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Inverse design engineering of all-silicon polarization beam splitters 
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ABSTRACT   

Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon 
ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as 
compact as ~2 μm2 while performing experimentally with a polarization splitting loss lower than ~0.82 dB and an 
extinction ratio larger than ~15 dB in the C-band. We investigate the device performance as a function of the device 
length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature 
size constraint in the optimization is shown to affect the performance negatively and reveals the necessity for light to 
scatter on a sub-wavelength scale to obtain functionalities in compact photonic devices.  

Keywords: Silicon photonics, inverse design engineering, topology optimization, polarization beam splitter. 

1. INTRODUCTION  
On the venture to reduce the size of integrated optical devices while keeping a high level of performance, inverse design 
engineering (iDE) has shown to be an attractive concept to remove geometrical restrictions and to allow a larger 
parameter space to be included in the design phase. This will pave the way for objective-driven and optimal design 
solutions [1-4] with ultra-small footprints in nanophotonic circuits. Specifically, topology optimization (TopOpt) [1, 5] 
has been experimentally proven to be a strong and robust iDE tool for designing various low-loss and ultra-compact 
nanophotonic components with wavelength or mode handling properties [1, 6-10]. Meanwhile, polarization-handling 
devices play a pivotal role in high-index contrast nanophotonic devices because of an inherent strong birefringence [11], 
which leads to polarization-sensitive performances of devices.  Thus, optical signals travelling with different polarization 
states will need to be processed by separate nanophotonic components and requires an efficient, broadband, and ultra-
compact polarization beam splitter (PBS) to be available for the design of the nanophotonic circuit. Several design 
approaches have been taken to achieve ultra-compact PBS designs including utilizing a silicon hybrid plasmonic 
waveguide [12], an objective-first iDE method [2], and a digital nanopatterning iDE method [4]. All PBS designs in [2, 
4, 12] have compact footprints of ~5-8 μm2. A thorough investigation of the capabilities, tradeoffs, and performances of 
the different approaches in order to provide a most-compact and best-performing PBS design lacks and is also not the 
purpose of this paper. In this paper, we demonstrate the capability for 3D TopOpt to handle and optimize polarization 
selective functionalities in a nanophotonic device as we design and optimize functional PBS designs with μm2-sized 
footprints. The obtained performances for different device- and filter-sizes utilized in the TopOpt are calculated. We 
verify the performance of the TopOpt method experimentally by fabricating a PBS with a device footprint of ~2 μm2 in 
silicon-on-insulator material.  

2. DESIGN & OPTIMIZATION 
2.1 A 2 μm2 polarization beam splitter 

The initial and naïve design of our PBS is shown in Fig. 1(a) and is comprised of óne input and two output silicon single-
mode waveguides of width 0.44 µm that support the fundamental transverse-electric (TE) and -magnetic (TM) mode. 
The waveguides connect to a 1.4 µm x 1.4 µm (length x height) multi-mode interferometer (MMI) block (solid orange), 
which is the target area for the PBS functionality. For comparison, the size of the device in e.g. [4] is 2.4 µm x 2.4 µm. 
We choose to align the input port vertically to the lower output port targeted for the TM mode. This is done as initial 
investigations of the MMI structure reveal that the TE mode will diffract more in the MMI section compared to the TM 
mode. In this way, a better performance of the optimized PBS is expected by having an initial structure promoting this 
attribute and allowing the TopOpt procedure to exploit it more easily.  
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Figure 1. (a) The input MMI structure for the 3D TopOpt procedure where TE (blue)/TM (red) polarized input light is 
targeted to the upper/lower 0.44 µm wide output port, respectively. The size of the device is 1.4 µm x 1.4 µm (solid orange). 
(b, c) The calculated out-of-plane component of the magnetic (b) and electric (c) field plots when inputting TE (b) and TM 
(c) polarized light at 1550 nm to the initial structure. (d) The topology optimized design of the 1.4 µm x 1.4 µm silicon PBS 
achieved after 200 iterations steps. (e, f) The calculated out-of-plane component of the magnetic (e) and electric (f) field 
plots when inputting TE (e) and TM (f) polarized light at 1550 nm to the optimized structure. 

