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Abstract. Two types of E-glass fibres, a conventional and a high modulus where the last
one in the following will be denoted as ECR-glass fibre, were investigated regarding density,
diameter, stiffness and strength. The fibres were analysed as pristine and after sizing removal
treatments. The sizing was removed by either burning at 565◦C or soxhlet extraction with
acetone. It was found that the density and the stiffness increased after removing the sizing by
the two removal treatments whereas the diameter did not change significantly. The strength of
the fibres decreased after burning as the sizing, protecting against water and fibre-fibre damage,
had been removed. The strength of the fibres after extraction was not significantly different
from the strength of the pristine fibres despite removing the sizing. This indicates that the
bonded part of sizing is still protecting the glass fibre surface.

1. Introduction
There is a number of different types of glass fibres all based on silica but with different
composition of additives. The silica network creates a three dimensional structure which is
amorphous when the melt is rapidly cooled during manufacturing of glass fibres. Some of the
additives are mixed in the melt to lower the melting temperature to around 1000◦C by spoiling
the native structure of silica, others are added to obtain certain bulk properties for specific
usage of the fibres [1]. Aluminium, titanium, and zirconium oxides can be included in the
silica tetrahedron network increasing the stability but creating charged area derived from lack
of oxygen. Other oxides additives such as calcium and magnesium oxides will even out charges
and hence modify the network as they are larger and have only one or two bonds to the silica
network [1, 2].

E-glass fibres contain mainly aluminium and boron oxides as additives and were initially made
for electical applications. They are the most used in fibre reinforced composites because of their
high strength and low cost. ECR-glass fibres are a more chemically resistant version of the E-
glass, but without boron oxide. Other types of glass fibres include C-, AR-, R- and S-glass fibres
with different abilities and usages: corrosive acid resistance, alkali resistance used in cement and
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concrete, high mechanical strength and acid corrosive resistance, and high mechanical strength
and stability in environments with high temperatures and corrosion, respectively [1–3].

Manufacturing of glass fibres is almost the same for all types of fibres. The constituents are
mixed and melted at high temperatures in a vessel from which the fibres are drawn through
bushings. The fibres are cooled by water spray immediately after and subsequently the sizing
is applied, often by passing a roll immersed in the sizing mixture. Then the fibres are gathered
in strands and winded on bobbins [1, 2]. The diameter is determined by the size of the bushing
holes, the melt temperature, and the draw speed [2]. The strength of the fibres is mainly
determined by the glass composition but also by how quickly the melt is quenched, and surface
flaws. The flaws can be divided into two types. The first type develops during manufacturing
as a result of impurities or stresses induced by the quenching. The second type ocurs because of
the subsequent handling, mainly fibre-fibre damages. Existing flaws will extend during tensile
stress especially in moist environments ultimately leading to breakage [4, 5].

The sizing applied during manufacturing is a multicomponent surface coating with multiple
functions. It is an aqueous suspension with two main elements making up around 90 wt.% of
the dry components: a coupling agent and a film former [6]. The coupling agent is considered
the most important as it is believed that it controls the adhesion between fibre and matrix.
The film former is the protector of the surface against water attack and fibre-fibre damages
[7, 8]. Furthermore the sizing is suggested to heal flaws in the glass fibre surface and also reduce
the risk of new flaws to arise [9, 10]. Sized glass fibres exhibited higher strength compared to
unsized fibres [11]. It has previously been shown that removing the sizing by heating increases
the stiffness but at the cost of a decrease in the fibre strength [3, 12, 13]. The heating increases
the dimensions and the amount of flaws in addition to the removal of the healing sizing [14].

The sizing applied during manufacturing is needed to be able to handle the fibres until
usage. Removing the sizing should therefore be done right before using them e.g. in composites.
Burning the fibres at high temperatures will remove all the organic material from the fibres. By
extraction it is possible to remove the part of sizing that is physically adsorbed to the surface
but not the bonded part. The degree of extraction depends however highly on the solvent used
[6, 15–17]. The sizing removed by heat treatment and/or solvent extraction and the glass fibres
before and after the sizing removal were intensively characterised [18].

