudins are pivotal for TJ formation.38 Prior
mouse and human skin equivalent models demonstrated that
CLDN4 colocalized with CLDN1 to the epidermal granular
layer,39,40 whereas CLDN8 was previously shown in human
kidneys and intestines.41,42 Nevertheless, our knowledge of
claudins and their involvement in the barrier alterations seen in
patients with AD remains incomplete.29 De Benedetto et al32

reported that CLDN1 and CLDN23 show significantly reduced
expression in nonlesional AD skin compared with that seen in
healthy skin. In our study CLDN8 and CLDN23 showed
significantly reduced expression in lesional compared with
nonlesional and normal epidermis by using microarrays (Fig 4,
A, and see Table E11), with respective fainter epidermal staining
of CLDN4, CLDN8, and CLDN23 in lesional versus nonlesional
AD and normal epidermis (Fig 4, B and D). Claudin 11 was
identified as a novel dermal claudin, which was previously shown
in other tissues (brain, testis, and cochlea).43-45 Future
experiments are needed to investigate the function of the newly
identified CLDN4 and CLDN8, but together with CLDN1 and
CLDN23, these might contribute to the barrier defect associated
with the AD phenotype.

Our study also had some limitations. First, LCM is a
labor-intensive method, usually allowing analyses of a small
number of samples, as in our study (n5 5 lesional and nonlesional
specimens each and n 5 3 normal samples separated into
epidermis and dermis categories), possibly resulting in weaker
statistical power, particularly for bulk tissue comparisons.
Second, although our LCM approach detected novel barrier
genes, the downregulation of key differentiation markers
(ie, FLG, LOR, and involucrin [IVL]) in the lesional and
nonlesional (vs normal) epidermal transcriptomes was not as
impressive as in prior bulk data,13,26 which is contrary to the
enrichment of FLG and LOR in a prior normal skin epidermis
LCM study,17,46 perhaps because of lower recovery of granular
layer products using the epidermal-dermal separation approach.47

Third, even though the combined LCM epidermal and dermal
transcriptomes were larger than the bulk tissue transcriptome,
many genes were only detected in the bulk transcriptome (see
Fig E2 and Table E8, C). This might be explained by (1) the
unequal contribution of lesional epidermis and dermis compared
with their counterparts; (2) possible inclusion of subcutaneous
tissue in bulk biopsy specimens; (3) platform/technical issues,
as described in a previous LCM article separating the epidermis
and dermis from only 3 psoriatic (lesional and nonlesional)
and 3 normal tissues16; and (4) restriction of this analysis to
patients with severe AD, in whom nonlesional skin has a more
abnormal phenotype.26 Thus many genes might not pass defined
thresholds of FCH and significance when comparing lesional and
nonlesional skin.
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Our study establishes the utility of LCM in patients with AD to
separate different skin compartments and cellular infiltrates. It
provides complementary information to bulk analysis, allowing
regional and/or cellular localization of key barrier or immune
molecules, and enables detection of genes that are not usually
detected on arrays because of the mixture of transcripts within the
heterogeneous bulk tissue.48,49 LCM is particularly beneficial for
AD, in which a complex network of immune and barrier
abnormalities results in the global phenotypes of active and
‘‘normal-appearing’’ skin, and dissecting the individual skin
components and cells is crucial to unraveling their respective
contributions to pathogenesis. Our combined LCM and genomic
approach can be useful in future studies aimed at dissecting the
relative roles of barrier versus immune activation of different
AD phenotypes (ie, intrinsic and extrinsic AD)11 and for
dissecting therapeutic responses to various agents that are now
in clinical trials for patients with AD.50

Clinical implications: Our approach can be useful to differen-
tiate the ability of targeted treatments to reverse epidermal
and immune alterations in AD skin.
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2.3 Evaluation of Atopic Dermatitis Mouse Models

2.3.1 Prelude

In preclinical evaluation of new treatments, proper disease models are of great impor-
tance. Apart from the disease phenotypes, the molecular signature of the models as
compared to their respective controls is of great interest in a translational perspec-
tive.
In this work I compared the molecular signatures of two knockout, one spontaneous,
and three induced murine models of AD, to my meta-analysis derived AD transcrip-
tome.
In essence this study provides a comprehensive transcriptomic comparison of common
murine models of AD, and reveals that no single model captures all aspects of AD
on a molecular level. Therefor we recommend the choice of model to depend on the
desired aspects to be covered.
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Major differences between human atopic dermatitis and murine models as 1 

determined by global transcriptomic profiling   2 
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Abstract  62 

 63 

Background: Atopic dermatitis (AD) is caused by a complex interplay between 64 

immune and barrier abnormalities. Murine models of AD are essential for 65 

preclinical assessments of new treatments. While many models have been used 66 

to simulate AD, their transcriptomic profiles are not fully understood, and a 67 

comparison of these models with the human AD transcriptomic fingerprint is 68 

lacking. 69 

Objective: We sought to evaluate the transcriptomic profiles of six common 70 

murine models and determine how they relate to human AD skin. 71 

Methods: Transcriptomic profiling was performed using microarrays and qRT-72 

PCR on biopsies from NC/Nga, flaky-tail, Flg-mutated, ovalbumin-challenged, 73 

oxazolone-challenged, and IL-23-injected mice. Gene expression data of AD, 74 

psoriasis, and contact dermatitis were obtained from previous patient cohorts. 75 

Criteria of fold-change/FCH≥2 and false discovery rate/FDR≤0.05 were used for 76 

gene arrays. 77 

Results: IL-23-injected, NC/Nga, and oxazolone-challenged mice show the 78 

largest homology with our human meta-analysis derived AD (MADAD) 79 

transcriptome (37%, 18%, 17%, respectively). Similar to human AD, robust Th1, 80 

Th2, and also Th17 activation are seen in IL-23-injected and NC/Nga mice, with 81 

similar, but weaker, inflammation in ovalbumin-challenged mice. Oxazolone-82 

challenged mice show a Th1-centered reaction and flaky-tail mice demonstrate a 83 

strong Th17 polarization. Flg-mutated mice display FLG down-regulation without 84 
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significant inflammation.  85 

Conclusion: No single murine model fully captures all aspects of the AD profile; 86 

instead, each model reflects different immune or barrier disease aspects. Overall, 87 

among the six murine models, IL-23-injected mice best simulate human AD; still, 88 

the translational focus of the investigation should determine which model is most 89 

applicable. 90 

 91 

Clinical Implications: When testing new drugs for atopic dermatitis, murine 92 

models might be used to study barrier or immune features, but human trials are 93 

needed to determine effects on actual disease profile.  94 

 95 

Capsule Summary: Differences between human atopic dermatitis/AD and 96 

murine profiles are significant regardless of the model. While IL-23-injected mice 97 

best replicate human AD, the choice of model should be guided by the 98 

translational focus of the investigation.   99 

 100 

Keywords: Atopic dermatitis; Th1; Th2; Th17; psoriasis; contact dermatitis; 101 

mouse model; NC/Nga; filaggrin; oxazolone; ovalbumin; IL-2 102 

 103 

Abbreviations: 104 

AD: Atopic dermatitis 105 

AQP7: Aquaporin 7 106 

CCL: Chemokine (C-C motif) ligand 107 
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CD: Contact dermatitis 108 

Claudin 8: CLDN8 109 

CXCL: Chemokine (C-X-C motif) ligand 110 

DC: Dendritic cell 111 

DEGs: Differentially Expressed Gene 112 

ELOVL3: Elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, 113 

yeast)-like 3 114 

FCH: Fold change 115 

FLG: Filaggrin 116 

HGNC: Human Genome Organization (HUGO) Gene Nomenclature Committee  117 

IL: Interleukin 118 

IFN: Interferon 119 

KEGG: Kyoto Encyclopedia of Genes and Genomes 120 

KRT16: Keratin 16 121 

LCN2: Lipocalin 2 122 

LOR: Loricrin 123 

MADAD: Meta-analysis derived AD 124 

PCA: Principal Component Analysis 125 

PVCA: Principal variation component analysis  126 

qRT-PCR: Quantitative reverse transcription PCR 127 

SC: Stratum corneum 128 

TEWL: Transepidermal water loss 129 

Th: T helper 130 

2.3 Evaluation of Atopic Dermatitis Mouse Models 71



 7 

TLDA: TaqMan Low Density Array  131 

132 
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Introduction 133 

Atopic dermatitis (AD) is the most common inflammatory skin disease,1 caused 134 

by an interplay between immune and barrier abnormalities.2,3 Unlike psoriasis, 135 

another common inflammatory skin disease that is largely Th17/IL-23 polarized,2 136 

