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Abstract—This paper develops a network-constrained trans-6
active control method to integrate distributed energy resources7
(DERs) into a power distribution system with the purpose of op-8
timizing the operational cost of DERs and power losses of the9
distribution network as well as preventing grid problems includ-10
ing power transformer congestion and voltage violations. In this11
method, a price coordinator is introduced to facilitate the in-12
teraction between the distribution system operator and aggre-13
gators in the smart grid. Electric vehicles are used to illustrate14
the proposed network-constrained transactive control method.15
Mathematical models are presented to describe the operation of16
the control method. Finally, simulations are presented to show17
the effectiveness of the proposed method. To guarantee its opti-18
mality, we also checked the numerical results obtained with the19
network-constrained transactive control method and compared20
them with the one solved by centralized control, and found a good21
performance of the proposed control method.22

Index Terms—Distributed decision making, grid-interactive en-23
ergy sources, network-constrained operation, transactive control.24

I. INTRODUCTION25

THE increasing penetration of distributed energy resources26

including renewable generations such as wind turbine and27

photovoltaic generation, electric vehicles etc flexible loads re-28

quires enhanced operation at distribution system level as well as29

closer interaction between distribution system level operation30

and transmission system level operation. For example, as sug-31

gested in [1], the functions at distribution system level should32

include grid operator function and market operator function.33

The grid operator secures the network operation while the mar-34

ket operator coordinates the electricity purchase and sale, and35

the interchange of power to other markets. In [2], a hierarchi-36

cal electric market structure consisting of wholesale electricity37

market and distribution network electricity market is proposed38

to facilitate the coordination of energy markets in distribu-39

tion and transmission networks. The proposed market structure40
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enables the integration of microgrids, which provide energy and 41

ancillary services in distribution networks. 42

The enhanced operation at distribution system level makes 43

it possible to explore and engage DERs’ flexibility potentials 44

via different approaches, centralized mechanism have been pro- 45

posed in studies [3], [4]. In [3], the proposed system integrates 46

demand side management and active distributed generation in 47

the wholesale market via an centrally optimized EMS (energy 48

management system), which allows a better exploitation of re- 49

newable energy sources and a reduction of the customers energy 50

consumption costs with both economic and environmental ben- 51

efits. To distinguish the characteristics of inflexible load and 52

flexible load, the authors in [4] presented optimal pricing tariff 53

for flexible loads in distribution networks which ensures cost 54

saving for them. The optimal pricing tariff is solved centrally 55

by an load serving entity sitting at distribution system level. 56

Although the centralized approach yields the optimal outcome 57

from the global perspective, the method has drawbacks in term of 58

its communication and computational scalability, privacy con- 59

cerns issue. Alternatively, transactive control is proposed and Q160

promoted to manage the operation of DERs resources and flexi- 61

bilities. Transactive control is defined as “a set of economic and 62

control mechanisms that allows the dynamic balance of sup- 63

ply and demand across the entire electrical infrastructure using 64

value as a key operational parameter” by the GridWise Archi- 65

tecture Council [5] and has been successfully applied in several 66

demonstration projects in the US and Europe [6]. The intent of 67

the control framework is to reach equilibriums by standardizing 68

a scalable, distributed mechanism via exchanging information 69

about generation, consumptions, constraints and responsive as- 70

sets over dynamic, real-time forecasting periods using economic 71

incentive signaling, and thus solving the increasingly complex 72

power system problems. Q273

In [7], a transactive control method named “PowerMatcher” 74

was developed to balance supply and demand in electricity net- 75

works. In the PowerMatcher method each device is represented 76

by a control agent, which tries to operate the process associated 77

with the device in an economically optimal way. The design of 78

the PowerMatcher is based on the theoretical finding that com- 79

putational economies of local control agents using a dynamic 80

pricing mechanism are able to handle scarce resources adap- 81

tively in ways that are optimal locally as well as globally. In 82

[8], a hierarchical transactive control architecture is proposed to 83

integrate renewables in smart grids considering the operation at 84

primary, secondary and tertiary control levels. The transactive 85
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control framework is applied at the tertiary control level with the86

