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Abstract—The paper gives a review of the most important
methods for blood velocity vector flow imaging (VFI) for
conventional, sequential data acquisition. This includes multi-
beam methods, speckle tracking, transverse oscillation, color flow
mapping derived vector flow imaging, directional beamforming,
and variants of these. The review covers both 2-D and 3-D
velocity estimation and gives a historical perspective on the
development along with a summary of various vector flow
visualization algorithms. The current state-of-the-art is explained
along with an overview of clinical studies conducted and methods
for presenting and using VFI. A number of examples of VFI
images are presented, and the current limitations and potential
solutions are discussed.

I. INTRODUCTION

This two part paper gives a review of vector flow imaging
(VFI) in medical ultrasound with a broad overview of the de-
veloped methods, their function and use. The review is divided
into this Part I covering imaging systems with sequential data
acquisition, where a focused field is emitted in one direction
and received beamforming is performed before estimating the
velocity vector along this direction. The accompanying Part II
paper describes systems with parallel data acquisition, where
the ultrasound field is emitted broadly as e.g. a spherical or
plane wave [1].

It was early recognized that conventional velocity estimation
systems or Doppler systems only could estimate the velocity
component along the ultrasound beam. The frequency fp of
the returned signal for pulse-wave systems is given by [2], [3],
[4]:

fp =
2|~v|cosθ

c
f0 =

2vz

c
f0 =

2vz

λ
, (1)

where f0 is the emitted ultrasound frequency, ~v is the blood
velocity, λ = c/ f0 is the wavelength, and c is the speed of
sound. The beam-to-flow angle is θ and the axial velocity
component is, thus, vz = |~v|cosθ . The angle should be kept
below 60◦ to maintain an accurate estimate [4], [5], which is
often difficult in a clinical setting, either because the vessel
is perpendicular to the ultrasound beam or because the angle
varies over the cardiac cycle.

This early on led to the suggestion of methods for finding
the velocity components in 2 or 3 directions. The first ap-

proaches [6] used two crossing beams as described in Section
II-A. A second approach suggested by Trahey et al. [7] to track
the speckle pattern between frames is described in Section
III. The conventional axial estimation relies on the ultrasound
oscillation to find either the frequency or phase shift. Intro-
ducing a lateral oscillation as suggested by Jensen, Munk
and Anderson [8], [9] makes it possible to find the lateral
velocity component as described in Section IV. A number of
other approaches like directional beamforming, color Doppler-
derived vector flow mapping, estimation of bandwidth, and
spectral alignment have also been suggested and are detailed
in Section V.

The methods mentioned above were primarily introduced
for 2-D velocity estimation, but they can also be translated
to full 3-D methods. This is elucidated in Section VIII.
The display of vector flow information is a challenge, since
the human circulation houses complex and pulsating flow.
Vortices, disturbed, and turbulent flow are present and appear
in very short time intervals during the cardiac cycle. Efforts
to handle this are described in Section IX.

The first commercial implementations of the different meth-
ods are starting to appear in clinical scanners and along with
experimental research systems has made it possible to conduct
the first clinical studies of VFI. An overview of the these
studies and implications are given in Section X. The paper
is concluded with a discussion of the benefits and future
possibilities of VFI in Section XI.

II. MULTI-BEAM DOPPLER ESTIMATION METHODS

A. General Principles

The use of multiple beams from different angles to derive
flow vector information can be considered as one of the earli-
est approaches developed in the field [10], [11]. Commonly
referred to as cross-beam Doppler or multi-beam Doppler
[12], this approach is founded upon a generalized form of
(1), which states that the frequency shift of echoes returned
from a moving blood scatterer is given by:

fp =
|~v|(cosθT −α)+ |~v|(cosϕR−α)

c
f0, (2)
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Fig. 1. Illustration of cross-beam vector flow acquisition. This figure
represents a special case of the multi-beam scheme with MN = 2 and
(θ1;θ2) = (φ1;φ2).

where |~v| and α respectively denote the velocity magnitude
and angle that the blood scatterer is moving at (both of which
are unknown); θT and ϕR are the transmit and receive beam
angles.

The generalized form of the frequency shift equation given
in (2) can be readily rewritten in terms of axial velocity vz =
|~v|cosα and lateral velocity vx = |~v|sinα by substituting the
trigonometry relation cosA−B = cosAcosB+ sinAsinB into
(2) such that it becomes:

vz (cosθT + cosϕR)+ vx (sinθT + sinϕR) =
c
f0

fp. (3)

As known from linear algebra, vz and vx (i.e. the constituent
components of the flow vector) can be found by: (i) measuring
the Doppler frequency from different beam-flow angles, and
(ii) constructing a system of frequency shift equations to solve
for the individual flow vector components. A minimum of two
frequency shift measurements need to be made to obtain two
independent realizations of frequency shift equations. An ex-
ample is shown in Fig. 1, where two pairs of identical transmit
and receive beam angles are used [i.e. (θ1,θ2) = (ϕ1,ϕ2)].

B. Dual-Beam Implementations

From a matrix formulation standpoint, with two frequency
shift measurements, vz and vx in (3) can be solved as a matrix
inverse problem by forming a linear system of two equations
with two unknowns. Centered around this principle, different
versions of dual-beam Doppler flow vector estimation schemes
have been proposed over the years [12]. Early formulations,
intended merely for single-gate flow vector measurements
[10], [13], [14], involve the use of two separate transducers
(left and right) that are slanted toward each other such that
they have an overlapping beam region. During operation, the
left and right transducers would alternate as the transmitter
and receiver in a sequence of pulse firing events, so that the
two transmit-receive angle pairs are essentially trigonometric
complements. Variations of this scheme exist [11], [15], and
some of them involved hybrid use of Doppler spectral broad-
ening principles to aid the flow vector determination process
[16], [17]. The downside of this approach is that the effective

PRF is inevitably halved, as each flow vector must be derived
from two separate pulse firing events.

As array transducer technology matured, splitting the aper-
ture into two halves became feasible [18], [19]. Also, deriving
flow vectors over an entire field of view can be achieved [20],
[21]. For this split aperture approach, a transmit pulse is fired
axially from the center of the array aperture without beam
steering, and two receive apertures are formed from the left
and right sides of the array transducer [18], [22]. The benefit
of using this approach is that one pulse firing event is sufficient
to derive a flow vector, which may be computed from special-
case formulas involving the difference and sum of Doppler
frequencies detected from the two receive sub-apertures [23].
However, these formulations have not seen widespread clinical
use likely because of the technical difficulty in reprogramming
clinical scanners that are often designed using an embedded
system design approach.

The performance of dual-beam Doppler flow vector estima-
tion schemes have been characterized in detail [24], [25], [26],
[27]. Although, comparing with speckle tracking methods,
dual-beam Doppler flow vector estimation methods are more
robust in cases where blood flow partially goes out of the
imaging plane such that the measured flow vector is merely
a planar projection of the true 3D flow vector [28], [29],
it suffers from one critical weakness: that is, any errors in
one of the two frequency shift measurements would give
rise to significant vector estimation variance. This issue can
be overcome by extending the principles to a multi-beam
implementation, as will be discussed in the next subsection.