AD is characterized by activation of multiple cytokine pathways.4,5 In addition to 137 

immune activation, reduced expression of barrier components (terminal 138 

differentiation proteins, tight junctions and lipids) is also characteristic of AD.6-9 139 

Transcriptomic profiling of AD tissues at baseline and after treatment with broad 140 

and specific agents has recently increased our understanding of the disease.10-12 141 

While these studies highlight a critical role for the Th2 axis in AD,10,13,14 they also 142 

suggest increased Th17/IL-23 and Th22 activation in AD, and particularly in some 143 

subtypes (i.e. Asian and intrinsic AD).4,5,15 Although human testing is needed to 144 

elucidate the pathogenic contributions of various cytokines in AD, murine AD 145 

models are essential for assessing new drugs at the preclinical level.16,17 146 

An ideal murine model should replicate both the epidermal barrier 147 

disruption and the cutaneous inflammation of the human disease. While many 148 

models have been used to simulate human AD, their transcriptomic profiles and 149 

relevance to the AD skin profile are not fully understood, since a direct 150 

comparison between frequently used models and human AD is lacking. A number 151 

of spontaneous genetically engineered, and inducible “AD-like” models have 152 

been described. These include NC/Nga,16 flaky-tail (Tmem79ma/ma Flgft/ft),18-20 Flg-153 

mutated (Flgft/ft),21 oxazolone (Oxa)-challenged,22,23 and ovalbumin (Ova)-154 

challenged mice.24-27 Furthermore, IL-23-injected mouse model, which has been 155 
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traditionally considered to resemble psoriasis,28,29 and exhibits the largest (25%) 156 

transcriptomic homology with human psoriasis fingerprinting among existing 157 

“psoriasis-like” models,30 has also been found to display Th2 activation and 158 

simulate “AD-like” skin inflammation.31 While all murine “AD-like” models (with 159 

the exception of Flg-mutated mice)16,19-21,23,25,28 are visibly inflamed, it is difficult 160 

to macroscopically differentiate “AD-like” dermatitis in mice from lesions 161 

mimicking contact dermatitis (CD) or psoriasis. For example, since flaky-tail mice 162 

exhibit Th17-dominated skin inflammation,32,33 this murine model may more 163 

closely simulate a “psoriasis-like” phenotype rather than an “AD-like” 164 

fingerprinting.  165 

To evaluate the transcriptomic profiles of common AD models and 166 

determine how closely they resemble the intricate cytokine and epidermal 167 

abnormalities in AD skin, we profiled five common “AD-like” murine models, as 168 

well as the IL-23-injected model, previously considered to best mimic psoriasis. 169 

To be able to contrast all polar cytokine responses in humans, the murine profiles 170 

were compared with transcriptomic profiles of AD, and two other common 171 

inflammatory skin diseases, psoriasis and CD, that share clinical and tissue 172 

characteristics with AD.9,34,35 We found that no single model fully captures all 173 

aspects of AD, but surprisingly IL-23-injected mice show the most similar 174 

transcriptomic profile to human AD.  175 
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Methods 176 

Murine models 177 

Transcriptomic profiling was performed using microarrays and qRT-PCR on 178 

biopsies from six models, including NC/Nga, flaky-tail, Flg-mutated, Ova-179 

challenged, Oxa-challenged, and IL-23-injected mice. Controls for murine models 180 

generally had similar genetic background, comprising the C57BL/6 (Flaky-tail, 181 

Flg-mutated, Ova and IL-23), NC/Nga without mite infestation (NC/Nga) and 182 

BALB/c (Oxa) laboratory strains. The samples of flaky-tail, Flg-mutated, Ova-183 

challenged, and NC/Nga mice were harvested at Kyoto University, Kyoto, Japan 184 

(Table 1). The specimens from Oxa-challenged mice were collected at Leo 185 

Pharma A/S, Ballerup, Denmark (Table 1). The IL-23-injected mice gene array 186 

data were acquired from a previously published cohort (GSE50400),30 and 187 

available RNA samples from these mice were used for qRT-PCR. See 188 

Supplementary Methods section in this article’s Online Repository (OR) at 189 

www.jacionline.org for more details. The Institutional Animal Care and Use 190 

Committee of Kyoto University and Leo Pharma A/S approved all experiments. 191 

 Representative images of each model are shown in Fig 1A. Ear tissues 192 

from flaky-tail, Flg-mutated, NC/Nga, and Oxa-challenged mice were used, while 193 

dorsal skin was harvested from Ova-challenged and IL-23-injected mice. Flaky-194 

tail,20 NC/Nga,36 Ova-challenged,25 and Oxa-challenged models23 exhibit 195 

increased serum IgE levels. Flg-mutated mice show normal IgEs,18 and IgE data 196 

are unavailable for IL-23-injected mice (Table 1).30  197 

 198 
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Human cohorts 199 

The AD microarray data was obtained from our meta-analysis derived AD 200 

(MADAD) transcriptome,9 comprised of four AD lesional vs. non-lesional datasets 201 

with a total of 97 samples (41 paired lesional/non-lesional samples).  202 

 This study also includes a previously published cohort of 25 AD patients (9 203 

females and 16 males; age, 23-73 years [median, 45 years]) with SCORAD 204 

scores from 33 to 77 (mean, 56.7; SD, 12.2) and serum eosinophils of 0.6% to 205 

11.8% (median, 4.3%); among AD patients, 14/25 (56%) had extrinsic AD (serum 206 

IgE levels, 254-3,000 kU/L; median, 1,292.8 kU/L).5,11 Ten previously published 207 

patients with moderate-to-severe psoriasis were included for comparisons 208 

(Psoriasis Area Severity Index, 8.4-59.5; mean, 20.3; SD, 14.5).5,37 Thirteen 209 

previously published patients with allergic CD (n=10 with nickel allergy; n=3 with 210 

fragrance allergy) were included.34 Biopsies from positive patch tests to these 211 

allergens were taken at 72 hours from patch test placement. All these subjects 212 

were European Americans. Patients’ characteristics are summarized in Table E1, 213 

and the entire list is available in Table E2. 214 

 215 

Quantitative RT-PCR and gene arrays  216 

RNA was extracted with EZ-PCR Core Reagents (Life Technologies, Grand 217 

Island, NY). RNA was reverse transcribed to cDNA using the High Capacity 218 

cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA). TaqMan 219 

Low Density Array (TLDA) cards (384 well plates preloaded with TaqMan assays) 220 

were used for qRT-PCR. For IFN-J, IL-13, and IL-17A, which are frequently 221 
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undetectable with TLDA, single Taqman qPCR was performed. All primers are 222 

listed in Table E3. For IL-23-injected mice, PCR analyses were performed using 223 

stored samples from a previous report.30 Expression values (threshold cycle/Ct) 224 

were normalized to Rplp0.  225 

Affymetrix Mouse Gene arrays 2.1 ST (Affymetrix, Santa Clara, CA) were 226 

used for flaky-tail, Flg-mutated, Ova-challenged, and NC/Nga mice. Affymetrix 227 

Mouse Gene arrays 1.0 ST were used for Oxa-challenged mice, while the 228 

previously published IL-23-injected murine transcriptomic data were analyzed 229 

with GeneChip Mouse Genome 430 2.0 Array (Affymetrix). 230 

The MADAD transcriptome combined all effect sizes for each probe-set, 231 

and identified a set of 595 differentially expressed genes (DEGs; 387 up- and 232 

208 down-regulated) using classical fold change (FCH)≥2 and false discovery 233 

rate (FDR)≤0.05 criteria.9 For the qRT-PCR comparison, we used previously 234 

published data obtained from above-mentioned human cohorts. Since non-235 

lesional AD skin is abnormal,38 we also included a comparison of lesional AD to 236 

normal skin. 237 

 238 

Bioinformatics and statistical analyses 239 

Murine microarray data were preprocessed in R by the justRMA function of the 240 

affy package and normalized using the normalize.quantiles.robust or 241 

normalize.quantiles.use.target (IL-23 and Oxa models) function of 242 

preprocessCore package.39,40  243 

Changes in expression profiles of each murine model and its controls 244 
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were performed using the linear model framework of limma package.41 P-values 245 

from moderated t-test were adjusted for multiple testing using Benjamini-246 

Hochberg procedure.  247 

Cross-species-annotation from murine to human ensemble IDs was 248 

performed using the getLDS function biomart package.42-45  249 

Linear models were applied to analyze TLDA and qRT-PCR expression 250 

data, based on Rplp0 normalized and negative transformed Ct (-dCt) values. 251 

Prior to applying these models to TLDA and qRT-PCR expression data, but after 252 

normalization, we replaced non-detected -dCt values with 20% of the minimum 253 

dCt for each gene across all samples, while keeping it in the possible range of -254 

