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Abstract
In this paper we present a novel method for the generation of doubly-curved, 
architectural design surfaces using swept Euler elastica and cubic splines. The 
method enables a direct design to production workflow with robotic hot-blade 
cutting, a novel robotic fabrication method under development by authors of the 
paper, which facilitates high-speed production of doubly-curved foam moulds. 
Complementary to design rationalisation, in which arbitrary surfaces are trans-
lated to hot-blade-cuttable geometries, the presented method enables architects 
and designers to design directly with the non-trivial constraints of blade-cutting 
in a bottom-up fashion, enabling an exploration of the unique architectural poten-
tial of this fabrication approach. The method is implemented as prototype design 
tools in MatLAB, C++, GhPython, and Python and demonstrated through cutting 
of expanded polystyrene foam design examples.

Keywords: 
robotic fabrication, hot blade, digital design, EPS-moulds, cost-efficiency,  
concrete structures
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Figure 1. Louisiana State Museum and Sports Hall of Fame, courtesy Trahan Architects (top).  
Kagamigahara Crematorium, Courtesy Toyo Ito Architects (bottom). 
Copyright, Figure 1a: Trahan Architects. Copyright, Figure 1b: Toyo Ito Architects. 
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1. Introduction
In contemporary architectural practice, a rising number of projects employ ad-
vanced building geometries, which departs from the orthogonality of mainstream 
construction, incorporating digital design tools and manufacturing for the reali-
sation of expressive or dynamic design features (Pottman 2007). A group of projects 
within this category, such as Kagamigahara Crematorium (Toyo Ito Architects, 2006) and 
Waalbridge Extension (Zwart & Jansma, 2015), rely on the doubly-curved geometries, 
which may be constructed either via production of manual formwork, which re-
lies on digitally produced guides to bend plate material in place over large radii. 
Alternatively, large-scale CNC-milling of either foam molds for concrete casting 
or direct milling of construction materials are employed enabling the realisation 
of shorter radii designs with more detail and surface controls. Such projects in-
clude, for example, Spencer Dock Bridge (Amanda Levete Architects, 2010), Louisiana State 
Museum and Sports Hall of Fame (Trahan Architects 2013), Museum Foundation Louis 
Vuitton by Gehry & Associates (Paris, 2014); the Nordpark cable railway by Zaha Had-
id Architects (Nordpark 2007), the Metz Pompidou by Shigeru Ban (Metz 2010). 

However, none of these general construction processes provides a cost- 
effective option for general construction, and projects of this type therefore re-
quire extraordinary budget frameworks for realisation: Manual onsite formwork 
processing in this category is a highly laborious and demanding process, with 
resulting difficulties in cost-engineering to follow. Large-scale CNC-milling on the 
other hand, provides cost transparency due to the digital nature of the process 
– although the mechanical principle of CNC-milling, which subtracts material 
through incremental removal, is inherently slow when applied to architectural 
scale production, and results in exuberant machining times and high costs. 

Recent developments in architectural robotics and digital manufacturing 
have seen the emergence of a number of approaches to diversify the machin-
ing options available, with the purpose of realizing structures of more advanced 
geometries. This includes actuation of a flexible membrane as a casting surface 
(Jepsen et al. 2011; Hesse 2012); dynamic slip-casting for column elements (Lloret et al. 2014), 
as a variant of the additive manufacturing of concrete structures (Khosnevic 1998, Lim 