C. Multi-Beam Implementations

Instead of only obtaining two realizations of frequency
shift measurements for flow vector estimation purpose, it is
possible to generalize the framework to incorporate more than
two transmit-receive angle pairs [30], [31]. The benefit of
such a multi-beam implementation is that the flow vector
estimation problem, which is a matrix inverse problem, can
be re-formulated as an over-determined system of equations
that carries the following matrix form [32]:

cosθ1 + cosϕ1 sinθ1 + sinϕ1
cosθ2 + cosϕ2 sinθ2 + sinϕ2

...
...

cosθM + cosϕN sinθM + sinϕN


[

vz
vx

]
=

co

f0


fp1
fp2
...

fp(MN)

 .
(4)

With MN realizations of frequency shift measurements, the
flow vector computation process essentially becomes a least-
squares fitting problem that would yield estimates with mini-
mum mean squared error [32], [33]. Using the matrix notation
from (4) as Av = u, the least-squares estimation approach
is solved for the flow vector v through the pseudo-inverse
operation:

v =
(
AT A

)−1 AT u. (5)

Note that calculation of the pseudo-inverse is after all required,
since A is a MN×2 non-square matrix.

Although the multi-beam Doppler vector estimation scheme
appears to be more algebraically intensive, its realization is
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in practice rather straightforward. The reason is because the
pseudo-inverse is merely a constant matrix quantity that can
be pre-computed and applied to every instance of least-squares
flow vector estimation. As shown in [33], with the use of high-
performance computing hardware such as graphics processing
units [34], [35], flow vectors can be derived consistently at all
flow sample volume positions in the field of view at real-time
processing throughputs.

III. SPECKLE TRACKING AND PARTICLE VELOCITY
IMAGING

Ultrasound vector flow imaging based on speckle tracking
is traditionally called echo-PIV (echographic particle image
velocimetry) when microbubbles are used to increase the in-
tensity of the scattered blood signal. VFI can also be achieved
without contrast agent by tracking the speckles emerging
naturally from blood. This approach is generally referred
to as speckle tracking and may require temporal high-pass
filtering to remove the high-amplitude signals arising from
surrounding tissues. Ultrasound-based flow speckle tracking
and echo-PIV both originate from laser speckle velocimetry
and particle image velocimetry (PIV), two optical methods of
flow visualization for experimental fluid dynamics. These op-
tical techniques emerged in the early eighties [36], [37], their
main difference being the number of seeded light-scattering
particles. Optical PIV is now a commonly used indirect
technique for measuring two or three velocity components in
experimental fluid dynamics. It takes closely timed images
and estimates the distance that tracer particles traveled within
this time. From the known time interval and the measured
displacements, the instantaneous velocity fields are calculated.

With the objective of obtaining velocity vector fields in
blood vessels, laser speckle velocimetry has been adapted to
ultrasound imaging as early as 1987 by Trahey et al. [7], [38].
In this study, the gain was set at its maximum to generate
sufficient blood echoes for further tracking. Ultrasound vector
flow imaging by speckle tracking became popular, 20 years
later, with the advent of echo-PIV [39], [40]. Echo-PIV with
contrast agents is now essentially utilized in clinical research
to analyze the dynamics of the vortices that form in the left
ventricle during diastole [41], [42], [43], [40]. Optical PIV
experimenters have also shown a strong interest in echo-PIV
for non-medical applications [44]. In the following, echo-
PIV and speckle tracking will be both called speckle tracking
unless otherwise specified.

Speckles refer to interference patterns created by the pres-
ence of many sub-resolution scatterers. The texture of the
speckle patterns does not correspond to underlying structure.
The local brightness of the speckle pattern rather reflects the
local echogenicity of the underlying scatterers, which can be
used to estimate motion. Speckle tracking can be carried out
on the beamformed RF (radio-frequency) signals or on the
log-compressed real envelopes (B-mode images). RF signals
are generally preferred over B-mode images in the special
case of elastography, since small tissue displacements must be
measured [45], [46], [47]. Speckle tracking is based on the hy-
pothesis that local echogenicity is sufficiently preserved from

one frame to the subsequent one. The speckle displacements
are commonly determined by means of optical flow [48],
[49] or block-matching techniques [50], [48], [51]. Block-
matching is usually better adapted to extract the relatively
large displacements occurring in blood flows. Although several
block-matching algorithms have been inspired from computer
vision, the normalized cross-correlation [48], [50] is the most
applied approach in ultrasound imaging. Speckle tracking is
basically a three-step process: 1) subdivision of two successive
images into small windows, 2) normalized cross-correlation
of the window pairs, 3) peak fitting and estimation of the
displacements (see Fig. 2). Normalized cross-correlations can
be conveniently performed in the Fourier domain. Let Ia
and Ib represent two successive B-mode images. These two
images are both subdivided into small evenly-spaced m× n
windows, wk

a and wk
b, with k = 1...N and N the total number

of windows. These windows can overlap (preferably no more
than 50%) to adjust the resolution of the output velocity
field. Let W k

a = F (wk
a) and W k

b = F (wk
b) be the 2-D Fourier

transforms of both windows. The FFT-based normalized cross-
correlation (phase correlation) for each window k is given by:

NCk = F−1

(
W k

a •W k
b

|W k
a •W k

b |

)
(6)

The inverse FFT is denoted by F−1. The overbar stands for
the complex conjugate. In this equation, the multiplications
indicated by • and divisions are element-wise. The relative
translation (in pixels) between the two windows is given by
the location of the peak in NCk:

(∆ika→b,∆ jk
a→b) = arg maxi, j(NCk) (7)

The position of the correlation peak can be determined with
sub-pixel accuracy. A robust technique is to fit the correlation
peak to some function, such as a parabolic or Gaussian curve
[52], [53]. The velocity vectors are finally deduced using the
pixel size and the ultrasound pulse repetition period. Vector
flow imaging by speckle tracking has been successfully applied
in a number of human cardiovascular flows, mostly in the
carotid [44], [54] and the left ventricle [42], [43], [55]. The
above mentioned algorithm is given in its simplest form. Stan-
dard state-of-the-art numerical methods developed for optical
PIV can be applied to increase the precision. To cite a few,
these techniques include multiple-pass and ensemble cross-
correlation, coarse-to-fine analysis, and interrogation window
deformations [56]. Since a large number of frames can be
available, high-frame-rate vector flow imaging can greatly
benefit from these algorithms. Finally, robust regularization is
an essential final step if differential quantities must be derived
(e.g. vorticity, shear rates and pressure gradients). Numerous
basic to advanced algorithms exist in the literature to regularize
velocity fields [56], [57], [58], [40].

