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Abstract. A mathematical model is developed for the analysis of the fiber debonding phase of 

a pull-out experiment where the matrix is supported at the same end as the fiber is loaded in 

tension. The mechanical properties of the fiber/matrix are described in terms of two 

parameters, a fracture energy for fiber/matrix debonding and a frictional sliding shear stress. 

Results for the debond length and fiber debond displacement are compared with results from 

similar models for single fiber pull-out experiments where the specimen is gripped at the end 

opposite to the end where the fiber is pulling-out and with results for a single fiber 

fragmentation test. 

1.  Introduction 

The fiber/matrix interface plays an important role in controlling the macroscopic mechanical 

properties of fiber composites [1]. A number of tests involving specimens with a single fiber have 

been developed, such as single fiber pull-out tests, single fiber fragmentation tests and fiber push-out 

tests [2-4]. Yet it still remains a challenge to characterize the mechanical properties of the fiber/matrix 

interface for several reasons. First, the practical side. The manufacture of specimens with a single fiber 

involves handling of individual thin fibers which can be difficult and the testing usually requires 

special testing devices and measurement equipment. Second, a part of the challenge is from the 

theoretical side. There is a lack of agreement in which parameters to use for the characterization of the 

mechanical behavior of the fiber/matrix interface and there is a need for suitable theoretical models 

and approaches for the extraction of interface parameters from experimental data. 

Historically, the mechanical properties of fiber/matrix interfaces in composites were first described 

in terms of a maximum interfacial shear stress [5], representing yielding of a ductile interface or 

interface strength in case of a brittle interface. This idea led to the development of the single-fiber 

fragmentation test (SFFT) in which the saturated distribution of spacings between positions of 

multiple fiber breaks is used to for the calculation of an interfacial shear strength [5]. More recently, it 

has been proposed to characterize the fiber/matrix interface in terms of a debond energy and a 

frictional shear stress or Coulomb friction [6-9]. Such models are motivated by observations made 

during SFFT testing, indicating that fiber/matrix debonding takes place progressively during 

monotonic loading [2]. Another test type for fiber/matrix interface characterization is fiber pull-out 

tests. There are (at least) two ways of performing single fiber pull-out tests. One is to clamp the 

specimen end opposite to the one where the fiber is loaded in tension - we will denoted this test for 

fiber pull-out Type 1 (PO1). Another configuration is where the specimen is supported in the matrix 



 

 

 

 

 

 

material in the same end as the fiber is loaded - pull-out Type 2 (PO2). In both cases, we denote the 

(un-deformed) length of the free fiber by fL   and the embedded length by L .  

A number of micromechanical models exist for the analysis of pull-out and SFFT tests. Several of 

these models are quite advanced and incorporate e.g. Poisson's effects of fiber and matrix as well as 

residual stresses [8-12]. Unfortunately, due to mathematical complexity many of these models require 

a numerical implementation to be used. It is not always easy to see how model parameters are to be 

extracted from experiments. 

In this paper, we develop a relative simple analytical shear-lag model for the analysis of fiber pull-

out Type 2 (PO2).  The complete pull-out experiment, from the start to the final separation of fiber and 

matrix, consists of three stages: the initial debonding and sliding phase, the load drop at maximum 

fiber stress and the sliding and pull-out phase to complete pulling-out of the fiber. The model 

describes the fiber/matrix interface in terms of two parameters, a fiber/matrix debond energy, 
i

cG , and 

a constant interfacial frictional a sliding shear stress, s . The model incorporates residual stresses, but 

neglects Poisson´s effects. This allows us to make a relative simple 1-dimensional model. We describe 

an approach on how the interfacial parameters are determined from the debonding/sliding phase of 

PO2 pull-out experiments. Unlike most previous approaches, we utilize the fact that polymer matrix 

composites are optical transparent so that the debond length can be measured experimentally e.g. using 

optical miscopy during the experiment and used as an input parameter to extract model parameters 

from the model.  