purpose of using optimal allocation of resources in the presence87

of uncertainties in terms of renewables and loads. In [9], an in-88

tegrated dynamic market mechanism is proposed that combines89

real-time market and frequency regulation allowing renewable90

generators and flexible consumers to iteratively negotiate elec-91

tricity prices, with purpose of reducing the cost of regulation92

reserves. In [10], a transactive control framework is used to co-93

ordinate a population of thermostatically controlled loads with94

the purpose of allocating energy economically subject to a peak95

energy constraint. A mechanism is proposed in the paper to im-96

plement the desired social choice function in dominant strategy97

equilibrium.98

As transactive control’s application to electric vehicle (EV)99

integration studies, the authors in [11] propose a scalable three-100

step approach to manage the charging of electric vehicles on101

the demand side with the purpose of minimizing charging cost102

of EVs. The three steps consist of aggregation, optimization103

and control. Transactive control is applied in the third step, i.e.,104

the real-time control step to divide the optimal power gener-105

ated in step 2 among the individual EVs, which is determined106

by a priority-based scheme. The work is further developed in107

[12] where an event-driven dual coordination mechanism is pre-108

sented at the real-time control level. The simulation result indi-109

cated that the number of messages exchanged with the EVs was110

significantly reduced, by at least 64%.111

Although the transactive control framework has been widely112

used in the smart grid to reach an energy balance between sup-113

ply and demand as well as for demand response management114

[7]–[12], such studies do not consider the network that is an115

indispensable factor in operational study. For example, as indi-116

cated in [13]–[15], a large penetration of EVs also means new117

loads on the electric utilities, and undesirable congestion and118

voltage violations may exist in the distribution network when119

the batteries are recharged because of uncoordinated or solely120

cost-minimization-based charging. The latter means the EVs121

react to the wholesale price/regulating power price in a corre-122

lated way, for example, all EVs are charged when electricity123

prices are low, it might create a new peak demand at that time.124

Typically, the challenges in the distribution grid caused by the125

increasing electricity consumption of EVs are resolved by ex-126

pensive expansion of the grid to match the size and the pattern127

of demand. Alternatively, in a smart grid context, the problem of128

violation of grid constraints can also be solved smartly using ad-129

vanced control strategies such as transactive control supported130

by an increased use of information and communication tech-131

nology. To address the conflicting challenges, transactive con-132

trol frameworks were used in [16] for the charging of electric133

vehicles that incorporated distribution transformer and voltage134

constraints. A hierarchical multi-agent structure was used in135

[16] that consists of auctioneer agent, substation agent, and EV136

device agent. The substation agent summed up the bid functions137

of all the underlying EV device agents in a low voltage network138

and in turn sent the bid function to the unique auctioneer agent139

who defined the equilibrium price. In addition, the substation140

agent also ensured that the grid constraints were not violated141

given the possible equilibrium price. But, the current application142

of transactive control [7]–[12], [16] mainly focuses on real 143

time operation that may limit its application in power systems 144

where ”scheduling and control” is a vital and useful operational 145

principle. 146

This paper develops a multiple periods network-constrained 147

transactive control method to integrate distributed energy re- 148

sources (DERs) into the power distribution system, in par- 149

ticular using electric vehicles as an illustration. By the term 150

network-constrained transactive control, we mean that network 151

constraints including power transformer capacity and voltage 152

limitations are considered in transactive control applications 153

for integrating distributed energy resources like electric vehi- 154

cles. With the extension to multiple periods, the energy inter- 155

temporal characteristics of DERs, such as the dynamics of EV 156

charging can be considered in the optimization. To implement 157

the proposed network-constrained transactive control, a price 158

coordinator is introduced in this study to coordinate the power 159

flow between the distribution network operator and commercial 160

actors, i.e., the aggregators, which fits the operations under the 161

deregulated electricity market environment. As a result of in- 162

cluding network constraints, the method will be able to provide 163

granular information for locational marginal prices of each pe- 164

riod at each bus. Besides, the method also includes power loss 165

in the objective function that is one of the concerns of distri- 166

bution operation. In addition, we compare the optimality of the 167

numerical result obtained with the network-constrained transac- 168

tive control method with one solved by centralized control; the 169

results indicate good performance of the proposed transactive 170

control method. 171

The remainder of the paper is organized as follows. In 172

Section II, an energy management system using a transactive 173

control framework is described to integrate distributed energy 174

resources. A network-constrained transactive control method 175

is presented in Section III. Section IV presents simulations 176

to illustrate the performance of the proposed method. Finally, 177

discussion and conclusions are made in Section V. 178

II. CONTROL SYSTEM DESCRIPTION 179

Fig. 1 presents the network-constrained transactive control 180

system for distributed energy resources integration. In the sys- 181

tem, several aggregators are specified to manage DERs and 182

interact with a distribution system operator and a price coordina- 183

tor to eliminate grid congestion and prevent voltage violations. 184

The current system specifically introduces a price coordinator 185

that facilitates the interactions between the DSO and aggrega- 186

tors. Note that the energy dispatch used is based on the spot 187

market, since the aggregators procure the electricity when the 188

price is low. The state of the distribution network is not con- 189

sidered which means a conflicting situation might happen, e.g., 190

aggregators who aim to procure the energy from the spot mar- 191

ket in a lower price period, while the power brings operational 192

challenges to distribution networks. 193

In order to integrate DERs smoothly into the distribution 194

network, novel control relationships are needed for the manage- 195

ment system. In the proposed two-stage control system: 1) each 196

aggregator centrally generates an individually optimal energy 197
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Fig. 1. A network-constrained transactive control system for distributed
energy resources integration.