et al 2012); fabric formwork applied as an alternative technique for the casting of 
advanced designs (Veenendaal et. al 2011); spatial wire cutting (Rust et al. 2015) as well as 
large-scale robotic hot-wire cutting of EPS molds by authors of this paper. None of 
these approaches however, are capable of delivering combined (1) unconstrained 
degrees of freedom which enables general purpose realisation equivalent to that 
of CNC-milling; (2) machining efficiencies which significantly supersedes that 
of CNC-milling; (3) process predictability which ensures the delivery of a pre- 
controlled geometry.
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Figure 2. Bladecutting experiments in progress.  
Top: 18-axis tri-robot hot-blade pilot-cell.  
Below: concrete panel design and cut foam result. 
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2. Robotic Hot-Blade Cutting
In an effort to develop a new manufacturing process which would satisfy these 
criteria, the authors of this paper initiated in 2012 the Bladerunner project, which 
targets the cost-effective production of double-curved foam moulds. The tech-
nique developed in this effort – dubbed robotic hot-blade cutting – employs a 
multi-robotic process, in which an 18-axis cell consisting of 3 industrial manip-
ulators translates a flexible, heated blade through expanded polystyrene blocks 
in a thermal cutting process, while controlling the distance and rotation of end- 
effectors to achieve variable cross-section curves along the trajectory of cutting 
sequences. Pilot production experiments currently under development seek 
to explore and demonstrate the applicability of this method for production of 
pre-fabricated concrete elements under a general CAM paradigm, in which ar-
bitrary design input – understood here as geometry which is conceived with-
out particular regard to the specific constraints of the process – is rationalised 
for hot-blade production using a set of algorithms developed within the project. 
These early developments point to the perspective of a highly time-efficient pro-
duction method, up to 126 times faster than comparable CNC. However, com-
plementary to a top-down process of rationalisation, a second trajectory is also 
possible, in which the geometric constraints of the hot-blade cutting is incorpo-
rated already in the design process, thus operating under a generative design 
paradigm. The work in the following chapters outlines tools and processes that 
can facilitate such an approach.  

3. Designing with Elastica
An Euler elastica is the shape assumed by an elastic rod with planar constraints 
of position and tangents placed only on its endpoints. A planar curve is geomet-
rically determined by an angle function θ (t ), the angle between the tangent and 
some fixed direction. The angle function for the elastica are given by solutions 
of the normalised pendulum equation θ = – sin θ, a nonlinear equation the solu-
tions of which can fortunately be given explicitly in terms of elliptic functions. 

Mathematically, the correct model for an elastica was given by James Bernoulli 
in 1691 (see Truesdel 1983). He approximated the solution for the case that the ends 
of the rod are perpendicular to each other, recognizing that non-standard func-
tions were needed for an analytic expression. The problem was subsequently 
suggested to Leonhard Euler in 1743, who gave all possible shapes for the elas-
tica in his famous treatise on the calculus of variations (Euler 1744).

People have in fact been designing with elastica for centuries, albeit in a phys-
ical rather than mathematical format. Prior to the introduction of computers for 
draughting in the shipping, aviation, and automobile industries, which began in the 
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Figure 3. Use of physical splines for ship-hull manufacturing. 
Copyright: William Sutherland, The Shipbuilders Assistant: or, Some Essays Towards Completing the Art of Marine 
Architecture (London, 1711).
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1950s, the curves needed in the designs were created by tracing the shapes of 
thin wooden rods, known as splines, manipulated by the placement of so-called 
‘ducks’ at various points to create a naturally smooth curve. This practice started 
in the ship-building industry, where the placement of the ducks simulates the 
placement of ribs in the hull of the ship; hence the curve drawn by following the 
spline is an accurate reflection of the natural shape adopted by the planks form-
ing the ship’s hull. The drawing took place at the loft of the shipyard, hence the 
word ‘lofting’, now used in the CAD industry. Going further back in time, splines 
were used for the storage and transmission of designs in ancient Rome, in the 
form of physical templates for the ribs of ships (see Farin 2002). 

When computers became cheaper and more powerful, a desire for elec-
tronic storage and editing appeared. The word ‘spline’ now began to be used 
for piecewise polynomial or rational curves used in design. Paul de Casteljau 
at Citroën and Pierre Bézier at Renault used what are now known as Bézier 
curves to describe the designs. In the USA, Carl de Boor at GM used B-splines 
(basis splines) for the designs. In the aircraft industry, at Boeing, similar devel-
opments took place.

3.1 Design vs. Rationalisation for Hot-Blade Cutting 
For a CAD surface to be produced using hot-blade cutting, it needs to be segment-
ed into suitable pieces and each surface segment then swept by planar curves 
that are subsequently approximated by elastic curve segments.  We described 
this rationalisation process in recent and forthcoming work.  

An alternative to the rationalisation of a CAD design is to provide design 
tools that allow designers to create fabrication-ready surfaces. There are a num-
ber of reasons for doing this: Firstly, the rationalisation of an arbitrary design is 
non-trivial and in general can result in some regions of the surface needing to be 
produced by another method such as milling. Secondly, a design tool can give the 
designer control over the cast-lines between the segments, which will in many 
cases be visible from close range.

