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Numerical Modelling of Evaporation in A Ceramic Layer in
the Tape Casting Process

M. Jabbari∗, V.A. Jambhekar†, J.H. Hattel∗ and R. Helmig†

∗Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils
Koppels Allé, 2800 Kgs. Lyngby, Denmark.

†Department of Hydromechanics and Modelling of Hydrosystems, Institute for Modelling Hydraulic and
Environmental Systems, Universität Stuttgart, Stuttgart, Germany.

Abstract. Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of
tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free–
flow region. In order to analyze such interaction processes, a Representative Elementary Volume (REV)–scale model concept
is presented for coupling non–isothermal multi–phase compositional porous–media flow and single–phase compositional
laminar free–flow. The preliminary results show the typical expected evaporation behaviour from a porous medium initially
saturated with water, and its transport to the free–flow region according to the existent results from the literature.

Keywords: Evaporation, ceramics, free–flow, porous–media, coupling.
PACS: 81.05.Je, 02.60.Lj, 47.56.+r, 83.10.-y

INTRODUCTION

Being mainly used in the electronics industry as a forming method for ceramics, tape casting is increasingly used
in the production of numerous multilayer applications and electronic substrates, like e.g. capacitors, piezoelectric
actuators, gas sensors, etc., where high quality and low geometry tolerances are required [1, 2]. In the tape casting
process, the ceramic slurry is mostly categorized as a non–Newtonian fluid with relatively high viscosity [2, 3, 4, 5].
A summary of work published regarding the rheological classification of non–Newtonian fluids and the existence of
analytical/numerical models with focus on tape casting has been given previously by Jabbari et al. [2].

Tape casting consists of three major sub-processes which are: (1) tape casting of an aqueous (fluid) ceramic slurry
in a doctor blade configuration, (2) drying of the green tape, and (3) additional processing (which is often a sintering
process). The first and third stages have been modelled extensively with numerical methods [2, 3, 4, 5, 6] whereas the
second has remained almost unexplored numerically. An example of simple numerical simulation for the evaporation
of water based ceramics was first developed by Jabbari and Hattel [7], using a semi–coupled heat and mass transfer
model.

A tape layer can be considered as a porous medium which contains powders and liquid phases [8]. The prediction
of evaporative drying rates from porous–media remains a challenge due to the ambient conditions at the interface
(radiation, humidity, temperature, air velocity, turbulent conditions) [9, 10, 11]. Moreover, the internal porous–
medium properties lead to abrupt transitions and rich flux dynamics. The factors involved are coupled by the complex
interactions between the porous medium and the free–flow system.

Modelling such coupled systems while accounting for the respective processes in both domains is a challenging
task, especially since many of these systems are dominated by multi–phase compositional flow [9, 10, 11]. Mosthaf
et al. [12] developed a coupling concept for non–isothermal two–phase compositional flow in a porous medium
in contact with a laminar single–phase non–isothermal compositional system in the free–flow region. It is based
on existing approaches and valid on the Representative Elementary Volume (REV) scale. The employed coupling
conditions for mass, momentum and energy account for the physics at the interface and are based on flux continuity and
thermodynamic equilibrium and justified by phenomenological explanations. The resulting coupled model is flexible
with respect to the sub–domain models which are combined by clearly defined coupling conditions. It allows a detailed
description of transfer processes like, e.g. evaporation influenced by a laminar wind field.

The focus of this paper is to simulate the evaporation phenomenon in the drying of a thin ceramic layer like in e.g.
tape casting based on the models developed by Mosthaf et al. [12]. In the following, the developed model concept
consisting of sub–domain models and coupling conditions will be briefly explained, and a brief overview on the
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numerical concept and on the implementation of the coupled model into the modelling toolbox DuMux is given [13].

CONCEPTUAL MODEL

Figure 1(a) shows the model concept in which two–phase flow (gas and liquid) in the porous medium, and a single
phase (gas phase) in the free–flow region are assumed. A compositional (miscible) model is considered where each
phase consists of two components (air and water). In the gas phase, water is present in the form of vapor. The
liquid phase contains dissolved air. The gas mixture air is approximated as one component, assuming that nitrogen
and oxygen have similar properties and that all other constituents are negligible. The following processes are to be
described: transfer of heat and vapour across the interface, evaporation and condensation at the interface, vaporization/
condensation, and dissolution/degassing inside the porous medium.

To simplify the system in the free–flow region, Ωff, we assume slow flow conditions, neglect the nonlinear inertia
forces, and consider unsteady Stokes flow. Neglecting the inertia term is a simplification that is done in order to explain
the coupling concept on the basis of a comparatively simple model. In the porous medium, Ωpm, the multi–phase Darcy
law in combination with a mass balance equation for a component, the total mass balance and an energy balance are
used, see, for example, Class et al. [14]. Moreover, we assume local thermodynamic equilibrium to hold and all fluids
to be Newtonian. For simplicity of notation, the superscripts (ff) and (pm) are only applied for the quantities at the
interface, where (ff) refers to the values in the free–flow sub–domain and (pm) stands for the porous–medium side.

Here, the coupling of the two domains is achieved using the two–domain approach. The interface is assumed to
be simple in the sense that it cannot store mass, momentum or energy, and assumes continuity of fluxes and local
thermodynamic equilibrium [15]. Furthermore, the Beavers–Joseph–Saffman condition is employed in the knowledge
of its theoretical limitation to single–phase, parallel flow [16, 17].

