
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Population Genetic Structure of Listeria monocytogenes Strains as Determined by
Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing

Henri, Clémentine; Félix, Benjamin; Guillier, Laurent; Leekitcharoenphon, Pimlapas; Michelon, Damien;
Mariet, Jean-François; Aarestrup, Frank Møller; Mistou, Michel-Yves; Hendriksen, Rene S.; Roussel,
Sophie
Published in:
Applied and Environmental Microbiology

Link to article, DOI:
10.1128/AEM.00583-16

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Henri, C., Félix, B., Guillier, L., Leekitcharoenphon, P., Michelon, D., Mariet, J-F., ... Roussel, S. (2016).
Population Genetic Structure of Listeria monocytogenes Strains as Determined by Pulsed-Field Gel
Electrophoresis and Multilocus Sequence Typing. Applied and Environmental Microbiology, 82(18), 5720-5728.
DOI: 10.1128/AEM.00583-16

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/83999732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1128/AEM.00583-16
http://orbit.dtu.dk/en/publications/population-genetic-structure-of-listeria-monocytogenes-strains-as-determined-by-pulsedfield-gel-electrophoresis-and-multilocus-sequence-typing(c95516d6-2d55-40b7-81e0-b1e3ed6d60c0).html


Population Genetic Structure of Listeria monocytogenes Strains as
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ABSTRACT

Listeria monocytogenes is a ubiquitous bacterium that may cause the foodborne illness listeriosis. Only a small amount of data
about the population genetic structure of strains isolated from food is available. This study aimed to provide an accurate view of
the L. monocytogenes food strain population in France. From 1999 to 2014, 1,894 L. monocytogenes strains were isolated from
food at the French National Reference Laboratory for L. monocytogenes and classified according to the five risk food matrices
defined by the European Food Safety Authority (EFSA). A total of 396 strains were selected on the basis of different pulsed-field
gel electrophoresis (PFGE) clusters, serotypes, and strain origins and typed by multilocus sequence typing (MLST), and the
MLST results were supplemented with MLST data available from Institut Pasteur, representing human and additional food
strains from France. The distribution of sequence types (STs) was compared between food and clinical strains on a panel of 675
strains. High congruence between PFGE and MLST was found. Out of 73 PFGE clusters, the two most prevalent corresponded to
ST9 and ST121. Using original statistical analysis, we demonstrated that (i) there was not a clear association between ST9 and
ST121 and the food matrices, (ii) serotype IIc, ST8, and ST4 were associated with meat products, and (iii) ST13 was associated
with dairy products. Of the two major STs, ST121 was the ST that included the fewest clinical strains, which might indicate lower
virulence. This observation may be directly relevant for refining risk analysis models for the better management of food safety.

IMPORTANCE

This study showed a very useful backward compatibility between PFGE and MLST for surveillance. The results enabled better
understanding of the population structure of L. monocytogenes strains isolated from food and management of the health risks
associated with L. monocytogenes food strains. Moreover, this work provided an accurate view of L. monocytogenes strain popu-
lations associated with specific food matrices. We clearly showed that some STs were associated with food matrices, such as
meat, meat products, and dairy products. We opened the way to source attribution modeling in order to quantify the relative
importance of the main food matrices.

Listeria monocytogenes is a ubiquitous Gram-positive bacterium
that is responsible for listeriosis. This bacterium may cause

severe symptoms, such as septicemia and meningitis, in the im-
munocompromised and elderly populations as well as in pregnant
women, who may give birth to stillborn infants or severely in-
fected newborns (1). In France, morbidity related to listeriosis is
low, with an incidence of 5.6 cases per million inhabitants in 2013.
However, the mortality related to listeriosis is high, leading to a
fatal outcome in up to 20% to 30% (2). The most common trans-
mission route in humans occurs via consumption of food con-
taminated during manufacturing, postprocessing, or storage.