We also compare the mathematical structure of the model with other similar models for pull-out 

experiments where the other end is held fixed (clamped) and with the SFFT. These test methods are 

closely related, see Figure 1 for a comparison. 

 

     
 

Figure 1. Comparison of testing methods (a) Pull-out Type 1 (PO1), (b) pull-out Type 2 (PO2), 

and (c) the single fiber fragmentation tests (SFFT).  

 

 



 

 

 

 

 

 

The paper is organized as follows. First, Section 2 describes the assumption and development of 

the mathematical model. Next, in Section 3, we discuss the key results and explain how the interfacial 

parameters can be determined from experiments. Section 4 discusses the basic assumptions and 

limitations of the model, compares the mathematical structure of the model results with other, similar 

models for pull-out experiments PO1 and models for the SFFT, which are closely related, see Figure 1 

for a comparison. Section 5 summarizes the major conclusions of this work. 

 

 

2.  Theory - model development 

The section describes the basic assumption of the model, defines the geometry and boundary 

conditions of the model, and then the major steps in the model derivation are described.  

2.1.  Basic assumptions for debonding and sliding during pull-out Type 2 (PO2) 

The problem we analyze is a single circular fiber embedded in a matrix cylinder. The fiber radius is r

and the outer radius of the matrix cylinder is R and the fiber volume fraction is denoted fV . The fiber 

has debonded a length, d . A z -coordinate system with origin at the debonded end of the specimen is 

used, see Figure 2. The interfacial fracture energy is denoted 
i

cG  and the frictional sliding shear stress 

is s . The fiber is loaded by a tensile stress, f , applied at the debonded fiber end ( 0z ). The 

specimen is supported at the matrix at 0z , inducing a traction m  that is in force balance with f

(note the we have defined the traction m  positive in the direction of the z -axis, opposite to the 

positive direction of the applied fiber stress f ). As a result of the interfacial debonding and sliding, 

the fiber and matrix have a relative displacement   at z = 0;   is defined positive when the fiber 

slips out. The geometry and boundary conditions are shown in Figure 2. The fiber and matrix are taken 

to possess linear-elastic behavior described in terms of a Young's modulus of the fiber and matrix, 

denoted fE  and mE  respectively.  

 

 
 

Figure 2. Geometry and loading of the model for pull-out Type 2 (PO2). 

2.2.  Residual stresses 

The composite is taken to be stress-free at the processing temperature, 0T . However, residual stresses 

can be present in the unloaded composite when cooled down to the temperature, T , where the pull-out 

test is performed. In the following, we will express the residual stresses in terms of a mismatch strain, 
T . The mismatch strain is the strain difference that would exist between fiber and matrix at the 

testing temperature if the fiber and matrix were allowed to expand and contract freely following the 

processing history. Thus, 
T  can be a result of shrinkage due to cross linking of polymers chains 



 

 

 

 

 

 

during curing, contraction due to thermal expansion mismatch during cool-down, etc. In the following, 

we will calculate the mismatch strain in case it originates solely from a mismatch in thermal expansion 

coefficients. With f  and m  being the thermal expansion coefficients of fiber and matrix, the 

residual stresses in the fiber and matrix induced by thermal expansion mismatch are found as (see 

Appendix A)  
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where the mismatch strain is defined as 
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T   ,     (2) 

and cE  is the Young's modulus of the composite, given by  

   ffmfc EVEVE  )1( .     (3) 

In principle, residual stresses can originate from other phenomena than a mismatch in the thermal 

expansion coefficients. However, irrespective of their cause, residual stresses can be represented in 

terms of a mismatch strain, 
T . Therefore the model is formulated such that 

T  is considered 

being an unknown quantity that must be determined experimentally. Appendix A describes how to 

account for a pre-stress applied to the fiber during specimen manufacturing. In the present paper, we 

will treat three microscale parameters as unknowns that must be determined from experiments: 
i

cG , s  

and 
T .  