 A third reason is the additional complexity arising when we consider a sur-
face created by more than one cut to the same EPS block. For example, consid-
er the surface shown on the left in Figure 4. By cutting the same EPS block twice, 
the second time with a 90 degree rotation, the surface on the left in Figure 5 is 
produced. Now the surface on right in Figure 4 approximates the first surface very 
well at the end-points of the cutting blade, but deviates slightly in the middle. 
Such an approximation is likely to arise in surface rationalisation, because we will 
usually need the patches to fit together with tangent continuity, which requires a 
little more freedom away from the patch edges. Doing the same two cuts with 
the new surface results in the surface on the right in Figure 5, and here we can see 
that the intersection curves are no longer the same as the design. 
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Figure 4 & 5. (right) Matlab generated surface. (left) rotated double cut of the same design.
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Figure 6. Configuration of input data.
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Of course there are solutions for this kind of issue in the rationalisation 
approach, but this scenario illustrates the kind of advantages one has with a 
fabrication-ready design tool.

3.2 Single Block Designs
For the simple case of just one block, we design with curves of the desired length, 
i.e. the length of the cutting tool. During cutting the cutting tool is kept in a hori-
zontal plane perpendicular to the cutting direction. The data needed for the robot 
movement are thus simply the positions of the ends of the blade and the angles 
of its ends relative to horizontal. The positions are given as y , z - coordinates (the 
x - coordinate describes how far the curve is in the cutting direction), see Figure 6. 
In the design space (e.g. Rhino) we know the position of the design curves rel-
ative to the EPS block, so we can obtain the robot data directly from the design 
curves by computing the positions of the endpoints relative to the EPS block, 
and their angles relative to horizontal.

The plugin for the discrete elastica ensures that we get a representation of 
the final design in Rhino, before going to production. In the following, we describe 
the numerical algorithm used to find this solution given end points, tangents at 
the end point, and the length of the curve (see Bruckstein et al. 2001). This method does 
not find the elastica in terms of the elliptic functions; instead we return to the 
defining property of elastic curves, namely that they minimize ∫ κ 2 ds. In a discrete 
setting where we represent the curve using line segments of equal length, the 
analogous energy for the piecewise linear curve is: 

Fig 6. Configuration of input data

The plugin for the discrete elastica ensures that we get a representation of the final design in
Rhino, before going to production. In the following, we describe the numerical algorithm used to
find this solution given end points, tangents at the end point, and the length of the curve (see
Bruckstein et al (2001)). This method does not find the elastica in terms of the elliptic functions: 
instead we return to the defining property of elastic curves, namely that they minimize ∫𝜅𝜅2𝑑𝑑𝑑𝑑. In a
discrete setting where we represent the curve using 𝑛𝑛 line segments of equal length, the analogous
energy for the piecewise linear curve is: 

𝐹𝐹𝑎𝑎(𝛼𝛼) = ∑𝛼𝛼𝑖𝑖2
𝑛𝑛−1

𝑖𝑖=0
 

is the turning angle at segment 𝑖𝑖 as illustrated in figure 7. 

Fig 7. Turning angles

Thus, to find the discrete curve, we minimize 𝐹𝐹𝑎𝑎 subject to two constraints that both serve to en-
force the boundary conditions. To ensure that the tangent at the last point has the correct direction,
we require that

where αi is the turning angle at segment i as illustrated in Figure 7.
Thus, to find the discrete curve, we minimize Fa subject to two constraints

that both serve to enforce the boundary conditions. To ensure that the tangent 
at the last point has the correct direction, we require that

0 = 𝐹𝐹; 𝛼𝛼 = 𝛼𝛼3 − (𝛼𝛼4 − 𝛼𝛼56)
456

378

 

4 are the angles that correspond to the direction of the first and last line segment,
respectively. Clearly, we also require that the curve ends at the right point. This is taken care of by 
the second energy

𝐹𝐹<(α) = cos( 𝛼𝛼_𝑘𝑘)
B

C756

, sin( 𝛼𝛼 C )
B

C756

F

− (𝑝𝑝4 − 𝑝𝑝56)
456

B756

We can construe the discrete elastic curve problem as an inverse kinematics problem. In this
simply ensures that the end of the curve (end effector) coincides with 𝑝𝑝4 - the end point of

where α–1 and αn are the angles that correspond to the direction of the first and 
last line segment, respectively. Clearly, we also require that the curve ends at 
the right point. This is taken care of by the second energy
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Figure 7. Turning angles.