The main clinical limitation for echo-PIV (speckle track-
ing with contrast-enhanced echography) is the intravenous
administration of gas-filled microbubbles. In clinical prac-
tice, contrast-enhanced ultrasonography can be required when
an echocardiographic examination is difficult, such as in
patients with obesity or lung disease. Although no major
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Fig. 2. The three basic steps of cross-correlation-based speckle tracking for vector flow imaging. Advanced tracking also includes multiple-pass and ensemble
cross-correlation, coarse-to-fine analysis, and interrogation window deformations

Fig. 3. Left intraventricular flow by echo-PIV with contrast agents. Adapted
from [60]. By way of comparison, see Fig. 8 in paper II, obtained without
contrast agent by Fadnes et al. [61].

side-bioeffect has been noticed in well-controlled situations,
contrast-enhanced ultrasonography is relatively time- and staff-
consuming and thus cannot be routinely recommended. Before
becoming an accepted clinical examination, multi-center trials
are required to demonstrate the efficiency of echo-PIV in terms
of cost-effectiveness and clinical outcomes.

Echo-PIV with contrast agents is now essentially utilized in
clinical research to analyze the dynamics of the vortices that
form in the left ventricle during diastole [41], [42], [43], [59],
[40] (see Fig. 3).

IV. TRANSVERSE OSCILLATION

The underlying mechanism for finding the axial velocity
component using (1) is the ultrasound oscillation with a
frequency of f0. This makes it possible to detect the frequency
or phase shift. Traversing the ultrasound beam in the lateral
direction does not yield an oscillation, and no velocity compo-
nent can, thus, be found. The basic idea introduced by Jensen,
Munk and Anderson [62], [63], [8], [64], [9] is to make a
transverse oscillation (TO) in the ultrasound field as shown in
Fig. 4. A motion transverse to the ultrasound beam then yields
an oscillation with a frequency proportional to the transverse
velocity.

The transverse oscillation can be generated by having a
receive apodization with two peaks as shown in the top of
Fig. 4. There is a Fourier relation between the transducer’s
apodization function and the ultrasound field at the focus
or in the far-field [65]. Having two peaks, thus, generates
a sinusoidal oscillation, and the shape of the peaks will
influence the width of the resulting field. The lateral oscillation
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Fig. 4. Generation of transverse oscillating field. The top graph shows the
apodization applied on the linear array transducer for generating to two beams.
The bottom graphs show the point spread functions of the left and right TO
field.

wavelength λx is given by [8]:

λx =
2λd
Pd

, (8)

where d is depth in tissue and Pd is the distance between the
peaks.

In a traditional velocity estimation system a Hilbert trans-
form is conducted on the received signal to yield a one-side
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spectrum from which the sign of the velocity can be deduced
[4]. In TO, a spatial quadrature signal can be generated by
focusing two parallel beams displaced by a quarter wavelength
λx/4 to have a 90 degree phase shift between the beams
[8]. An alternative is to Hilbert transform the apodization
waveform as was performed by Anderson [9]. The resulting
beams should form a Hilbert transform pair and any deviations
from this results in a bias on the estimates. Several schemes
for optimizing the point spread function (PSF) have therefore
been suggested using dynamic apodization [66], [67], spatial
quadrature [68], synthetic aperture imaging [69], plane wave
imaging [70], and optimization of the TO field [71]. A new
approach is to focus directional beams perpendicular to the
ultrasound propagation direction and then Hilbert transform
this signal [72], [73]. The purpose of all these approaches
is to optimize the TO PSF and thereby reduce the bias and
standard deviation.

The axial and lateral velocity components are estimated
using the four samples acquired in each emission emanating
from the complex signals in the two parallel beams. This
can be performed using the conventional autocorrelation es-
timation [74], [8] or a heterodyning demodulation technique
as suggested by Anderson [75], where the received signals
are multiplied to reduce the influence of the axial velocity
component on the lateral component estimation. A special
fourth order estimator was developed by Jensen [76], which
yields the two components independently as 1:

vx =
λx

2π2Tpr f
arctan2

(
ℑ{R1(1)}ℜ{R2(1)}+ℑ{R2(1)}ℜ{R1(1)}
ℜ{R1(1)}ℜ{R2(1)}−ℑ{R1(1)}ℑ{R2(1)}

)
(9)

and

vz =
λ

2π4Tpr f
arctan2

(
ℑ{R1(1)}ℜ{R2(1)}−ℑ{R2(1)}ℜ{R1(1)}
ℜ{R1(1)}ℜ{R2(1)}+ℑ{R1(1)}ℑ{R2(1)}

)
.

(10)
Here Rx(1) is the lag one complex autocorrelation of signals
combined from the four measurements [76], where ℑ denotes
imaginary part and ℜ real part. Tpr f is the time between
pulse emissions. This estimator has been found to be less
sensitive to noise than the heterodyning demodulation method
[77]. A phase-based block matching method for finding the
displacement for TO fields was developed by Basarab et al
[78]. Another approach based on the instantaneous signal
phase and multidimensional autocorrelation was developed
by Sumi [79], so several different approaches to find the
velocity components exist. Anderson [80] also showed the
similarity between TO and dual beam velocity estimation for
a monochromatic field using a number of approximations.

An inital in-vivo measurement with the TO method is shown
in Fig. 5 of the carotid artery bifurcation. The image is
acquired right after peak systole and shows a vortex forming
at the lower branch in the bifurcation. This is a common
finding in healthy human volunteers. and the vortex appears
in the image for around 100 ms before a laminar flow again
is attained in the lower branch during the diastolic phase. The

1The arctan2 functions should be used to find the phase angle, where the
numerator is input as one argument and the denominator as a second argument.
Hereby the angle can be found in the range ±π , thus, preserving the full
velocity range.
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Fig. 5. TO vector flow image from the carotid artery bifurcation. The arrows
show the velocity direction and magnitude, and the magnitude is also show
by the color intensity (from [81]).

image demonstrates several benefits of vector flow imaging.
The flow in the upper branch has a beam-to-flow angle close
to 90◦, where velocities are almost impossible to accurately
measure with a traditional system. The angles vary as a
function of space and time and angles from 0 to 360◦ can
be found, thus, making angle correction impossible, as it has
to be conducted independently for all positions and all time.
Further, the arrows clearly show flow direction and magnitude,
and the color also shows the velocity magnitude in the correct
range for the carotid artery.

The TO method was initially developed for linear array
probes [8], [9], but has also been further developed for phased
[82] and convex array probes [71]. A 3-D implementation has
also been made [83], [84] and is discussed further in Section
VIII.

V. DIRECTIONAL BEAMFORMING

Time shift estimation is one of the two “main-stream” flow
estimation techniques for color flow imaging together with
phase-shift estimation [4]. Time-shift estimation using cross-
correlation has been used since 1970s to estimate the axial
component of the blood flow [85], [86], [87], [88], [89], [90].

Consider a single scatterer positioned in front of the trans-
ducer at depth z= z0. A pulse is sent at time t0 and the received
signal w0(t) is recorded. Then at a time t1 = t0+Tpr f a second
pulse is emitted and the echo w1(t) is recorded. Tpr f is the time
between pulse emissions. In both cases, the time t is relative
to the origin of the transmission. If the scatterer is moving,
then the second echo will be shifted by ts from the first echo
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given by:

ts =
2vz

c
Tpr f (11)

The correlation function of the two RF lines is:

R12(τ) =
∫

T
w1(t)w2(t + τ)dt (12)

If the scatterer does not move, then w1(t) ≡ w2(t), and
R12(τ) is the auto-correlation of w1(t) with a maximum at
lag τ = 0. When the scatterer moves axially at a distance
∆z = vzTpr f between the two emissions, then the second signal
w2(t) represents a time-shifted version of w1(t) [4], [90]:

w2(t) = w1(t− ts).