2.3.  Stresses and strains in the debonded zone 

With the applied stresses at 0z  being f , force balance of the specimen gives  
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  .    (4) 

The stresses in the debonded zone are found by force balance, accounting for the stress transfer 

from the fiber to the matrix via the interfacial shear stress, s , which acts in the direction opposite to 

the slip direction at the fiber/matrix interface. The stress in the fiber at position z  is: 
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(superscript "-" indicates the stress in the wake of the crack tip) and the stress in the matrix cylinder at 

position z  is  
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The strain in the fiber at position z  within the debonded zone is obtained from Hooke's law: 
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Likewise, we find the strain in the matrix as: 

   dm

m

f

m

s

f

f

m zforT
Er

z

EV

V
z 
















 02
)1(

)( 


 . (8) 

 

 



 

 

 

 

 

 

2.4.  Stresses far ahead of the crack tip 

Far ahead of the debond crack tip (superscript "+" indicates position ahead of the debond crack tip), 

the stresses are independent of z -position and equal to the residual stresses: 
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2.5.  Fiber debond displacement 

The fiber debond displacement at position 0z ,  , is obtained by integration of the strain difference 

along the sliding part of the interface, assuming that there is no displacement difference (slip) between 

the fiber and matrix at the crack tip ( dz  ):  
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The debond displacement in (10) is defined to be positive when the fiber slips out of the matrix. 

Inserting )(zf

  and )(zm

 from (7) and (8) into (10) and performing the integration leads to:  
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Eq. (11) is the first major result of our analysis. Eq. (11) can be re-written as follows:  
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Eq. (12) enables the determination of 
T  from experimental measurements of d  and   as a 

function of the applied fiber stress, f , if the interfacial shear stress s  is determined independently. 

Note that Eq. (12) is independent of 
i

cG . 

2.6.  Determination of debond length  

In order to establish equations for the determination of 
i

cG  and s , we proceed to determine the 

debond length d  as a function of the applied fiber stress, f . To do so, we utilize the potential 

energy approach of Budiansky, Hutchinson and Evans [13]. This approach is developed to calculate 

the potential energy loss accounting for large-scale frictional sliding. More precisely, the approach 

calculates the potential energy differences of two states of a cracked body with fixed surface tractions 

as it undergoes further cracking and frictional sliding. In State I, the body is subjected to surface 

tractions and cracks are present and frictional slippage has occurred along internal interfaces in the 

body. The body now undergoes further debonding and frictional slipping to State II. During this 

transition, frictional shear stresses perform further work and thus dissipates energy. Utilizing the 

principle of virtual work, Budiansky et al. [13] were able to eliminate the work of the applied tractions 

and express the potential energy difference between the two states as follows: 
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where I  and II are the potential energy of State I and State II. In (13), V is the volume of the 

body, I  and II  are the stresses associated with State I and State II, M indicates an elastic operator 

(Hooke's law) and 
F  is the frictional energy dissipation, defined as  
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In (14), u  denotes the relative frictional slip between the two states (assumed to occur 

monotonically during the transition from State I to State II) and FS  is the surface area at which 

frictional sliding occurs.  

The potential energy loss will be available for the energy absorption and dissipation during the 

transition from State I to State II. Therefore, a criterion for debond crack growth can be stated as 

follows: The debond crack propagation will occur only when the potential energy loss, eq. (13), is 

equal to the energy absorption by the debonding of the fiber/matrix crack tip and the frictional energy 

dissipation. This can be written as: 

    Fd

i

cIII r   2G .     (15) 

The right hand side of Eq. (15) is the energy absorption by the debonding of the fiber/matrix crack 

tip and the frictional energy dissipation. Inserting (13) into the left hand side of (15), we note that the 

frictional energy dissipation term, F , will appear on both sides in (15) and thus will cancel out. This 

is a major advantage of the approach since it simplifies the calculations; the frictional energy 

dissipation and (it turns out) the potential of the applied tractions do not need to be calculated. 

