
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Prediction of Repair Work Duration for Gas Transport Systems Based on Small Data
Samples

Lesnykh, Valery; Litvin, Yuri; Kozin, Igor

Published in:
International Journal of Performability Engineering

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Lesnykh, V., Litvin, Y., & Kozin, I. (2016). Prediction of Repair Work Duration for Gas Transport Systems Based
on Small Data Samples. International Journal of Performability Engineering, 12(4), 305-320.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/83999835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/prediction-of-repair-work-duration-for-gas-transport-systems-based-on-small-data-samples(14e49e36-9cc4-4e1a-bf8b-befa1f0c9c2c).html


V. Lesnykh, Y. Litvin and I. Kozine 
 

Prediction of repair work duration for gas transport systems 
based on small data samples 

Valery Lesnykh1,2, Yuriy Litvin1,2 and Igor Kozine3 
Abstract 
Prediction of the duration of a repair and maintenance project of a gas transport system is an 
important part of planning activities. Time overruns may lead to lost profit, damage of operator’s 
image, penalties to repair and service companies, and other negative consequences. Numerous 
sources of uncertainties during the repair and maintenance work result in the uncertainty of how long 
this work will be performed. Our experience in planning this work suggests that departing from the 
deterministic point of view and accepting the point that the project duration is a random value is a 
constructive step towards the preparedness to contingencies, defining liability, and an explicit 
presentation of risks the operator faces. To support this approach, one needs to construct probability 
distributions of the durations of the projects. The samples of observed data are usually scarce, which 
complicates the problem. We suggest using a bootstrap resampling procedure to overcome this 
difficulty. Gram-Charlier functions and order statistics are employed to approximate the probability 
distributions. It is demonstrated how to derive a probability distribution of a separate repair project 
and a larger project consisting of a number of concurrently running subprojects. As soon as this 
problem is solved, guidance is provided on how to decide about what duration should define the 
deadline for completion of the whole work. A simple example is provided. 
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Introduction 
Gas transport systems (GTS) are complex networks of pipelines involving a series of 
processes and arrays of physical facilities that are distributed over large territories and that 
require constant support of their work capacity as well as preventive maintenance and repair 
works.1,2 Timely performed preventive maintenance and repair works increase the reliability 
of gas supply  and create added value for business. On the opposite, interruption of gas 
supply to customers because of failures or planned maintenance and repair works may lead 
to lost profit and limited opportunities to redistribute gas flows. This is why the owners and 
operators of the system strive, on the one hand, to decrease the disconnection time of some 
customers from the network and, on the other hand, to provide high quality of maintenance 
and repair within as short periods of time as possible.  

Each maintenance and repair work is a rather complex project that depends on numerous 
factors and the duration of these activities is difficult to predict precisely. Exceeding the time 
planned is a persistent issue that should be properly addressed by an improved ability to 
predict it, including the use of adequate mathematical models. Our modelling approach is to 
regard time to repair (TTR) as a random variable dependent on many parameters 
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characterizing the involved subsystems. A characteristic feature of the repair and 
maintenance process is that it is usually performed concurrently on many stretches and 
subsystems by several repair teams. This reduces the duration of TTR but makes the 
assessment of the disconnection time of a GTS’ subsystem more difficult. Figure 1 depicts a 
typical GTS’ subsystem that is disconnected from the network during maintenance and 
repair.  
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Figure 1. A typical GTS subsystem that can be disconnected to be repaired or maintained 

 

The focus of this paper is the prediction of a possible increase of a GTS’ subsystem 
disconnection time compared to the time planned to perform maintenance and repair work. 
For this purpose a probability distribution function of the duration of repair and maintenance 
works is assessed. This knowledge allows the operator to define penalties that can be 
imposed to the repair organization if it delays the completion of the work. The scale of the 
penalties is balanced against losses that can be incurred from the excess downtime.  

Repair and maintenance works at a GTS’ subsystem can be planned as any other project in 
accordance with known project management methodologies (see, for example 3). Along with 
the uniqueness related to geographic and natural conditions, a majority of GTS’ repair 
projects have a number of common characteristics (Table I).4,5 Such typification of the 
project characteristics is possible because of the use of similar components and units in the 
subsystems of the GTS. The typified structure allows the operator to specify common 
requirements to the repair project management and use accumulated statistical data from 
previous projects to better predict the TTR and manage new projects.(5) 

 

Table I. Main common characteristics of a standard repair project 

# Characteristics of a standard project 

1 Similar work structure corresponding to the accepted repair technology 

2 Durations and man-hours of the phases of a repair project that can be linearly scaled up 
or scaled down 

3 Similar resource types to complete works at similar project phases 

4 Opportunity to accumulate statistical data for their future use in planned assessments 
and monitoring 
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As the duration of each concurrent repair or maintenance project is a random variable, the 
total duration of the whole project is also a random variable determined by the duration of 
the longest subproject. Thus, the assessment of the probability distribution of the maximal 
time among the concurrent repair activities becomes the primary objective of the 
mathematical modelling. After the probability distribution has been assessed, other 
probability measures can be derived and conclusions made on the duration of the TTR and 
probabilities associated with time overruns. 