schedule for DERs as well as an aggregated power schedule198

over the whole scheduling period; 2) the aggregators and DSO199

interact with the price coordinator to reach a power consensus200

on each bus of the distribution network via iterative information201

exchange on price and power, if the aggregators’ power schedule202

could potentially cause network problems to DSO. The infor-203

mation exchange on the power schedule and the shadow price204

i.e. λ(i, l) used by the transactive control can be enabled and205

operated by the DSO, the aggregators and the price coordinator206

based on current infrastructure. Note regarding how to handle207

the shadow price in practice, suggestions have been made in208

the literature. In [16], the authors assumed that the customers209

are not charged the equilibrium price in the auction-based mar-210

ket/transactive control, instead, the equilibrium price is inter-211

preted as a control signal that guarantees the necessary reserves212

are provided. Alternatively, it is argued in [5] that dynamic price213

at distribution system level should have real economical incen-214

tive. We recognise the value of λ(i, l) represents a compromise215

between the utility of customer and the interests of grid, which216

shares similar features of the distribution locational marginal217

prices in [17]. Although straight-forward and easy to imple-218

ment, the model [17] brings about the risk of causing new peaks219

in the grid due to unconfirmed power schedule of aggregators to220

the DSO. Instead, the method proposed in this study can guaran-221

tee explicit power limits issued to the aggregators for the DSO222

when solving grid congestion, because the price and the power223

schedules are fixed after a price-clearing mechanism. Further-224

more, the implementation of the shadow price in the settlement225

phase is out of the scope of the paper but will be addressed in226

the future work from the authors.227

Key operations of the three actors in the system are presented228

as follows:229

1) Aggregator’s role and operational functions: Aggrega-230

tors provide energy services to DER users and coordinate231

with the DSO and price coordinator. Note the role of the232

aggregator here is similar to a retailer who on-behalf of233

customers to buy the electricity in the energy spot mar-234

ket. To support such a role, two stages are needed: DER235

energy schedule generation and interaction with the DSO 236

and price coordinator. In the first stage, aggregators col- 237

lect information from the users to make an optimal energy 238

schedule for DERs. Then, this initial energy schedule will 239

be shared with the DSO to form the baseline. The base- 240

line is normally defined as an estimate of the electricity 241

that would have been consumed by a customer in the ab- 242

sence of a demand response event [18]. This implies that 243

if there are no potential network problems, the aggrega- 244

tors’ initial schedule will be accepted by the DSO; other- 245

wise, this baseline will be used for later on cost function 246

formulation. 247

2) DSO’s role and operational functions: To ensure secure 248

operation of the distribution network, the non-profit orga- 249

nization DSO needs to interact with the aggregators and 250

price coordinator, exchanging buses’ information on the 251

network with the aggregators and the price coordinator 252

and responding to the price set by price coordinator. Be- 253

sides, DSO is informed about aggregators’ initial power 254

schedule since it will keep tracking the power schedule 255

when responding to the price set by the price coordinator. 256

3) Price coordinator’s role and operational functions: The 257

price coordinator is an authorized entity to determine the 258

shadow prices and facilitates the interactions between 259

the DSO and the aggregators to reach a power consen- 260

sus at each bus of the network. The price coordination 261

center could be operated by a third party. The proposed 262

third party is feasible 1 if more distributed energy re- 263

sources are connected on the distribution network level. 264

The independent third party could be used to provide such 265

services to different distribution system operators and ag- 266

gregators, for example, in Denmark, there are around 70 267

distribution companies which serves electricity to publics. 268

In addition, the proposed third party could ensure fairness 269

to aggregators and DSOs. If the price coordinator is op- 270

erated by a DSO, it may discriminate some aggregators if 271

their operational schedules have conflicts with DSO’s own 272

interests. From our view, the price coordinator should be a 273

non-profit organization but will charge certain operational 274

fee to its customers including DSOs and aggregators to 275

maintain its operation and development. 276

III. MATHEMATICAL MODELING OF NETWORK-CONSTRAINED 277

TRANSACTIVE CONTROL 278

In this section, mathematical models of the network- 279

constrained transactive control method are introduced. An elec- 280

tric vehicle is used as an example to illustrate the developed 281

transactive control method. Fig. 2 shows the functions and in- 282

teractions of the entities in the proposed model. We start with 283

the aggregator who uses linear programming to formulate an 284

aggregated EV charging schedule in Stage I. The charging 285

1http://www.ipower-net.dk/news. In the Danish iPower smart grid project, a
flexibility clearing house software infrastructure is developed that enables Dis-
tribution System Operators and aggregators to interact, so the potential flexibility
controlled by the aggregators can be provided to the DSOs in a market-based
way.



IEE
E P

ro
of

4 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 00, NO. 00, 2016

Fig. 2. Flowchart of the proposed method that describes the function and
interactions of entities.

schedule forms a baseline of the flexibility cost function used in286

section III-B where the modeling development of the network-287

constrained transactive control is presented in Stage II. Finally,288

a distributed computational algorithm is presented in Stage II289

that facilitates implementation of the transactive control.290

A. Stage I: Aggregator’s Electric Vehicles Charging291

Schedule Generation292

A linear programming-based electric vehicle charging opti-293

mization is formulated and used by the aggregators to gener-294

ate the optimal charging schedule, assuming knowledge of EV295

users’ driving pattern and forecast electricity spot price. Note296

that the linear programming model and the assumptions adopted297

here may not accurately characterize the charging process of the298

electric vehicles in terms of the uncertainty of EV users’ driving299

pattern, battery charging behavior, EV charging efficiency etc.,300

however, as discussed in [19], it is a sufficient method for gen-301

erating the optimal charging schedule to minimize the charging302

cost.303

The charging objective is to minimize the charging cost as304

well as to fulfill the individual EV’s energy requirements for the305

next twenty-four hours, and the discharging ability and battery306

degradation cost are not considered in the study. The solution is307

introduced similarly for each aggregator:308

min
N E

k∑

j=1

NT∑

i=1

Φj,iPj,it,

subject to 309

⎧
⎪⎨

⎪⎩

SOC0,j · Ecap,j +
NT∑
i=1

Pj,itj,i = SOCMax,j · Ecap,j

0 ≤ Pj,i ≤ Pmax,j , i = 1, ..., NT

(1)