40 to 40.  255 
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Results 256 

 257 

Transcriptomic profiling of “AD-like” murine models 258 

While transcriptomic fingerprinting has been thoroughly performed in AD 259 

skin,4,5,38,44-47 a similar analysis is lacking for “AD-like” murine models. To 260 

establish the individual transcriptomic profiles of prominent “AD-like” models and 261 

their similarity to human disease, we profiled skin from five common AD-like 262 

models20,21,23,25,36 as well as from the IL-23-injected model, considered to best 263 

represent the IL-17/IL-23-centered inflammation in psoriasis,30 using gene arrays 264 

(Table 1). Criteria of FCHs≥2 and FDR≤0.05 were used to define DEGs between 265 

diseased murine skin and respective controls. The lists of DEGs for each model 266 

are listed in Table E4.  267 

A Venn diagram, based on unique Human Genome Organisation (HUGO) 268 

Gene Nomenclature Committee (HGNC) symbol orthologs and proportional to 269 

DEGs, illustrates the overlap between murine models (Fig. 1B). Flaky-tail and 270 

Flg-mutated models are excluded from the diagram since they display the lowest 271 

number of DEGs (n=226 and n=47, respectively), despite being among the 272 

largest sample sizes (n=5; Table 1). Overall, IL-23-injected mice show the 273 

highest number of DEGs (n=2753), followed by Oxa-challenged (n=1004), 274 

NC/Nga (n=742), and Ova-challenged (n=373) mice. Only 67 DEGs are shared 275 

among NC/Nga, Ova-challenged, Oxa-challenged, and IL-23-injected mice, as 276 

represented in the center of the Venn diagram (Fig 1B).  277 

 278 
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Murine models show differential profiles compared to human AD 279 

To compare how well “AD-like”, and the IL-23-injected models represent human 280 

AD, each murine transcriptomic profile was compared with the meta-analysis 281 

derived AD (MADAD),9 a robust AD transcriptome across four independent 282 

cohorts. The murine transcriptomes represent only 37%, 18%, 17%, and 11% of 283 

the human AD profile (MADAD), for IL-23-injected, NC/Nga, Oxa-challenged, and 284 

Ova-challenged mice, respectively (Fig 1C). Only 4% of DEGs in flaky-tail mice 285 

and 1% in Flg-mutated mice overlap with MADAD. The poor homology between 286 

human AD and the murine skin profiles is also illustrated as a heatmap, in Fig E1, 287 

showing relative expressions of MADAD genes within all murine transcriptomes. 288 

Fig E2 illustrates expression data by sample. Surprisingly, the transcriptome of 289 

IL-23-injected mice best represents the up- and down-regulated components of 290 

the MADAD followed by NC/Nga, Oxa-challenged and Ova-challenged mice. Flg-291 

mutated and flaky-tail profiles are not well reflective of the MADAD increased or 292 

decreased elements. The MADAD DEGs with corresponding FCHs and FDRs 293 

are shown in Table E5, for each model.  294 

Since the choice of cut-offs and hybridization kits can influence 295 

intersections between DEGs of various transcriptomes,48 the MADAD and 296 

transcriptomes of six murine models were also compared using ranked gene lists 297 

instead of cut-offs, as previously described.29,30 The 5000 highest up- and down-298 

regulated genes in each mouse transcriptome were identified and ranked 299 

according to FCHs, with lowest ranks assigned to the genes with highest 300 

regulations. We then analyzed the overlap of MADAD with ranked genes in each 301 
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murine model. In Fig. 1D, the red and blue lines correspond to the overlap 302 

between up- and down-regulated genes, respectively, of murine models and 303 

MADAD at any given rank N, where N=1, …, 5000. The light blue line outlines 304 

the level of overlap expected by chance (the 95% confidence region of 305 

hypergeometric distribution under the null hypothesis), such that any line above it 306 

indicates a significant level of overlap and farther distances from it show a higher 307 

overlap.49 For any given rank, IL-23-injected mice represent the highest and most 308 

significant overlap with the MADAD, and in decreasing order for Oxa-challenged 309 

and NC/Nga mice. The Ova-challenged model has significant overlap with genes 310 

up-regulated in human AD, but fails to capture the down-regulated signature of 311 

human AD. The transcriptomes of flaky-tail and Flg-mutated mice have poor 312 

overlap with human AD, consistent with the standard cut-off based approaches 313 

(Fig 1 B-C). 314 

To associate different mice profiles with relevant biological functions in 315 

human AD, an enrichment analysis was also conducted, using KEGG 316 

pathways.50,51 Selected pathways significantly enriched in human AD and in the 317 

murine models are shown in Fig 2A and Table E6, with the black vertical line 318 

representing FDR=0.05. The genes represented in each pathway are listed in 319 

Table E7. The most significantly enriched pathways in the MADAD includes 320 

PPAR signaling, cytokine-cytokine receptor interaction, JAK-STAT signaling, T 321 

cell receptor signaling, chemokine signaling, cell adhesion molecules, and 322 

adipocyte signaling pathways. IL-23-injected mice best simulate the inflammation 323 

and lipid pathways in human AD, with enrichments in some pathways also seen 324 
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with NC/Nga and Oxa-challenged mice. Ova-challenged mice only share the 325 

cytokine-cytokine receptor interaction, PPAR signaling and biosynthesis of 326 

unsaturated fatty acids pathways with MADAD. A single lipid pathway 327 

(biosynthesis of unsaturated fatty acids) is shared between Flg-mutated and 328 

flaky-tail mice and the MADAD, although this pathway is not significant for the 329 

MADAD. Retinol metabolism, hedgehog signaling and melanogenesis pathways 330 

are enriched in flaky-tail mice, but are not enriched in MADAD. 331 

Fig 2B illustrates the top 30 up- and down-regulated MADAD DEGs and 332 

their representation in each model (Table E5). Again, IL-23-injected mice best 333 

represent not only the up- (e.g. CCL18, S100A8, KRT16) but also the down-334 

regulated DEGs (e.g. CLDN8) in the MADAD, while NC/Nga, Ova-challenged, 335 

and Oxa-challenged mice mostly capture the up-regulated but not the down-336 

regulated genes in the MADAD. The flaky-tail model only poorly represents key 337 

AD genes, and Flg-mutated mice entirely lack the top up- and down-regulated 338 

human AD genes. The IL-23 model captures some lipid (ELOVL3), tight junction 339 

(CLDN8) and water channel (AQP7) deficiencies, previously reported to 340 

characterize the barrier defects in AD.9,44,52,53 341 

 342 

Transcriptomic homology between mice and inflammatory skin diseases 343 

Since the signatures of the six murine models showed limited resemblance to 344 

human AD, we expanded our comparison to also include transcriptomic profiles 345 

of two other well-characterized polar inflammatory skin diseases, psoriasis and 346 

contact dermatitis (CD).5,11,34,37 We then performed unsupervised clustering with 347 
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percentages reflecting robustness of each branch in the dendrogram (Fig 3A). 348 

The resultant dendrogram establishes a tight cluster of inflammatory skin 349 

diseases, with clear separation from murine models. Flg-mutated and flaky-tail 350 

mice cluster together and farther apart from other models. To elucidate the 351 

relative distances between individual models and human disease and to identify 352 

which murine model is closest to the human diseases, we performed a principal 353 

component analysis (PCA) (Fig. 3B). The PCA plot shows that murine models 354 

are separated from inflammatory skin diseases. IL-23-injected mice are closest to 355 

the AD profile (MADAD) on the PC1 axis, followed by CD (to fragrance) and 356 

surprisingly only then by psoriasis (Fig. 3B). Indeed, a principal variation 357 

component analysis (PVCA) also indicates that the organism explains 41.5% of 358 

the variations, with disease or mouse model accounting only for 12% (data not 359 

shown). 360 

 361 

qRT-PCR highlights significant differences in polar immune activation 362 

among murine models 363 

To validate and extend the microarray findings to polar cytokines, qRT-PCR was 364 

performed on a wide array of hallmark human AD inflammatory and barrier genes 365 

that are often below detection levels in arrays and share murine orthologs. The 366 

mRNA expressions were also compared to those obtained in our AD and 367 

psoriasis cohorts, and, for selected, available genes also to CD (to nickel and 368 

fragrance) populations (Fig. 4).34 Overall, similar patterns are seen in qRT-PCR 369 

and gene arrays. IL-23-injected, NC/Nga, Oxa-challenged and Ova-challenged 370 

2.3 Evaluation of Atopic Dermatitis Mouse Models 83



 19 

mice show large increases in innate, Th2, and Th1 cytokine pathways (IL-1E, IL-371 