This type of problem statement is well-known and different solutions have been suggested to 
solve it. For example, Gnedenko, et al.6 and O’Connor and Kleyner7 suggest a number of 
mathematical models that allow the assessment of this and other reliability measures of 
technical systems. It should be noted that the main objective of these models is to determine 
an optimal moment for a subsystem disconnection and for the start of repair work. Jacobson8 
describes a widely-used approach to the planning of repair work duration based on 
deterministic and predefined performance times of repair teams and other types of resources 
used under repair. An obvious advantage of this approach is its simplicity, while the 
ignorance of the stochastic nature of these activities may results in predictions that deviate 
substantially from those observed in reality.  

There are other quantitative and qualitative approaches to assessing the risk of exceeding the 
planned times to project completion. To name some, these are the project evaluation and 
review technique (PERT), the earned value methodology, Monte Carlo simulation, and 
various stochastic network models used for planning and managing project.3,9,10 These 
methods help decision makers to choose an action path taking into account possible 
consequences and risks, and, in particular, the risk of time overruns and resources needed to 
reduce this time given it has been exceeded. In fact these models help also understand the 
value of taking risk and justify the “risk appetite”11 the managers would like accept when 
managing GTS repair projects. 

Significant help in the risk assessment can be obtained from various mathematical models of 
project’ processes.10 However, the problem of having reliable data as inputs for these models 
is common; and usually only small samples of data are available on which the assessments of 
inputs are based. A majority of the models require the following information as input: 

- detailed project schedule, 

- various statistics including ranges of possible deviations from the planned project 
durations, and 

- probability distributions of the execution times of some critical tasks performed in 
the projects. 

Indeed, the analysts usually have to work with limited information about the execution times 
of repair projects. In this paper it is assumed that scarce samples of TTRs are available and 
the only valid assumption about the form of the probability distribution is that it is unimodal, 
meaning that the probability density function has a single peak. The assumption of the 
unimodality is well supported by observation.5 

The objective of this paper is to develop a method to set up the time planned for performing 
standard repair projects and to assess the probability of exceeding this time based on small 
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samples of available data. The assessment method of our choice is based on the bootstrap 
resampling procedure called Gram-Charlier method, and we suggest using order statistics to 
fulfil the objective. 

Assessment of point and interval statistics 
The first step of the approach is the assessment of the mean, standard deviation, and other 
statistics of the TTR of a GTS’ subsystem as well as the confidence intervals.  These 
assessments are supposed to be done assuming that only small samples of TTRs are available 
and the form of the probability distribution is unimodal. 

Let n values of TTRs are available, 𝑡𝑡1, 𝑡𝑡2, … 𝑡𝑡𝑛𝑛, and without loss in generality they are 
ordered so that 𝑡𝑡1 ≤  𝑡𝑡2, … ,≤ 𝑡𝑡𝑛𝑛. The small sample size and lack of information about the 
distribution function type do not allow deriving reliable probabilistic quantities and statistics 
by the use of classical methods of mathematical statistics. Assessments made directly on 
small samples lead to the bias of the statistics point estimator when compared to the 
assessments of the statistics made on large samples. This makes the assessments unstable and 
unreproducible when another small sample is used. 

There are a number of alternative approaches to making the assessments of probabilities and 
probabilistic quantities based on scarce data and partial information. Notable are statistical 
models using Bayesian statistics and the theories of imprecise probabilities. The former 
requires the specification of prior distributions that can then be updated through the Bayes 
formula by observations. The latter can produce measures of chance or uncertainty based on 
scarce and partial data, though without sharp numerical probabilities (can be, for example, 
interval-valued). 

There are simple reasons for deselecting these two for our purpose. Bayesian assessments are 
heavily dependent on the choice of prior distributions that is subjective and in general 
varying among subjects. Despite the updating rule (Bayes theorem) will produce posteriors 
that are closer to the true value, small samples cannot guarantee fast convergence to it. Thus, 
the Bayesian inference suffers the same problem as classical methods of mathematical 
statistics if samples are small: instability and irreproducibility. The use of non-informative 
priors is an option to avoid subjective judgements. Nevertheless, the posteriors are heavily 
influenced by the priors if the samples are small and can be far from the true value. The need 
to choose conjugate probability distributions for the updating contributes to the uncertainty. 