We first identify State I as the problem of a debond length d  and State II as the situation where 

the debond crack length has increased by a small distance, d . We note that with the tractions at the 

external boundaries held fixed, the State II stresses,  zf

  and  zm

 , in the region dz 0 , are 

exactly the same as for State I. In State II, the length of the slip zone has increased by d , so the 

equations (4) and (5) for  zf

  and  zm

  are now valid also for the new (State II) slip zone, 

ddz  0 . The upstream stresses, 


f  and 


m , are unchanged for ddz   . Then, for 

the transition from State I to State II, the stress state changes only for ddd z   . Therefore, 

(13) becomes  
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Omitting details (the analyses presented here follows that of Sørensen [14] who analyzed fiber failure 

and progressive debonding of a SFFT using a similar approach), we insert 


f  and 


m  from (9) and 

 zf

  and  zm

  from (5) and (6) into (16). After having performed the integration, we neglect 

higher order terms of d  (since d << d ), and insert the result for the potential energy loss into 

the left hand side of (15). Then, d  appears on all terms on both sides and cancels out. We end up 

with an equation for the determination of the debond length, d . For 0s  we get 
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Eq. (17) is our second major result. From (17) we note that the debond length depends on all three 

unknown parameters, 
i

cG , s  and 
T .  

 



 

 

 

 

 

 

3.  Further analysis 

In this section we re-write and combine equations (11) and (17) to forms that are particularly suited for 

use in connection with experimental determination of the unknown parameters, 
i

cG , s  and 
T . 

3.1.  Re-arranging equations 

We can rewrite (17) to give f  as a function of d : 
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We define the fiber stress corresponding to debond initiation as the value of f  for d = 0: 
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so that (18) can be written as  
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Eq. (20) shows that f  is related linearly to d . This suggests an experimental way to determine 

the interfacial frictional shear stress from the slope of the f - d  relationship. Differentiation of (20) 

leads to: 
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Thus, by recording the relationship between f  and d  we can determine s  from (21). Eq. (21) 

is our third major result. 

We now insert d  from (17) into (11). The result is 
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Rewriting (19), we obtain 

   

2

)1()1(

4

1




















 T

c

mf

f

i

f

c

mf

f

i

c

E

EV

EE

EV

rE


G
.  (23) 

This result, which is our fourth important result, is independent of s but requires the knowledge of 

T . Eq. (23) thus provides one equation to determine 
i

cG  from measured values of 
i

f  and 
T , 

i.e. one result per test specimen. 

Inserting 
T  from (12) into (23) gives  
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This, our fifth main result, is independent of 
T . Unlike the result (23), Eq. (24) enables the 

determination of multiple values of 
i

cG  from multiple sets of data ( f , d and  ) from one test 



 

 

 

 

 

 

specimen. This approach is thus likely to provide a more accurate estimate of 
i

cG  that the result based 

on a single data set, Eq. (23). 

3.2.  Approximations for 0fV  

A further simplification of results can be obtained by considering 0fV , which is practically the 

case for specimens consisting of a single fiber cast into a matrix specimen. First we note that 

mc EE   for 0fV , so that 1)1(  cmf EEV  for 0fV . Then (12) reduces to  
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while (19) simplifies to               
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while eq. (22) becomes 
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and (24) reduces to 
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Finally, eq. (23) can be written as                 
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Eq. (29) is simply another form of (26).  

3.3.  Approach for parameter determination  

We will now describe an approach for the determination of the interface parameters 
i

cG  and s  as well 

as the strain mismatch, 
T , from measurement from a continuous pull-out Type 2 (PO2) test. The 

procedure follows a similar procedure proposed earlier for the pull-out Type 1 (PO1) [15]. We assume 

that during the single fiber pull-out experiments the parameter f ,   and d  are recorded 

simultaneously. We propose the following approach to determine the three parameters in three steps: 

 

Step 1: f  is plotted as a function of d . Since, according to (20), f  should depend linearly on 

d , a straight line can be fitted to the data. This allows the determination of s  using (21). A sketch 

of such a plot is shown in Figure 3a. 

