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Abstract—Scalability is a design principle often valued for
the engineering of complex systems. Scalability is the abil-
ity of a system to change the current value of one of its
specification parameters. Although targeted frameworks are
available for the evaluation of scalability for specific digital
systems, methodologies enabling scalability analysis of multi-
domain, complex systems, are still missing. In acknowledgment
of the importance for complex systems to present the ability
to change or evolve, we present in this work a system-
level model-based methodology allowing the multidisciplinary
parametric evaluation of scalability. Our approach can be used
to determine how a set of limited changes to targeted system
modules could affect design specifications of interest. It can also
help predict and trace system bottlenecks over several product
generations, offering system designers the chance to to better
plan re-engineering efforts for scaling a system specification
efficaciously.

We demonstrate the value of our methodology by in-
vestigating a smartphone-based biosensing instrumentation
platform. Specifically, we carry out scalability analysis for
the system’s bandwidth specification: the maximum analog
voltage waveform excitation frequency the system could output
while allowing continuous acquisition and wireless streaming
of bioimpedance measurements. We rely on several SysML
modelling tools, including dependency matrices, as well as a
fault-detection Simulink Stateflow executable model to con-
clude on how the successive re-engineering of 5 independent
system modules, from the replacement of a wireless Bluetooth
interface, to the revision of the ADC sample-and-hold operation
could help increase system bandwidth.

Keywords-Scalability; Model-Based Development; SysML;
Dependency Matrix; Smartphone;

I. INTRODUCTION

Scalability is often considered an important design prin-
ciple to abide by for the engineering of complex systems.
Together with several other non-functional -ilities of systems
engineering, scalability is considered by Ross et al. [1] as
one of the key factors in providing a complex (e.g cyber-
physical) system with the ability to sustain its value in a
changing environment. From their extensive semantical and
ontological research, Ross et al. and De Weck et al. [1], [2]
argued that scalability could be defined as the ability of a
system to change the current value of one of its specification

parameters.
In recent work, we argued that the field of Point-of-Care

in-vitro medical diagnostics presented several of the charac-
teristics that justify design for evolvability, a key constituent
of which is scalability [3]. We present, in this paper, a model-
based methodology for evaluating parametric scalability in
complex systems. We illustrate our methodological approach
with a case-study: we investigate how the bandwidth of
a smartphone-based biosensing instrumentation platform
could be scaled up from the successive re-engineering of
relevant functionally and structurally independent modules.
We define bandwidth for this work as the maximum voltage
waveform excitation frequency for which the system can
operate continuously while streaming data to the mobile-
software layer.

II. METHODOLOGY

Our methodological approach requires:
1 - The identification of all the design variables influenc-

ing the specification of interest. Model-Based Design (MBD)
can support that identification with an increasing level of
refinement, directly related to that of the model itself. Past
this identification step, our methodology necessitates:

2- To identify and trace the dependencies existing between
all identified design variables. This identification process
is necessary in order to aggregate design variables that
show dependencies with one another. Aggregates of inter-
dependent variables should be defined so as to be indepen-
dent from one another. The next step of our methodology
then requires:

3- To assess the independence of the functions, structures,
or operations implementing these design variable aggregates.
This step involves identifying the various system modules
(e.g. hardware, software, mixed, etc.) responsible for the
design specification under consideration. The scalability of
the design specification determined by these independent
modules can be then be quantitatively evaluated and de-
mands:

4- To successively replace each independent system mod-
ule in the model by a module that is not limiting for



scaling the design specification. This step is equivalent to
successively nulling the influence of each design variable
aggregate defined at the previous step. We illustrate how to
apply this methodology with a case-study.

III. CASE-STUDY: SMARTPHONE-BASED CONTINUOUS
RECOVERY OF BIOIMPEDANCE SIGNALS

A. System overview and SysML model
We consider a smartphone-based platform, introduced in

[3] and further elaborated upon in [4]. In an attempt to
address the challenges specific to changing contexts and
requirements discussed by Fricke et al. [5], the system was
designed so as to favour system evolution. Among available
functions, it enables the continuous recovery of low AC-
current signals, such as those exhibited by high-impedance
silicon nanowire biological field-effect transistors, using
digital lock-in amplification [6]. We analytically identified
the design variables involved in bandwidth specification
(as defined in section I). We relied on the OMG SysML
language to define the system functions, structures and
behaviors at a level of abstraction that would allow the
definition of parametric relationships between the identified
design variables.

Figure 1. Smartphone hardware accessory architetural overview. The
accessory is mainly constituted of a Digital Signal Controller (F28377D
DSC) embedding all necessary peripherals to carry out both voltage
waveform generation and synchronous sampling. The DSC is interfaced
to a Bluetooth Low Energy module (BLE112) via SPI. The analog front
end comprehends current amplifiiers. Phase-Sensitive Detection (PSD) is
performed digitally in the first core (Core1).