where 310

Pj,i Optimization variable, the jth EV charging power 311

at time interval i. 312

NE
k Number of EVs under aggregator k. 313

NT Number of time slots in the scheduling period. 314

j Index for the number of EVs under each aggrega- 315

tor, j = 1, 2, ..., NE
k . 316

i Index of time slot in the scheduling period, i = 317

1, 2, ..., NT . 318

Φj,i Predicted day-ahead electricity market price vec- 319

tor. 320

t Length of each time slot. 321

SOC0,j Initial SOC of individual EV. 322

SOCMax,j Requested/targeted maximum SOC of individual 323

EV at the end of the charging period. 324

Pmax,j Maximum charging rate of individual EV. 325

Ecap,j Capacity of the battery of the EV. 326

In (1), the first constraint means that the energy to be charged 327

should be equal to the requested energy at the end of the charg- 328

ing period for each electric vehicle. The second constraint repre- 329

sents that the charging rate is less than or equal to its maximum 330

power rate of a charger. The physical meaning of the optimiza- 331

tion variable vector Pj,i is to make a decision on the charging 332

power in the planned time slots, where the charging cost can be 333

minimized. 334

With the above optimization problem, the aggregator can gen- 335

erate a unique energy schedule for individual EV as well as an 336

aggregated power schedule in each time slot. Note that, when 337

interacting with the DSO, the aggregator needs to provide charg- 338

ing locations of the aggregated charging schedules, which is as- 339

sumed to be known by the aggregators. The previously obtained 340

Pj,i will be denoted as Pj,i,l . l is the bus index of the distribu- 341

tion network, l = 1, ..., NB . Thus, we calculate the sum of the 342

individual EV energy schedule inside one aggregator k at bus l 343

in time slot i and the total power is denoted as PE
k,i,l , and 344

PE
k,i,l =

∑

j �→l

Pj,i,l , k = 1, ..., NF , i = 1, ..., NT , l = 1, ..., NB

(2)
where 345

j �→ l The electric vehicles of each aggregator connected at 346

bus l. 347

NF Number of aggregators. 348

NB Number of buses. 349

k Index for the number of aggregators, k = 1, ..., NF . 350

PE
k,i,l Power requirements of EVs of aggregator k in time slot 351

i at bus l. 352

Note that the EV model used here does not consider the un- 353

certainty of the EV travel pattern, thus the aggregated power 354

consumption of the aggregator might deviate from the planned 355

schedule which will certain influence the accuracy of this model. 356
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This problem can be mitigated by: 1) when the size of the ag-357

gregator is bigger such as many flexible resources are controlled358

by the aggregator, since the uncertainty of individual EV can359

be evened, and 2) an agreement could be made between the360

aggregator and the customers that communicate timely on the361

customers’ next day traveling plan.362

B. Stage II: Network-Constrained Transactive Control363

Modeling364

In this study, the principle for applying the network-365

constrained transactive control application is that the DSO needs366

to check whether the charging schedule of aggregators will367

result in network operation violations. If there is a violation,368

a congestion price will be generated by the price coordina-369

tor to reflect the violations. Otherwise, the power schedule of370

aggregators will be accepted by the DSO.371

To start the modeling of the control method, we propose a372

flexibility cost function that represents the cost of the power373

preference difference of aggregators in each time slot i per374

bus l,375

μk = ζk (P̃k,i,l).

To facilitate the understanding, we assume376

μk = Ck,i,l(P̃k,i,l − PE
k,i,l)

2 ,

subject to377

NT∑

i=1

P̃k,i,l · ti =
∑

j �→l

(SOCMax,j − SOC0,j ) · Ecap,j (3)

where k, i, l remain the same with the above notation, P̃k,i,l378

denotes the optimization variable, PE
k,i,l is the optimized power379

schedule shown in (2), Ck,i,l means the weighting factor which380

are associated with the power difference, the larger Ck,i,l means381

smaller difference preferred since the objective is to reduce the382

power shifting. The constraint in (3) means the individual EV383

energy requirements should always be fulfilled. The flexibil-384

ity cost function μk intends to penalize the deviation from its385

originally optimized schedule PE
k,i,l .386

For the DSO, the objective is to track and regulate the power387

schedule from aggregators with respect to the operational con-388

straints such as the transformer thermal capacity and the voltage389

limitations and to minimize the network losses:390

min a ·
NT∑

i=1

NB∑

l=1

(
Ptrans(i, l) −

nF∑

k=1

PE
k,i,l

)2

+ b · Ploss

subject to391

∑

l=1N B

Ptrans(i, l) ≤ PMax
trans(i),

U0(i, l) + ΔU(i, l) ≥ UMin(i, l) (4)

where392

a, b Weighting factors.393

P0 Conventional load profiles.394

Ptrans(i, l) Optimization variable and its physical meaning is 395

the desirable power of DSO for EVs charging, ex- 396

clude the base load profile. 397

nF Number of aggregators which has EVs attached in 398

bus l. 399

A Full bus incidence matrix, NB × NLine , associated 400

to the reference direction of branches. If bus m is 401

the initial node of branch [m,n], A(m,n) = 1, else 402

A(m,n) = −1. Note the matrix is not necessary a 403

square matrix. 404

NLine Number of branches. 405

PMax
trans Power transformer capacity for all the aggregators, 406

for example, it can be estimated by the DSO after 407

deducting the conventional loads. 408

U0(i, l) The initial voltage of the buses of the network. 409

UMin(i, l) The minimum allowable voltage of the buses of 410

the network. 411

Note that normally in practice, the non-profit organization 412

DSO aims to ensure the safe and efficient operation of the net- 413

work, provide non-discriminate electricity distribution services 414

to customers, and minimize energy losses of the system. In this 415

study, we proposed that the DSO also aims to supply the desired 416

power schedule of aggregators as much as possible, in addition 417

to the loss minimization objective. It is envisioned in the near 418

future smart grid, the DSO can adapt the objective functions like 419

the one presented in (4) with the real needs. 420

In (4), 421

Ploss =
NT∑

i=1

NB∑

l=1

(
P 2

line(i, l) + Q2
line(i, l)