L. monocytogenes has been divided into four lineages: I, II, III,
and IV (3). Although 13 serotypes have been described, the ma-
jority of foodborne strains causing human infections belong to
serotypes 4b, 1/2b (lineage I), 1/2a, and 1/2c (lineage II) (4). Mo-
lecular methods have been developed for use in the molecular
surveillance of L. monocytogenes. Doumith et al. (5) described a
multiplex PCR based on the presence or absence of four genetic
markers, which cluster the strains into five molecular serogroups.
This method has limited discriminatory power. Pulsed-field gel
electrophoresis (PFGE) has been widely used for the molecular
typing of L. monocytogenes. Although it is highly discriminatory, it

is a time-consuming and labor-intensive method. Whole-genome
sequencing (WGS) shows great promise for typing L. monocyto-
genes strains and has been used for the investigation of outbreaks
(http://www.ssi.dk/English/News/News/2014/2014_08_listeria
.aspx) (6). Multilocus sequence typing (MLST), which detects
variations in the internal fragments of seven housekeeping genes
(7), can also be deduced from WGS results. Each allele is assigned
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a number, the sequence type (ST) of a strain is determined by the
combination of alleles, and clonal complexes (CCs) are designated
clusters of STs that share at least six alleles.

In France, PFGE remains an invaluable tool for the routine
surveillance of food and clinical strains (8). The French Agency for
Food, Environmental and Occupational Health & Safety (Anses)
is designated the French National Reference Laboratory (NRL)
and the European Union Reference Laboratory (EURL) for L.
monocytogenes. In collaboration with partners, it has established
large collections of French and European food and clinical strains
and molecular PFGE typing databases (9). In the literature, MLST
studies have indicated that a few important clonal complexes ac-
count for the majority of listeriosis outbreaks and sporadic cases
in France (7, 10, 11). At this time, knowledge of the molecular
determinants leading to the prevalence of these clonal complexes
in human infections remains limited. Regarding strains isolated
from food, few studies are available on the genetic diversity of
French strains. Most literature refers to PFGE typing studies, in-
cluding strains isolated within the same specific food product
types, such as cold smoked salmon (12), pork (13), or eggs (14).
Only one study (15) compared the diversity between three differ-
ent food matrices. Nevertheless, those investigations focused on a
small panel of about 100 strains. To date, in France, no data are
available on a large and diverse panel of strains.

The purpose of this study was to provide an overview of the
population structure of L. monocytogenes strains isolated over the
last 20 years in France. This should enable better management and
understanding of food-related health risks. More specifically, the
genetic diversity of L. monocytogenes strains originating from
Anses was assessed by PFGE, and this allowed for the selection of a
subset of strains for further analysis. This subset was chosen on the
basis of different PFGE clusters, molecular serotypes, and strain
origins. This panel, representing the genetic diversity of L. mono-
cytogenes strains of food origin, was typed by MLST. The data were
supplemented with MLST data available from Institut Pasteur,
representing human and food strains from France. The distribu-
tion of sequence types was then compared between clinical and
food strains.

MATERIALS AND METHODS
Description of the Anses PFGE database. The Anses molecular database
contains 1,894 L. monocytogenes strains collected over the last 20 years and
centralizes detailed epidemiological information (sampling stage, con-
text, source, food matrix, and food product) linked with genotypic (sero-
typing and PFGE) data for all of the strains.

The majority of the strains originated from diagnostic food laborato-
ries and were isolated in different types of retailers and from various
regions in France, covering a wide geographical area. They were collected
between 1999 and 2014 based on self-checks or official sampling carried
out by competent authorities (national control/monitoring programs and
surveys). The database included 34 strains labeled TS (testing study) (16)
(see Table S1 in the supplemental material) that were from the World
Health Organization (WHO) international multicenter L. monocytogenes
typing study. The database also contained strains from collaborative re-
search projects with national and European partner laboratories, such as
Ifip (French Pig and Pork Institute, France), INRA (French National In-
stitute for Agricultural Research, France), PHE (Public Health England,
United Kingdom), and SSI (Statens Serum Institute, Denmark). These
projects allowed us to examine strains isolated from clinical cases, from
animals, and from the natural environment. Finally, two fully sequenced
reference strains, CLIP 80459 (17) and EGD-e (18), were also included in
the database.

Molecular serotyping. All of the 1,894 L. monocytogenes strains were
typed according to the Anses serotyping protocol, which is based on the
amplification of the following target genes: prs, lmo0737, lmo1118, open
reading frame 2110 (ORF2110), ORF2819, and prfA (species specific) de-
scribed by Doumith et al. (5). The protocol clusters strains into five mo-
lecular serogroups, IIa (1/2a, 3a), IIb (1/2b, 3b, 7), IIc (1/2c, 3c), IVa (4a,
4c), and IVb (4b, 4ab, 4d, 4e), and the described variant profile of molec-
ular serogroup IVb (IVb-v1) was characterized by the amplification of a
supplementary lmo0737 gene fragment (19).