Figure 1(b) and 1(c) show the calculated out-of-plane component of the magnetic / electric field plots when inputting 
TE- / TM-polarized light at 1550 nm into the initial design, respectively. It can be seen that TE-polarized light is directed 
more towards the upper output port, while TM-polarized light is mainly transmitted to the lower arm. Hence, the 
objective of the TopOpt procedure is to optimize the demultiplexing of the TE mode from the input port to the upper 
output port while the TM mode should transmit to the lower output port in the full ~300 nm wavelength range of the 
input signal, which is centered on 1600 nm. In the 3D optimization, the thickness of the silicon device slab with relative 
permittivity εsi=11.68 is 0.34 µm and has air above and a silica buffer with relative permittivity εsilica=2.085 below. The 
design domain for the TopOpt is the 1.4 µm x 1.4 µm MMI block and it extends vertically through the silicon device 
slab. The designed structures are constrained to be uniform in the vertical direction to make the optimized designs 
feasible for fabrication using a conventional dry etching technique. Topology optimization is performed utilizing 3D 
finite-difference time-domain (FDTD) modeling with a 40 nm spatial resolution, a total of ~300000 mesh cells, and 
perfectly matched absorbing layers as boundary conditions using a software package developed in-house [13]. The 
optimization process is based on repeated solutions of the state and adjoint equations combined with mathematical 
programming-based design updates [14]. The TopOpt was run for 200 iteration steps on a computer cluster with 120 
Intel Xeon E5-2660 cores distributed on 6 nodes connected with InfiniBand. The total computation time was ~12 hours. 
Figure 1(d) shows the optimized and converged PBS design achieved after 200 iteration steps. Clearly, a grating-like 
structure has been introduced in the MMI block. The field plots of TE- and TM- polarized light at 1550 nm propagated 
through the optimized structure are shown in Fig. 1(e) and Fig. 1(f), respectively, and reveal that the grating-like 
structure acts on the TE-polarized light so that it is diffracted to the upper output port while TM-polarized light is 
transmitted unaffected to the lower output port. Hence, the topology optimized PBS operates as required. 

2.2 Device size 

We investigate the dependency of the PBS performance on the device size by optimizing PBSs with different lengths of 
1.0, 1.4, 1.8, 2.2, and 2.6 μm while keeping the height fixed to 1.4 μm. Here, only the length is varied as we from the 
previous section expect the optimized structures to have a grating-like structure, i.e. we are investigating the influence of 
the length of the topology-optimized grating. Figure 2 shows the normalized transmission spectra for (a) TE- / (c) TM-
polarized light in the upper/lower output port, respectively. These are calculated for the devices shown in the left of Fig. 
2 (color codes apply). Specifically, the 1.4 μm x 1.4 μm (pink) device from the previous section performs numerically in 
the 300 nm bandwidth with an insertion loss lower than 0.54 dB / 0.65 dB for TE / TM polarized light demultiplexed to 
the upper / lower output port, respectively. Figure 2(b) and 2(d) show the corresponding polarization extinction ratio 
(PER), which for the 1.4 μm x 1.4 μm (pink) PBS are better than 15 dB. By reducing the length to 1.0 μm, we see a 
considerably degradation of the performance increasing the insertion loss to ~1.1 dB and lowering the PER to ~12 dB. 
On the other hand, increasing the length of the device in steps of 0.4 μm gradually improves the performance. The 
longest device with a footprint of 2.6 μm x 1.4 μm (3.64 μm2) has an insertion loss lower than 0.3 dB / 0.5 dB for the TE 
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/ TM mode while keeping the PERs better than 19 dB / 17 dB, respectively. Limiting the operation to the C-band the 
numbers are even better with demultiplexing losses around 0.15 dB and PERs larger than 24 dB. Further investigations 
could include extending the length and height of the device.  