The correlation function between w2(t) and w1(t) is equal to a
time shifted version of the auto-correlation function of w1(t):

R12(τ) =
∫

T
w1(t)w2(t + τ)

=
∫

T
w1(t)w1(t− ts + τ) = R11(τ− ts).

(13)

The autocorrelation R11(τ − ts) has a maximum when the
argument is equal zero, i.e. when τ = ts. The axial velocity
estimate v̂z is then:

vz =
c
2

t̂s
Tpr f

(14)

where τ = t̂s is the lag at which the estimated cross-correlation
function R̂12(τ) has a maximum.

A weakly focused transmit beam can span several image
lines, and an unfocused beam, as in the case of plane-wave or
spherical wave transmits, can span the whole region of interest.
In this case it is possible to track the shift of the position of
the correlation function not only along a single line, but across
lines as suggested by Bonnefous [91].

Fig. 6 illustrates the case where a single moving scatterer
is scanned. The top subplot shows two frames. The scatterer
moves at a distance λ/8 along the beam (axially) and 3/4λ

laterally between the two frames. The motion is sought for the
center line (index 0). Subplot 6(b) shows the correlation of the
line with index 0 from the first frame with the same line (index
0) from the second frame as well as with the neighboring
lines (−1, +1). Notice that the cross-correlation in this case
is normalized only to the energy in the center line.

It can be seen that the position of the axial peak for all
three correlation functions is at the same lag. The algorithm
described by Bonnefous in [91] is as follows:

1) estimate the cross-correlation of the center line only for
multiple lags (R0,0(u))

2) find the lag of the peak of the cross correlation us
3) calculate the correlation coefficients at lag us with neigh-

boring lines R0,−1(u = us) and R0,+1(u = us)
4) fit a parabola to R0,0(us−1), R0,0(us), and R0,0(us +1)

to interpolate the sub-sample axial displacement [89]
5) fit a parabola to R0,−1(us), R0,0(us), and R0,+1(us) to

find the lateral motion.
For this method to work, the transmit field must be uniform

across the beams, and the author suggests the use of plane
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Fig. 6. A single scatterer moving axially at a distance λ/8 and laterally
at a distance 3/4λ . Subplot (a) illustrates the change in the 2D image of the
scatterer and subplot (b) shows the cross-correlation function of the center line
(0) from the first frame with the neighbouring lines from the second frame.

waves. The beams in lateral direction, which are used for
tracking are one wavelength apart.

In the analysis of the precision of the time-shift estimation,
Foster et al. show that the largest source of error is the
flow gradient in the averaging region for the cross-correlation
function [90]. Jensen suggested selecting a correlation kernel
along the flow [92], [93], [94], which makes it possible to
estimate the vector flow, and minimizes the errors introduced
by the flow gradient.

One way to sample the acoustic field along the flow direc-
tion is to use beamforming. The region of interest for the flow
estimation must be within the focal zone of the transmit beam,
in which case the wavefront is close to planar2 .

The focusing points are given by [94]:

~rp(k) = [k∆x′ sin(θ)+ xst , 0, k∆x′ cos(θ)+ zst ], (15)

where ∆x′ is the spatial sampling interval, k is the sample
index, θ is the angle between the flow vector and the z axis,
and~rst = (xst ,0,zst) is the point in the image for velocity esti-
mation. This signal passes through the center of a coordinate
system whose origin is at ~rst , and the sample index k can be
both negative and positive in the interval [−Nk/2,Nk/2]. The
number of beamformed samples in this case is Nk +1.

2Strictly speaking, this is not true, but the phase errors in the focal region
are below λ/8 and the diffraction is constructive.
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The propagation time from the origin ~ro(i) of transmission
i to the point ~rp(k) and back to position ~re( j) of receiving
element j must be found to focus a signal at spatial location
~rp(k). The propagation time in receive is determined by
the geometric distance between the sample location and the
receive element:

tr(k, j) =
|~re( j)−~rp(k)|

c
. (16)

The estimation location rst is on the axis of the transmit
beam, hence the propagation time from the origin of emission
to point ~rp(k) is:

te(k) =
1
c
(|~rst −~ro(i)|+ k∆xcos(θ)) . (17)

The directional signal at acquisition i is formed as:

gi(k) =
Nr

∑
j=0

gr ( j, te(k)+ tr(k, j)) , (18)

where gr( j, t) is the signal received by element j at time
instance t from the start of the emission.

The processing for the directionally beamformed signals
follows the steps for the time-shift estimation. The cross
correlation between the signals gi and gi+1 acquired at Tpr f
seconds apart is:

R12(l) =
1

Nk +1

Nk/2

∑
k=−Nk/2

gi(k)gi+1(k+ l)

=
1

Nk +1

Nk/2

∑
k=−Nk/2

gi(k)gi(k+ l− ks) = R11(l− ks),

(19)

where the scatterer has moved ks samples between the two
acquisitions and R11(l) is the autocorrelation function of the
directional signal. A global maximum is found at l = ks, and
the velocity is:

|~v|= ks
∆x

Tpr f
. (20)

The directional beamforming approach has been shown to
improve the velocity estimates compared to TO VFI [95] due
to the higher correlation along the flow direction. The angle
for the beamforming has to be known, and this can be found
from the normalized correlation function [96]. Beams are made
for a number of directions and the normalized correlation
functions are found. The highest normalized correlation is
found, when the flow is tracked in the correct direction,
and this indicates the correct beam-to-flow angle. Beams are
then focused in this direction, and the velocity magnitude is
found. The approach yields very accurate results, but is quite
computationally intensive.

VI. SPECTRAL BASED METHODS

Pulsed-wave (PW) and continuous-wave (CW) system esti-
mate the frequency shift and display it as a function of time
in the form of a spectrogram [4]. The echoes created by a
scatterer moving with speed v probed with a monochromatic
plane wave exhibit a frequency shift fD given by (1). Exper-
iments with constant flow (for example using a thread [97])
demonstrate spectral broadening. This effect has been studied

scatterer path

(b)

(a)

Fig. 7. Dependence of ultrasound Doppler bandwidth on beam geometry: (a)
beam geometry used to derive the relation; (b) typical spectrogram obtained
from a transversely insonated common carotid artery (from [16])

theoretically and experimentally in the 1980s by Newhouse
and colleagues [98], [99], [100], [101]. These studies show
that for a plug flow, the main cause for the spectral broadening
is caused by the angle between the flow direction and the rays
to the different parts of the transducer, which varies in the
range [θmin, θmax] (see Fig. 7), where θmin and θmax are the
angles between the flow direction and the outer edges of the
ultrasound field.