 

Step 2: Having determined s , another plot is made in accordance with (12) or (25) using the 

experimental values of f ,   and d . The result should be a constant value, 
T . An average value 

of 
T  can be determined from such data. A sketch of such a plot is shown in Figure 3b. 

 



 

 

 

 

 

 

Step 3: Knowing 
s , the value of 

i

cG  can now be determined by the use of (24) or (29), from a plot 

showing 
i

cG  as a function of f  or d  using the associated values of  . A sketch of such a plot is 

shown in Figure 3c. 

 

 
 

 
 

Figure 3. Sketches of plots for the determination of parameters s , 
T  and 

i

cG  from data from 

pull-out experiments. (a) A plot of f  as a function of d  for the determination of s  according to 

(21). (b) Plot of experimental values of f ,   and d  combined according to Eq. (25) to give 
T .  

(c) Values of f ,   and d  combined according to (28) to give 
i

cG . 

 

An independent check of 
i

cG  can be made by (23) or (28) where first 
i

f  is determined from a plot 

showing f  as a function of d  (as Figure 3a) by extrapolation to d  = 0, and then using 
i

f  and 

T  in (23). It should be noted that 
i

f  cannot be obtained directly as the experimental stress value 

where debonding is found to initiate in the experiments, because the model is not really valid for 

initiation. Having determined all the parameters, 
i

cG , s  and 
T , we can make a another check of 



 

 

 

 

 

 

the accuracy of the parameters by plotting f  as a function of  , using eq. (22), and compare the 

predicted graph with the original experimental data for f  as a function of   .  

 

4.  Discussion 

In the following, we will compare the equations of the present analysis for PO2 with similar equations 

for PO1 and SFFT. We also discuss the pull-out part of the experiment and the major assumptions of 

the present model.  

4.1.  Comparison with results from other pull-out and SFFT problems 

The three basic test problems, PO1, PO2 and SFFT (Figure 2) can be considered as special cases of a 

more general problem, where there are three applied stresses, f  and 
m  applied to the fiber and 

matrix at 0z  and a stress c  applied to the uncracked end of the composite specimen at Lz  , 

see Figure 4.  Care needs to be taken on the direction of sliding and pull-out and the sign (direction) of 

the frictional shear stress - note that the sliding direction of the SFFT is opposite to the pull-out tests. 

Force equilibrium gives 

   0)1(  mfffc VV  .    (30) 

The three cases PO1, PO2 and SFFT correspond to the following conditions for the applied stresses: 

   0m  corresponds to PO1 

   0c  corresponds to PO2 

   0f  corresponds to SFFT 

 

       

        
 

Figure 4. Models for (a) pull-out Type 1 (PO1), (b) pull-out Type 2 (PO2), (c) SFFT and (d) general 

model. 

 



 

 

 

 

 

 

The conditions enter the equations for the stresses )(zf

 , )(zm

 , 


f , 


m , corresponding to (5), 

(6) and (9) for case PO2, and thus affects the results for the debond length d  and the relative 

displacement,  . Let us compare the equation for f  versus d  for the two pull-out cases. 

For PO1, the equation for f  as a function of d  is given by Hutchinson and Jensen [8]: 
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Superscripts indicate test method. For PO2, the result is given by Eq. (18), reproduced below:  
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It is seen that the result for PO2 is simply the result of PO1 multiplied by cmf EEV )1(  . This 

implies that for the same d  the stresses scales according to: 
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Next we compare the equations for   as a function of f  for the two pull-out cases. For PO1 we 

have [8]: 
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while for PO2 we have eq. (22): 
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We see that these equations are identical if the applied stress terms in the brackets are equal, i.e. 

under the condition 
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This is the same relationship as above, eq. (33). Thus, for the same d  and same   the stresses scale 

by the factor cmf EEV )1(  . This factor is very close to, but slightly lower than unity for a single 

fibre composite specimen because from (3), mc EE   for 0fV . This shows that there is very 

little difference in terms of stresses and pull-out displacement for the two pull-out cases, PO1 and 

PO2. 