13, IFN-J), as well as increased KRT16 (marking epidermal hyperplasia),54 and 372 

the Oxa-challenged model has the highest activation of the Th2 cytokine, IL-13. 373 

Only IL-23-injected and NC/Nga mice reflect all diverse cytokine pathways, 374 

including IL-17A activation. The down-regulation of terminal differentiation genes 375 

(filaggrin/FLG, loricrin/LOR) that characterizes AD is best captured by Flg-376 

mutated and flaky-tail models, and to some extent by IL-23-injected, Ova, and 377 

Oxa models but is missing in NC/Nga mice.  378 
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Discussion 379 

Over the past decades, many murine “AD-like” models,20,21,23,25,36 including 380 

humanized AD,55 topical vitamin D analogue application,56,57 or 381 

allergen/staphylococcal enterotoxin B models,56-58 have been developed as tools 382 

for understanding the AD pathogenesis and as preclinical models. The most 383 

complete view of the human AD profile is based on transcriptomic profiling of skin 384 

lesions.4,5,9 Key AD features include prominent activation of inflammatory 385 

pathways and large defects in epidermal differentiation, tight junctions and lipid 386 

profiles.38,44-46,59,60 Unlike psoriasis that is largely Th17/IL-23-polarized, AD shows 387 

more diverse cytokine expression, with Th2, but also Th22 pathway activation,2 388 

with possible roles also suggested for IL-23/Th17 axis, particularly in specific AD 389 

populations, such as Asian AD.5 390 

Global transcriptomic profiling of individual murine models is essential for 391 

understanding their distinct cytokine and barrier alterations and how well they 392 

resemble human AD fingerprinting, as compared with profiles of other common 393 

polar inflammatory skin diseases.29,30 This study is the first to evaluate the 394 

fingerprinting of commonly used “AD-like” (and a representative “psoriasis-like”) 395 

murine models and their relevance to human AD, but also to psoriasis and CD.  396 

 A proper model of human AD skin should appropriately represent its two 397 

main features, the relevant cytokine networks and the epidermal pathology. 398 

However, our data suggest that no single murine model is able to accurately 399 

simulate both aspects of AD. Our data separates the models into two clusters. 400 

One group includes flaky-tail and Flg-mutated mice, which are least reminiscent 401 
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of human AD, and particularly of its immune skewing. Flaky-tail mice show a 402 

Th17-dominated polarization and Flg-mutated mice demonstrate no apparent 403 

clinical or tissue inflammation, which is quite different from the human AD profile. 404 

The other group, including IL-23-injected, NC/Nga, Oxa-challenged, and Ova-405 

challenged mice, show a broad range of polar immune activation.  With the 406 

exception of the IL-23-injected model, which simulates some barrier features of 407 

human AD, such as reductions in tight junctions (CLDN8), lipids and LOR, other 408 

models in this group mostly do not reflect the epidermal abnormalities of AD. 409 

Surprisingly, among all evaluated models, IL-23-injected mice show the 410 

largest overlap with human AD skin, which is unexpected since this model has 411 

been traditionally used for psoriasis.61 This model demonstrates remarkable 412 

activations of innate immunity, Th1, Th2, and Th17/IL-23 axes, as well as some 413 

epidermal alterations. Still, IL-23-injected mice have increased neutrophils and 414 

only sparse eosinophils and mast cells,30,31 that can be found in human AD.62,63 415 

Furthermore FLG down-regulation, which represents a hallmark of AD, is absent 416 

in this model. This model thus replicates the Th2 activation of AD, as well as the 417 

Th17/Th22 signature of psoriasis and some AD subtypes. While IgE levels have 418 

not been evaluated in our IL-23 model,30,31 IgE responses take at least several 419 

weeks to develop.25 Perhaps, unlike other models, which have more chronic T-420 

cell activation, and are able to induce IgE responses over time, IL-23 model is a 421 

short-term skin inflammation model (profile is created within 7d). 422 

While the NC/Nga model does not reflect the various barrier defects of 423 

human AD, including decreases in differentiation, tight junctions, and lipids (i.e 424 
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FLG, LOR, CLDN8, ELOVL3),9,38,44-46 it clearly shows the diverse immune 425 

polarizations in human AD, including innate, Th1, Th2, and Th17 pathways. Thus, 426 

use of NC/Nga mice might be useful to investigate the complex cytokine 427 

interactions, but not the barrier aberrations of AD. Ova-challenged mice also 428 

replicate activation of inflammatory pathways in AD, although to a lesser extent 429 

than IL-23-injected and NC/Nga models. 430 

Oxa-challenged mice demonstrate high Th1 and marginal Th2 inductions, 431 

with only limited barrier defects (LOR). IL-17A induction is absent in these mice, 432 

but a few downstream mediators (S100A8, lipocalin 2/LCN2) are up-regulated. 433 

 Flaky-tail mice show selective Th17 activation, as previously reported.32,33 434 

While the Th17 axis is a central driver of psoriasis, some role of this pathway in 435 

AD, including induction of the Th2 axis, has recently been suggested.5,64,65 Thus, 436 

while flaky-tail mice replicate some Th17 activation and reductions in FLG and 437 

LOR seen in AD, data obtained from these mice should be applied cautiously to 438 

human AD as this model lacks Th2 activation, which is the hallmark of the AD 439 

immune responses. 440 

Flg-mutated mice are the only murine model showing significant down-441 

regulation of FLG, similar to reductions observed in human AD.66-68 However, Flg-442 

mutated mice lack both clinical and transcriptomic skin inflammation,21 and 443 

additional barrier abnormalities that are seen in AD, suggesting its limited use as 444 

a model to replicate the inflammation and global barrier defects in AD. A 445 

summary of clinical and laboratory characteristics of all analyzed models is 446 

provided in Table 2. 447 
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Human inflammatory skin diseases share a number of features, but 448 

maintain distinct differences in tissue structure and immune activation. While 449 

down-regulation of differentiation genes clearly differentiates AD from the other 450 

two inflammatory skin diseases, other immune and epidermal features are 451 

shared among the 3 conditions. These characteristics include increased 452 

epidermal hyperplasia and activation of Th1, Th17, and Th22 pathways, although, 453 

as expected, Th2 polarization is minimal in psoriasis compared to AD.5  454 

Our study has several limitations: 1. Only mRNA, but not protein levels 455 

were measured, and assessments were limited to a single time-point; 2. We 456 

mainly used B6 mice, although BALB/c might be more appropriate in certain 457 

cases; 3. We did not perform functional in-vivo tests (i.e., transepidermal water 458 

loss/TEWL, corneal water content, and pruritus measures).16,23 The biopsies 459 

were taken from different locations and at different ages in mice, possibly 460 

affecting gene expression.69 Last, comparisons with different AD endotypes were 461 

not possible here, and should be addressed by future larger cohort studies of 462 

various ages, races, etc. 463 

Overall, no single murine model fully captures all immune and barrier 464 

aspects of human AD skin, and phenotypical differences between AD and murine 465 

models are significant regardless of which model is chosen. Nevertheless, of the 466 

models studied, IL-23-injected mice appear to best replicate the human AD 467 

profile. IL-23-injected and NC/Nga mice demonstrate a wide array of 468 

inflammatory axes, including Th2 activation, and are best suited to assess this 469 

AD-centric axis, and how it interacts with other activated cytokines in AD. Oxa-470 
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challenged and Ova-challenged mice, despite showing remarkable inflammation, 471 

are not necessarily AD-specific. IL-23-injected, Oxa-, and Ova-challenged 472 

models have the advantage that inducing agents can be used on different mouse 473 

backgrounds, including existing knockouts of specific genes, to dissect 474 

cutaneous inflammation. Flaky-tail mice fail to capture any key features of human 475 