The model developed in these studies states that the spec-
trum is symmetric, and that the bandwidth BD is

BD '
2
λ
· D

F
· v · sin(θ), (21)

where D is the diameter of a circular focused transducer, and
F is the focal distance.

Using (1) and (21) it can be seen that if a flow is scanned
at an angle θ = 90◦, then the frequency shift fD is 0, and that
the bandwidth will be proportional to the velocity magnitude
v. Fig. 7(b) shows a spectrogram obtained from a transversely
insonated common carotid artery [16]. The spectra are centered
at 0 Hz and the bandwidth follows the change in velocity v.

In the early 1990s Newhouse and colleagues suggested
the design of vector-flow systems that use the frequency
shift as an estimate of the axial velocity component and
the spectral bandwidth as the lateral component of the flow
(across the beam) [102]. The feasibility of the approach was
experimentally verified by Tortoli and colleagues [103], [104].

One of the weaknesses is that other factors contribute to
spectral broadening [105], for example flow gradient in the
vessel and acceleration. While spectral bandwidth correlates
with velocity (see Fig. 7(b)), it does not yield accurate results.

Tortoli and colleagues suggested a system that utilizes the
symmetry properties of the spectrum to get two independent
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Fig. 8. Color-Doppler based vector flow mapping (VFM) in a human left
ventricle using the technique described in [109] (with a conventional GE
scanner). VFM allows vortex detection and quantification (right panel) [110].

measures - one for the beam-to-flow angle θ and the other for
the axial component vz [16], [106]. The approach uses two
beams, each beam giving one spectrum, transverse and axial,
respectively. The beam for the transverse spectrum is steered
till the spectrum becomes symmetric (as shown in Fig. 7(b)).
When the spectrum is symmetric, the beam is perpendicular
to the flow, thus giving an estimate for the flow angle. The
axial beam is also steered to get a favorable beam-to-flow
angle that yields high accuracy. Commercial implementations
of this approach exist.

The spectral bandwidth approach has also been suggested
for finding the out-of-plane velocity component [107]. The
technique requires calibration to work, and currently the lateral
component has to be negligible for the method to be effective.

The transverse velocity spectrum can also be found using
a TO ultrasound field as described in [108]. A fourth order
correlation approach is then used to calculate the velocity
spectrum in the transverse direction, and conventional spec-
trum in the axial direction yields the velocity distribution for
the axial component. The approach works for beam-to-flow
angles above 60◦, where conventional spectral estimation is
highly unreliable. Above this angle the approach can be used
to compensate the axial spectrum to give quantitative velocity
values.

VII. COLOR-DOPPLER BASED VECTOR FLOW MAPPING

Color-Doppler-based vector flow imaging (named as vector
flow mapping, VFM, in the literature) is another technique for
vector flow imaging, in the left ventricular cavity specifically.
This flow imaging method is based on the post-processing of
color Doppler images (see Fig. 8). It was first proposed by
Ohtsuki and Tanaka in 2006 under the appellation of echo-
dynamography [111], [112]. Another numerical model, now
implemented in Hitachi ultrasound scanners [113], was then
developed by Garcia et al. in 2010 [109]. VFM has been
compared with optical PIV in a realistic left ventricle model,
and with MRI in the left ventricular 3-chamber view of a few
subjects [109]. It minimizes the 2-D velocity divergence in the
plane of interest. In a polar coordinate system, the 2-D velocity
divergence writes as r∂rVr +Vr + ∂θVθ = 0, where (Vr,Vθ )

are the velocity components with coordinates (r,θ). In the
polar system associated to the phased array, and assuming that
the flow is two-dimensional, the cross-beam (angular) velocity
components Vθ can be thus deduced from:

∂θVθ = r∂rVD +VD (22)

where VD(= −Vr) represents the Doppler velocities. In prac-
tice, the 2-D flow assumption partly fails, so that equation
(22) is ill-posed. By constraining the boundary conditions and
regularizing the system in (22), it becomes overdetermined
and can be solved in the least-squares sense using a finite
difference method. In [109], the wall velocities were assumed
tangential to the endocardium. Under these conditions, a
simplified regularized form of (22) can be given by:

vθ = argmax
Vθ

{∥∥∂θVθ − r∂rVD−VD
∥∥2

+λ
∥∥~V ·~n∥∥2

Γ

}
(23)

In (23), ~n represents a unit vector normal to the endocardial
surface Γ, and λ is the regularization parameter. Note that a
penalty term (low-pass operator) may be added in the cost
function in (23) to enforce smoothness of the underlying
vector field. In comparison with the other vector flow imaging
techniques described in this paper, VFM does not provide a
true planar projection of the 3-D velocity field. To produce
a 2-D field, this technique assumes that the out-of-plane
components are small. VFM is readily available in Hitachi
scanners and has been tested in several clinical situations
[114], [115], [116]. It has also been assessed in patients
with echocardiographic data extracted from GE (General Elec-
tric Healthcare) Vivid scanners [117], [118], [119], [120]. It
appears from these clinical studies that the analysis of the
diastolic vortex dynamics could improve diastology. Since wall
boundary conditions are necessary, VFM requires a relatively
large scan sector to enclose the whole left ventricle. This
may reduce the frame rate to <10 frames/s with conventional
sequential color Doppler. At least five heart cycles must, thus,
be registered to obtain the full dynamics of the intracardiac
flow, which can make VFM challenging in patients with
cardiac arrhythmias and/or breath-holding difficulty. VFM has
not yet been evaluated with high-frame-rate color Doppler.
As already mentioned, clutter filtering will be a concern to be
solved with unfocused waves. Another issue is the presence of
aliasing in color Doppler. Range cross-correlation techniques
[121], [96] or staggered transmit sequences [122] can provide
solutions to this problem.

VIII. 3-D VECTOR FLOW IMAGING

The methods mentioned above all estimate the 2-D velocity
vector, but the flow is inherently 3-D in nature. Often it
is assumed that the out-of-plane motion is negligible, but
for complex flow found in tortuous vessels, in stenoses, and
bifurcations there can be significant out-of-plane velocities. It
is therefore natural to extend the abovementioned techniques
to estimate the third components by enabling beamforming in
the elevation direction.

The crossing-beams method was extended by Fox and
Gardiner to yield the full velocity field [123]. Three probes
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where used and the frequency shift detected for all probes,
which could then be combined to find the velocity magnitude
and angles. Gomez et al [124] combined three or more
conventional color flow maps to determine the 3-D vector
velocity using a least-squares approach. The method was used
on three young patients under sedation and could display 3-D
velocity fields through e.g. the aortic valve and flow from the
left atrium into the left ventricle.

Bonnefous extended the cross-correlation approach to three
directions by focusing beams in the axial, lateral and elevation
direction [91] to perform correlations in the three directions
to find all velocity components. The approach was only
investigated for flow in one direction.

Another technique for making 3-D velocity estimation was
developed by Newhouse et al. [102]. They used two receiving
transducers and deduced the full velocity magnitude of a
string phantom by estimating both the spectral shift and the
bandwidth of the spectrum for both transducer signals.