A similar comparison of equations for d  and   for the SFFT case [14] gives the following 

scaling factors, noting that during a SFFT experiment it is the composite stress c  that is recorded, 

since in the SFFT the fiber is broken and thus stress free where debonding occurs. 
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Again, if we consider 0fV  we obtain 
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so that, with all parameters (including d  and  ) held fixed, the stresses are scaled approximately as 

the ratio of the stiffnesses of the matrix and fiber. This can be a significant difference for a polymer 

matrix composite where the Young's modulus of the matrix is usually significantly lower than that of 

the fiber. The comparison reveals that the applied composite stress of the SFFT - for the same d  - is 

much lower than the fiber stress of the PO1 experiment. It might be of interest to design experiments 

to test this relationship. 

 

4.2.  Comments regarding the full pull-out experiment 

PO2 pull-out experiments are usually conducted in "displacement control", i.e. the position of the free 

end of the fiber is displaced in the negative z -direction at a constant rate. Such experiments can be 

considered to take place in two phases. In the first debonding and sliding phase, the applied load to the 

fiber increases and the debond crack tip propagates along the fiber towards the un-cracked end of the 

specimen ( Lz  ) and the applied fiber stress increased. In the sliding/pull-out phase, the fiber is fully 

debonded and slides along the entire fiber/matrix interface, and the stress carried by the fiber is given 

by the frictional shear stress and the embedded fiber length, s . The following considerations are 

valid for experiments being conducted in "displacement control", i.e. when the position of the free end 

of the fiber is displaced in the negative z -direction at a constant rate. 

For the first debonding/sliding phase, our equations for the stress-displacement (22) is expected to 

be valid until the crack tip stress field approaches the end of the specimen, i.e. until Ld  . The 

maximum applied fiber stress 
c

f  can thus be estimated from by setting Ld   in (20). The result is 
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and the corresponding debond displacement is found by inserting 
c

f  from (39) into (11), giving 
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Just as the debond crack tip reaches the end of the specimen, the crack tip stress field vanishes and 

during the remainder of the experiment, the stress field is independent of 
i

cG  and 
T . The stress 

field is now controlled by the interfacial friction and the experiments starts its sliding/pull-out phase. 

As this happens, the applied fiber stress drops to a value denoted 
d

f . The value of 
d

f  depends on 

s  and the initial free fiber length, fL  (see definition of fL  in Figure 1a).  

In the sliding phase, the stress carried by the fiber is controlled by the frictional shear stress and the 

embedded fiber length, s , along which the interfacial sliding shear stress s  acts. A simple force 

balance gives:  
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Clearly, the embedded fiber length s  decreases with increasing pull-out. However, the exact 

value of s  depends on the initial length of the free part of the fiber, i.e. the initial distance from the 

gripping point of the fiber to the start of the specimen, fL . This is because the applied load level f  



 

 

 

 

 

 

decreases during the sliding phase of the pull-out experiment as the embedded sliding length s  

decreases (see (41). Then, the matrix-free part of the fiber unloads too and thus contracts elastically. 

Being griped at the loaded fiber end ( fLz  ), the fiber pulls out of the matrix and thus decreases the 

embedded length, s . The longer the initial free length, the larger will the elastic contraction and thus 

the larger shortening of s  and thus the lower will 
d

f  be. The smallest possible load drop will be to 

consider 0fL , corresponding to that the fiber is gripped at 0z . Then, the sliding length just after 

complete debonding Ld

s  . An upper bound for 
d

f  is thus 
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From (39) and (42) it follows that this stress drop is 
i

f . The fiber stress f  will decrease linearly 

with s  in accordance with (41) and f  will vanish for L  corresponding to 0s . Figure 5 

shows a sketch of the entire  f  relationship.  