V 2

)
Rl

Pline(i, l) = (A · AT )−1 · A · (P0(i, l) + Ptrans(i, l))

where Ploss =
∑NT

i=1
∑NB

l=1(
P 2

l i n e , l (i)+Q 2
l i n e , l (i)

V 2 )Rl can be ap- 422

proximated as Ploss =
∑NT

i=1
∑NB

l=1 P 2
line(i, l)Rl , since Q is usu- 423

ally small in low voltage network, and as long as the voltage 424

is close to nominal. ΔU(i, l) is calculated from the following 425

simplified equation [20], [21] 426

[
ΔP

ΔQ

]
=

⎡

⎢⎣

∂P

∂Θ
∂P

∂U
∂Q

∂Θ
∂Q

∂U

⎤

⎥⎦

[
ΔΘ

ΔU

]

Denote J the load flow Jacobian from the last iteration, 427

J =

⎡

⎢⎢⎣

∂P

∂Θ
∂P

∂U

∂Q

∂Θ
∂Q

∂U

⎤

⎥⎥⎦

then the voltage increment can be calculated by the injection 428

increment times the reverse of the Jacobian, as shown below, 429

[
ΔΘ(i, l)

ΔU(i, l)

]
= J−1

[
ΔP (i, l)

ΔQ(i, l)

]
= J−1

[
Ptrans(i, l)

0

]
(5)

Here, we assume the reactive power injection increment is zero. 430

Θ means voltage angle and it is not considered in the study. 431
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Thus we have432

ΔU(i, l) = J−1
21 · Ptrans(i, l). (6)

where J−1
21 means only a submatrix of J−1 is used.433

From a social fairness point of view, it is desirable to minimize434

the cost to the aggregator as well as minimizing the power losses435

and mitigating the impact on the distribution system operator.436

The social welfare maximization is mathematically formulated437

as follows:438

min
NF∑

k=1

NT∑

i=1

NB∑

l=1

Ck,i,l(P̃k,i,l − PE
k,i,l)

2

+ a ·
NT∑

i=1

NB∑

l=1

(Ptrans(i, l) −
nF∑

k=1

PE
k,i,l)

2 + b · Ploss

subject to439

nF∑

k=1

P̃k,i,l = Ptrans(i, l), i = 1, ..., NT ,

NT∑

i=1

P̃k,i,l · ti =
N E

k∑

j=1

(SOCcap,j − SOC0,j ) · Ecap,j ,

NB∑

l=1

Ptrans(i, l) ≤ PMax
trans(i),

U0 + ΔU ≥ UMin , (7)

where the optimization variables of this optimization problem440

are P̃k,i,l and Ptrans(i, l). The first constraint of (7) implies that441

sum of the new optimal power of aggregators should be equal442

to the new optimal power of the DSO. Let λ(i, l) denote the443

Lagrange multiplier corresponding to the first constraint of (7),444

and keep the rest of the constraints implicit, so the Lagrangian445

function for (7) is446

L(λ(i, l), P̃k,i,l , Ptrans(i, l)) =

NF∑

k=1

NT∑

i=1

NB∑

l=1

Ck,i,l(P̃k,i,l − PE
k,i,l)

2

+ a ·
NT∑

i=1

NB∑

l=1

(
Ptrans(i, l) −

nF∑

k=1

PE
k,i,l

)2

+ b · Ploss

+
NT∑

i=1

NB∑

l=1

λ(i, l) ·
( nF∑

k=1

P̃k,l,i − Ptrans(i, l)
)

(8)
where the optimization variables of optimization problem (8)447

are λ(i, l), P̃k,i,l and Ptrans(i, l).448

C. Stage II: Network-Constrained Transactive Control449

Implementation450

In order to solve the optimization problem (8), this section451

applies a distributed computing algorithm which has been ap-452

plied in several studies [22], [23]. The Lagrangian minimiza-453

tion can be solved by subgradient methods [24] which usually454

require multiple iterations or information exchange. In the iter- 455

ation, the minimization problems are seen to be decomposable 456

to the DSO and to the aggregators. Specifically, the subgradient 457

method consists of the following iterations, indexed by ω and 458

initialized with arbitrary λ∗
1(i, l) ≥ 0: 459

1) aggregator minimization at step ω 460

min

(
NF∑

k=1

NT∑

i=1

NB∑

l=1

Ck,i,l

(
P̃k,i,l − PE

k,i,l

)2
+

NT∑

i=1

NB∑

l=1

λ∗
ω (i, l)

nF∑

k=1

P̃k,i,l

)

s.t.
NT∑

i=1

P̃k,i,l · ti =
∑

j∈l

(SOCcap,j − SOC0,j ) · Ecap,j (9)

To solve problem (9) and obtain the value of optimization vari- 461

able P̃k,i,l we use CVX, a package for specifying and solving 462

convex programs [25], [26]. 463

2) DSO minimization at step ω 464

min a ·
NT∑

i=1

NB∑

l=1

(
Ptrans(i, l) −

nF∑

k=1

PE
k,i,l

)2

+

b · Ploss −
NT∑

i=1

NB∑

l=1

λ∗
ω (i, l)Ptrans(i, l)

s.t.
NB∑

l=1

Ptrans(i, l) ≤ PMax
trans(i),

U0(i, l) + ΔU(i, l) ≥ UMin(i, l) (10)