PFGE. All of the 1,894 L. monocytogenes strains were typed and inter-
preted by PFGE using the protocol previously described in Félix et al. (20).
For each of the strains, a combined PFGE pulsotype was defined based on
the ApaI pulsotype/AscI pulsotype. The ApaI and AscI pulsotypes were
considered different if there was at least one different band. Furthermore,
each ApaI and AscI pulsotype was arbitrarily assigned to a pulsotype num-
ber (21). Pulsotype clustering was composed of profiles with 80% similarity
(unweighted pair group method with arithmetic average [UPGMA]), with
Dice’s coefficient, tolerance, and optimization set at 1%. The pulsotype
clustering and the number of strains in each cluster were established ac-
cording to PFGE dendrogram clustering using a BioNumerics clustering
script, and a numerical code was assigned to each cluster (21).

MLST. (i) Selection of an MLST data panel representative of the di-
versity of L. monocytogenes in France. From the Anses PFGE database,
15% of the strains from each PFGE cluster were selected for an MLST
preliminary strain panel (396 strains) to reflect the diversity observed
within the PFGE clusters and molecular serotypes. These data were sup-
plemented with MLST results available in the articles of Institut Pasteur
(7, 10, 11) from 279 strains. These strains were isolated in France between
1950 and 2006 and comprised 220 clinical strains, 17 food strains, 11
strains from the natural environment, 5 animal strains, and 25 strains of
unknown origin. The entire MLST data set was subsequently compared
with a panel of 675 strains in total, including 368 food strains and 241
clinical strains.

(ii) MLST typing. The Anses strain panel (396 strains) was typed by
MLST. Of the 396 strains, DNA extractions for 298 were performed using
an InstaGene Matrix kit from Bio-Rad (Bio-Rad Laboratories, CA, USA)
to determine the MLST. MLST was achieved using two different sets of
primers. Of the 298 strains, 130 were initially typed using the set of
primers advised by the Listeria MLST database (http://bigsdb.pasteur.fr
/listeria/primers_used.html), as the loci were too close to the landmark for
most allelic sequences. The rest of the strains were typed by primers de-
signed by Haase et al. (22) to ensure the full length of the sequences in each
direction. For the PCR, initial denaturation at 94°C for 4 min was followed
by 35 cycles of denaturation at 94°C for 30 s, annealing at 50°C for 30 s,
and extension at 72°C for 2 min followed by a final extension step at 72°C
for 10 min. The annealing temperature for the lhkA gene was set at 48°C
instead of 50°C. PCR products were then purified and sequenced at EU-
ROFINS (Eurofins GSC Lux SARL, Luxembourg).

The sequence type (ST) or allele profile was assigned to each strain
based on the sequences of seven housekeeping genes described by Ragon
et al. (7). Each new ST combination was sent for validation to the Listeria
MLST database (http://bigsdb.pasteur.fr/listeria/primers_used.html).

The DNA of the remaining 98 strains was whole-genome sequenced
using the Illumina HiSeq platform at the Wellcome Trust Centre for Hu-
man Genetics (Oxford, United Kingdom). DNA extraction was per-
formed using an Invitrogen Easy-DNA genomic DNA (gDNA) purifica-
tion kit (Invitrogen, Carlsbad, CA, USA). The raw reads were assembled
using the Assembler pipeline (version 1.0) available from the Center for
Genomic Epidemiology (CGE) (http://cge.cbs.dtu.dk/services/all.php),
which is based on the Velvet algorithms for de novo short-read assembly.
A complete list of genomic sequence data is available in Table S1 in the
supplemental material. The assembled sequences were analyzed to iden-
tify the MLST for Listeria monocytogenes strains, and the minimum span-
ning tree (MST) was built using BioNumerics 7.5 software.

Population Structure of Listeria monocytogenes Strains
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Statistical analysis. (i) PFGE ID. The ability of PFGE to discriminate
unrelated strains was determined for each of the food matrices. The Simp-
son index of diversity (ID) (23) was calculated on the basis of the PFGE
results obtained from epidemiologically unrelated strains in each food
matrix.

(ii) Association between food matrices and typing data. The Gini
coefficient, a measure of statistical dispersion, was calculated to evaluate
association between food matrices and molecular serotypes/PFGE clus-
ters/STs using the ineq package in R (24). This coefficient makes it possi-
ble to quantify molecular serotype/PFGE cluster or ST distribution
among the strains in each food matrix. Values of the coefficient ranged
from 0 (completely equal distribution such that each molecular serotype/
PFGE cluster or ST is represented evenly among strains in the matrix) to 1
(completely unequal distribution where molecular serotype/PFGE cluster
or ST represents all of the strains in the matrix). A Gini coefficient that is
smaller than 0.4 indicates no association between molecular serotype/
PFGE cluster or ST and food type matrices, values between 0.4 and 0.6
indicate moderate association, and values greater than 0.6 reveal un-
equal dispersion of molecular serotype/PFGE cluster or ST within food
matrices.