AD. Flg-mutated mice are best only to represent the FLG down-regulation in AD, 476 

but not other AD characteristics. Thus, the choice of which murine model to use 477 

depends on the translational focus of the investigator, but caution should be 478 

exercised when translating murine data to human inflammatory skin diseases.    479 
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Tables 480 
 481 
Table 1. Mouse sample data 482 

Sample n Age Sex Biopsy 
location 

Serum IgE 
elevation Description 

#DEGs (unique 
HGNC 

symbols) 
Flaky tail 5 26 weeks female Ear + Flg and ma mutation 226 
Flg-mutated 5 26 weeks female Ear - Flg mutation 47 
C57BL/6 5 26 weeks female Ear - Controls for flaky tail and Flg-mutated mice   
NC/Nga (+mite) 5 10 weeks male Ear + Mite exposure 

742 
NC/Nga (-mite) 5 10 weeks male Ear - No mite exposure (controls for NC/Nga 

+mite) 

Ova-challenged 3 15 weeks female Dorsal 
skin + C57BL/6 with ovalbumin application 

373 
Control 3 15 weeks female Dorsal 

skin - Controls for Ova-challenged mice 

Oxa-challenged 3 ~10 weeks female Ear + BALB/c with oxazolone application 
1004 

Acetone-challenged 3 ~10 weeks female Ear - Controls for Oxa-challenged mice 

IL-23-injected 5 6 weeks female Dorsal 
skin n/a C57BL/6 with IL-23 injections 

2753 
PBS-injected 5 6 weeks female Dorsal 

skin n/a Controls for IL-23-injected mice 

 483 

Table 2. The summary of clinical and histological features of mouse models 484 

 
Clinical Histology 

  

Visible 
inflammation 

TEWL 
increase 

SC water 
content 

reduction 

Pruritic 
activity 

Serum 
IgE 

increase 

Epidermal 
hyperplasia Parakeratosis T cell DC 

Flaky tail16,20 + + + + + + + + + 
Flg-mutated21 - - - - - - - - - 
NC/Nga16 + + + + + + + + + 
Ova25 + + + n/a + + + + + 
Oxa23 + + + + + + + + + 
IL-23-injected28,31 + n/a n/a n/a n/a + + + + 
          

  485 
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Figure legends 486 

 487 

Figure 1: A. Representative pictures of murine models. B. Venn diagram of 488 

overlapping DEGs for 4 AD models. Flaky-tail and Flg-mutated models are 489 

excluded due to their small number of DEGs. C. Proportion of MADAD DEGs 490 

represented in each model.9 IL-23-injected mice appear separated because 491 

these data are from our previous study (GSE50400).30 D. Overlap between top 492 

up- (red) and down-regulated (dark blue) genes in each model and MADAD was 493 

estimated for rank N=1…5000.70 The light blue line outlines the overlap expected 494 

by chance, such that any line above it indicates significant overlap and distances 495 

farther from it show higher overlap.49   496 

 497 

Figure 2: A. KEGG analysis in the respective MADAD and murine model 498 

transcriptomes. The black horizontal line indicates FDR=0.05. B. Heatmap of the 499 

top 30 up- and down-regulated MADAD DEGs with orthologs in murine models.9 500 

Corresponding log2(FCH) are shown. *P<0.05; **P<0.01; ***P<0.001. Coloring 501 

(blue: down-regulated; red: up-regulated) appears for absolute log2(FCH)≥1, with 502 

adjusted p-values<0.05.  503 

 504 

Figure 3: Genome-wide neighboring analysis of the 8400 genes represented in 505 

human-murine orthologs.  A. Dendrogram applying unsupervised clustering using 506 

Pearson’s correlation distance and McQuitty agglomeration. Significant clusters 507 

have approximately unbiased (AU) p-values ≥ 95%71 B. PCA using log2(FCH) for 508 
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the 8400 genes.  509 

 510 

Figure 4: Heatmap of qRT-PCR-derived mRNA expression differences. CD data 511 

are shown separated because data from only 13 genes was available.34 512 

Corresponding log2(FCH) are shown. +P<0.1; *P<0.05; **P<0.01; ***P<0.001. 513 

Dendrograms represent the unsupervised clustering with Euclidean distance and 514 

McQuitty agglomeration. LS=lesional, NL=non-lesional, PSO=psoriasis, 515 

AD=atopic dermatitis, CD=contact dermatitis516 
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 1 

Supplementary Methods 1 

 2 

Murine models 3 

The murine sample information is summarized in Table 1.  4 

 5 

1. Flaky-tail and Flg-mutated mice1,2 6 

Flaky-tail mice carry a spontaneous Flg homozygous frameshift mutation 7 

(c.5303delA) and a nonsense mutation (c.840C>G) in the Tmem79 gene causing 8 

a matted (ma) hair phenotype (Tmem79ma/ma Flgft/ft).3,4 Flg-mutated mice only 9 

have the Flg homozygous frameshift mutation (c.5303delA).1,2 C57BL/6 (B6) 10 

mice serve as controls for both models. While flaky-tail mice spontaneously 11 

develop skin inflammation, Flg-mutated mice do not, since flaky-tail mice lack the 12 

Tmem79 mutation, which is responsible for the eczematous lesions on a B6 13 

background.4 Ear samples were taken at the age of 20 weeks from flaky tail mice 14 

which were confirmed to have elevated total IgE, Flg-mutated mice, and B6 mice 15 

(n=5 per group).  16 

 17 

2. NC/Nga mice5 18 

NC/Nga mice with mite infestation develop dermatitis-like lesions, whereas 19 

their controls, NC/Nga mice without mite infestation, do not.5 Ear samples were 20 

harvested from 10-week-old male NC/Nga mice with and without mite infestation 21 

(n=5 per group).  22 

 23 
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 2 

3. Ova-challenged mice6 24 

Ova-challenged B6 mice were treated with 10mg/mL of Ova and 25 

compared to untreated mice 24hrs after the last application of Ova.6 Hairs on the 26 

dorsal trunk skin of B6 mice were shaved with an electric razor (THRIVE Co Ltd, 27 

Osaka, Japan). A single dorsal skin site on each mouse was tape stripped at 28 

least five times with adhesive cellophane tape (Nichiban, Tokyo, Japan). After 29 

stripping, 10 mg/ml of Ova (Hyglos GmbH, Regensburg, Germany) in phosphate 30 

buffered saline (PBS) was applied to the dorsal skin site and covered with 31 

transparent film (Suprasorb F; Lohmann & Rauscher, Miami, FL) for 3 days. 32 

Next, the film was removed and the skin remained open for 4 days. Then, new 33 

Ova was applied on the same skin area as the first application. We repeated this 34 

process three times. Elevated Ova-specific serum IgE and IgG1 levels were 35 

found. Dorsal trunk skin samples were harvested from 15-week-old female mice 36 

at 24 hours after the last application (n=3 per group). Mice without treatment 37 

were used as controls. 38 

 39 

4. Oxazolone (Oxa)-induced mice7 40 

We sensitized both dorsal and ventral faces of the right auricle with 0.8% 41 

Oxa in 10 μl acetone, and 7d later elicited with low 0.4% Oxa on the ear on days 42 

7, 10, 12, 14, 17, 21, 23, 25, and 27. Skin samples were harvested 2hrs after last 43 

application. Mice with acetone application served as controls. 44 

 45 

5. IL-23-injected mouse mice8 46 
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 3 

 The data from a previous cohort was used for gene array (GSE50400) and 47 

previously collected RNA samples were used for qRT-PCR.8 In 6-week-old 48 

female B6 mice, the induction of dorsal skin lesions was achieved by daily 49 

intradermal injections of recombinant murine IL-23 in 100μl PBS (3 µg, 50 

eBioscience, San Diego, CA) from day 1 to 4. All mice were euthanized on day 7 51 

and skin samples at the IL-23 injection site were collected for evaluation (n=5 per 52 

group). 53 

 Except the Oxa-challenged model, all mouse models were processed in 54 

the same lab, by the same personnel, and with the same protocol. 55 

 56 

Expression Analysis Preprocessing 57 

The Affymetrix Mouse Gene 2.1 ST chip definition files (cdf) were not available 58 

on bioconductor.org and were therefore manually created from the available pd 59 

file (pd.mogene.2.1.st) using the functions writeCdf.AffyGenePDInfo and 60 

make.cdf.package from the aroma.affymetrix and the makecdfenv packages 61 

respectively.  62 

 The IL-23 and Oxa model expression sets were normalized to the same 63 

target expression set, comprised of the Flaky-tail, Flg-mutated, NC/Nga and Ova-64 

challenged models, making use of target normalization. 65 

66 
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Supplementary Legends   

 

Figure E1: Heatmap of the human MADAD genes with orthologs in murine 

models. The leftmost column represents the direction of dysregulation in MADAD 

(blue: down-regulated; red: up-regulated) whereas for each murine model, the 

group-wise Z-score represents the relative expression of MADAD genes in each 

model. 