The theories of imprecise probabilities can indeed produce stable and reproducible lower and 
upper bounds of probabilistic quantities. For example, multinomial and the beta-Bernoulli 
imprecise models12-15 can be used as models of statistical inference to derive the bounds for 
probabilities given small samples. To avoid being dependent on subjective priors, we may 
assuming complete ignorance as the prior state of knowledge. In case we are compelled to 
employ the prior model that is the vacuous prior probability (the lower bound is equal to 0, 
while the upper is equal to 1). In this case, the bounds will be stable and reproducible. The 
major problems with the models of imprecise probabilities is that the interpretation of the 
bounds is rather problematic and the bounds are often too broad to be practical. To our best 
knowledge, the only available interpretation of the bounds is behavioural in a form of betting 
rates15, which is problematic to employ in order to translate into the probabilities of 
exceeding the bounds. 
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As it has been stated in the introduction, the method of our choice is bootstrapping16,17 that is 
based on bootstrap resampling procedures. Bootstrapping was suggested by Efron and used 
first as a method of statistics bias estimation based on bootstrap samples.18 The main idea of 
bootstrapping lies in the fact that an analysed sample has the necessary information about a 
true distribution of a random variable. Generating a set of bootstrap samples of large sizes, 
say, 5 000 - 10 000 realisations in each set, and estimating statistics on this basis, will make 
them stable, independent of any priors and the bounds of confidence intervals interpretable in 
the conventional way. In fact, in many cases results obtained with classical methods of 
mathematical statistics and bootstrapping coincide.18,19   

The ‘technical’ advantages of using bootstrap procedures are the following: 

1. Bias correction of random variable statistics by bootstrapping: in some particular cases it 
is possible to derive analytical expressions for bias correction.20 

2.  Derivation of interval statistics �𝜃𝜃
∗
− 𝑤𝑤 ·  𝜎𝜎

∗
;𝜃𝜃

∗
+ 𝑤𝑤 · 𝜎𝜎

∗
�, where the notation has the 

following meaning: 

𝜃𝜃
∗

= 1
𝑚𝑚
∑ 𝜃𝜃𝑖𝑖∗𝑚𝑚
𝑖𝑖=1                                                               (1) 

is an average of m statistics 𝜃𝜃𝑖𝑖∗ each of which is obtained on a bootstrap sample;  

 

𝜎𝜎∗ = [ 1
𝑚𝑚−1

∑ (𝜃𝜃𝑖𝑖∗ −𝑚𝑚
𝑖𝑖=1 𝜃𝜃

∗
)2]0,5                                                   (2) 

is the statistics’ standard deviation; and w is a multiplier defining the breadth of the interval. 
The asterisk notation “*” indicates that the statistics are obtained on bootstrap samples.  

3.  Construction of confidence intervals (CIs) without having to introduce the assumption of 
a normal distribution: a set of  𝜃𝜃𝑖𝑖∗ values (i=1, …, m) arranged in the ascending order allows 
calculating bootstrap percentiles of statistics’ distribution.21 In practice, the use of normal 
distributions for constructing CIs may lead to significant errors even though there is an 
insignificant deviation from this assumption.22 

4.  The ability to prove statistical hypotheses.23  

The bootstrap algorithm for the calculation of point-valued and interval-valued statistics 
consists in the following steps: 

1. Given a small sample of TTRs 𝑡𝑡 = (𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, … , 𝑡𝑡𝑛𝑛), bootstrap samples 
𝑡𝑡𝑖𝑖
∗

= (𝑡𝑡𝑖𝑖1∗ , 𝑡𝑡𝑖𝑖2∗ , … , 𝑡𝑡𝑖𝑖𝑛𝑛∗ ), 𝑖𝑖 = 1, … ,𝑚𝑚, of the same size n are generated (m is usually in the range 
[5 000–10 000]). This is done by random sampling of the variables 𝑡𝑡𝑘𝑘, 𝑘𝑘 = 1, … ,𝑛𝑛 from the 
original sample 𝑡𝑡 with further replacement. It should be noted that bootstrap samples are 
adjusted to the distribution shape that agrees with the empirical distribution of the original 
sample. Though, in some cases the bootstrap distribution mean may be biased relative to the 
original distribution.24 

2. The statistics of interest are calculated for each bootstrap sample as arithmetic averages of 
the corresponding functions calculated based on the sampled random values. For example, 
mean TTR (MTTR) is calculated in the following way:  
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𝑀𝑀𝑖𝑖
∗ =

1
𝑛𝑛
�𝑡𝑡𝑖𝑖𝑖𝑖∗
𝑛𝑛

𝑖𝑖=1

, 𝑖𝑖 = 1, … ,𝑚𝑚; 

while the standard deviation of the TTR, 𝜎𝜎𝑖𝑖∗, is defined by the formula: 

𝜎𝜎𝑖𝑖∗ = [
1

𝑛𝑛 − 1
�(𝑡𝑡𝑖𝑖𝑖𝑖∗ −
𝑛𝑛

𝑖𝑖=1

𝑀𝑀𝑖𝑖
∗)2]0.5 

The moments of higher orders can be calculated in a similar way as arithmetic averages.  

3. By plugging the values 𝑀𝑀𝑖𝑖
∗ and 𝜎𝜎𝑖𝑖∗, 𝑖𝑖 = 1, … ,𝑚𝑚 into formula (1) and (2), the bias-corrected 

statistics 𝑀𝑀�∗  and 𝜎𝜎�∗  are obtained. 