(iii) Congruence between MLST and PFGE. PFGE data were not
available for the 279 strains from Institut Pasteur. This is why MLST and
PFGE data were compared only to the MLST subset from Anses (396
strains). Congruence was assessed using the adjusted Rand coefficient (25,
26). This coefficient (i) indicates the probability that a pair of strains
which are assigned to the same type by one typing method are identically
typed by another method, (ii) indicates the probability that a pair of
strains which are assigned to two types by one typing method are differ-
ently typed by another method, and (iii) corrects the typing concordance
for chance agreement, avoiding the overestimation of congruence be-
tween typing methods.

For a more detailed comparison, the adjusted Wallace (AW) coeffi-
cient (25) was assessed. The AW coefficient indicates the probability that
pairs of strains which are assigned to the same type by one typing method
are identically typed by another method and corrects the typing concor-
dance for chance agreement. The AW coefficient is directional, i.e., given
a standard method, it indicates the probability of two strains having the
same type by the standard method also sharing the same type by the
compared method. Statistical analyses were performed using a previously
developed script (25, 26). Ninety-five percent confidence intervals were
also calculated for the two coefficients.

RESULTS
Distribution of 1,894 strains according to origin and molecular
serotype. The 1,894 strains had four different origins: food and
food processing environments (FPEs), humans, animals, and nat-
ural environments (see Table S2 in the supplemental material).

The panel included a very large proportion of strains from food
and FPEs (n � 1,698) (Table 1). The most prevalent food matrices
were meat and meat products (n � 687), milk and milk products
(n � 263), and fish and fishery products (n � 199) (Table 1).

Of 1,698 food and FPE strains, the molecular serotype IIa was
predominant in all food matrices, representing 55% of the panel.
However, the potential of L. monocytogenes to contaminate food is
not restricted to this molecular serotype, as the second most abun-
dant is IVb (19%) (Table 1). Gini coefficient values calculated on
the panel of 1,698 strains indicated that the three molecular sero-
types IIa, IIb, and IVb were not associated with a particular food
matrix and that, nevertheless, molecular serotype IIc was associ-
ated with the meat and meat products matrix (Fig. 1-A).

Genetic diversity of the 1,894 strains tested by PFGE. The
1,894 strains were divided into 73 PFGE clusters (see Table S3 in
the supplemental material), with 19 main clusters containing at
least 20 strains (Table 2). However, the repartition of the PFGE
clusters was heterogeneous. We observed that 54 clusters con-
tained fewer than 20 strains and represented less than 13% of the
panel, while two clusters, 34 and 6, were considered to be of high
abundance as they represented 21.2% and 13.8% of the panel,
respectively (Table 2; see also Table S3).

We noted that cluster 34 included 401 strains and contained
mainly food and FPE strains (n � 398) (Table 2). Except for two
strains of serotype IIa and IIc, all of the PFGE clusters were mo-
lecular serotype specific (see Table S4 in the supplemental mate-
rial).

The ability of PFGE to discriminate unrelated strains within
the same matrix was calculated by the Simpson’s index of diversity
(ID). The IDs were similar between the different food matrices
and were high, ranging from 0.987 to 0.997 (see Table S5 in the
supplemental material), showing that each food matrix contained
many clusters and suggesting a great diversity of L. monocytogenes
strains in the five food matrices.

Nonetheless, we were also interested to assess whether a PFGE
cluster could be associated with a food matrix. Figure 1B repre-
sented the Gini coefficient for the 19 main PFGE clusters. These
PFGE clusters represented more than 80% of our panel of food
and FPE strains (Table 2). With values of the Gini coefficient be-
low 0.4, four PFGE clusters were uniformly distributed in the five
different food matrices (Fig. 1B). This means that these four PFGE
clusters were not associated with a particular food matrix. How-
ever, one cluster was associated with a particular food matrix:

TABLE 1 Distribution of the 1,698 food strains according to molecular serotype and food matrix