Figure 8. Turning angles for a discrete elastic.

Figure 9. Examples of a generated and a cut surface.

Figure 10. In blue an exact elastic curve and in black a discrete 
approximation calculated from the boundary conditions shown in yellow.

Figure 11. Transitions between 
elastica.
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 As the initial design created using a Python script in Rhino, as a rationalized sur-
face and as a styrofoam block cut with the hot blade.

3.4 Design Using Multiple Blocks
For the more complex case with several blocks, a more advanced procedure is 
used to ensure a smooth transition from one block to the next. Consider a curve 
design that passed over two blocks (see Fig. 10, left). We need to produce this in two 
cuts – one per block – and we want the two block segments to match at the 
boundary after cutting.

If we run our plugin independently on the two parts of the curve, we would 
automatically obtain the smooth transition, but we would be unable to get the 
necessary data for the robots, since the curves (which are inside the blocks) are 
shorter than the cutting tool, and we have no quick way to extend these while 
preserving the elastic properties. If we simply extend the original curve and then 
use our plugin on parts with the desired length, we do not ensure smooth tran-
sition (see Fig. 10, right).
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Figure 12. In blue Bézier curves, in black their control polygons, and in dashed red elastic curves with the same 
endpoints, end tangents, and lengths.

Elastica GeometryDesign Geometry

Figure 13. A Rhino design tool. Top: three blocks with two tangent continuous curves. Lower left: lofted Bézier curve 
surface.  Lower right: rationalized elastica curve surface.
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 The solution is, instead of finding a discrete representation of the elastic 
curve that models the shape of the cutting tool, we find an analytic math-
ematical description of the elastic curve in terms of elliptic functions. This 
requires a more cumbersome optimisation in order to find the parameters 
that describe the rationalised curve. However, when these parameters are 
found, the entire (infinitely long) elastic curve that contains the required 
segment is known. It is then simple to extend the segment to an elastic 
segment of the length of the blade (see Fig. 11) and from this extract the po-
sition data for the robots.

4. An Alternative Approach:  
Bézier Curves as a Proxy for Elastic

Historically, the use of cubic splines as a design tool was often motivated by 
saying that they are a good substitute for real physical splines. This is justified by 
the fact that, if the speed of a curve is constant, then the square of the curva-
ture is the same as the square of the second derivative, and if the latter is mini-
mised we obtain exactly a cubic spline (see Yamaguchi 1988). Now a cubic curve does 
not have constant speed unless it is a straight line; but if the control polygon of 
a cubic Bézier curve is reasonably well behaved, then the curve is close to an 
elastica. See Figure 12, where 24 Bézier curves are plotted together with elastic 
curves having the same endpoints, end tangents, and length. 

If the angles in the control polygon are not too acute, then there is very little 
difference between the Bézier curve and the elastic curve of the same length 
and end conditions.

Based on this observation, we implemented a design tool in Rhino™ where 
the surfaces and their rationalisation are very close. The idea is that we imagine 
space filled with EPS-blocks and define our surfaces such that the parameter 
curves have exactly one planar cubic piece in each block. As a simple example 
consider Figure 13, where we have three blocks and have defined three Bézier 
curves at both the front and the back of the blocks in  such a way that they have 
common endpoints and tangents, i.e. they form two tangent continuous curves 
(see Fig.14). The surface is defined by a lofting process. We can of course have sev-
eral layers of blocks, and we could also have included more curves in the middle 
of the blocks. The inputs are planar curves with exactly one cubic piece in each 
block, and the surface is defined by lofting.

One can achieve a curvature continuous construction by replacing the se-
quence of Bézier curves by a single planar cubic spline (with simple interior 
knots). Between the knots we have a cubic polynomial, so we if we require that 
the image of the knots is on the block boundaries then we obtain a single cubic 
polynomial piece in each block (Fig. 15).
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Figure 14. The tangent continuous construction. In each 
block we have a cubic Bézier curve and we require that 
adjacent curves have control polygons the first and last 
legs of which form a single line segment. In dashed red we 
have plotted the true elastica having the same length and 
boundary conditions as the Bézier curves.

