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Abstract. Surfaces of carrot nanofibre coatings were modified by a gliding arc in atmospheric 

pressure air. The treatment strengthened wetting of deionized water and glycerol, increased an 

oxygen content, C-O and C=O, and moderately roughened the surfaces. In the perspective of 

composite materials, these changes to the nanofibres can potentially improve their 

processability when they are to be impregnated with a polymeric matrix. However, longer 

exposure to the gliding arc reduced oxidation and roughness of the surface, and thus there 

exists an optimum condition to achieve good wetting to solvents. 

1.  Introduction 

Non-thermal plasma processing at atmospheric pressure is widely used for surface modification [1, 2]. 

Its applications include surface cleaning [3], decontamination and sterilization [4,5], deposition of 

functional coatings [6], and improvement of adhesion, wetting and paintability [7-15].  

One of the challenges in non-thermal plasma processing at atmospheric pressure is to achieve high 

reactivity and high productivity simultaneously [16]. Here, high reactivity is ensured by a high 

electron temperature in a non-equilibrium plasma so as to change chemical bonding of molecules in 

the plasma or the plasma-treated surfaces. Meanwhile, high productivity can be demonstrated using 

high energy densities. However, most plasmas can hardly sustain a non-equilibrium state at high 

energy densities. One possible approach to overcome this issue is to develop a hybrid plasma with a 

high energy density in a non-equilibrium state. 

A gliding arc is one of the hybrid plasmas [17], generated between diverging electrodes as a low-

impedance thermal arc discharge, extended by a gas flow and quenched to a non-thermal condition 

[18]. It can be operated in atmospheric pressure air and thus advantageously used for large-scale 

processing [19-26]. An alternating current (AC) gliding arc has a long lifetime extending over 

hundreds of AC periods without extinction. The plasma column can be elongated to approximately 20 

– 30 cm [21-29]. The AC gliding arc is useful for adhesion improvement of glass fibre reinforced 

polyesters (GFRPs) [22,23], efficiently oxidizing GFRP surfaces when the distance between the edge 

of the electrodes and the GFRP surface is up to 6 cm in open air. It is also demonstrated that optical 

techniques are promising for non-instructive diagnostics of the AC gliding arc [24-29]. In particular, 

the dynamics of the gliding arc is observed by using a high-speed camera. In addition, excited and 

ground-state hydroxyl radicals are observed in the plasma column and its vicinity, respectively. It is 
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noted that the hydroxyl radical has a high oxidation potential, next to fluorine and higher than ozone 

and chlorine. Therefore, the hydroxyl radicals generated by the gliding arc can play an important role 

in surface modification.  

Cellulose is renewable, nontoxic, and biodegradable, and is known to be the most abundant 

biopolymer on earth [30]. It has been extensively studied in terms of biological, chemical, and 

mechanical properties. In particular, nano-celluloses (NCs) have attracted significant interests due to 

their high strength, high modulus, high surface area and unique optical properties. Typical lateral 

dimensions are approximately 5 – 20 nm, while longitudinal dimensions are from tens of nm to several 

m [31]. Acid hydrolysis of cellulose will remove the amorphous part of cellulose and lead to highly 

crystalline and rigid nanoparticles called cellulose nanocrystals or cellulose nanowhiskers [32]. On the 

other hand, cellulose nanofibres (CNF) can be produced by ultrafine grinding, microfluidization or 

high pressure homogenization through delamination of fibre cell walls and subsequent liberation of 

nano-sized fibrils [33].  

Promising application for demonstrating mechanical properties of NCs is to mix NCs to impregnate 

a nanofibre network with a polymer and create strong, light-weight and transparent composite [34]. Its 

application includes packaging [35,36], vehicles and aeronautical applications. For demonstrating the 

best performance of NC composites, it is important to achieve substantial dispersion of NCs and 

strong interfacial interaction between the NC and the polymer matrix. In this respect, surface 

modification of NCs has attracted significant interests [37,38].  

However, surface modification of NCs is not an easy task even using a plasma. For example, when 

NC is dispersed in a liquid, a plasma as a gas phase does not have a direct contact with NC surfaces. 

On the other hand, when NCs are dried without a liquid, they are easily aggregated, disturbing uniform 

surface treatment. There are some studies presented in literature to solve or tackle with these handling 

problems [1].  

In the present work, as a feasibility study, effects of plasma treatment on NC are investigated in a 

simplified form of NC so as to avoid the above handling problems. That is, nanofibre coatings are 

treated by a plasma not because of the application for coatings, but because of a simplified specimen 

feature. More specifically, nanofibres were separated from a carrot residue, dispersed in water, painted 

on a glass plate, and dried. The subsequent coating surfaces were treated using a gliding arc in 

atmospheric pressure air. The treated surfaces were characterized by means of contact angle 

measurements, x-ray photoelectron spectroscopy (XPS), and field emission scanning electron 

microscopy (FE-SEM) in order to investigate the treatment effect. 