The system overall architecture is given in figure 1. Hard-
ware and embedded software were designed so as to allow

lock-in amplification acquisitions to be performed continu-
ously and streamed to the iOS mobile-software layer. The
implementation of continuous lock-in acquisitions necessi-
tated the parallelization of the DAC waveform generation,
ADC sampling and DSP routines. The latter comprehend a
two-stage Phase-Sensitive Detection (PSD Stage 1 and PSD
Stage 2) algorithm itself composed of signal mixing and FIR
low-pass filtering and decimation [6].

We completed the behavioral model of the system with
state-machines for all subsystems influencing the bandwidth
specification. A high-level representation of such model is
given in figure 2, and illustrates the operation of DSC Core1:
while DAC and ADC control is allocated to Core2, Core1’s
main CPU (C28x) is in charge of PSD Stage1 while its
hardware accelerator (CLA) can concurrently execute PSD
stage2. Once PSD Stage 2 is completed, Core1’s C28x
processor transfers the processed data to the BLE module
while Core2 is still continuously exciting/sampling. This
scheme is made possible via the use of duplicated acquisition
buffers, alternating roles: target of the acquisition process for
one, source to the DSP and BLE transmission for the other.

Design variables influencing system bandwidth were iden-
tified by the electrical, embedded-software, and mobile-
software designer. They were then informed in the various
diagrams of the SysML model and are summarized in the
dependency matrix given in figure 3 (step 1). As mentioned
in section II, these dependencies can be used to define ag-
gregates of design variables showing interdependencies and
their associated system functions, structures or operations
(step 2). If an arrow displays a dependency between two
design variables in a matrix cell, then the corresponding
row and column design variables are aggregated together.
These aggregates correspond in figure 3 to the groups
of design variables with overlays of the same color. The
next step of our methodology (step 3) demanded us to
identify independent system modules (functional, structural
or operational) specifying or encompassing the independent
design variables aggregates from the previous step: The final
step of our methodology consists in successively replacing
these independent modules by ones that are not bandwidth
limiting. This process was achieved using a state-machine-
based fault-detection simulation model and is explicited
further in the next section.

B. Model-based recovery of bandwidth specification

We carried out the last step of our methodology by relying
on a refined state-machine model enabling fault-detection.
Part of this model is presented in figure 2. Faulty states were
specified so as to be able to identify the independent module
responsible for bandwidth limitation for a given trial excita-
tion frequency. For instance, triggering the StartDSPStage2
event while the CLA hardware accelerator is still processing
samples (i.e. is in the DSP Stage 2 state) is a faulty operation
that would result in the input data for PSD Stage 2 being



wrongly overwritten. Such event trigger is thus redirected in
the model to the bwLimitedByPSDStage2Duration faulty
state (one the red states in figure 2), pinpointing PSD Stage
2 as the responsible module for bandwidth limitation, since
we asserted in the previous steps of the methodology that
the design variables associated to bandwidth specification
in DSP Stage 2 were independent from the other modules.
Executing a simulation for a specific voltage waveform
excitation frequency above our system bandwidth would thus
bring the state-machine to a given faulty-state, whereas a
simulation at an excitation frequency below the bandwidth
would run continuously, recovering the impedance measure-
ment in the mobile software layer model independently of
the acquisition duration. We considered that the simulation
were fault-free if the model could successfully fill at least
two acquisition buffers while transmitting and recovering
data in the mobile-software layer model.

In order to recover the bandwidth of our initial system
via simulation, we derived an iterative dichotomous algo-
rithm (figure 4) made responsible for attempting to simulate
the state-machine model at excitation frequencies redefined
iteratively in the following maner: The initial condition
for running this algorithm was to set the initial excitation
frequency to an arbitrary value, in this case 100 kHz. Should
this first simulation be successful, this frequency would the
set as the lower bound for the minimum system bandwidth
at the next iteration where the trial frequency would be
doubled. If instead the simulation ended in a faulty state,
then the excitation frequency would be set as an upper bound
for maximum bandwidth and the next trial frequency would
be halved. By repeating this scheme iteratively, the algorithm
converges towards the system’s bandwidth value within a
given tolerance. Given the possibility of a large number
of iterations and related computational load, we opted for
replicating our state-machine model in MathWorks Simulink
StateFlow and implemented our algorithm in Matlab.

C. System scalability over generations

Our initial system i.e. Gen1 on figure 5 successfully
passed all simulations at excitation frequencies below
3.1624Hz. The first faulty-state in which the model would
end up beyond this value was that associated with a trig-
ger event received for initiating the PSD routines while
DSC Core1 was still transferring data to the BLE module.
As the simulation enters in the faulty-state it is aborted,
thereby pinpointing the BLE module to be the bottleneck
for Gen1’s bandwidth. We determined in step 3 and 4 that
three design variables influencing system bandwidth have
been confined to the BLE system communication mod-
ule, namely spi8BitWordTransferIntervalDuration, at-
tributeNotificationUpdateInterval, and bleSPIWordPro-
cessingTime. The first of these variables is dependent on
the last (BLE-DSC communication software dependencies).
attributeNotificationUpdateInterval does not show de-

Figure 2. The value of the successive system’s generations bandwidth
specification is retrieved by simulation of the system’s state machines
and the recovery of faulty executions. Entry to any of the predefined
faulty states (red states in the figure) translates a fault in execution and
effectively stops the simulation. More specifically, simulations at various
AC excitation frequencies are carried out by dichotomy: If a simulation
is faulty, then the excitation frequency is set as an upper bound for the
minimum system bandwidth. If the simulation is successful, it is set as a
lower bound for the maximum system bandwidth. Simulations are repeated
until an excitation frequency within the specified tolerance interval outputs
a successful simulation.

pendencies with the other two but also influences the system
bandwidth. It is a property of the BLE protocol specification.