 

Figure E2: The murine samples’ normalized expression values presented by: A) 

A boxplot of all mouse samples colored by dataset, and B) A heatmap of all 

overlapping mouse genes. 

 

Table E1: Summary of clinical characteristics and demographics of patients 

(mean ± SE if not specified). 

 

Table E2: Characteristics of studied populations. 

 

Table E3: Primers used for qRT-PCR. 

 

Table E4: DEGs in each murine AD model (models vs. controls). 

 

Table E5: The log2(FCH) values are presented with their corresponding 

Benjamini adjusted p-value of each murine model contrast, for the MADAD DEGs 

Repository - Unmarked Text
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(cut-off absolute FCH ≥ 2 and FDR ≤ 0.05). The status columns indicate the 

direction of dysregulation in each murine model (0 = not significant, 1 = 

significant up-regulation, -1 = significant down-regulation). 

 

Table E6: -log(FDR) values for KEGG pathways in MADAD and murine models 

(significant pathways > 1.3 corresponding to FDR<0.05) 

 

Table E7: Genes represented in each KEGG pathway 
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Figure E2
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Table E1. Summary of clinical characteristics and demographics of patients (mean ± SE if not specified) 

  AD Psoriasis CD (nickel) CD (frangrance) Control 
(n = 25) (n = 10) (n = 10) (n = 3) (n = 8) 

Age (y), mean (SE) 45.7 (2.3) 51.3 (4.9) 46 (3.2) 37.3 (9.0) 50.9 (2.0) 
Sex (male/female; n) 16/9 6/4 0/10 2/1 7/1 

SCORAD index, mean (SE) 56.7 (3.4) 
    

IgE kU/L, log10, (SE) 2.4 (0.17) 
    

%Eosinophils (SE) 4.9 (1.2) 
    

Extrinsic AD, no. (%) 14/25 (56) 
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Table E2. Characteristics of studied populations 
        

Number 
 

Disease or control 
 

Race Gender Age SCORAD PASI 
IgE 

(U/ml) 
Extrinsic/

intrinsic %eosinophil 
1 AD EA M 45 56 NA 1281.5 Extrinsic 2.6 
2 AD EA F 47 77 NA 3000 Extrinsic 5.4 
3 AD EA F 49 56 NA 1304 Extrinsic 8 
4 AD EA M 48 51 NA 41 Intrinsic 3.6 
5 AD EA F 59 45 NA 14.1 Intrinsic 1.4 
6 AD EA F 50 44 NA 1269 Extrinsic 6.3 
7 AD EA M 61 52 NA 71 Intrinsic 1.2 
8 AD EA M 33 65 NA 56.6 Intrinsic 10.3 
9 AD EA F 67 53 NA 6 Intrinsic 0.6 

10 AD EA F 40 72 NA 92.2 Intrinsic 2.9 
11 AD EA F 59 56 NA 3.6 Intrinsic 3.5 
12 AD EA M 69 61 NA 72.9 Intrinsic 2.36 
13 AD EA M 73 55 NA 471 Extrinsic 7.5 
14 AD EA F 36 65 NA 492 Extrinsic 11.8 
15 AD EA M 42 53 NA 1821 Extrinsic 9.2 
16 AD EA M 34 76 NA 100 Intrinsic 4.2 
17 AD EA F 39 37 NA 2000 Extrinsic 6 
18 AD EA M 48 51 NA 39 Intrinsic 4.3 
19 AD EA M 36 36 NA 1021 Extrinsic 4.4 
20 AD EA M 26 33 NA 254 Extrinsic 7.6 
21 AD EA M 30 57 NA 2000 Extrinsic 2.1 
22 AD EA M 50 56 NA 907 Extrinsic 3.7 
23 AD EA M 23 76 NA 93 Intrinsic 6.7 
24 AD EA M 38 64 NA 2000 Extrinsic 1.3 
25 AD EA M 41 70 NA 1562 Extrinsic 5.9 
26 Psoriasis EA M 59 NA 20.1 NA NA NA 
27 Psoriasis EA F 49 NA 8.4 NA NA NA 
28 Psoriasis EA F 30 NA 8.5 NA NA NA 
29 Psoriasis EA M 43 NA 31.6 NA NA NA 
30 Psoriasis EA M 59 NA 13.5 NA NA NA 
31 Psoriasis EA F 42 NA 13.9 NA NA NA 
32 Psoriasis EA M 64 NA 59.5 NA NA NA 
33 Psoriasis EA F 62 NA 14.5 NA NA NA 
34 Psoriasis EA M 44 NA 21.6 NA NA NA 
35 Psoriasis EA M 61 NA 11.7 NA NA NA 
36 CD (nickel) EA F 45 NA NA NA NA NA 
37 CD (nickel) EA F 33 NA NA NA NA NA 
38 CD (nickel) EA F 52 NA NA NA NA NA 
39 CD (nickel) EA F 48 NA NA NA NA NA 
40 CD (nickel) EA F 51 NA NA NA NA NA 
41 CD (nickel) EA F 55 NA NA NA NA NA 
42 CD (nickel) EA F 37 NA NA NA NA NA 
43 CD (nickel) EA F 54 NA NA NA NA NA 
44 CD (nickel) EA F 28 NA NA NA NA NA 
45 CD (nickel) EA F 57 NA NA NA NA NA 
46 CD (fragrance) EA M 42 NA NA NA NA NA 
47 CD (fragrance) EA F 50 NA NA NA NA NA 
48 CD (fragrance) EA M 20 NA NA NA NA NA 
49 Control EA F 46 NA NA NA NA NA 
50 Control EA M 56 NA NA NA NA NA 
51 Control EA M 55 NA NA NA NA NA 
52 Control EA M 57 NA NA NA NA NA 
53 Control EA M 49 NA NA NA NA NA 
54 Control EA M 40 NA NA NA NA NA 
55 Control EA M 53 NA NA NA NA NA 
56 Control EA M 51 NA NA NA NA NA 

AD = atopic dermatitis 
EA = European American 
SCORAD = scoring atopic dermatitis 
PASI = psoriasis area and severity index 
IgE levels of greater than 200 kU/L defining extrinsic AD and values of less than 200 kU/L defining intrinsic AD 