To solve problem (10) and get the value of optimization vari- 465

able Ptrans(i, l), we use CVX and MATPOWER, a MATLAB 466

power system simulation package. 467

3) Price coordinator: lagrangian multiplier updating for step 468

ω + 1 469

λω+1(i, l) = λ∗
ω (i, l) + αω ·

(
∑

k∈l

P̃ ∗
k,i,l − Ptrans(i, l)∗

)

(11)
where ω is the index for the iterations, P̃ ∗

k,l,i is the solution of 470

problem (9), Ptrans(i, l)∗ is the solution of (10), αω ∈ R denotes 471

the step size and can be chosen as αω = α which is a positive 472

constant and with the choice, the convergence is guaranteed 473

[24]. Note that λ is converged at each bus in each time slot. A 474

simple step size is chosen here to update the λ, but as discussed 475

in [24], some heuristic approaches can be performed to improve 476

the convergence speed. 477

IV. CASE STUDY 478

A. Case Specification 479

1) EV charging parameters: Two EV penetration levels are 480

studied, i.e., the 50% EV level and the 100% EV level. All the 481

EVs are affiliated to either aggregator 1 (Agg.1) or aggregator 482

2 (Agg.2). The number of the EVs operated by Agg.1 and Agg.2 483
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Fig. 3. Electricity energy price, an example from NordPool.

is 18 and 36 in each level, respectively. The scheduling period484

considered in this case is from 16.00 to 06.00 and a 15-min485

interval is used. The hourly predicted day-ahead market price486

from 16.00 to 06.00 is assumed to be known to the aggregator487

and the price 2 is shown in Fig. 3, the price will be used in stage488

I for generating EV charging schedule.489

For other parameters in EV charging:490

1) Battery capacity Ecap is set to 24 kWh491

2) SOCo is set to 0.2 of the battery capacity492

3) SOCmax is set to 100% of the battery capacity493

4) Maximum charging power is limited to 3.7 kW which fits494

with the Danish case (16 A, 230 V connection).495

2) Distribution network and control parameters: A repre-496

sentative Danish distribution grid is illustrated in Fig. 4 where497

72 households are connected to the feeders: 51 households are498

attached to the left branch and 21 households are located on499

the right side of the network. For the parameters used in the500

network-constrained transactive control, a time series base load501

is assumed to be known by the distribution system operators.502

With the base load, the DSO can calculate the base voltage, i.e.,503

the U0 in (4) per bus. In all time slots, the power transformer504

capacity allocated to two EV aggregators is 120 kW in both EV505

penetration cases, the minimum voltage UMin per bus is assumed506

to be 0.905 p.u. for the 50% EV penetration case and 0.88 p.u.507

for the 100% EV penetration case. Note the 0.905 p.u. and 0.88508

p.u. are given empirically, for the 100% EV penetration case, the509

EV charging power is very high for the distribution network, but510

the method still converges for the relaxed voltage constraint. In511

reality, the minimal voltage 0.88 p.u. is not recommended, here512

it is mainly used for presenting the effectiveness of the proposed513

control method, even under the 100% EV penetration case. The514

initial Lagrangian multipliers are assumed to be zero per bus in515

all the time slots and are updated per iteration to the aggregators516

and the DSO. The weighting factor rate C1,i,l and C2,i,l is set517

to 0.5 and 0.1, respectively. A constant stepsize (αω = 0.1) is518

2The electricity price assumed here is drawn from the real electricity price
from NordPool spot market (http://www.nordpoolspot.com/)

Fig. 4. A representative Danish distribution network with EV connected. We
use two sets of parentheses inside the block under each bus index to show the
EVs that are connected to the bus. The left set of parentheses represents Agg.1’s
EV information and the right one shows Agg.2’s EV information. In each set of
parentheses, the number of the EVs assigned to the two EV penetration levels
is indicated (left for 50% EV penetration case, right for 100% EV penetration
case).

chosen for the Lagrangian multiplier update. The value of a and 519

b is 0.1 and 300, respectively. 520

Note the values of a and b can influence the performance of 521

both DSO and aggregators. Therefore, the values must be tuned 522

properly when use in real. Technically, the value of a and b is 523

chosen based on empirical study in this work and the principle is 524

to make the optimum of different actors (DSO and aggregators) 525

have the same order of magnitude. Economically, the values 526

should be agreed based on negotiation between the DSO and 527

the aggregators, since it will influence the cost of aggregators 528

and DSO. It is noted there is work remaining on this matter, and 529

how exactly the process should be will be investigated in further 530

research effort. 531

B. Simulation Scenarios 532

With the provided parameters of the EVs, Agg.1 and Agg.2 533

calculate their optimal schedules according to (1). The power 534

schedule of the EVs is firstly allocated in the time period 45 to 48 535

because of the lower electricity price, i.e., 02:00 to 03:00 AM, 536

thus this hour is used for illustrating the control performance. 537

The sum of the power in these time periods is higher than the 538

allocated power transformer’s capacity. To illustrate the effec- 539

tiveness of the network-constrained transactive control and to 540

examine the effect of adding power loss objective function as 541

well as voltage constraints in (4), three scenarios are considered 542

here: 543

1) Scenario 1: Basic network-constrained transactive con- 544

trol. In this scenario, only congestion is considered, the 545
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Fig. 5. Convergence of λ(i, l) and power of DSO and aggregators at bus 14,
i = 45, ...48, in scenario 1. Dotted power profile: The sum of Agg.1 and Agg.2;
solid power profile: DSO.