In this paper commercial E-glass and ECR-glass fibres were investigated. Density, diameter,
stiffness and strength were measured on pristine fibres and fibres where the sizing had been
removed.

2. Methods and Materials
Two types of fibres were analysed: E-glass and ECR-glass fibres. The E-glass fibres were
produced by Jushi (Chengdu, China) and the following properties was given by the manufacturer:
tex number of 1200, 17 µm diameter of monofilament, moisture content ≤ 0.10% and sizing
content in the range of 0.45-0.70 wt.%. The ECR-glass fibres were produced by Owens Corning
(Brussels, Belgium) with a tex number of 1200 and a diameter of 17 µm. Soxhlet extraction with
acetone of sizing from pristine glass fibres and burning pristine fibres at 565◦C were reported
previously [18].

Density measurements were performed using a gas pycnometer (Quantachrome Ultrapyc
1200e, England) with nitrogen gas as the displacement medium. Prior to analysis the fibres
were dried at room temperature in a vacuum chamber overnight. The fibres were then cut into
small pieces to fit in the sample cup and placed in the pycnometer. 2-5 grams of fibres were
used. Each measurement was repeated at least eight times.

Tensile testing of single glass fibres were performed on a Favimat+ with a Robot2 from
Textechno, Germany. The linear density was measured by recording the resonance oscillation
of fibre vibration induced by acoustic waves, according to ASTM D 1577. The individual fibre
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diameter and cross section were calculated from the linear density and the density measured by
the pycnometer. The tensile test was conducted subsequently on the same fibre just used to
determine the cross sectional area. 75-100 fibres were tested for each type (E-glass and ECR-
glass fibres) and treatment (pristine, fibres after soxhlet extraction, and burning) with same
gauge length of 40 mm and test speed of 1 mm/min.

3. Results and Discussion
The measurement of density was done three to eight times by the pycnometer until a satisfying
standard deviation of less than 0.02% was obtained within three consecutive measurements. If
this was not reached after the eighth measurement the data was discarded. This average density
determination was repeated at least eight times. The density was determined for both glass
types also after soxhlet extraction and after burning. The measured densities are shown in
figure 1.

Figure 1. The densities of E-glass and ECR-
glass fibres pristine and after removal of sizing
by soxhlet extraction or burning at 565◦C, all
determined by use of a pycnometer.

Figure 2. Diameter of the tested fibres
(pristine fibres, fibres after soxhlet extraction
and fibres after burning at 565◦C) calculated
from the linear density measured with
vibroscopy.

The obtained densities of pristine E-glass and ECR-glass fibres were close to literature values
of 2.58 and 2.72 g/cc, respectively [3]. The density of the glass fibres has increased after removal
of sizing both by soxhlet extraction and by burning at 565◦C. When estimating a density of
sizing of 1 g/cc based on typical sizing components and thickness, it is reasonable that the
removal of sizing is the cause of the higher density of fibres after soxhlet extraction. Extraction
of the sizing is not believed to change the glass structure.

It is noticeable that the density of both E-glass and ECR-glass fibres after burning reaches
the same level around 2.81 g/cc. The compositions of E-glass and ECR-glass fibres are very
much alike. The main difference is that the ECR-glass is without boron oxide. Instead it
contains zirconium oxide [2, 19]. Structurally they are both a random silicon oxide network
with aluminium cations as a part of the network. Boron oxide is a part of the network on equal
terms with silica where zirconium oxide is a intermedia along with aluminium [1]. Heating the
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glass fibres to a temperature near annealing temperature could change the bulk structure of the
glass fibres making them even more alike. The burned E-glass fibres have a even higher density
than the fibres after soxhlet extraction. This can be explained by glass compactment where
internal stresses in the glass structure are released. As a result the fibres contract yielding a
higher density [13]. It was noted that the fibres after extraction were very electostatic since the
antistatic agent in the sizing had been removed, but no other visible changes. The fibres after
burning were much stiffer, behaved less flexible and appeared to have small bends from lying on
top of other fibres while being heated, all supporting that the glass structure had changed to a
more rigid network as a part of the relaxation.