Hein used the correlation between parallel beams to find the
transit time and hence velocity between three parallel beams
[125]. A combined transducer with three crystals was used for
emitting and receiving the three beams, and it was shown that
measured peak flow velocities were accurate within 15% and
angles within ±5◦.

Speckle tracking has also been translated to 3-D [126].
Currently it has mostly be applied on tissue motion tracking
of e.g. the myocardium [127], [128].

The introduction of 2-D matrix probes has made it possible
to focus beams in all directions, and this was used by Pihl
and Jensen [129], [83] to developed a 3-D version of TO. A
32 × 32 elements probe emitted a focused field and 5 beams
were focused simultaneously in receive from each emission.
A transverse oscillation was generated in receive by a dual
peak apodization along either the x or y directions and gave
fields oscillating in these directions. A modified estimator
could then yield the full 3-D velocity vector with a low bias
and a precision around 8% to 16% for parabolic flow in a
flow rig [84]. In-vivo data has also been acquired using this
approach [130], and an example is shown in Fig. 9 from
the carotid artery. The 3-D velocity vector has been found
in two orthogonal planes. The predominate component is in
the x direction through the imaging plane, which cannot be
estimated using a 2-D VFI systems (see bottom figures in
Fig. 9).

IX. FLOW VECTOR VISUALIZATION ALGORITHMS

Display of vector flow images is challenging as both ve-
locity magnitude and direction have to be shown. They both
change rapidly throughout spatial position and over time.
Several methods for the visualization have therefore been
developed and are described below.

A. Arrow Displays

After deriving the flow vector maps, the next step is to
display them onto the screen. One common approach that has
been used for a number of years is to render each flow vector
as an arrow within the image frame [131], [132]. For this
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Fig. 9. In-vivo scan of the carotid artery of a healthy volunteer. Two
orthogonal planes are acquired (left and right images) and the velocity is
estimated for all three directions (vz,vy,xx). A 2-D vector flow system would
not detect the vx component (from [130]).

vector visualization approach, an image grid is first created
as similar to conventional color flow imaging, and the power
detected after echo canceling [4] at each pixel position is used
to form a flow display mask. If a pixel falls within the flow
display mask, its corresponding flow vector will be displayed
as an arrow at that position. The length of the flow arrow is
generally set forth according to the flow velocity magnitude
(i.e. the norm of axial and lateral velocity estimates), and
the arrow’s pointing direction is set based on the flow angle
(mapped from the axial and lateral velocity values). Often
times, this arrow display is overlaid on top of the color flow
image [133] or a color-coded velocity magnitude map [81].

Published images typically include straight tube phantoms
with steady flow profiles [134] and pilot in-vivo images of
the human carotid artery [81], [45], [29], [133], [135]. This
display approach has also been used in both single-line, multi-
gate Doppler methods [136] and those that render image maps
of flow vectors [133]. The shown images can generally depict
the parabolic flow profile inside straight tubes as expected
from fluid mechanics principles, while the in-vivo data have
concurred the multi-directional nature of flow at the carotid
bifurcation. Note that the flow arrows themselves can be color
coded too, as demonstrated in a cardiac imaging study [109].
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B. Color Map Displays

Another display approach is to map flow vectors to a multi-
color palette that encodes both velocity magnitude and flow
angle information. Instead of using the typical hot-cold color
map used to encode velocity values in color flow imaging, flow
vector color mapping would respectively assign, on a pixel by
pixel basis, the color hue based on the flow angle and the color
intensity (as well as saturation) based on velocity amplitude
[137], [138]. As a similar variant, the flow angle and flow
velocity amplitude can be shown as two separate color maps
[139], [140], [141].

It should be pointed out that the concept of displaying
flow vectors as color maps may be readily integrated with the
concept of flow arrow displays to yield a more integrated form
of flow vector visualization [142], [143]. This visualization
approach has offered an alternative way of highlighting flow
vector information as compared to plain display of flow arrows
or color maps. It has been commercially implemented on the
BK ProFocus UltraView platform [144]. Pilot images in-vivo
have been shown in the carotid arteries [145] and the ascending
aorta [146], and results have shown promise.

C. Dynamic Visualization

Arrow displays and color mapping of flow vector estimates
can be considered as more classical visualization approaches
for ultrasound VFI. The common attribute of these visualiza-
tion schemes is that the flow vectors are shown on a static basis
in which they are always pivoted at the same pixel position.
To more lucidly highlight the dynamic nature of blood flow,
especially in cases with complex flow patterns, efforts have
been made to dynamically update the position of flow vectors
in between frames by applying particle visualization strategies
that are well established in computer vision [147], [148],
[149].

In one particular dynamic visualization algorithm (dubbed
as vector projectile imaging) [33], flow projectiles are shown
at a randomized selection of launch points within the blood
vessel, and their lengths and color are both pegged to the
velocity magnitude. In between frames, the position of each
flow projectile would be updated by adding the corresponding
inter-frame vector displacement value. The process is repeated
over time, and it is coupled with randomized projectile life
time and relaunching. Also, flow speckle motion is rendered
as an adjunct visualization to enhance the depiction of flow tra-
jectories (based on another method reported earlier [150]). As
shown in a series of carotid bifurcation imaging experiments
(see Fig. 10 for representative examples), such an approach
has highlighted the spatiotemporal evolution of stenotic flow
jets and recirculation zones in a visually intuitive way. It has
been commercially implemented as a diagnostic mode in the
new Mindray Resona 7 platform [151].

Other emerging ways of dynamic flow visualization are
under development. Three efforts are particularly worth noting.
One of them is the application of smoothed particle hydro-
dynamics principles to render the multi-directional nature of
hemodynamics inside blood vessels [152]. Another is the dy-
namic depiction of flow trajectories as tailored pathlets to track
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Fig. 10. Vector projectile image frames of carotid bifurcation phantom
experiments. The image frame taken during peak systole is shown for (A)
healthy bifurcation and (B) diseased bifurcation with 50% eccentric stenosis.
Complex flow features including flow jet and recirculation in the diseased
carotid bifurcation are effectively highlighted. (From [33]).

the spatio-temporal progression of systolic and diastolic flow
dynamics inside heart chambers and the aorta [153], [154],
[155], [117]. The latter is the computation of Lagrangian
coherent structures to depict the topology of blood transport.
It is conceivable that, with further maturity in the adoption
of graphics processing unit technology in ultrasound imaging
[34], dynamic visualization of flow vectors can gain further
prominence in the near future.

X. CLINICAL APPLICATIONS

The number of clinical studies of vector flow imaging is
still limited as only a few commercial implementations exist.
The TO VFI method approach has been implemented on BK
Ultrasound scanners and yields images as shown in Fig. 11
of the descending aorta. The color scale depicts direction
and more quantitative information can be gained from the
superimposed arrows.