2.  Experimental methods 

2.1 Materials 

Carrot nanofibres were isolated from carrot residue supplied by Brämhults Juice AB, Sweden. This 

raw material is a by-product from carrot juice production. A chemical purification was carried out 

prior to the fibrillation following the procedure described by Siqueira et al. (2016) [31]. The residue 

was first washed with distilled water at 85°C, alkali-treated (2% NaOH) at 80°C for 2h, and 

subsequently bleached with NaClO2 (1.7 %) in an acetic buffer (pH 4.5) at 80°C for 2h for lignin 

removal. Finally the material was washed until a neutral pH was reached.  

This bleached residue was fibrillated by ultrafine grinding using a supermass colloider (MKZA10-

20J, Masuko Sangyo, Japan), at consistency of 2%. Prior to the grinding, the suspension was dispersed 

using a shear mixer (Silverson L4RT Silverson Machine Ltd., England). The grinding was operated at 

a rotor speed of 1,500 rpm and the grinding stones were gradually adjusted to 100 µm (negative). The 

total processing time was 40 min. The obtained aqueous carrot nanofibre suspension (2wt% 

concentration) was used to prepare coatings on glass plates (CORNING® 2947-75x25), and dried at 

room temperature in atmospheric pressure air for a couple of days. The coating thickness was 

estimated to be approximately 6 m. 
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2.2 Plasma treatment 

The gliding arc was generated between two diverging stainless steel tubular electrodes as shown in 

Figure 1. The outer diameter of the tubular electrodes is 3 mm. Cooling water was fed through the 

electrodes during operation [22-29]. An air flow was fed between the electrodes with a flow rate of 

17.5 standard litres per minutes (SLM). The gliding arc was driven by an AC power supply at a 

frequency of 31.25 kHz (Generator 6030, SOFTAL Electronic GmbH). The electric power applied to 

the gliding arc was approximately 700 W. In order to treat the nanofibre coating surface without 

excess thermal damage from the gliding arc, a poly(methyl-methacrylate) holder was moved forward 

and backward at a speed of 180 mm/s on which the coated glass plate was fixed. The angle between 

the gas flow direction and the specimen surface is approximately 90º when the surface is treated. The 

closest distance between the coating surface and the edges of the electrodes was 15 mm.  

 

 

 
Figure 1. A photo of the gliding arc with water cooled electrodes. 

 

 

 

2.3 Surface characterization 

Surface characterization is vitally important to understand the surface modification effects and to 

optimize the process conditions.  

Contact angles were measured with deionized water and glycerol in air at room temperature both 

before and after the gliding arc treatment using a contact angle measurement system (CAM100, Crelab 

Instruments AB, Sweden). A typical drop size was 1μL. The contact angle was measured within 5 s 

after the drop was attached onto the surface. Typically 10 measurements were made for each 

specimen, and their arithmetic mean was calculated.  

XPS data were collected using a micro-focused, monochromatic Al K X-ray source (1486.6 eV) 

with a lateral resolution of 30 m (K-alpha, ThermoFischer Scientific, UK). Atomic concentrations of 
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all elements were calculated by determining the relevant integral peak intensities using the Shirley 

background. The K-alpha was also used for a high resolution analysis on the carbon 1s (C1s) spectra 

acquired over 30 scans. The binding energies were referred to the hydrocarbon component (C-H, C-C) 

at 285 eV. The spectra were de-convoluted through curve fitting, taking purely Gaussian components 

with linear background subtraction. The full-width at half-maximum (FWHM) for all peaks of C1s 

was constrained to 1.5 eV. 

The surface morphology of the nanofibre coating was observed by using an FE-SEM (Zeiss 

SUPRA 35, Germany). The NFC surfaces were sputter-coated with approximately 15-nm thick Au 

before the observation.  

3.  Results and discussion 

The contact angles of the nanofibre coating were measured before and after the gliding arc treatment. 

Typical images of the deionized water- and glycerol-drops on the nanofibre coatings are shown in 

Figure 2. 

 

 

  
Deionized water. Untreated.                                Deionized water. 8-time exposure. 

 

  
Glycerol. Untreated.       Glycerol. 8-time exposure.          

 

Figure 2. Typical photo images of deionized water-drops and glycerol-drops on the nanofibre 

coatings.  

 

Figure 3 shows measured contact angles of deionized water and glycerol at different numbers of 
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exposure. The contact angles of deionized water and glycerol before the gliding arc treatment, 

corresponding to 0-time exposure, were typically between 20º - 35º and 70º - 80º, respectively. The 

deionized water contact angles tend to decrease as the number of exposure increases, approaching 0º. 

