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EXPERIMENTAL	  CONDITIONS	  AND	  STIMULI
• Five conditions were considered:

o Unaided: natural listening condition without HAs

o Default: default HA setting defined by the fitting software

o NLFC: strongest possible setting of non-‐linear frequency
compression (Phonak SoundRecover)

o INS: strongest possible setting of impulse-‐noise suppression
(Phonak SoundRelax)

o NLFC&INS: combination of NLFC and INS using the settings
described above

• Phonak Naída V90-‐RIC HAs were employed assuming a moderate
to severe hearing loss.

• The CVs were mixed with stationary speech-‐shaped noise (long-‐
term spectrum of female speech) at an effective SNR of 8 dB.

• The noisy CVs were played from a frontally positioned loudspeaker
and recorded using a KEMAR dummy head with/without HAs in a
sound-‐attenuating room (speech level at KEMAR: 70 dBA).

• The recordings were equalized to compensate for the amplification
applied in the conditions with HAs.

• 10 adult NH native German listeners were binaurally presented
with the diotic stimuli via Sennheiser HD 650 headphones at 60 dB
SPL.

• Each of the 60 stimuli (12 CVs X 5 conditions) was presented 8
times to each listener.
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SPEECH	  MATERIAL
• 12 consonant-‐vowels (CVs) were used: /ba, ɡa, da, pa, ka, ta, sa6, sa9,

ʃa3, ʃa5, fa, tsa/, spoken by a female native German professional
speaker.

• The CVs were obtained from the vowel-‐consonant-‐vowel speech
material collected by Schmitt et al. (2016) by cropping the initial vowel.

• The CVs /sa6, sa9/ and /ʃa3, ʃa5/ represent different versions of /sa/ and
/ʃa/, spectrally shaped to exhibit spectral peaks at 6 kHz/9 kHz and 3
kHz/5kHz, respectively.
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BACKGROUND	  AND	  OBJECTIVE
• The audibility and integrity of high-‐frequency speech information is

difficult to measure using classical speech tests.

• As many consonants are defined by high-‐frequency bursts/noise (Li et
al., 2010; 2012), consonant perception tests yield detailed information
on the audibility and the integrity of high-‐frequency speech cues:

o Inaudible consonant cues => reduced recognition scores and
random confusions (high entropy, cf. Scheidiger and Allen, 2013)

o Distorted consonant cues => reduced recognition scores and
systematic confusions (low entropy)

• A recent study (Schmitt et al., 2016) showed that a consonant
perception test was sensitive to effects of high-‐frequency amplification
and non-‐linear frequency compression (NLFC) in hearing-‐impaired (HI)
listeners.

• Recently, a consonant perception model was presented (Zaar and Dau,
2016) that accounts well for consonant recognition and confusion
scores obtained with normal-‐hearing (NH) listeners in conditions of
additive stationary masking noise.

• The present study measured the perceptual effects of consonant-‐cue
distortions induced by different hearing-‐aid (HA) signal processing
strategies in NH listeners and evaluated to what extent the model of
Zaar and Dau (2016) could account for the considered conditions.

Fig.	  1: Spectra	  of	  spectrally	  shaped	  /sa/  and  /ʃa/  stimuli.  
Reprint  from  Schmitt  et  al. (2016).

GRAND	  AVERAGE	  RECOGNITION	  SCORES

Table  I: Recognition  scores  averaged  across  CVs  and  corresponding  standard  deviations.

• The experimental data obtained in the NLFC and the NLFC&INS conditions were predicted using the consonant
perceptionmodel of Zaar and Dau (2016).

• The experimental stimuli and the corresponding “noise alone” were considered as test signals.

• The stimuli from the unaided condition and the corresponding “noise alone” signals were considered as
templates in the model.

Fig.  2: Scheme  of  the  consonant  perception  model.  Reprint  from  Zaar  and  Dau (2016).  

CONFUSION	  MATRICES

CONCLUSIONS
• The consonant perception model of Zaar and Dau (2016)

accounts well for HA-‐processing induced consonantmorphs.

• The model could therefore be useful for evaluating HA
processing strategies, particularly when combined with
simulations of individual hearing impairment.

MODELING

Condition Unaided Default NLFC INS NLFC&INS

%  correct 95.9 93.7 55.3 92.3 56.2

Std in  % 8.1 7.3 36.2 10.8 34.3

Fig.  3: Confusion  matrices  measured  (gray  circles)  and  predicted  (red  circles)  in  the  NLFC (left)  and  
NLFC&INS (right)  conditions.  Additionally,  Pearson’s  correlation between  measured  and  predicted  

recognition  scores  (rrec)  and  confusion  scores  (rconf,  only  obtained  if  Pe>20%)  are  shown  (bold:  p<0.05).  
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