Figure 15. The curvature continuous construction. A single 
cubic spline curve where the images of the knots are on the 
block boundaries. In dashed red we have plotted the true 
elastic curves that have the same length and endpoints as 
the polynomial pieces. The tangents corresponding to the 
extreme points of the cubic curve are also prescribed.

Figure 16. pre-test cuts from the workshop. From the left: while single, continuously swept surfaces are readily 
achievable through rationalization, the ripple and curvature effect on the right most samples requires careful alignment 
with the blade directions, and hence is difficult to obtain aside from directly controlling it in an elastica-swept surface.
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If we replace the spline with an elastica having the same length in each block 
as the spline, passing through the images of the knots, and having the same 
tangent angles in the beginning and end as the spline curve, we obtain almost 
the same result. This corresponds exactly to the classical design using a physical 
spline and ducks. We just have to place the ducks at the images of the knots.

5. GH Workflow 
For the development of design experiments as well as participatory workshop 
design sessions, a toolset is developed in McNeel Grasshopper, implementing 
the above approaches. The toolset is linking the full cycle of research, innovation, 
implementation and production, creating a framework for geometric operations 
consistent with the robotic setup. The overall logic of the workflow connects con-
ventional digital modeling approaches with the robotic hot-blade process. This 
requires the identification and rationalisation of geometry types before rebuilding 
the geometry to the accuracy of the robot, EPS-segmentation and tolerances.

The Grasshopper-definition is developed with the purpose of designing with 
rationalisation through Euler elastica. It is a Real-Time process that allows for 
fast interpolations from design to production and ensures a smooth curve con-
tinuity transition from one block to the next. The tool is very flexible and allows 
for large variation of form typologies when designing with single or multiple cuts 
in the design explorations.

The setup is part of a larger digitised workflow; ‘Interpolation of Geometry’, 
‘Euler Elastica Approximation’, ‘Mathematical Elastica Extension’, which is is a lin-
ear process that allows for feedback loops when data or geometry are outside 
of preset conditions and/or needs changes. The Grasshopper tool ‘Design with 
Elastica’ inputs arbitrary surfaces and/or curves, converts them into planar elastica 
curves that describe the cut-direction and the movement of the robot-setup. The 
setup is structured in four overall processes; ‘Global Parameters’, ‘Input’, ‘Process 
(Machine)’, ‘Output (Export)’.

5.1 Global Parameters
The backbone of the setup is the global parameters that are changeable within 
the workflow environment. Its settings, syntax, and data are adapted in both the 
approximation plugin and the extension script while the workflow recalibrates 
when global settings are re-configured or need additional inputs. The global pa-
rameters allow you to toggle between ‘Design’ or ‘Production’ which are value 
bases and changes the resolution of the Elastica approximation.

One block is locally defined by its XYZ-values (dimensions), cut-plane (ori-
entation) and its local location in the XYZ-world-coordinate system and global 
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001
EPS-Block (XYZ-dimensions)
Cut-Planes and Orientation

003
Data-Tree-Structure
Export data-system

004
Cut-Planes (Directions)
Orientation of Blocks 

002
Multiple EPS-Block setup (Design Framework)

Cut Plane (0)

Cut Plane (1)
Cut Plane (2)

Cut Plane (3)

Figure 18. Work object configuration.

005
Design Framework

007
Multiple Design “Inputs”

Data-Tree-Structure matches Design Framework

008
Brep represntation of 3Dimensional design

006
Geometry for cutting blocks (Design input)

Figure 19. Generation of elastica design surfaces. 

009
Sorting Cut-Geometries

Location and rotation of EPS-blocks in 3D space and block X and Y domain in the plane

Figure 20. Configuration of demonstrator design. 
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location in a multiple-block-system. The block and blade length are interconnect-
ed to each other, if too short, the robot will move into the EPS-block, while too 
large the physical implications will increase and affect the precision.