4. The CIs of bootstrap statistics are calculated. If one wants to have a 95% CI, 2.5% and 
97.5% bootstrap percentiles are calculated using the values of the statistics such, for 
example, as MTTRs  𝑀𝑀𝑖𝑖

∗, 𝑖𝑖 = 1, … ,𝑚𝑚 obtained at the previous step. Thus, the 2.5% bootstrap 
percentile becomes the lower bound of the 95% confidence interval, while the 97.5% 
bootstrap percentile becomes the upper bound of it.25 

The bootstrap percentiles method is not the only one that can be used for the construction of 
CIs. Shitikov and Rosenberg26 compare seven different approaches to the determination of 
CIs, including jackknife, percentiles, and the main intervals method. The conclusion was that 
CI values calculated with all these seven methods are close to each other. The percentiles 
method has been chosen in this paper because of its simplicity. 

It is important to stress that the above algorithm produces bias-corrected random variable 
statistics which can be used at the next stage of the method described in the following section 
in the form of the parameters for Gram-Charlier approximate series. 

Assessment of the probability of exceeding the planned duration of a repair 
project 
The main objective of this stage is to assess the probability of exceeding the planned 
duration of a repair project at a separate GTS subsystem. This can be done by generating the 
statistics shown in the previous section and then by approximating the unknown distribution 
function of the TTR.  

There exists a great variety of approaches used for the approximation of probability 
distributions of random variables, nevertheless, Gram-Charlier series has become a widely-
used method.25 There exists two types of Gram-Charlier series: A and B Gram-Charlier 
series. It is appropriate to use Gram–Charlier A series to construct distributions that are close 
to normal, however, that are not. It has been proven that the TTR a subsystem of the GTS is 
governed by such a distribution that is close to normal.5,25 Gram–Charlier B series is usually 
used to construct distributions that are close to a Poisson distribution.25 Further in this paper 
only Gram–Charlier A series will be in focus.  

In general, Gram–Charlier A series includes an infinite number of terms and has the 
following probability density function (pdf): 

𝑓𝑓𝐴𝐴(𝑥𝑥) = 𝜑𝜑(𝑥𝑥) −
𝑟𝑟3
6

· 𝜑𝜑(3)(𝑥𝑥) +
𝑟𝑟4 − 3

24
· 𝜑𝜑(4)(𝑥𝑥) −

𝑟𝑟5 − 10𝑟𝑟3
120

· 𝜑𝜑(5)(𝑥𝑥) 
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+ 𝑟𝑟6−15𝑟𝑟4+30
720

· 𝜑𝜑(6)(𝑥𝑥) −⋯, 

where 

𝑓𝑓𝐴𝐴(𝑥𝑥) is the value of pdf at point x; 

𝜑𝜑(𝑥𝑥) is the standard normal distribution (𝜑𝜑(𝑥𝑥) = 1
√2𝜋𝜋

· 𝑒𝑒−
𝑥𝑥2

2 ); 

𝑟𝑟𝑞𝑞 is the q–th moment of the random variable;  

𝜑𝜑(𝑞𝑞)(𝑥𝑥) is the derivative of q-order of the standard normal distribution: 

𝜑𝜑(𝑞𝑞)(𝑥𝑥) = (−1)𝑞𝑞 · 𝐻𝐻𝑞𝑞(𝑥𝑥) ·  𝜑𝜑(𝑥𝑥),  

where 𝐻𝐻𝑞𝑞(𝑥𝑥) is the Chebyshev–Hermite polynomial. The first five Chebyshev–Hermite 
polynomials are of the following form:  

𝐻𝐻0(𝑥𝑥) = 1, 

𝐻𝐻1(𝑥𝑥) = 1, 

𝐻𝐻2(𝑥𝑥) = (𝑥𝑥2 − 1), 

𝐻𝐻3(𝑥𝑥) = (𝑥𝑥3 − 3 · 𝑥𝑥), 

𝐻𝐻4(𝑥𝑥) = (𝑥𝑥4 − 6 · 𝑥𝑥2 + 3). 
For a majority of applications it is enough to use only three first terms of Gram–Charlier 
approximating series: 25 

𝑓𝑓𝐴𝐴(𝑥𝑥) = 𝜑𝜑(𝑥𝑥) − 𝑟𝑟3
6

· 𝜑𝜑(3)(𝑥𝑥) + 𝑟𝑟4−3
24

· 𝜑𝜑(4).                                      (3) 

Thus, by using this series it is possible to construct distribution functions that are close to the 
normal distribution though having a non-zero skewness and kurtosis.  