Lineage
Molecular
serotype

No. of strains
in the total
panel

No. (%) of food
and FPE strains

No. (%) of strains according to food matrix

FPE
Meat and meat
products

Milk and milk
products

Fish and fishery
products

Processed food
products
combining
several foods

Fruits, vegetables,
cereals, and herbs

Undetermined
food matrices

II IIa 998 939 (55.3) 346 (36.8) 144 (15.3) 135 (14.4) 109 (11.6) 36 (3,8) 50 (5,3) 118 (12,6)
IIc 260 247 (14,5) 159 (64,4) 9 (3,6) 10 (4,0) 22 (8,9) 3 (1,2) 11 (4,5) 33 (13,4)

I IIb 212 179 (10.5) 64 (35.8) 33 (18.4) 26 (14.5) 19 (10.6) 4 (2.2) 9 (5.0) 24 (13.4)
IVb 416 330 (19.4) 116 (35.2) 77 (23.3) 28 (8.5) 37 (11.2) 13 (3.9) 26 (7.9) 34 (10.3)
IVb-variant 4 3 (0.2) 2 (66.7) 1 (33.3)

III IVa 4

Total 1,894 1,698 (89.7) 687 (40.5) 263 (15.5) 199 (11.7) 187 (11.0) 57 (3.4) 96 (5.7) 209 (12.3)
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cluster 33 was associated with milk and milk products (Fig. 1B and
Table 2).

MLST and congruence between STs and PFGE clusters. From
the Anses PFGE database, we selected a preliminary strain panel
(396 strains) to reflect the diversity observed within the PFGE
clusters, molecular serotypes, the origins of the strains, and food

matrices. These strains were then typed by MLST. The 396 strains
were distributed into 73 different STs, including 34 singletons,
28 STs that contained between two and nine strains, and 11 major
STs containing at least 10 strains (ST121, ST9, ST1, ST2, ST5,
ST31, ST8, ST6, ST4, ST13, and ST59) (see Table S6 in the supple-
mental material). Seven new STs (ST769, ST770, ST771, ST772,

FIG 1 Gini coefficient values calculated on the panel of 1,698 L. monocytogenes food and food processing environment strains between food matrices and
molecular serotypes (A) and PFGE clusters (B). Vertical scale indicates the number of strains in each molecular serotype (A) and PFGE cluster (B). Each number
represents a PFGE cluster. Values of the Gini coefficient ranged from 0 (completely equal distribution, such that each serotype/cluster is represented evenly
among strains in the matrix) to 1 (completely unequal distribution where one serotype/cluster represents all of the strains in the matrix). A Gini coefficient that
is smaller than 0.4 indicates no association between serotype/profile and food type matrices, values between 0.4 and 0.6 indicate moderate association, and values
greater than 0.6 reveal unequal dispersion of serotype/cluster within food matrices.
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ST773, ST774, and ST775) were also observed (see Table S6 in the
supplemental material).

Quantitative determination of concordance of the two meth-
ods was calculated based on those 396 strains. Congruence be-
tween the two methods was found to be high (adjusted Rand index
of 0.843), with a confidence interval (CI) between 0.788 and 0.900.
The AW PFGE to MLST was found to be 0.853 (CI of between
0.798 and 0.907), indicating that partitions defined by MLST may
have been predicted from the results of PFGE clusters at 80%
similarity with 85% accuracy.

The STs obtained and PFGE clusters were compared for this
panel of 396 Anses strains (see Table S6 in the supplemental ma-
terial). One of the two prevalent STs, ST9, corresponded to PFGE
cluster 6 for 40 of the 45 strains typed by MLST. Of 71 strains
included in the other major ST, ST121, 62 strains displayed the
same PFGE cluster, cluster 34 (see Table S6 in the supplemental
material).

Genetic diversity compared between food, FPE, and clinical
strains by MLST. The MLST data from the Anses strain panel
were compared with the MLST results available in the articles of
Institut Pasteur from 279 strains. The whole MLST data set in-
cluded a total panel of 675 strains (including 368 food strains and
241 clinical strains) (see Table S7 in the supplemental material).
The 675 strains were separated into 130 distinct STs and 46 CCs
(see Table S7) correlating with L. monocytogenes genetic lineages I,
II, and III (Fig. 2). In addition, the two reference strains complied
with the expected genetic lineages. We observed that the four
strains ST69, ST130, ST201, and ST769, belonging to lineage III,
were split from four other strains, ST131, ST74, ST71, and ST203,
of the same lineage (Fig. 2).