We were able to shunt the influence of the BLE module
on bandwidth by setting these three design variables to
infinitesimals. This, in turn, helped us identify which system
module would be the bottleneck for bandwidth in Gen2:
the evolved system corresponding to Gen1 but replacing
the BLE module and its relevant design variables by non-
limiting implementations. The execution of our iterative
dichotomous algorithm now converged towards 27.498Hz,
this time limited in bandwidth by the PSD Stage2 hardware-
software module. By using the same reasoning we could
investigate which modules would be successively limiting
system bandwidth, each time circumventing the bottleneck



Figure 3. Dependency matrix presenting dependencies between all the design variables influencing the specification of interest: the system bandwidth. The
same set of design variables fill both the rows and columns of the matrix. The dependencies are read from row to column: arrows for a given matrix row
represents a dependency of the design variable corresponding to the arrow’s cell row on the design variable in the arrow’s cell column. Design variables
presenting a dependency relation are aggregated together. These aggregates are represented with overlays of the same color

of the previous system generation. The corresponding suc-
cessive systems generations could thus be determined and
consist of:

– Generation 1: Original system such as depicted in
figure 1.

– Generation 2: System evolved so that the BLE commu-
nication module (i.e. the yellow-overlay design variable
aggregate + the attributeNotificationUpdateInterval
variables) is not limiting to system bandwidth: the
duration design variables were set to infinitesimals.

– Generation 3: Generation 2 evolved so that stage 2 PSD
is not limiting to bandwidth (i.e. the blue-overlay design
variables aggregate): stage2PSDExecutionTime set to
an infinitesimal.

– Generation 4: Generation 3 evolved so that stage 1 PSD
is not limiting to bandwidth (i.e. the red-overlay design
variables aggregate): stage1PSDExecutionTime set to
an infinitesimal.

– Generation 5: Generation 4 evolved so that the ADC
sample and hold duration is not limiting (i.e. the green-
overlay design variables aggregate): adcSamplingIS-
RExecutionTime set to an infinitesimal

– Generation 6: Generation 5 evolved so that the in-
dependent dmaTransferIsrExecutionTime variable is
not limiting: set to an infinitesimal.

IV. DISCUSSION

The presented 4-steps methodology provides a way to
evaluate the scalability of complex systems by leveraging
model-based design and analysis. The successive identifi-
cation of design variables, the assessment of their inter-
dependencies, and the determination of the independent
system modules engulfing these variables are prerequisites
for being able to consider how successive re-engineering of
each of these modules will affect the design specification
of interest. Our systems engineering approach enables scal-
ability assessment to be carried out for complex (e.g. cyber-
physical) systems where specifications are likely to arise
from design variables spanning over various engineering
disciplines and where system modules may comprehend
anything from a mechanical add-on to a software toolbox.

Our methodology is valuable in that it can not only help
identifying system bottlenecks, but it also provides a means
to evaluate the focus and scope of the re-engineering effort.



Figure 4. Principle of the iterative dichotomous algorithm for the estima-
tion of system bandwidth. An initial condition sets the original excitation
frequency to an arbitrary value, in this case 100 kHz. The state-machine
simulation ends in faulty state A. 100kHz is thus set as an upper bound
for the maximum system bandwidth and the next trial frequency is halved
to 50kHz. At this frequency the simulation runs successfuly setting 50kHz
as the lower bound for the minimum system bandwidth. By repeating this
scheme iteratively, the algorithm converges towards the system’s bandwidth
value: it ends with a successful run at frequency 68.75kHz with a lower
bound at 62.5kHz and upper bound of 75kHz. The difference between
which is 12.5kHz, inferior to the maximum uncertainty tolerance set for
the bandwidth estimate.

Figure 5. Successive systems are evolved so that the bottleneck module
identified of a given generation is replaced by a non-limiting module in the
next generation.

The analysis of dependencies helps certify that the benefit of
scaling a specification by changing a system module will not
necessitate the re-engineering of other modules dependent
on the former in any way.

Our strategy of iterative system evolution, circumventing
bottleneck system modules with non-limiting implemen-
tations enables to predict which unchanged module will

become the new specification bottleneck in the evolved
system.

V. CONCLUSION

We proposed a model-based methological approach for
the evaluation of system scalability and demonstrated its
utility with a cyber-physical biomedical system application.
Our endeavor addresses some of the shortcomings associated
with the assessment of change-related -ilities in the engi-
neering of complex-systems. It finally acknowledges that
engineering change has become predominant over design
from blank-canvas when dealing with complex systems, and
that system-wide tools and methodologies for easing the
evaluation of change-related -ilities are still needed.
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