The cumulative probability distribution function 𝐹𝐹𝐴𝐴(𝑥𝑥)  of Gram–Charlier series is the 
following:  

𝐹𝐹𝐴𝐴(𝑥𝑥) = 𝐹𝐹(𝑥𝑥) − 𝑟𝑟3
6

· 𝐹𝐹(3)(𝑥𝑥) + 𝑟𝑟4−3
24

· 𝐹𝐹(4)(𝑥𝑥),                                  (4) 

where 

𝐹𝐹𝐴𝐴(𝑥𝑥) is the value of the cumulative distribution function at point x; 

𝐹𝐹(𝑥𝑥) is the standard normal cumulative distribution function; and 

𝐹𝐹(𝑞𝑞)(𝑥𝑥) is the derivative of 𝑞𝑞-order of 𝐹𝐹(𝑥𝑥). 

 

Formula (3) and (4) allow constructing better approximations of unknown distributions in 
comparison with asymptotic normal distributions when only small samples are available. It is 
important to note that unknown values in (3) and (4), 𝑟𝑟3 and 𝑟𝑟4,  are bias-corrected statistics 
which can be obtained with the help of the bootstrap procedure described above. 

As soon as the probability distribution of the TTR is known and a deadline for completing 
the repair work is provided, the probability of exceeding the deadline can be easily 
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computed. To do so, a quantile for the TTR can be computed and then used to set up the 
deadline for repair work. It provides also the risk of exceeding it. If a 95% quantile is chosen, 
which is often the case, the probability of exceeding it amounts to 0.05. 

Thus, by using the suggested type of approximate Gram-Charlier A series, it is possible to 
construct the probability distribution function of TTR and to assess the risk of completing the 
repair works beyond the planned time.  

Assessment of the probability of exceeding the planned duration of multiple 
repair projects 
The probability assessment algorithm described above makes it possible to predict an 
increase in the TTR for a repair and maintenance project that is considered indivisible into 
subprojects possibly run in parallel. The problem becomes significantly complicated in the 
case when a GTS fragment consists of several subsystems and TTRs of all the subsystems 
are governed by different probability distributions. In this case, the total TTR of the GTS 
fragment is determined by the longest TTR among the subprojects. The assessment of the 
total TTR is a nontrivial problem which can be solved with the methods of order statistics.27 

Let a GTS fragment subjected to repair works consist of N+1 consecutive linear parts of the 
pipeline and N compressor plants (Figure 1). A TTR of a subsystem is considered 
independent of any other subsystem’s TTR. 𝐹𝐹𝑖𝑖(𝑡𝑡) is the cumulative distribution function of 
the TTR of an i-th subsystem ( 𝑖𝑖 = 1, … , 2𝑁𝑁 + 1), while 𝑓𝑓𝑖𝑖(𝑡𝑡)  is  the pdf. Let 𝑡𝑡𝑖𝑖 stand for 
the TTR of an i-th subsystem. If all 𝑡𝑡𝑖𝑖 are arranged in the ascending order  𝑡𝑡1 ≤ 𝑡𝑡2 ≤ ⋯ ≤
𝑡𝑡2𝑁𝑁+1, then 𝑡𝑡2𝑁𝑁+1 is the value that determines the total downtime of the GTS fragment. That 
is 𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝑡𝑡𝑖𝑖), 𝑖𝑖 = 1, … , 2𝑁𝑁 + 1 

If all 𝑡𝑡𝑖𝑖 are identically distributed random variables, the problem of determining the 
distribution of 𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝑡𝑡𝑖𝑖) is rather simple and its solution can be found in a number of 
textbooks (see, for example 27). However, this problem becomes more difficult to solve if 
each  𝑡𝑡𝑖𝑖 is a non-identically distributed random variable. A solution to this problem is 
provided by Balakrishnan.28 The pdf of 𝑡𝑡𝑖𝑖 , 𝑖𝑖 = 1, … , 2𝑁𝑁 + 1 is defined as follows:  
 

𝑓𝑓𝑖𝑖(𝑡𝑡) = 1
(𝑖𝑖−1)!(2𝑁𝑁+1−𝑖𝑖)!

· 𝑃𝑃𝑒𝑒𝑟𝑟(𝐴𝐴2𝑁𝑁+1),                                            (5) 

where per (𝐴𝐴2𝑁𝑁+1) is the permanent of matrix 𝐴𝐴2𝑁𝑁+1: 29  

𝐴𝐴2𝑁𝑁+1 = �
𝐹𝐹1(𝑡𝑡) … 𝐹𝐹2𝑁𝑁+1(𝑡𝑡)
𝑓𝑓1(𝑡𝑡) … 𝑓𝑓2𝑁𝑁+1(𝑡𝑡)�

} 2𝑁𝑁
} 1                                            (6) 

There are several approaches to simplifying the computation of the permanent of a matrix. 
We use Ryser’s formula30: 

𝑃𝑃𝑒𝑒𝑟𝑟(𝐴𝐴2𝑁𝑁+1) = �𝑆𝑆(𝐴𝐴2𝑁𝑁+1) −�𝑆𝑆(𝐴𝐴2𝑁𝑁+11 ) + �𝑆𝑆(𝐴𝐴2𝑁𝑁+12 ) + … + (−1)2𝑁𝑁�𝑆𝑆(𝐴𝐴2𝑁𝑁+12𝑁𝑁 ). 