 
Figure 2. Topology optimized PBS designs with lengths of 1.0 μm (red), 1.4 μm (pink), 1.8 μm (orange), 2.2 μm (blue), and 
2.6 μm (green). (a, c) Normalized transmission spectra for the (a) TE- and (c) TM-polarized mode recorded in the (a) upper 
and (c) lower output port of the PBSs shown to the left (color codes apply). (b, d) The corresponding ERs. 

 

2.3 Feature size 

Inverse design engineering methods typically leads to complex and subwavelength nanostructurings of the photonic 
devices to fulfill the target objectives. In this way, the optimized structures set tough requirements to the fabrication 
procedure, which normally requires state-of-the-art electron-beam lithography and is not compatible with mass-
fabrication technologies such as deep-UV lithography. Hence, for iDE to be of practical interest for photonic integration 
in a not-so-distant future, the dependency of the device performance on the feature sizes introduced in the iDE should be 
investigated. In order to do so, we have applied TopOpt to identical PBS design problems using filters of different sizes 
[14] in the TopOpt procedure. The mesh size and the objectives are kept the same for all optimizations, which are 
applied to identical starting designs with footprints of 2.6 μm x 1.4 μm. Figure 3(a) shows the obtained designs achieved 
using filters of sizes F1=40 nm (green), F2=120 nm (blue), and F3=160 nm (red). The effect of increasing the filter size 
is clearly seen in Fig. 3(a) where features in the grating-like structure are removed when increasing the filter size. For the 
largest filter size used here, all what remains in the design are two relatively smooth and coupled waveguides. The 
normalized transmission spectra and the PERs of the PBSs are shown in Fig. 3(b) and Fig. 3(c), respectively. All three 
PBSs keep their insertion losses below 3 dB in the 200 nm bandwidth, however, the PERs drop from ~17 dB for the 
smallest 40 nm filter to ~6 dB for the largest 160 nm filter. Hence, not surprisingly, filtering out smaller features during 
the optimization while keeping the mesh and design sizes fixed results in lower performance of the PBS. This reveals the 
power that lies in letting light scatter on a sub-wavelength scale. Further investigations with respect to feature sizes will 
include enlarging the footprint of the initial design when applying larger filter sizes. 
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(a) (b) (c) 

Figure 3. Topology optimized PBS designs with length of 2.6 μm and optimized utilizing different filters sizes F1=40 nm 
(green), F2=120 nm (blue), and F3=160 nm (red). (b) Normalized transmission spectra for the (solid) TE- and (dotted) TM-
polarized mode recorded in the (solid) upper and (dotted) lower output port of the PBSs shown to the left (color codes 
apply). (c) The corresponding PERs. 

3. FABRICATION & CHARACTERIZATION 
We have fabricated the PBS design with a footprint of 1.4 μm x 1.4 μm (~2 μm2) shown in Fig. 4(a) in silicon-on-
insulator (SOI) material utilizing electron-beam lithography. The topology-optimized design was defined in an ~110 nm 
thick ZEP520A electron beam resist by a JEOL JBX-9500 electron-beam lithography system operating at 100 keV with 
a writing field of 1 mm × 1 mm. The electron beam with an estimated size of 12 nm is scanned in steps of 4 nm and 
proximity correction is applied to take backscattered electrons into account. After development, the electron beam resist 
is used as a soft mask in an inductively coupled plasma reactive ion etch utilizing SF6 and C4F8 gases to transfer the 
patterns into the top 340 nm silicon layer of a SOI wafer having a 3000 nm buffer layer of silica. Inversely tapered 
silicon ridge- and partly overlapping ~3 μm × ~3 μm SU-8 polymer-waveguides are used to improve coupling to/from 
tapered and lensed single-mode fibers. Figure 4(b) shows the scanning electron micrograph (SEM) image of the 
fabricated PBS. Comparing the designed and the fabricated PBS, we see a high quality of the fabrication, where only a 
slight smoothening of the smallest features has occurred. 
 