5.2 Input

A multiple block configuration is developed as a framework for the generation of 
continuous surfaces over several blocks. The ‘block setup’ is framed in a data-tree 
structure that matches and sorts the input designs for each block and subse-
quently for each face of the block (6 sides). The procedure generates a data-list 
for each block containing cut-plane, cut-direction, number of cuts, rotation, and 
location. By defining a clear data-flow from the input step you gain full control 
from design intent till export code and production.

5.3 Preprocessing of Geometry
The pre-processing step first matches each block (nested in a data-tree-struc-
ture representing the design framework and block number within the design 
framework) with cutting geometries related to the blocks design framework. 
The cutting geometry is then sorted according to cut priority, the primary 
cut being closest to the blocks base, and the remaining cuts are checked 
for collision with the primary cut and removed if no collision occurs. The fi-
nal operation generates a number of planar curves for each cut by sampling 
the cut geometries in the X direction of the blocks. The sampling is extended 
beyond the block domain to allow the robots to have lead-in and lead-out of 
each block. The number of sampling points is triggered by the current mode 
selected (design or production).

5.4 Elastica Approximation
To approximate the Nurbs curves we made a Rhino plugin. The ElasticaNum 
Plugin operates on curve start-, end-points, tangent vectors at start- and end-
points, and the desired length of the elastica curve. The ElasticaNum Plugin is 
interfaced through the Rhino command-line and python code using a custom 
data structure. The final operation in the Elastica approximation is reorienting the 
curves back into 3D space.

5.5 Output
The ‘Design with Elastica’ tool generates two outputs that work parallel with-
in the workflow and connect the designer with the final rationalisation output 
while still designing in the beginning of the process. Output one is data-driven 
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Figure 21. Description of production surfaces via swept elastica cross sections.
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Figure 22. Global orientation of constitutive elastica cross-sections.
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exports to the ‘Mathematical Elastica Extension’, while output two is represent-
ing the desired geometry by Elastica Curves. By defining a data-structure a mu-
tual adaptation of data import and export was defined from Input, Process and 
Output. The digitised workflow outputs data from the ‘Design with Elastica’ tool 
to the ‘Mathematical Elastica Extension’ and weave the tools together. To ensure 
a smooth transition from one block boundary to the next, the necessity for data 
conversion is important to perform a mathematical extension that preserve the 
elastica properties.

The setup allows for a real-time design to fabrication workflow and a com-
parison between the Design-Geometry and the Elastica-Geometry are processed. 
While the Design-Geometry is an arbitrary input, the ‘Euler Elastica Approximation’ 
curves are lofted with the setting on tight, which uses square root of chord length 
parameterisation in the loft direction.

5.6 Design Workshop
The developed toolset was subsequently tested in a workshop setting with 16 
participants in the format of the Superform: Robotic Hot-Blade Cutting workshop, 
held March 15–18 2016 in extension to the Robarch 2016 conference at Walsh 
Bay, Sydney. The workshop tasked participants with formal explorations of hot-
blade design potentials, produced through a dual robot setup consisting of 2x ABB 
IRB 1600 manipulators in a MultiMove configuration. The explorations uncovered 
several benefits of working directly in a production-ready geometry: Firstly, the 
exploitation of double (or more) cuts, in which two intersecting surfaces creates 
a sharp crease is a feature difficult to approximate through rationalisation (Fig. 13, 

second row, middle). Secondly, the design of expressive ripple or wave-effects (Fig. 14) 

requires careful alignment with blade-cutting direction and curvature description 
to remain feasible. As such, they exemplify design potentials difficult to achieve 
through linear rationalisation. 

6. Conclusion
A set of methods has been proposed for design generation of surfaces which 
incorporates the constraints of an elastic blade swept mechanically by two or 
more industrial robot manipulators. The methods are implemented as proto-
type design tools in C++, MatLAB, Python, and GhPython to enable interaction 
with non-specialist designers. The toolset was tested with 16 participants in the  
RobArch 2016 workshop: Superform – robotic hotblade cutting. The workshop 
design experiments revealed several design features that would be difficult to 
achieve in pure rationalisation workflows, as a result of the direct incorporation 
of constraints and live design feedback enabled by the framework.  
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Figure 23. Examples of the workshop participants design explorations.  
Design left: Jill Smith & Phil Dench. Design, right: Dharman Gersch.
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