Where 
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�𝑆𝑆�𝐴𝐴2𝑁𝑁+1� = � 𝐹𝐹𝑖𝑖(𝑡𝑡)2𝑁𝑁
2𝑁𝑁+1

𝑖𝑖=1
× � 𝑓𝑓𝑖𝑖(𝑡𝑡),

2𝑁𝑁+1

𝑖𝑖=1
 

and 𝑆𝑆�𝐴𝐴2𝑁𝑁+1𝑖𝑖 � is a matrix obtained from A in which the i-th column is populated by zeros; 
while ∑𝑆𝑆�𝐴𝐴2𝑁𝑁+1𝑖𝑖 � is the value obtained as the product of the summed up components in each 
row (an example is below). 

Examples of applications of (5) and (6) can be found in Litvin.31,32 These formulae allow 
assessing the distribution of a process duration with any finite number of simultaneously 
executed repair works characterized by different distributions. 

If all TTRs of the parallel works are assumed to have the same distribution, e.g. repair works 
of n similar compressor plants, then the pdf, 𝑓𝑓𝑛𝑛:𝑛𝑛(𝑡𝑡), and cumulative distribution function, 
𝐹𝐹𝑛𝑛:𝑛𝑛(𝑡𝑡), of the whole duration of the repair project are derived, correspondingly, as follows: 

𝑓𝑓𝑛𝑛:𝑛𝑛(𝑡𝑡) = 𝑛𝑛 · [𝐹𝐹(𝑡𝑡)]𝑛𝑛−1 · 𝑓𝑓(𝑡𝑡), 
𝐹𝐹𝑛𝑛:𝑛𝑛(𝑡𝑡) = [𝐹𝐹(𝑡𝑡)]𝑛𝑛. 

As an example, let us consider a subsystem consisting of two linear parts and a compressor 
plant with cumulative distribution functions 𝐹𝐹1(𝑡𝑡), 𝐹𝐹2(𝑡𝑡) and 𝐹𝐹3(𝑡𝑡)  and pdfs 𝑓𝑓1(𝑡𝑡),  𝑓𝑓2(𝑡𝑡) 
and 𝑓𝑓3(𝑡𝑡). In this case matrix (10) has the following form: 

𝐴𝐴3(𝑡𝑡) = �
𝐹𝐹1 (𝑡𝑡) 𝐹𝐹2(𝑡𝑡) 𝐹𝐹3(𝑡𝑡)
𝐹𝐹1 (𝑡𝑡) 𝐹𝐹2(𝑡𝑡) 𝐹𝐹3(𝑡𝑡)
𝑓𝑓1(𝑡𝑡) 𝑓𝑓2(𝑡𝑡) 𝑓𝑓3(𝑡𝑡)

�. 

By using Ryser’s formula30, which significantly simplifies the process of the permanents’ 
computation, one can get the following: 

�𝑆𝑆(𝐴𝐴3) = [𝐹𝐹1 (𝑡𝑡) + 𝐹𝐹2 (𝑡𝑡) + 𝐹𝐹3 (𝑡𝑡)]2[𝑓𝑓1(𝑡𝑡) + 𝑓𝑓2(𝑡𝑡) + 𝑓𝑓3(𝑡𝑡)]. 

�𝑆𝑆(𝐴𝐴31) = [𝐹𝐹2 (𝑡𝑡) + 𝐹𝐹3 (𝑡𝑡)]2[𝑓𝑓2(𝑡𝑡) + 𝑓𝑓3(𝑡𝑡)] + [𝐹𝐹1 (𝑡𝑡) + 𝐹𝐹3 (𝑡𝑡)]2[𝑓𝑓1(𝑡𝑡) + 𝑓𝑓3(𝑡𝑡)]

+ [𝐹𝐹1 (𝑡𝑡) + 𝐹𝐹2 (𝑡𝑡)]2[𝑓𝑓1(𝑡𝑡) + 𝑓𝑓2(𝑡𝑡)] 

�𝑆𝑆(𝐴𝐴32) = 𝐹𝐹1 (𝑡𝑡)𝐹𝐹1 (𝑡𝑡)𝑓𝑓1(𝑡𝑡) + 𝐹𝐹2 (𝑡𝑡)𝐹𝐹2 (𝑡𝑡)𝑓𝑓2(𝑡𝑡) + 𝐹𝐹3 (𝑡𝑡)𝐹𝐹3 (𝑡𝑡)𝑓𝑓3(𝑡𝑡). 

Finally, 

𝑃𝑃𝑒𝑒𝑟𝑟(𝐴𝐴3) =  �𝑆𝑆(𝐴𝐴3) −�𝑆𝑆(𝐴𝐴31) + �𝑆𝑆(𝐴𝐴32) =  

2[𝐹𝐹2 (𝑡𝑡)𝐹𝐹3 (𝑡𝑡)𝑓𝑓1(𝑡𝑡) + 𝐹𝐹1 (𝑡𝑡)𝐹𝐹2 (𝑡𝑡)𝑓𝑓3(𝑡𝑡) + 𝐹𝐹1 (𝑡𝑡)𝐹𝐹3 (𝑡𝑡)𝑓𝑓2(𝑡𝑡)]. 