Repository - Marked E Tables

2.3 Evaluation of Atopic Dermatitis Mouse Models 117



Table E3: Primers used for qRT-PCR 
Gene symbol Assay ID 
18S Hs99999901_s1 
Ccl17 Mm01244826_g1 
Ccl20 Mm01268754_m1 
Ccl22 Mm00436439_m1 
Cxcl1 Mm04207460_m1 
Cxcl10 Mm00445235_m1 
Flg Mm01716522_m1 
Ifng Mm01168134_m1 
Il12b Mm00434174_m1 
Il13 Mm00434204_m1 
Il17a Mm00439618_m1 
Il19 Mm01288324_m1 
Il1b Mm00434228_m1 
Il20 Mm00445341_m1 
Il23a Mm01160011_g1 
Krt16 Mm01306670_g1 
Lcn2 Mm01324470_m1 
Lor Mm01962650_s1 
Mx1 Mm00487796_m1 
Ppl Mm00447206_m1 
Rplp0 Mm00725448_s1 
S100a8 Mm00496696_g1 
Stat1 Mm00439531_m1 
Tnfsf4 Mm00437214_m1 
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4.68 0.012 NA Gm3893 1.51 0.000 NA
4.40 0.019 NA Gm3893 1.51 0.015 SCD
4.31 0.018 NA Gm3893 1.29 0.001 VSNL1
4.27 0.000 S100A8 S100a8 1.22 0.025 TMEM47
4.00 0.023 NA 4933409K07Rik 1.22 0.025 LGALS12
3.89 0.000 CSTA Stfa3 1.20 0.011 DHDH
3.82 0.025 NA Gm3893 1.15 0.000 PLAC9
3.44 0.031 CCL27 Gm21075 1.15 0.049 NA
3.41 0.000 KRT84 Krt84 1.14 0.002 TSHR
3.37 0.000 S100A9 S100a9 1.13 0.000 PLAC9
3.34 0.030 NA Gm3893 1.13 0.000 PLAC9
3.33 0.024 NA Gm3893 1.11 0.000 TRHDE
3.23 0.040 KRT28 Krt28 1.10 0.004 LRRN4CL
3.21 0.000 SERPINB3 Serpinb3a 1.10 0.016 MYF6
3.21 0.000 SERPINB4 Serpinb3a 1.08 0.018 PAPSS2
2.82 0.019 KRT73 Krt73 1.06 0.017 RETN
2.81 0.000 ENTPD4 Gm21464 1.02 0.043 CEACAM1
2.74 0.045 NA Gm21158 1.02 0.043 CEACAM6
2.72 0.031 FAM205A Gm7819 1.02 0.043 CEACAM7
2.64 0.048 NA Gm3893 1.02 0.043 CEACAM8
2.64 0.048 NA Gm3893 1.02 0.043
2.60 0.001 CSTA Gm5416 1.02 0.043 CEACAM5
2.54 0.000 CSTA Stfa1 1.01 0.035 ACOT1
2.52 0.029 FAM205A LOC100862324 1.01 0.035 ACOT2
2.51 0.036 DSG4 Dsg4 1.01 0.023 PPP1R27
2.34 0.047 LYG2 Lyg2 -1.01 0.012 KLK13
2.31 0.000 AADACL3 Aadacl3 -1.03 0.005 C10orf10
2.29 0.033 NA Gm7819 -1.07 0.016 NPBWR1
2.27 0.002 SPTSSB Sptssb -1.11 0.002 NA
2.25 0.000 AADACL4 Gm436 -1.12 0.002 NA
2.23 0.000 IL17F Il17f -1.12 0.002 SLC5A1
2.22 0.001 NA Uox -1.40 0.037 KRT16
2.14 0.000 FABP7 Fabp7 -1.40 0.033 SERPINA3

Table E4: DEGs in each murine AD model (models vs. controls)
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MC2R 0.00 0.995 0 0.14 0.827 0 -0.23 0.553 0 0.54 0.066 0 -0.29
ATXN7L1 -0.39 0.220 0 -0.14 0.752 0 -0.41 0.056 0 -0.22 0.349 0 0.28
CLDN8 0.03 0.971 0 0.35 0.557 0 -0.95 0.001 0 -0.82 0.004 0 -0.32
C1QB -0.06 0.933 0 -0.22 0.674 0 1.62 0.002 1 1.26 0.150 0 0.48
SMPDL3B 0.73 0.015 0 -0.14 0.750 0 0.42 0.117 0 0.44 0.162 0 0.69
KIF20A 0.51 0.107 0 0.13 0.779 0 1.23 0.001 1 0.72 0.052 0 0.28
TTC39B -0.11 0.771 0 0.14 0.702 0 -0.07 0.724 0 -0.02 0.946 0 0.30
LY6G6D 1.69 0.103 0 0.54 0.712 0 -0.05 0.952 0 -2.24 0.053 0 2.04
STAP1 0.78 0.005 0 0.52 0.100 0 -0.17 0.440 0 0.28 0.610 0 0.12
ALOX5AP -0.09 0.812 0 -0.10 0.793 0 1.16 0.014 1 0.55 0.173 0 0.25
CHRNB4 -0.55 0.087 0 -0.01 0.991 0 -0.54 0.012 0 -1.78 0.021 -1 -0.35
RBMX -0.14 0.720 0 0.06 0.902 0 -0.22 0.168 0 0.11 0.711 0 0.12
MX1 -0.09 0.888 0 -0.05 0.938 0 0.00 0.994 0 0.25 0.742 0 2.91
NKAP -0.06 0.890 0 0.16 0.680 0 -0.30 0.128 0 0.42 0.251 0 -0.34
CBLN1 0.19 0.633 0 0.04 0.944 0 1.39 0.052 0 -0.15 0.702 0 0.73
CXorf21 -0.53 0.286 0 0.13 0.858 0 0.47 0.518 0 0.64 0.050 0 0.40
IL18BP -0.45 0.073 0 -0.09 0.815 0 0.01 0.969 0 -0.09 0.800 0 0.51
ADAMTS15 0.05 0.921 0 -0.16 0.711 0 1.12 0.003 1 0.79 0.115 0 0.47
SLC6A20 -0.49 0.055 0 -0.66 0.027 0 0.39 0.090 0 0.94 0.002 0 0.44
PSMG4 -0.15 0.674 0 -0.21 0.514 0 -0.17 0.317 0 0.16 0.780 0 -0.29
DPPA5 0.04 0.917 0 -0.04 0.926 0 -0.09 0.735 0 -0.03 0.947 0 0.02
PAQR7 -2.55 0.000 -1 0.47 0.352 0 -1.64 0.002 -1 -1.59 0.002 -1 -2.53
TMEM125 0.22 0.583 0 -0.39 0.304 0 0.38 0.103 0 0.12 0.785 0 0.35
RNF213 -0.05 0.918 0 0.32 0.299 0 0.65 0.025 0 0.39 0.116 0 2.01
HPX -0.09 0.824 0 -0.17 0.650 0 0.11 0.681 0 -0.10 0.836 0 -0.13
DKKL1 -0.93 0.002 0 -0.25 0.497 0 -0.53 0.210 0 -0.55 0.026 0 -1.04
HLA-B 0.02 0.966 0 0.30 0.415 0 0.57 0.197 0 0.38 0.457 0 1.43
TSC22D3 -0.61 0.003 0 -0.51 0.028 0 -0.94 0.023 0 -0.63 0.096 0 -1.22
TCAF2 -0.62 0.013 0 -0.29 0.324 0 -0.50 0.020 0 1.18 0.002 1 1.44
NDUFA4L2 0.49 0.257 0 0.20 0.725 0 0.93 0.025 0 -0.22 0.577 0 1.19
CILP -0.16 0.786 0 -0.13 0.844 0 -0.10 0.790 0 1.21 0.234 0 -0.14
XPNPEP2 -0.41 0.383 0 -0.21 0.727 0 0.16 0.576 0 1.45 0.006 1 -0.88
HRNR -0.15 0.585 0 -0.33 0.172 0 0.21 0.224 0 1.53 0.000 1 0.22

Table E5: MADAD DEGs in each mouse model
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Table E6: KEGG pathways 