power loss and the voltage constraints are not included in546

the optimization problems.547

2) Scenario 2: Network-constrained transactive control with548

voltage constraints. In this scenario, the voltage con-549

straints are included on top of scenario 1.550

3) Scenario 3: Network-constrained transactive control with551

voltage constraints and power loss. In this scenario, the552

power loss objective is included on top of scenario 2.553

Note the method does not require a fixed bus location of554

individual EV; however, in order to compare the differences555

between these scenarios, we use the same setting for electric556

vehicles’ locations in the network that is shown in Fig. 4.557

C. Simulation Results558

1) Scenario 1: Fig. 5(a) shows the simulation result of the559

50% EV penetration case where the problem is solved after 29560

iterations. It means the DSO and the aggregators reach consen-561

sus in terms of power at each bus for all the time slots. The562

power of the DSO and aggregators is regulated by the shadow563

prices presented in the upper level of the figure. In the simula-564

tion, bus 14 has the lowest voltage and thus the power profile of565

DSO and aggregators at bus 14 is presented. The figure shows566

that four electric vehicles are initially scheduled to charge from567

02:00 to 03:00 AM. However, to respect the power transformer568

constraint, the charging power is reduced in this hour and the569

required additional energy is compensated in other time slots570

that is not shown here. To demonstrate the changes before and571

after the control, the charging profile of EVs on bus 14 (includ-572

ing two EVs of Agg.1 and two EVs of Agg.2) is shown in Fig. 6573

during the entire scheduling period. In addition, Fig. 5(b) shows574

the results of the 100% EV penetration case. The congestion575

price increases in this case because of the higher EV charging576

power, correspondingly, the converged power of the DSO and577

the aggregators is less than the one in 50% EV penetration case.578

Fig. 6. Comparison of the charging schedule of EVs connected at bus 14 in
presence of control in scenario 1.

Fig. 7. Convergence of λ(i, l) and power of DSO and aggregators at bus 14,
i = 45, ...48, in scenario 2. Dotted power profile: the sum of Agg.1 and Agg.2;
solid power profile: DSO.

2) Scenario 2: In this scenario, bus voltage constraints are 579

included in the optimization problem. Fig. 7(a) presents the con- 580

vergence of the power and the congestion price. Compared with 581

Fig. 5(a), the results indicate longer iterations are needed to 582

reach the convergence. Besides, the congestion prices increase 583

a lot to further reduce the power at bus 14 during these four 584

time periods (i.e., 45 to 48) and the purpose is to ensure that the 585

voltage is not violated. Table I presents the voltage comparison 586

calculated from scenario 1 and scenario 2. In each scenario, we 587

calculate the voltage using the loading profiles (base load plus 588

the EVs charging load) before and after the transactive control. It 589

can be seen that the minimum voltage of the distribution network 590

in scenario 2 increases a lot compared with the one in scenario 1, 591

which show the effectiveness of the voltage approximation 592

method in (5) and (6). The minimum voltage is recalculated 593



IEE
E P

ro
of

HU et al.: APPLICATION OF NETWORK-CONSTRAINED TRANSACTIVE CONTROL TO EV CHARGING FOR SECURE GRID 9

TABLE I
POWER LOSSES AND VOLTAGE BEFORE AND AFTER TRANSACTIVE CONTROL

Electric Vehicle With 50% Penetration

Scenarios Control Loss (MWh) Energy (MWh) Loss ratio Voltage (p.u.)

Scenario 1 Before control 0.1348 2.0699 6.51% 0.8548
After control 0.1270 2.0611 6.16% 0.8634

Scenario 2 Before control 0.1348 2.0699 6.51% 0.8548
After control 0.1106 2.0454 5.41% 0.9035

Scenario 3 Before control 0.1348 2.0699 6.51% 0.8548
After control 0.1096 2.0443 5.36% 0.9036

Electric Vehicle With 100% Penetration

Scenarios Control Loss (MWh) Energy (MWh) Loss ratio Voltage (p.u.)

Scenario 1 Before control 0.3086 2.9349 10.51% 0.7675
After control 0.1904 2.8150 6.76% 0.8684

Scenario 2 Before control 0.3086 2.9349 10.51% 0.7675
After control 0.1893 2.8148 6.72% 0.8753

Scenario 3 Before control 0.3086 2.9349 10.51% 0.7675
After control 0.1890 2.8150 6.71% 0.8753