The problem setting is illustrated in Figure 1(b) two domains Ωff and Ωpm are separated by the interface Γ =
∂Ωff ∩∂Ωpm with the outward unit normal vectors nff and npm.

(a) (b)

FIGURE 1. Model concept with a single phase in the free–flow that interacts with two fluid phases in the porous medium.

NUMERICAL MODELLING

The control–volume finite–element method (CVFEM or box method) is used for the discretization of both sub–
domains Ωff and Ωpm [18, 19] together with an implicit Euler time discretization. Full details of the discretization
scheme, its definition as well as the stabilization technique to the continuity equation are given in depth by Baber et
al. [9].

The pressure of the gas phase pg, the saturation of the liquid phase Sl and the temperature T are chosen to be the
primary variables in the porous medium Ωpm. However, due to appearance and disappearance of the liquid phase, a
switch of primary–variable [14] has been used similar to that from Baber et al. [9]. In the free–flow domain Ωff, the
pressure of the gas phase pg, the mass fraction of water in the gas phase Xw

g , the velocity of the gas phase vg and the
temperature T are chosen as primary variables.

The implementation of the numerical scheme has been conducted in the modelling toolbox DuMux, which is a free
and open–source simulator for flow and transport processes in porous–media, based on the Distributed and Unified
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Numerics Environment (DUNE) [20]. The coupled problem (free–flow domain, porous–medium domain and interface)
is written in the following operator form

∂M(u)
∂ t

−∇ ·F(u) = Q(u) (1)

where u =
(

pff
g ,X

w,ff
g ,vff

g ,T
ff, ppm

g ,Spm
l orXw,pm

g ,T pm
)

is the solution vector, M(u) is the storage, F(u) the flux and

Q(u) the source/sink term.
The nonlinear algebraic system at each time step is treated via a standard Newton solver, which is a stable and robust

scheme, as follows: (
∂R
∂u

)
n+1,m︸ ︷︷ ︸

J(un+1,m)

(
un+1,m −un+1,m−1

)
︸ ︷︷ ︸

Δu

=−R
(
un+1,m) (2)

where J
(
un+1,m

)
is the Jacobi matrix calculated by numerical differentiation, Δu is the correction to the primary

variables u, and R
(
un+1,m

)
is the residuum at time level n+ 1 and iteration m. The linear problem at each Newton

iteration step is solved using the direct linear solver SuperLU [21], and for the time integration, a fully implicit Euler
scheme with a heuristic time–step control based on the convergence rate of the Newton solver is used [9, 10, 11, 12, 22].

RESULTS

A two–dimensional domain is chosen for simulating the evaporation, which is illustrated in Figure 2. The tape
layer with the dimension of x× y = 0.01m× 0.005m is assumed to be a fully water–saturated porous medium that
is closed on all other sides with a relatively dry air blowing horizontally over the surface (yinterface = 0.005m). All
boundary types are also shown in Figure 2, and as seen a graded mesh is employed that becomes finer towards the
interface. In this study the gravitational force (g) is neglected in the free–flow region, and for the porous domain
an isotropic permeability (K = 3 × 10−10) with a constant porosity (φ = 0.4) is assumed. The initial values of

pff
g = ppm

g = 1×105,Xw,ff
g = 0.008,T ff = T pm = 298.15K, and Spm

w = 0.98

FIGURE 2. Model setup and grid structure.

A parabolic velocity profile with a maximum velocity of vmax is chosen in the left boundary for the free–flow, vx =
4×vmax

(yff
max−yff

min)
2

(
y− yff

min

)(
y− yff

max

)
, and here for the reference case vmax = 0.1m/s, yff

max = 0.01m, and yff
min = 0.005m.

Numerical results of spatial and temporal evolution for the saturation of water in the porous–media (Sw) as well as

mass fraction of vapour in the gas phase (Xw,ff
g ) are shown in Figure 3. The results are in a good agreement with the

ones presented in the similar studies [9, 10, 11, 12, 22]. As seen from Figure 3, during the evaporation process, the
saturation of the water in the porous medium is decreasing by time. Hence, the mass fraction of vapour in the free–flow
(especially in the interface region) is increased. However, at later times in the process the mass fraction of vapour in
the free–flow is decreased, since the porous region is desaturated already.
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FIGURE 3. Evolution of water saturation in the porous–media and mass fraction of vapour in the free–flow region after (a) 7
[min], (b) 27 [min], and (c) 43 [min].

CONCLUSIONS

In this work a fully coupled model to describe the interaction between the porous–media and the free–flow for
evaporation–driven transport in drying of a ceramic layer is presented. The model concept is based on the two–domain
approach, where a non–isothermal two–phase compositional model is applied in the porous–media sub–domain and
single–phase compositional model is used in the free–flow sub–domain. A simple interface is employed which can–
not store mass, momentum and energy. The coupling conditions accounts for mass, momentum and energy exchange
between the sub–domains and assures continuity of fluxes. The model is implemented in the open source modelling
framework DuMux [13]. The model depicts the evaporation process well [7] and it is in a good agreement with the
ones presented in the similar studies [9, 10, 11, 12, 22].
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