KEGG PATHWAY 
MADA

D 
Flaky
-tail 

FLG 
mut NcNga Ova Oxa IL-23 

PPAR SIGNALING 6.205 1.020 0.000 0.092 1.950 0.000 2.685 

CYTOKINE CYTOKINE RECEPTOR INTERACTION 4.550 1.131 0.000 8.271 1.950 18.453 19.899 

JAK/STAT SIGNALING 3.858 0.596 0.000 2.947 0.416 9.129 10.866 

T CELL RECEPTOR SIGNALING 3.829 0.000 0.000 0.020 0.000 1.734 6.713 

CHEMOKINE SIGNALING 2.921 0.000 0.000 5.195 0.942 4.127 15.619 

CELL ADHESION MOLECULES (CAMS) 2.329 0.000 0.000 4.175 0.000 3.025 7.956 

ADIPOCYTOKINE SIGNALING 1.817 0.000 0.000 0.113 0.000 0.348 4.281 

NATURAL KILLER CELL MEDIATED CYTOTOXICITY 1.217 0.000 0.000 1.066 0.000 2.289 7.959 

BIOSYNTHESIS OF UNSATURATED FATTY ACIDS 1.217 2.206 3.937 0.000 2.432 0.000 0.347 

COMPLEMENT AND COAGULATION CASCADES 1.104 0.000 0.000 2.010 0.106 0.005 0.700 

TOLL LIKE RECEPTOR SIGNALING 0.883 0.000 0.000 0.044 0.126 2.617 3.750 

LEUKOCYTE TRANSENDOTHELIAL MIGRATION 0.734 0.000 0.000 4.713 0.000 0.371 5.774 

FC EPSILON RI SIGNALING 0.556 0.397 0.000 3.006 0.460 0.948 3.803 

RETINOL METABOLISM 0.541 4.521 0.000 0.167 6.670 4.919 2.774 

B CELL RECEPTOR SIGNALING 0.369 0.000 0.000 1.436 0.000 0.053 4.257 

HEDGEHOG SIGNALING 0.000 1.669 0.000 0.000 0.000 0.000 2.227 

MELANOGENESIS 0.000 1.020 0.000 0.000 0.000 0.000 2.786 
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PPAR Signaling Pathway SLC27A5 SLC27A4 SORBS1
Cytokine Cytokine Receptor Interaction CCL26 TNFSF13 HGF
JAK STAT Signaling Pathway STAT3 STAT4 STAT1
T Cell Receptor Signaling Pathway JUN ZAP70 MALT1
Chemokine Signaling Pathway CCL26 STAT3 STAT1
Cell Adhesion Molecules (CAMs) CDH5 JAM3 CDH3
Adipocytokine Signaling Pathway STAT3 CHUK PTPN11
Natural Killer Cell Mediated Cytotoxicity ZAP70 TNFSF10 ITGAL
Biosynthesis of Unsaturated Fatty Acids ACOT4 TECR BAAT
Complement and Coagulation Cascades F2 F2R VWF
Toll Like Receptor Signaling Pathway JUN CD80 CD86
Leukocyte Transendothelial Migration CDH5 JAM3 MLLT4
FC Epsilon RI Signaling Pathway SOS2 RAF1 PRKCB
Retinol Metabolism RPE65 CYP3A5 UGT2B28
B Cell Receptor Signaling Pathway JUN SOS2 CHUK
Hedgehog Signaling Pathway CSNK1A1L HHIP PTCH2
Melanogenesis CALM2 CALM1 TYR

Table E7: Genes represented in each KEGG pathway
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CHAPTER 3
Epilogue

3.1 Summary and Discussion

In this work I characterized the transcriptional basis of the inflammatory skin dis-
ease atopic dermatitis (AD) from three perspectives, a microarray meta-analysis of
publicly available expression data, an in-depth analysis of the two main skin layers
epidermis and dermis by laser capture micro-dissection (LCM), and an evaluation of
available and popular murine models.
As a whole, my work gives a good all-round view on various transcriptional aspects
of AD, highlighting the important involvement of immunological and barrier related
genes, recommending considerate choice of murine model, and indicating the impor-
tance of layer specific investigations for increased transcriptional detection specificity.

The meta-analysis derived AD (MADAD) transcriptome (paper 1) pre-
sented as the first study in this work, provides the research community with a robust
AD transcriptome, defined by a random effects model, that combined the lesional
versus non-lesional effect sizes of four published AD transcriptomics studies. This
MADAD transcriptome or set of gene-wise effect sizes could (and to some degree
already does) serve as reference for future research, especially with respect to trans-
lational studies evaluating treatment effects on a molecular level.
The design of this study was primarily based on the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA, http://www.prisma-statement.org),
where the inclusion criteria where clearly defined prior to searching the public repos-
itories. Only four studies met all these criteria, coincidentally all initially stemming
from one laboratory, though performed by different researchers. As previous studies
had highlighted improved overall performance of microarray meta-analyses by probe-
set level comparisons, rather than gene level, I decided to keep the strict inclusion
criteria and not to loosen them to gene level comparisons. The detection of multi-
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ple differentially expressed genes (DEGs) by this meta-analysis not detected by the
individual included studies, and subsequent confirmation by the more sensitive qRT-
PCR method, suggests that my approach was able to increase the power to detect
also subtle changes in expression levels between LS and NL skin samples.

The laser capture microdissection (paper 2) of AD skin biopsies with sub-
sequent compartment specific expression analysis, revealed 674 up- and 405 down-
regulated genes in LS versus NL samples (epidermis and dermis combined), that
had not been described as DEG in the corresponding full-thickness (or bulk tissue)
microarray expression analyses. Among these DEGs various barrier and immune re-
lated genes appeared. Importantly, my analysis highlighted the possible importance
of barrier function related genes like CLDN23 and CLDN8 that appeared to be ex-
pressed significantly lower in LS versus NL samples. Also, the cytokine IL-34 showed
lower expression in LS samples, suggesting a role as a negative regulator of inflam-
mation. Despite these interesting and important findings, this study was limited by
the relatively small samples size (n=5 for both LS and NL samples) and the use of a
non-stratified set of patient samples.

The transcriptional evaluation of atopic dermatitis mouse models (paper
3) was carried out on six common murine models for inflammatory skin diseases,
in comparison to the human MADAD transcriptome defined in the first paper pre-
sented in this work. The six murine models included the three main model categories
for inflammatory skin diseases, namely 1) induced models (oxazolone, ovalbumin,
and IL-23), 2) knock-out models (FLG-mutant, and flakytail), and 3) spontaneous
(NC/Nga). Overall, ranked list comparison of the 5000 most up and down regulated
genes between each model and the MADAD transcriptome, indicated the largest
overlap between the MADAD transcriptome and the IL-23, oxazolone-challenged and
NC/Nga models. Despite these relatively solid overall overlaps, none of the models
fully captures the molecular basis of human AD. Thus, for pre-clinical research it is
essential to chose the murine model that best captures the aspects to be investigated,
e.g. the NC/Nga might be well suited for investigating immune aspects of the disease,
but will be limited with respect to covering barrier characteristics of AD.
Initially, we planned to compare only four models (FLG-mutant, flakytail, ovalbumin-
challenged, and NC/Nga), but had the ability to include data from two other sources
(oxazolone-challenged and IL-23 injected). This certainly provided a wider angle to
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our study, but also adds a number of limitations. Importantly, the inclusion of the
oxazolone-challenged and IL-23 injected mouse models, introduced two extra batches,
as the expression data of both were produced on different microarray chip types, at
different times, and, as is the case for the oxazolone model, in different laboratories. I
sought to limit these possible batch effects by applying target normalization towards
the initial dataset (first batch), and re-analyzing the oxazolone-challenged and IL-23
injected mouse model data in the standard pipeline used for the first batch. Further-
more I limited direct comparisons of the models, but sought to compare each model
to the reference AD transcriptome.

3.2 Conclusion and Perspectives

Overall, this work provides a solid transcriptional reference for atopic dermatitis re-
search, especially in the context of translational medicine, covering a broad range of
important aspects of the disease, ranging from a robust disease transcriptome, over
layer specific transcription profiling, to comparative disease model evaluation.
Future work, building on the findings presented her, could or should address some
of the shortcomings. An obvious next step would be LCM on a much larger cohort,
ideally stratified to intrinsic and extrinsic patients. Even-though it has to be noted
that this technology is labour and time intensive, which certainly limits its applica-
bility in larger cohort studies. Eventually, the application of LCM on larger cohorts
is an evaluation of the insights gained versus the increased amount of work-hours and
resources invested in the project.
Evaluating an increased cohort of model organisms, controlling the ages, sites of biop-
sies and the microarray technologies, will certainly also add to the understanding of
both the disease mechanisms and the applicability of the different models. In the
context of this, a comparative analysis of the mouse data to other animal models (e.g.
Canis lupus familiaris/dog) could broaden the mechanistic perspective.

From a technological perspective, it would be of great interest to increase and im-
prove my work by highly relevant methods like proteomics and microbiomics. Here,
proteomics could add focus to the presented transcriptional aspects of AD, by indicat-
ing differential protein levels between lesional and non-lesional samples. Correlating
the transcriptional aspects of the disease to the corresponding skin (or even gut)



126 3 Epilogue

microbiome might add interesting insights into the interplay between the skin, the
disease, and the microbiota populating the respective sites on the skin.
Furthermore, my findings can be applied to evaluate minimally invasive skin micro-
biopsy technologies, which would, if proving reliable and applicable, enable time-series
analysis of AD. This could be applied not only to investigate disease progression, but
more importantly, also in clinical trials for rapid and repeated monitoring of treat-
ment response.
Also, the maturation of RNA-seq methods, their gradually drop in price, and the
establishment of solid bioinformatics analysis algorithms has made researchers shift
from microarray to RNA-seq expression analysis in many fields. It is very likely that
this tendency will be increasingly observed in the field of inflammatory skin diseases,
where microarray technology is still widely applied. This might lead to interesting
new findings, but also leads to challenges in terms of comparability and reproducibly
of microarray and RNA-seq findings, especially with respect to the transcriptional
evaluation of clinical trials.
Finally, it would be of great benefit to the atopic dermatitis research community, if
the results of my comprehensive work became accessible in an easy to use database,
where researchers could rapidly look-up and compare the expression levels of genes
of interest. Such a database is under development, and I hope to make it available
online in the near future.
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