after the power reaches consensus and thus the voltage is not594

exactly the expected 0.905 p.u. in all scenarios. We note that,595

compared with scenario 1, the voltage profiles in scenario 2596

are kept above 0.9 p.u. that fulfills the European standard EN597

50160. The voltage results of the 100% EV penetration case are598

also presented, the voltage here illustrates the effectiveness of599

the method, since compared to scenario 1 of 100% EV penetra-600

tion case, the voltage increases. In addition, Fig. 7(b) shows the601

results of the 100% EV penetration case. The congestion price602

increases a bit in this case compared with the one in Fig. 5(b)603

because of the voltage constraints.604

3) Scenario 3: Compared with scenario 2, the power loss605

objective is included in the optimization problem. Similarly, the606

power of the DSO and the aggregators as well as the regulating607

congestion prices during the transactive control are shown in608

Fig. 8(a). The results indicate that a longer iteration number is609

required before consensus is reached. Besides, the congestion610

price is higher and thus the converged power is smaller than611

the one shown in Fig. 7(a). Furthermore, we compare the power612

loss of scenario 3 with scenarios 1 and 2. The results are shown613

in Table I. Here, the power loss ratio is a relationship between614

the energy losses and the energy injected at bus 33. The results615

show that the loss in scenario 3 is optimal compared with the616

one in scenario 2. The minimum voltage of scenario 3 is also617

included in Table. I. In addition, Fig. 8(b) shows the results of618

the 100% EV penetration case. The congestion price increases619

further in this case compared with the one in Fig. 7(b) because620

of the inclusion of objective loss.621

D. Optimality Verification622

To investigate the optimality of the numerical result obtained623

with the network-constrained transactive control method, we624

compare the results with the one solved directly from the opti-625

mization problem (7) that is named centralized control. Table II626

presents the results obtained in each scenario for the two EV627

penetration levels. The value shown in the table is the power at628

bus 14 corresponding to time slot 45. It is seen that the value629

obtained by centralized control (Central) and transactive control630

Fig. 8. Convergence of λ(i, l) and power of DSO and aggregators at bus 14,
i = 45, ...48, in scenario 3. Dotted power profile: The sum of Agg.1 and Agg.2;
solid power profile: DSO.

TABLE II
COMPARISON OF SCENARIOS SOLVED BY CENTRALIZED CONTROL AND

TRANSACTIVE CONTROL

EV Penetrations 50% Penetration 100% Penetration

PD S O PA g g PD S O PA g g

Scenario 1 Central 13.9118 13.9118 10.0159 10.0159
Transactive 13.9156 13.9218 10.0312 10.0380

Scenario 2 Central 5.8490 5.8490 8.3725 8.3725
Transactive 5.8457 5.8549 8.3854 8.3935

Scenario 3 Central 5.3661 5.3661 7.5809 7.5809
Transactive 5.4410 5.4507 7.5662 7.5747

(Transactive) is comparable, which verifies the optimality of the 631

proposed model. Note from algorithm perspective, the proposed 632

method is solved by introducing a Lagrange multiplier λ and the 633

dual problem gives the same solution as the one in centralized 634

control due to the convexity of the optimization problem [24]. 635

Thus we concludes the optimality of the proposed method with 636

the comparison, although the solution of the central and trans- 637

active control in the table is not exactly the same because the 638

problem is solved numerically here. 639

V. DISCUSSION AND CONCLUSIONS 640

In this study, the bid cost function that EV aggregators used 641

to express their charging flexibility to the price coordinator is 642

quadratic, as discussed in [16], popular utility/cost functions 643

include a linear and quadratic utility function which means 644

equilibrium prices can usually be found. However, in some sit- 645

uations, the equilibrium may not be identified. In this case, re- 646

laxation of the constraints or heuristic methods may be needed. 647

Furthermore, note that the case study is towards EU system 648

where the distribution network is normally planned as three 649

phases, also the approximation of the load flow model though 650

is not exact however the results show the effectiveness. As ap- 651

plication of this method to unbalanced distribution system, it 652
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is applicable and in that case the adaption requires introducing653

lamada, i.e., the shadow price on each phase.654

In addition, it is one of the assumptions that there are flex-655

ibilities within an EV fleet who can shift the demand over a656

planning horizon to avoid high market price. For a few inflexi-657

ble customers, their demands can be handled in the aggregators658

optimisation model by adding additional constraints for their659

specific energy charging requirements. If it causes violations of660

network constraints or higher charging cost, then there should661

be mechanisms between the aggregators and the customers to662

handle such issue.663

Although the EV is used as an example to illustrate the ef-664

fectiveness of the proposed method, it is note that the method665

can also be extended to capture other flexible loads such as666

heat pumps and storages. In addition, the model can be also667

demonstrated in a distribution system with high penetration of668

distributed generator such as wind/solar generators. Under this669

circumstance, the condition will become complex, such as the670

distributed generator might bring over-voltage problem, if it is671

the case, a similar penalized method could be used to manage672

the power flow of the distributed generators. Moreover, it is673

envisioned that, if distributed generations have contracts with674

the aggregator, the distributed generator and the flexible loads675

should be jointly optimally operated by the aggregator, then the676

DSO only interacts with the aggregators based on the net-power677

(generation minus consumption) of the aggregator.678

To sum up, this paper develops a network-constrained trans-679

active control method and applies it specifically for integrating680

electric vehicles into power distribution systems. The proposed681

modeling method covers multiple time periods, which extends682

the application of transactive control that has been reported in683

previous studies. The extensions make the transactive control684

technique fit better with the normal operation of power system685

operators since ‘schedule and control’ is a typical approach used686

by the system operators. Furthermore, the proposed method con-687

siders the energy inter-temporal characteristics of electric vehi-688

cles, i.e., the dynamics of electric vehicle charging. By using the689

proposed transactive control method, the system operator can690

ensure a safe operation of the network and the aggregators can691

optimize the electric vehicles’ charging schedules.692

The merit of the work is that it represents a decen-693

tralized operation instead of a centralized dispatch, as for694

centralized mechanism, there would be questions like compu-695

tational requirements issue, privacy issue? Such questions are696

addressed and eliminated through transactive control, as each ac-697

tors keep their operational cost functions and only communicate698

the solutions with the price coordinator through a negotiation699

mechanism.700
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