𝑓𝑓3:3(𝑡𝑡) = 𝐹𝐹2 (𝑡𝑡)𝐹𝐹3 (𝑡𝑡)𝑓𝑓1(𝑡𝑡) + 𝐹𝐹1 (𝑡𝑡)𝐹𝐹2 (𝑡𝑡)𝑓𝑓3(𝑡𝑡) + 𝐹𝐹1 (𝑡𝑡)𝐹𝐹3 (𝑡𝑡)𝑓𝑓2(𝑡𝑡).            (7) 

 

This last formula is the pdf of the total TTR for the GTS fragment consisting of the three 

subsystems. It should be noted that this expression can be also derived in the following way: 
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𝑓𝑓3:3(𝑡𝑡) = 𝑑𝑑
𝑑𝑑𝑑𝑑

(∏ 𝐹𝐹𝑖𝑖(𝑡𝑡)3
𝑖𝑖=1 ). 

To define the pdfs of the TTRs for each subsystem separately formula (5) should be used. 

Expression (7) allows the analyst to evaluate the pdf of the TTR of a subsystem of a GTS 
consisting of three units. As the distribution function is known, the assessment of the 
quantiles becomes a rather straightforward exercise. Knowing the quantiles will provide 
input to deciding on how long time the repair project should last and what is the probability 
of that the work will indeed be performed within this interval. It is clear that the probability 
of exceeding the deadline becomes known as well given the quantiles.  

An example 
As above, consider a part of a GTS consisting of two linear sections of a pipeline and a 
compressor plant. Table II contains 15 fictitious values of the TTRs for each subsystem that 
presumably have been collected in the past for similar subsystems. The TTRs are ordered in 
the ascending order. 

 

Table II. TTRs the three subsystems 

Project 
Factual repair project duration, days 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Major pipeline section 1 20 21 22 23 25 29 30 34 35 42 43 43 55 61 70 

Compressor plant 1 7 9 10 10 10 11 11 12 13 17 18 18 21 21 24 

Major pipeline section 2 33 40 41 42 43 47 54 56 56 58 58 58 63 68 69 

 

To calculate the statistics for these projects durations we use the bootstrap procedure that 
produces m=10 000 samples of TTRs for each GTS subsystem. Each bootstrap sample 
consists of 15 TTRs bootstrapped from the original sample by the use of Monte Carlo 
simulation. By applying formulae (1) and (2) and the bootstrap percentiles method we obtain 
bias-corrected statistics collected in Table III. This table includes both the statistics needed to 
apply the Gram-Charlier method and other statistics that can be used for risk assessment. 

 

Table III. Point and interval-valued statistics for GTS outages 

Project Statistics Sign 

Measurement 
unit 

Point value 

  Bias-
corrected 

     point 
value 

CI, 95% 

Major Mean   𝑀𝑀1 days 36.9 36.9 [29.8; 44.7] 
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Project Statistics Sign 

Measurement 
unit 

Point value 

  Bias-
corrected 

     point 
value 

CI, 95% 

pipeline 
section 1 Variance 𝐷𝐷1 days2 218.4 203.2 [79.9; 365.9] 

Standard 
deviation 𝜎𝜎1 days 14.5 13.8 [8.9; 19.1] 

Third 
main 
statistic 

𝑟𝑟1,3 - 64.8·10-2 57.8·10-2 [-5.6·10-2; 
149.9·10-2] 

Forth 
main 
statistic 

𝑟𝑟1,4 - 23.1·10-1 23.5·10-1 [12.7·10-1; 
47.4·10-1] 

Compressor 
plant 1 

Mean   𝑀𝑀2 days 14.2 14.2 [11.7; 16.9] 

Variance 𝐷𝐷2 days2 25.7 23.8 [12.6; 39.7] 

Standard 
deviation 𝜎𝜎2 days 5.0 4.8 [3.6; 6.3] 

Third 
main 
statistic 

𝑟𝑟2,3 - 40.6·10-2 39.1·10-2 [-34.4·10-2; 
127.2·10-2] 

Forth 
main 
statistic 

𝑟𝑟2,4 - 18.1·10-1 19.4·10-1 [11.6·10-1; 
36.9·10-1] 

Major 
pipeline 
section 2 

Mean   𝑀𝑀3 days 52.4 52.4 [ 47.1; 57.64] 

Variance 𝐷𝐷3 days2 109.2 101.2 [55.0; 170.6] 

Standard 
deviation 𝜎𝜎3 days 10.4 9.9 [7.4; 13.1] 

Third 
main 
statistic 

𝑟𝑟3,3 - -13.5·10-2 -14.8·10-2 [-87.0·10-2; 
57.3·10-2] 