Among the 130 STs, we observed 77 singletons, 38 STs contain-

ing between two and nine strains, and 15 main STs containing
more than 10 strains. Those 15 STs included clinical and food/FPE
strains. The two major STs were ST9 (72 strains including 19 clin-
ical strains) and ST121 (71 strains including three clinical strains).
We mentioned that ST121 contained the fewest clinical strains
(Fig. 2; see also Table S7 in the supplemental material).

To quantify this potential preferential ST association, we per-
formed a statistical analysis. Regarding the food matrices, Fig. 3
represented the Gini coefficients for the 10 STs that included at
least 10 strains isolated from food products. Three STs were asso-
ciated with food matrices, ST13 with dairy products and ST8 and
ST4 with meat products. With Gini coefficient values below 0.4,
three STs, ST121, ST2, and ST1, were uniformly distributed in the
five different food matrices (Fig. 3).

While ST13 did not include any human strains, ST1 included
more than 15% of human strains. ST4 and ST8 included 7% and
4% of human strains, respectively, and ST121 included 2% of
human strains.

STs with low Gini coefficients contributed the most to con-
sumer exposure to L. monocytogenes, as these STs were found in
almost every food categories. Yet, high exposure for some STs was
not associated with a strong contribution in human listeriosis
cases (Fig. 3). Strains belonging to ST121, while being the most
present ST in number and diversity of food matrices, represented
less than 1% of clinical cases (Fig. 3). This indicated that implica-
tion in listeriosis cases is underpinned by other factors than expo-
sure, most likely virulence factors.

Consequently, the high contributions to listeriosis cases of
ST1, ST2, ST9, ST4, and ST5 may be explained by different causes.
For strains of ST2 and ST9, their presence in numbers in almost all
food categories may explain their large contribution to listeriosis

TABLE 2 Distribution of the 19 main PFGE clusters according to food matrix

PFGE group
no.

No. of strains
in the total
panel

No. (%) of food
and FPE strains

No. (%) of strains according to food matrix

FPE
Meat and meat
products

Milk and milk
products

Fish and fishery
products

Processed food
products
combining
several foods

Fruits, vegetables,
cereals, and herbs

Undetermined
food matrices

34 401 398 (99.3) 168 (42.2) 9 (2.3) 71 (17.9) 72 (18.1) 11 (2.8) 9 (2.3) 58 (14.6)
6 262 249 (95.0) 158 (63.5) 11 (4.4) 7 (2.8) 22 (8.8) 3 (1.2) 19 (7.6) 29 (11.6)
15 128 111 (86.7) 59 (53.2) 10 (9.0) 8 (7.2) 9 (8.1) 9 (8.1) 7 (6.3) 9 (8.1)
51 121 93 (76.9) 38 (40.9) 5 (5.4) 16 (17.2) 13 (14.0) 2 (2.1) 12 (12.9) 7 (7.5)
54 117 85 (72.6) 28 (32.9) 21 (24.7) 6 (7.1) 10 (11.8) 4 (4.7) 8 (9.4) 8 (9.4)
52 92 78 (84.8) 26 (33.3) 26 (33.3) 3 (3.8) 7 (9.0) 4 (5.1) 4 (5.1) 8 (10.3)
63 92 86 (93.5) 37 (43.0) 9 (10.5) 8 (9.3) 10 (11.6) 3 (3.5) 4 (4.7) 15 (17.4)
53 65 56 (86.2) 16 (28.6) 21 (37.5) 6 (10.7) 2 (3.6) 1 (1.8) 10 (17.9)
61 61 48 (78.7) 18 (37.5) 10 (20.8) 4 (8.3) 7 (14.6) 2 (4.2) 7 (14.6)
23 47 43 (91.5) 14 (32.6) 4 (9.3) 2 (4.7) 5 (11.6) 6 (13.9) 1 (2.3) 11 (25.6)
9 39 35 (89.7) 12 (34.3) 15 (42.9) 1 (2.8) 4 (11.4) 3 (8.6)
43 36 33 (91.7) 12 (36.4) 6 (18.2) 7 (21.2) 3 (9.1) 3 (9.1) 2 (6.6)
60 34 24 (70.6) 4 (16.7) 6 (25) 11 (45.8) 1 (4.2) 1 (4.2) 1 (4.1)
16 33 32 (97.0) 8 (25) 1 (3.1) 13 (40.6) 4 (12.5) 4 (12.5) 2 (6.25)
18 31 23 (74.2) 3 (13.0) 5 (21.7) 5 (21.7) 1 (4.3) 1 (4.3) 1 (4.3) 7 (30.4)
19 24 24 (100) 9 (37.5) 5 (20.8) 5 (20.8) 5 (20.8)
20 23 22 (95.7) 7 (31.8) 3 (13.6) 3 (13.6) 1 (4.5) 7 (31.8) 1 (4.5)
32 23 22 (95.7) 2 (9.1) 6 (27.3) 5 (22.7) 2 (9.1) 1 (4.5) 1 (4.5) 5 (22.7)
33 23 23 (100) 2 (8.7) 16 (69.6) 1 (4.3) 4 (17.4)
35 23 18 (78.3) 7 (38.9) 2 (11.1) 5 (27.8) 2 (11.1) 2 (11.1)
Subtotal 19