The diameters of the E-glass and ECR-glass fibres were calculated in connection to the single
fibre tensile testing from the linear density. The diameters are shown in figure 2. It was expected
that the burned fibres had a slightly smaller diameter after the heat treatment. However, the
diameter does not change significantly after heat treatment nor after soxhlet extraction. The
large variation in diameter of all the fibres obstructs the possibility to observe an alteration of
size and shape of the glass fibre.

Between 100 and 125 fibres of each type and treatment were tested but not all were used
for the calculation of the average stiffness and strength of the fibres. Some of the data were
excluded due to breakage during the linear density measurement or shortly after initiation of
the tensile test, for example, if two fibres were tested simultaneously by mistake and if the fibre
was sliding in the clamps during testing. Especially the burned fibres were troublesome to test
as they were very fragile, so as few as 25 data points were left, whereas up to 73 data points
were obtained when testing the fibres after soxhlet extraction. Stiffness was calculated based on
the initial slope of the stress-strain curve in the range of 0.05-0.25% strain. The strength was
calculated from the maximum force measured. The obtained values of stiffness and strength of
single glass fibres as pristine fibres and after treatments are shown in figure 3 and 4, respectively.

Figure 3. The stiffness of E-glass and ECR-
glass fibres pristine and after removal of sizing
by soxhlet extraction or burning at 565◦C,
obtained by single fibre tensile testing.

Figure 4. The strength of E-glass and ECR-
glass fibres pristine and after removal of sizing
by soxhlet extraction or burning at 565◦C,
obtained by single fibre tensile testing.

The pristine E- glass and ECR-glass fibres were found to have a stiffness of 77 GPa and 80
GPa, respectively, which are close to literature values [2, 3]. The stiffness of the fibres was found
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to increase after both soxhlet extraction and heat treatment with 3-9 GPa. Similar results for
heat treated glass fibres have been found in literature with the explanation that stresses induced
by the rapid cooling during manufacturing are released [3, 13]. The strength of the pristine
fibres are much lower than values given in literature [2, 3, 19] from which a strength of around 3
GPa was expected. The burned fibres do however still follow the decreasing tendency and have
similar values as found in literature [11–13, 20]. The low strength is related to enlargement of
existing surface flaws that become vulnable to attack from water [20]. The fibres after soxhlet
extraction exhibit strengths close to the one obtained for the pristine fibres with no significant
difference. They are however close to strengths measured on bare E-glass fibres [11]. It should
be noted that a compliance correction have not been executed since only one gauge length was
used. This could result in slightly lower values caused by compliance in the testing equipment
[21].

4. Conclusion
The densities of E-glass and ECR-glass fibres were found to increase by 5% and 3%, respectively,
when the sizing had been removed by soxhlet extraction using acetone. When removing the sizing
by burning at 565◦C the increase was 6% and 1%, respectively. The changes in density were
related to removal of the less dense sizing and to compactment of the glass structure.

For E-glass fibres the stiffness increased from 77 GPa to 81 GPa after extracting the sizing
by soxhlet and even to 86 GPa when pristine fibres were burned. Opposite was found with the
strength of the fibre after burning with a decrease from 1.6 GPa to 0.6 GPa, whereas soxhlet
extraction gave an increase to 2.1 GPa. ECR-glass fibres exhibit the same tendency regarding
stiffness as the E-glass fibres where the pristine fibres were found to have a stiffness of 80
GPa, increasing to 83 GPa after soxhlet extraction and to 86 GPa when burned. The strength
changed differently with the treatment for the ECR-glasss fibres with a large decrease after
soxhlet extraction from 2.0 GPa to 1.8 GPa where burning yield a strength of 0.48 GPa.

The increase in stiffness after burning was related to relaxation of the glass structure where
the decrease in strength was associated with enlargement of flaws and water attack after removal
of the protective sizing. The processes behind the increase of strength when removing the sizing
by extraction has not been clarified but could be related to the bonded sizing maintaining the
healing effect of the surface flaws. The two types of glass fibres behaved very much alike.
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