A. Validation of VFI imaging

The first examples of TO VFI were reported by Udesen
[81]. The method was validated against MR data for eleven
healthy volunteers on the carotid artery. MR examinations
were performed with a 1.5 T whole body scanner using a
prospective ECG-triggered phase contrast sequence employing
a cervical coil. The stroke volume of this was compared to the
TO estimates measured on the right common carotid artery at
a beam-to-flow angle close to 90◦. The study showed a high
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Fig. 11. Commercial TO vector flow image from the aorta. The arrows show
the velocity direction and magnitude, which is also indicated by the colors.
Image (A) shows the systolic flow in the ascending aorta in a patient with
aortic stenosis. The flow has a mosaic pattern with a narrow jet. Image (B)
shows secondary clock-wise flow in the ascending aorta of the same patients
as in A. LV: left ventricle. AS: aortic sinus. AA: ascending aorta (From [156]).

correlation (0.91) between TO and MR data and a roughly
10% underestimation of the volume flow [45]. Another study
used the same setup to compared MR with three ultrasound
vector flow methods using TO, directional beamforming and
synthetic aperture flow imaging. The study showed that the
directional beamforming method has the least mean difference
of the methods. These studies were conducted on the experi-
mental RASMUS scanner [157]. Later studies were conducted
on the commercial implementation on BK Ultrasound scanners
[158] on for example vortices in the carotid artery [145],

B. Volume flow in arteriovenous fistulas for hemodialysis

An investigation of dialysis patients has been conducted
[159]. Volume flow in arteriovenous fistulas (AVF) for
hemodialysis was measured using TO Vector Flow Imaging
with an UltraView 800 ultrasound scanner (BK Ultrasound,
Herlev, Denmark). The results were compared to flow mea-
surements using the current state-of-the-art ultrasound dilution
technique (UDT) during dialysis. The initial study supported
that ”Vector Flow Imaging is applicable for volume flow
measurements” [159].

A more comprehensive study investigated nineteen patients
with matured functional AVF monthly over a six-month pe-
riod comparing the UDT measurements with that from the
UltraView 800 ultrasound scanner [160]. It was found that
the TO volume flow measurements had a precision of 20%
compared to the 30% precision of the UDT measurements.
Also large change in volume flow between dialysis sessions
detected by UDT was confirmed by VFI (p = 0.0001), but the
concordance rate was poor (0.72). The paper concluded that
VFI is a reliable method for volume flow estimation and as
is also a predictor of large volume flow changes over time
in AVFs [160]. This points to the possibility of replacing
the semi-invasive UDT measurements with a faster and more
gentle external VFI examination.

C. Grading carotid artery stenosis

VFI was initially developed to eliminate the angle de-
pendency of pulsed-wave or color Doppler [139], [161], the
principal clinical applications being the assessment of carotid
artery stenosis. Since a lumen narrowing leads to locally
increased velocities, the peak systolic velocity (PSV) has
logically become the most established criterion for stenosis
grading [162], [163]. However, PSV measured by pulsed-wave
Doppler has shown conflicting results with angiography. For
this reason, ultrasonography alone is generally not accepted
for clear-cut diagnosis [163]. Accuracy and precision are
seriously affected by the errors in positioning the sample
volume (at actual peak velocity location) and in accounting
for the Doppler angle. Angle insonation larger than 60◦ and
precise position of the sample volume in the zone of greatest
flow constriction (color flow mapping can help) are therefore
recommended. PSV issues ought to be reduced in large part
with real-time vector flow imaging [136]. It is expected
that PSV measurement variability could be greatly reduced,
especially when the carotid stenosis is tortuous [25]. The
availability of clinical VFI for large vessels, such as in BK
Ultrasound scanners [158], should facilitate such prospective
studies. No clinical studies yet have been published to confirm
the potential clinical benefit of ultrasound-based VFI when
grading carotid artery stenosis using PSV.

D. Left ventricular vortex formation and diastology

An accurate assessment of the left ventricular function
is of utmost clinical importance for the early detection of
heart failure. Diagnosis of diastolic dysfunction can be very
challenging, since history, physical examination, ECG, or chest
X-ray are often unhelpful. The wide accessibility of echocar-
diography and its ability to derive real-time non-invasive
information make ultrasound the prerequisite technique for
evaluating left ventricular diastolic function. However, current
echocardiographic indices of diastolic function have major
limitations that may hinder accurate diagnosis. Within the left
ventricle of a normal heart, diastolic filling is characterized
by the formation of an asymmetric swirling motion [164] that
originates during early filling. In the normal heart, a large
part of the left ventricular blood volume is actually involved
in the vortex formation. Recent in-vivo observations suggest
that the vortices that form during left ventricular filling have
specific geometries and locations, which could be determinant
factors of the diastolic function [42], [165], [114], [118], [166].
Intraventricular vortex flow imaging is becoming increasingly
popular in the clinical literature and it is anticipated that
accurate measures of the intracardiac vortex hemodynamics
might play a key role in the assessment of the cardiac function
(Fig. 8). So far the two clinical tools for ultrasound-based
intracardiac vector flow imaging in adults are echo-PIV [41]
and color-Doppler-based vector flow mapping [109], [60].
As mentioned above, these techniques are limited by their
relatively low frame rates. Ongoing studies on transthoracic
high-frame-rate echocardiography could change the situation
in a near future [167], [122], [168].
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E. Left ventricular blood stasis

Quantification of left ventricular blood stasis goes hand
in hand with the above mentioned vortex formation. Left
ventricular chamber dilation and depressed systolic function
are known to be related to impaired filling, reduced ejec-
tion fraction, and increased occurrence of thromboembolism.
Blood stasis in the heart chambers is a recognized risk factor
for intracardiac thrombosis and cardiogenic thromboembolism.
Using color-Doppler-based vector flow mapping (VFM) with a
clinical GE Vivid scanner, Hendabadi et al. [117] and Rossini
et al. [120] implemented an original Lagrangian method for
mapping and quantifying blood stasis in the left ventricle.
They observed that blood transport is altered in patients with
dilated cardiomyopathy: an amount of blood is trapped by
long-lasting vortices and needs several heart beats to leave the
left ventricle. These studies confirm that a thorough analysis
of the left ventricular hemodynamics is of clinical interest.
This promising approach could be improved by the increased
temporal resolution (using either VFM or speckle tracking)
offered by high-frame-rate ultrasound imaging as described in
the accompanying paper [1].

F. VFI during open chest heart surgery

Hansen et al. [170] studied the application of TO VFI during
open chest heart surgery, where they could scan directly on the
heart with a linear array probe during surgery. The method
could in real time reveal new information about the complex
flow in the heart.

Cardiac output measurements were investigated in a study
with 25 patients undergoing cardiac bypass surgery [146].
They were scanned intraoperatively with TO on the ascend-
ing aorta and compared to transesophageal echocardiography
(TEE) and pulmonary artery catheter thermodilution (PACTD).
It was concluded that ”TO with the present setup, is not inter-
changeable with PACTD for cardiac volume flow estimation,
but is a reliable and precise angle-independent ultrasound alter-
native for velocity estimation of cardiac flow” [146]. A major
reason is probably that the flow measured had a significant
out-of-plane component, which biased the estimates, as flow
rig measurements with the same equipment showed a precision
between 5.5% and 14.7%.