clusters
1,652 1,485 621 189 174 175 51 88 187

Others clusters
remaining

242 213 66 74 25 12 6 8 22

Strain total 1,894 1,698 687 263 199 187 57 96 209
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cases. Strains in ST1, which represent lower exposure in number
than ST2 or ST9, contribute more than these STs to clinical cases,
indicating the higher virulence of these strains. For ST4 and ST5,
their relatively high Gini coefficients indicate a lower exposure to
these STs whereas their contribution to clinical cases is important.
As for ST1, this ST may present a higher virulence than other STs.

DISCUSSION

This study describes the structure of the L. monocytogenes strain
population from the different food production sectors in France.
Of the total strain panel (1,894), more than half (52.4%) were of
molecular serotype IIa. This result was consistent with previous
studies (27, 28). The most frequent genetic PFGE groups observed
here were lineage II groups, corresponding to ST9 and ST121.
Previously, MLST analysis performed on smaller collections of
food strains in Italy, Spain, and Switzerland also showed the pre-
dominance of ST9 and ST121 (27–29, 30).

Here, we classified the strains according to the five main food
matrices defined by the European Food Safety Authority (EFSA).
This classification takes into account the risk food matrix known
for L. monocytogenes in Europe (9). The present work provides
data on the distributions of genetic groups, such as PFGE clusters
or STs, in the different food matrices. Through the combination of
three different typing methods associated with original statistical
analysis, this study contributes to an accurate view of the L. mono-
cytogenes population associated with specific food matrices. In-
deed, we clearly showed that (i) there was no association between

the three sequence types ST121, ST2, and ST1 and the food ma-
trices, (ii) molecular serotype IIc, ST8, and ST4 were associated
with meat and meat products, and (iii) ST13 was associated with
milk and milk products. These results suggest that the presence of
genetic markers associated with these two risk food matrices may
be identified by future comparative genomic analysis. This work
also opens the way to source attribution modeling in order to
quantify the relative importance of the main food matrices.

To compare the genetic structures of L. monocytogenes strains
isolated from food with those of clinical strains, we built a large
and balanced strain data set. The analysis of the structures of 675
L. monocytogenes strains from France, including clinical and food
strains, revealed two prevalent STs: ST9 and ST121. In the present
study, ST9 corresponded to both clinical and food strains. In con-
trast, out of the main STs obtained here, ST121 included the least
clinical strains. We then suggest that ST121 strains may have ge-
netic characteristics that drive them to be successful in food and
the food processing environment but that they are less pathogenic
for humans. Similar conclusions regarding ST9 and ST121 were
recently drawn from MLST analysis performed on a large collec-
tion of food and clinical isolates (4).

ST121 strains have previously been isolated from food and
food processing facilities over several years in processing plants in
Denmark (31), Austria, and Belgium (32). Holch et al. (31) inves-
tigated two ST121 strains isolated from two different Danish fish
processors using WGS. The genomic and proteomic comparisons
indicated that the two strains were almost identical, with a pre-

FIG 2 Minimum spanning tree of 675 L. monocytogenes strains according to their ST. Each circle represents a ST, and ST number is indicated beside the circle.
Circle size is proportional to the number of isolates. Each slice in the circle represents one strain. The distance between circles represents genetic divergence. Thick
solid lines represent one allele difference, thin solid lines represent two alleles, dashed lines represent three alleles, dotted lines represent four alleles, and, finally,
the absence of a line means more than four alleles. Strain origins are indicated by color code. Blue, strains isolated from food; red, strains from clinical cases; green,
strains from the natural environment; yellow, strains from animals.