The glycerol contact angles also tend to decrease as the number of exposure increases, approaching 

approximately 30º. Enhancement of glycerol wetting is preferable when nanofibres are mixed in a 

composite, since nanofibres are usually dispersed in an organic solvent for mixing it into a polymeric 

matrix, potentially improving processability and mechanical properties of the composite. However, it 

is noted that after 16-time exposure, contact angles of deionized water and glycerol slightly increased.    

 

 

 
Figure 3. Contact angles of the nanofibre coatings at different times of exposure to the gliding arc. 

The numbers of exposure are 0 (corresponding to an untreated surface), 2, 4, 8 and 16. Solid triangle: 

deionized water. Open circle: glycerol. 

 

 

 

XPS measurement was carried out to analyze the elemental composition of the nanofibre coatings 

before and after the gliding arc treatment. The nanofibre surfaces typically contain C, O, Ca, and low 

concentration impurities. The atomic ratios of O/C and Ca/C calculated using the XPS survey spectra 

are shown in Figure 4 (a). After 2-time exposure, the O/C ratio increased from 0.59 to approximately 

0.72. The O/C ratio may not significantly increase by further exposure, and eventually decreased to 

approximately 0.64 after 16-time exposure. The Ca/C ratio also increased, after the gliding arc 

treatment, from 0.02 to 0.03-0.04. The increase in the calcium content can be interpreted as 

preferential etching of organic components in the coatings. It is indicated that the Ca/C ratio does not 

monotonically increase as the increase in the exposure to the gliding arc, and that the preferential 

etching of organic component is not a leading effect of the gliding arc treatment.  

Deconvolution of the C1s spectra of the nanofibre coatings before and after the gliding arc 

treatment was carried out. The result is shown in Figure 4 (b). Peaks at approximately 285 eV, 286.8 

eV, and 288.4 eV can be assigned to C-H/C-C, C-O, and C=O (carbonyl). A peak corresponding to 

carboxy group at approximately 289.5 eV was not detected. Since general plasma treatment can 

readily create carboxy group on polymer surfaces by oxidation [11], it is suggested that the gliding arc 

may result in moderate oxidation on polymer surfaces. After 2-time exposure, the peak corresponding 

to C-H/C-C decreased, while then peaks corresponding to C-O and C=O increased. Similar to the O/C 

ratio, they may not significantly change by further exposure, and after 16-time exposure, the peak of 

C-H/C-C increased and the peaks of C-O and C=O decreased. 
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(a)                                                                       (b) 
 

Figure 4. (a) O/C and Ca/C ratios of the nanofibre coating surfaces at different times of exposure to 

the gliding arc. (b) Contents of peaks obtained by curve-fitting of C1s spectra of the nanofibre coating 

surfaces at different times of exposure to the gliding arc. 

 

 

 

    
(a) 0-time exposure (untreated).   (b) 2-time exposure. 

 

   
       (c) 4-time exposure.    (d) 16-time exposure. 

 

Figure 5. FE-SEM images of the nanofibre coating surfaces.  

400 nm 400 nm 

400 nm 400 nm 
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The morphological changes after the gliding arc treatment is possible only when nano-scale 

observation is performed, since plasma surface treatment generally changes the top layer up to 10 nm 

or less [11]. Figure 5 shows FE-SEM images before and after the gliding arc treatment. Figure 5 (a) 

indicates that the untreated nanofibre coating shows assemblies of nano-cellulose fibrils surrounded by 

an unstructured phase. 2-time exposure in Figure 5 (b) seems to roughen the surface, most likely due 

to the preferential etching of the surrounding phase, supported by the XPS result of the increase in the 

Ca/C ratio. However, further exposure may not significantly roughen the nanofibre coating surfaces in 

a nano-scale as shown in Figure 5 (c) and (d). Instead, these images indicate that the surface become 

smoother in nanoscale, while a larger scale deformation might occur (Figure (d)). A possible 

explanation of this morphological change by the gliding arc treatment is that the nanofibre coating 

surface could be etched and roughened moderately, and that longer exposure could result in 

microscale melting at the surface. A similar phenomenon was observed for the gliding arc treatment of 

glass-fibre reinforced polyester plates [19].  

In next steps, treatment optimisation and treatment of larger amounts of nanofibres will be 

investigated so as to be feasible for production of carrot nanofibre composites with desired properties. 

4.  Conclusion 

Gliding arc treatment can oxidize and roughen the carrot nanofibre surface and strengthen the wetting 

of deionized water and glycerol, and thus can be potentially useful for surface modification of the 

carrot nanofibres when they are mixed in a composite since the treatment can potentially improve 

processability and mechanical properties of the composite.   
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