TO has also been used for scanning stenosed aortic valves
for 20 patients with healthy valves, compared to 20 patients
with diseased aortic valves before and after replacement [169].
Fig. 12 shows examples of flow for a normal valve (left image),
diseased valve (middle) and after replacement (right). A clear
improvement in the flow is seen with a fully laminar flow for
the normal valve, highly disturbed flow for the diseased valve,
and partly recovery for the replaced valve. The study points
to the ability of making flow quantification during surgery to
validate the correct replacement of a valve.

G. Measurement of pressure gradients

Non-invasive measurement of time-averaged pressure gra-
dients is performed daily in echocardiographic laboratories
for the assessment of valvular diseases. Time-resolved along-
streamline pressure gradients can also be estimated in the left

ventricular chamber by adapting Euler’s equation to Doppler
velocities measured by color M-mode. Intraventricular peak
pressure gradients are potential early markers of the cardiac
function [171], [172]. Two-dimensional relative pressure map-
ping derived from VFI was first described in the left ventricle
using the Doppler-based VFM technique [173]. Comparisons
with micromanometers were performed in an animal model.
Recently, Olesen et al. determined longitudinal pressure gra-
dients in a steady flow carotid model using the transverse
oscillation method [174]. They then tested their technique with
pulsatile flows [175]. Accurate estimation of relative pressures
is still challenging. Turbulence, velocity measurement errors,
mechanical hypotheses and boundary conditions all affect the
2-D pressure outputs. These studies, however, show that a
robust time-resolved pressure estimation is likely to become
possible with high-frame-rate vector flow imaging.

H. Arterial flow patterns and wall shear rates

It is known that arterial flow and wall shear rates affect
atherosclerotic plaque formation and morphology [176]. Un-
like conventional color Doppler, VFI allows deciphering the
flow patterns in the large arteries. As discussed earlier, VFI
can help to better grade carotid artery stenoses. Since full
vector information is available, complex flow patterns can
also be made visible and wall shear rates can be estimated.
For example, Hansen et al. quantified the rotational flow and
backflow occurring in the ascending aorta [177], a region
susceptible to dilatation in patients with a bicuspid aortic
valve [178]. Characterization of the rotational flow in the
ascending aorta of such patients may help distinguish those
at risk for development of ascending aortic aneurysm. Vector
flow imaging also allows one to estimate wall shear rates in
the carotid [16], [179], [180]. Although wall shear rates are
known to play an important role in plaque development, the
clinical impact of arterial vector flow imaging, however, has
not yet been demonstrated. Detecting plaques with a high risk
of rupture still remains a major challenge [181].

VFI can also give possibilities for new views of an organ
than is currently possible due to beam-to-flow angles close to
90◦. Brandt et al. [182] scanned the portal vein in the liver in
subcostal and intercostal views and compared it to traditional
spectral velocity estimation for finding the peak velocity. The
scans were conducted on ten healthy volunteers over 3-5 heart
beats. The two scan views gave similar results for TO VFI,
but they were not consistent for the spectral estimates. This
indicates that VFI can yield consistent scans from different
directions, where traditional 1-D methods are limited to views
with beam-to-flow angles less than 60◦.

XI. DISCUSSION - CHALLENGES AND PERSPECTIVES

Vector flow imaging has evolved from the first crossing
beams systems in the late seventies to now being available on
at least three commercial systems. The developments in dig-
ital systems, transducers, beamforming, advanced ultrasound
fields, and dedicated estimators have made this possible and
ultrasound can now provide real-time, quantitative flow data
in a cross-sectional plane with an accuracy and precision
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Fig. 12. Intraoperative TO estimation of the systolic blood flow in the ascending aorta in a patient with a normal aortic valve (A), and in a patient with
a stenotic aortic valve before (B) and after valve replacement with a biologic prosthesis (C). AV: aortic valve; AA: ascending aorta. In (A) the arrows
predominately points in the direction of the jet ejection, whereas a more chaotic flow is seen in (B). The direction is not fully restored in (C), but a clear
improvement in the flow is seen after replacement (With permission from MD, PhD Kristoffer Lindskov Hansen, see also [169]).

better than 10%. This expands the capabilities of ultrasound
to better visualize the hemodynamics of patients, and will
make quantification more correct and readily available. The
amount of clinical studies are still very limited and restricted
to smaller patient populations, and a real challenge is to expand
the studies and demonstrate the efficacy of VFI and expand
its use.

The display of VFI data is still fairly simple minded with
arrows and underlying colors. The pulsating human flow is
complex, where vortices appear in 100 ms and flow rapidly
changes direction and magnitude. This complexity of the flow
makes the display challenging, but also points to the wealth
of information actually present in VFI.

VFI has been tested in a number of in-vivo situations, in the
left ventricle, in the carotid artery, and for dialysis patients,
whose external access is relatively easy. Heart valves have also
been scanned during open-chest surgery. From a clinical view-
point, quantification of the intraventricular flow is presently
one of the more mature application of ultrasound-based VFI.
This has been made possible by contrast-echo speckle tracking
(echo-PIV) and color-Doppler-derived vector flow mapping.
More studies have to be conducted on larger patient pop-
ulations for VFI to become an accepted clinical standard,
which is currently difficult due to its limited availability. VFI
is readily available in only three scanners (BK Ultrasound,
Hitachi, and Mindray) and can still be optimized in terms of
clutter rejection, experimental validation, and reproducibility.
To become a well-accepted clinical technique, VFI must prove
to be less laboratory- and scanner-dependent than current 1-D
methods. For years, ultrasound flow researchers were restricted
to only one spatial dimension with color Doppler imaging.
With ultrasound VFI, they have gained a second dimension.

The early clinical studies have also shown that the flow is
not restricted to motion in the plane. Often a significant out-
of-plane velocity component is present and full quantification
therefore demands a 3-D estimation. Adding the third spatial
dimension was the next logical step. Four-dimensional (3-D +
t) ultrasound vector flow imaging has emerged very recently

and there is still a long way to go. It is very challenging
due to the complicated transducers and many channels to
handle in the beam steering in two directions. Early approaches
have been developed and show promising results, but much
is still to be done in terms of covering a full 3-D volume
with velocity estimation at all points. The visualization is even
more challenging and is still unresolved and inspiration should
come from advanced methods of visualization developed
for experimental fluid dynamics [183]. This comprehensive
modality will surely benefit from the recent technical and
clinical findings in 2-D VFI. In the future, it is likely that 4-D
ultrasound vector flow imaging could become the modality of
choice to analyze the blood flow non-invasively, mostly in the
large arteries.

This paper has listed many of the methods developed for
vector flow imaging. A good performance is attained for many
of them, and the major challenge is probably not the estimation
method but the limited amount of data available when using
a traditional sequential acquisition. Only few emissions (8-
16) are available, when a frame rate above 10-20 Hz must be
attained [4], and often higher frame rates of 50 to 60 Hz are
desired in e.g. cardiology. The few emissions make stationary
echo canceling challenging, which also can be detrimental to
the signal-to-noise ratio. Further, the limited data influences
the attainable precision, as this is proportional to the number of
observations entering the estimator. The largest improvement
will therefore most likely come from parallel acquisition
schemes, which are presented in the accompanying paper [1].
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