FIG 3 Gini coefficient values calculated on the food strains of the 675-strain panel between food matrices and the STs. The vertical scale indicates the percentage
of human strains within the same ST. The size of the circle is proportional to the relative number of food strains in each ST. Values of the Gini coefficient ranged
from 0 (completely equal distribution, such that each ST is represented evenly among strains in the matrix) to 1 (completely unequal distribution where one ST
represents all the strains in the matrix). A Gini coefficient that is smaller than 0.4 indicates no association between ST and food matrices, values between 0.4 and
0.6 indicate moderate association, and values greater than 0.6 reveal unequal dispersion of ST within food matrices.
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dicted protein homology of 99.94%, differing at only two pro-
teins. These strains were distinguished by two genome deletions:
one of 2,472 bp that typically contained the gene inlF and the other
of 3,017 bp that included three genes potentially related to bacte-
riocin production and transport. By PCR, Hein et al. (32) showed
that an ST121 strain had a deletion in the survival islet SSI-1.
Transcriptional analysis demonstrated that the islet genes are in-
ternally regulated by Lmo0445, suggesting that this regulator may
contribute to the capacity of L. monocytogenes to respond and
adapt to the various environmental conditions encountered either
in foods or within the host (33). Except these studies, few data are
available on the genetic makeup of the ST121 strains. Investiga-
tions comparing the genomes of ST121 strains with those of
strains from ST lineage II, which is known as being responsible for
listeriosis, may reveal genetic features and allow us to investigate
the genetic basis of the hypovirulence potential of L. monocyto-
genes food strains.

STs with low Gini coefficients, such as ST121, ST2, and ST1,
were found in almost every food category. A hypothesis is that
these STs may contribute the most to the consumer exposure to L.
monocytogenes. For ST1 and ST2 strains, it may explain their large
contribution to listeriosis cases. However, strains belonging to
ST121, while being the most present ST in number and diversity of
food matrices, represented less than 1% of clinical case. This indi-
cated that, for ST121 strains, implication in listeriosis cases may be
underpinned by other factors than exposure, most likely virulence
factors. Consequently, the high contributions to listeriosis cases of
ST1 may be explained by other causes, i.e., strains in ST1 may
present a higher virulence than those in other STs.

The virulence is known to differ greatly between L. monocyto-
genes strains (34, 35). Probability of listeriosis associated with the
ingestion of a few cells can be 1,000 times greater with one strain
than another (35). In the same way, in quantitative exposure as-
sessment of L. monocytogenes, the variability of behavior in the
food chain is usually incorporated (36) but is not related to sub-
types. Quantitative risk assessments would certainly reduce the
uncertainty associated with risk estimates by taking into account
subtyping in exposure assessment and dose response.

Regarding the typing methods, in France and Europe, many
national reference laboratories and national public health refer-
ence laboratories (NPHRLs) continue to use PFGE for routine
surveillance and outbreak investigations (8, 37). Given the well-
known drawbacks of PFGE, MLST can be used as a first-line
method for routine surveillance of food and clinical L. monocyto-
genes strains. In this study, high congruence values between PFGE
and MLST were obtained on the panel of 396 strains tested by the
two methods. The obtained data make mapping possible between
the PFGE clusters, clonal complexes, and STs. This correspon-
dence is very useful for the centralized European molecular typing
databases maintained by the EURL for L. monocytogenes (9). The
future European Centre for Disease Prevention and Control
(ECDC)-EFSA database (38) should also benefit from this corre-
spondence.

Although the MLST scheme used here, based on seven house-
keeping genes, has been found to be very useful for phylogeny and
population structure investigations (7), one of the limitations is
the low number of genes taken into account. For a more detailed
analysis of the population structure, we suggest using other meth-
ods, such as WGS based on single nucleotide variants (single nu-
cleotide polymorphisms [SNPs]) or a scheme based on genome-

wide gene-by-gene comparison called core genome MLST
(cgMLST) (39). Core genome MLST extends the concept of
MLST to core genome sequences and should allow us to identify
all genes in the strain genome to determine allelic variants for each
gene and record the absence or presence of accessory genes (40).

In conclusion, this study showed a very useful backward com-
patibility between PFGE and MLST for surveillance. The popula-
tion structure of the strains isolated in France revealed two fre-
quently observed sequence types: ST9 and ST121. There was not a
clear association between these two STs and the food matrices.
Interestingly, ST121 included the fewest clinical strains, indicating
lower virulence. Further comparative genomics will be needed to
characterize regions that may explain the observed differences in
the hypovirulence of strains. This work will contribute to better
understanding of the health risks associated with L. monocyto-
genes.
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