Forth 
main 
statistic 

𝑟𝑟3,4 - 17.9·10-1 18.9·10-1 [12.4·10-1; 
29.8·10-1] 
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The values in Table III are an informative input to decision making even though they are not 
further mathematically treated. The data demonstrate that the maximum mean repair project 
duration is attributable to the third subproject (M3=52.4 days), while the mean duration of 
the second subproject is minimal (M2=14.2 days). The duration of the third subproject 
dominates significantly the second one. On this ground the operator may decide to postpone 
the starting date for the second subproject, which will reduce the disconnection time of the 
customers fed from this section of the pipeline. By comparing the rations of the standard 
deviations and MTTRs we can conclude that the largest deviation of TTR from the mean 
value is attributable to the first project, which may be a warning to be more attentive to the 
causes that make it possible.   

The use of the Gram-Charlier method allows deriving the pdf of the TTR for each repair 
subproject. This is done by plugging the statistics presented in Table IV into formula (3). 

Gram-Charlier A series functions of all projects have the following forms:  

• for the major pipeline section 1: 

𝑓𝑓1,𝐴𝐴(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) −
57.8 ·  10−2

6
· (𝑥𝑥3 − 3𝑥𝑥) · 𝑓𝑓(𝑥𝑥) +

23.5 ·  10−1 − 3
24

· 

(𝑥𝑥4 − 6𝑥𝑥2 + 3) · 𝑓𝑓(𝑥𝑥)                                                                                            (8) 

• for the compressor plant 1: 

𝑓𝑓2,𝐴𝐴(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) −
39.1 ∙  10−2

6
· (𝑥𝑥3 − 3𝑥𝑥) · 𝑓𝑓(𝑥𝑥) +

19.4 ·  10−1 − 3
24

· 

· (𝑥𝑥4 − 6𝑥𝑥2 + 3) · 𝑓𝑓(𝑥𝑥),                                                                                        (9) 

• for the major pipeline section 2: 

𝑓𝑓3,𝐴𝐴(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) −
−14.8 ∙  10−2

6
· (𝑥𝑥3 − 3𝑥𝑥) · 𝑓𝑓(𝑥𝑥) +

18.9 ∙  10−1 − 3
24

· 

· (𝑥𝑥4 − 6𝑥𝑥2 + 3) · 𝑓𝑓(𝑥𝑥).                                                                                      (10) 
 

The three pdfs, (8)-(10), are depicted in Figure 2. Based on the obtained results we can 
conclude, for example, the following. If the MTTR of section 1(36.9 days) is chosen to serve 
as the planned time to perform the repair and maintenance work for this section, in 30% of 
cases we can expect an increase of the time up to 44 days, and in 10% of cases this time can 
reach 58 days. In case the operator plans the completion of the work within 63 days, on 
average in 5% of cases this deadline will be exceeded. The decision maker has to accept 
some level of risk, which depends on the operators risk appetite. The decision on choosing 
the deadlines has to be made for each subproject. As soon as this is done, the probability of 
not completing the whole repair and maintenance project in time can be assessed. 
Alternatively, the decision maker can decide first on the level of residual risk (probability) 
the company can accept for the whole project; and then the durations of the subprojects can 
be determined, so that the total risk of the project is preserved. 
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Figure 2. Pdfs of repair projects’ durations 

 

To calculate the pdf of the disconnection time for the whole project consisting of the three 
subprojects, Gram-Charlier functions (8)-(10) are plugged into formula (7). The resulting 
bulky function is plotted in Figure 3.  

 

 
Figure 3. The pdf of the disconnection time for the GTS subsystem (section 1 – compressor – section 
2) 

The MTTR for the whole project consisting of the three subprojects can now be calculated 
and is equal to 57 days. On average, in 10% of cases the duration of the repair and 
maintenance project will exceed 67 days, while in 5% of cases this time will be greater than 
70 days. 80%, 90%, and 95% quantiles for the durations of the subprojects and the whole 
project are given in Table IV. 

 

Table IV. Quantiles of the three repair projects durations  
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Project 
Distribution quantiles 

α3=80%  α2=90% α1=95% 

Major pipeline section 1 50 days 58 days 64 days 

Compressor plant 1 19 days 21 days 23 days 

Major pipeline section 2 62 days 66 days 69 days 

Total GTS subsystem 63 days 67 days 70 days 

  

Concluding note 
The planning and execution of repair and maintenance projects are costly activities. The GTS 
operator strives to reduce these costs, justify penalties to repair companies in case of delays 
while attempting to shorten the times to do the work. Numerous sources of uncertainties 
during the repair and maintenance work result in the uncertainty of how long this work will 
be performed. While considering time to repair a random value, the operator often lacks data 
to reliably determine the probability distribution of this value. A bootstrap resampling 
procedure is the core of the approach of our choice that has been applied to solve the 
problem. It has demonstrated to be workable and at present is used by one of the major gas 
suppliers in the Russian Federation.  
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