(a) (b) 
 

Figure 4. (a) The topology optimized design of the 1.4 μm x 1.4 μm silicon PBS. (b) SEM image of the PBS fabricated in 
silicon-on-insulator material.  

The fabricated PBS was characterized optically using a laser source tunable from 1520 nm to 1620 nm and transmission 
spectra were recorded on an optical spectrum analyzer. The polarization of the incoming light was established with an 
extinction ratio ~20-25 dB by using a polarization controller before the chip and a polarization controller and a polarizer 
after the chip similar to the procedure described in [4]. Light was coupled to/from inversely tapered waveguides on the 
chip by using tapered lensed fibers.  
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(a) (b) 

Figure 5. Measured (solid) and 3D-FDTD calculated (dotted) transmission spectra for TE (black/blue) and TM (red/green) 
polarized light in the upper (black/red) and lower (blue/green) output port. All spectra have been normalized to the 
transmission through a waveguide of similar length. (b) The corresponding PERs for TE (black) and TM (red) in the upper 
and lower output port, respectively. 

Figure 5 shows the measured spectra (solid) for (black/blue) TE-  and (red/green) TM- polarized light de-multiplexed to 
the upper (black/green) and lower (red/blue) output port, respectively. The corresponding 3D FDTD-calculated spectra 
(dotted) of the PBS are also shown and nicely predicts the measured spectra for the transmitted polarizations (black and 
red). The discrepancies between the measured and the calculated spectra for the rejected polarizations (blue and green) 
are attributed to the smoothened features in the fabricated design. For the TE / TM polarization, we experimentally find 
an insertion loss lower than ~0.82 dB / ~2.1 dB with PERs better than ~12 / ~15 dB, respectively, in the 100 nm 
bandwidth limited by the tunable laser. In the C-band, the insertion losses are lower than ~0.82 dB and the PERs are 
better than ~15 dB for both polarization modes. For comparison, the PBS in [4] with a footprint of 2.4 μm x 2.4 μm 
(5.76 μm2) and realized by the iDE method of digital nanopatterning performed experimentally with an insertion loss 
lower than ~1.55 dB and PERs better than ~8 dB in a similar bandwidth. Hence, our topology-optimized PBS device is 
more compact and experimentally performs better. 

4. SUMMARY 
In summary, we have demonstrated that the inverse design engineering method of topology optimization can be utilized 
to optimize highly efficient, all-silicon, and broadband polarization beam splitters with <4 μm2 footprints. We find a 
classical trade-off between the device size and the performance. Utilizing the inverse design method of topology 
optimization it is possible to control the size of the device e.g. to comply with the required performance of the device and 
with the required minimum device packing density in the photonic circuit. Also, we find a trade-off between the smallest 
allowed feature sizes and the performance of the device. This reveals the power that lies in letting light scatter on a sub-
wavelength scale. For purpose of experimental characterization, we fabricated a polarization beam splitter with a 
footprint of ~2 μm2 and demonstrated a demultiplexing loss lower than ~0.82 dB and an extinction ratio larger than ~15 
dB for both polarization modes in the C-band. Compared to a previous experimentally demonstrated polarization beam 
splitter our device is performing with lower loss and a higher extinction ratio in a similar bandwidth despite only taking 
up ~35% of the space. To our knowledge, our device is the best performing and most compact all-silicon polarization 
beam splitter experimentally demonstrated to date for the C-band. We reckon that a set of design rules, e.g. minimum 
transmission efficiency and extinction ratio over a certain wavelength interval should be defined before conducting 
thorough systematic investigations to claim absolute compactness of photonic devices. However, our results further 
underline the potential of topology optimization to deliver high-performing and ultra-compact designs to future 
nanophotonic circuits. 
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