Relation (41) has been widely used to characterize the interfacial shear stress of pull-out 

experiments. It is clear from our model perspective that the use of relations like (41) is only relevant 

for characterization of the frictional sliding resistance of the fiber/matrix interface. It will not be useful 

to characterize the chemical bonding between fiber and matrix, because the bond rupture occurs in the 

first phase (debonding/sliding) of the experiment where the applied fiber stress is rising.  

 

 
Figure 5. Sketch (not made to scale) of the fiber stress and debonding/sliding and sliding/pull-out 

displacement behavior of a pull-out type 2 (PO2) experiment. 

4.3.  Traditional analysis of pull-out experiments 

An "apparent" average shear stress, calculated from the maximum applied force, maxP , has 

sometimes been used to characterize the fiber/matrix interface. In connection with our analysis we 

obtain  
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It is clear that such an approach does not enable a clear separation of the interface parameters, 
i

cG  

and s , since 
c

f  depends on both parameters (
i

cG  through 
i

f ), see (39). Moreover, in case of non-

zero 
i

f , the use of (43) will result in different values for s
~  for different values of L . This is 



 

 

 

 

 

 

because 
c

f  is linear but not directly proportional to L , see (39); the term 
i

f  depends on both 
i

cG  

and 
T , see (19). This can be seen by considering Figure 6, which shows the theoretical relationship 

between f  and d , eq (20). Consider three specimens having different initial fiber embedded 

length, 1L , 2L  and 3L . The associated maximum fiber stresses of the three specimens, 
1,c

f  ,
2,c

f  

and 
3,c

f  are indicated. The different slopes of the dashed lines indicate that the apparent shear stress 

s
~  calculated using (43) would come out differently for different values of L .  

The constant term in (39), 
i

f , can be positive or negative depending on the values of 
i

cG  and 

T . If 
i

f  is positive (as shown in Figure 6), the apparent shear stress s
~  will decrease with 

increasing embedded fiber length and, conversely, if 
i

f  is negative (in case the fiber is pre-

debonded), s
~  will increase with increasing embedded length.  

 

 
Figure 6. Sketch of the stress-debond length relationship, eq. (39), of a pull-out Type 2 (PO2) 

experiments with specimens of different lengths. Slopes of dashed lines indicate the apparent shear 

stress s
~ .  

 

Eq. (43) suggest a consistent way to analyze old data from traditional pull-out experiments and 

obtain s  from measurements of s
~  as a function of L . We note from (43) that ss  ~  for L  

or 0Lr . Thus, if s
~  is plotted as a function of Lr , we can read off the true frictional shear 

stress s  at 0Lr . The slope of the plot will be 2i

f . According to (19), the parameter 
i

f  

depends on both 
i

cG  and 
T . Having determined 

i

f  from the slope of the plot, we cannot 

determine 
i

cG  and 
T  independently but only in the combination given by (19).  

4.4.  Model approximations 

The present model builds on a number of assumptions, such as taking fiber and matrix as linearly-

elastic materials and neglecting Poisson's ratio's effects, effectively creating a one-dimensional model. 

Most fibers used in engineering composites, such as glass fibers and carbon fibers possess rather small 

non-linearity in their stress-strain behavior. The neglecting of Poisson's effects requires a few 

comments. First, for some fibers such as carbon fibers the Poisson's ratio is not readily known. 

Secondly, the Poisson's effects would induce a lateral contraction in fibers in pull-out experiments, 

possibly changing (reducing) the interfacial normal stress acting normal to the fiber/matrix interface. 

Considering Coulomb friction, a decrease in the normal stress across the interface could change 



 

 

 

 

 

 

(decrease) the frictional shear stress. However, there are also experiments that indicate that roughness 

asperities of the fiber surface affects the frictional sliding behavior of fibers in a composite material [3, 

16]. With these complexities in mind, a friction law based on a constant frictional shear stress can be 

seen as a crude approximation. We think, however, that the most important point is that we 

characterize the fiber/matrix interface in terms of two parameters that represent two distinctive 

physical phenomena, the debond process, in which breakage of chemical bonds are the main feature, 

and frictional sliding resistance. Each of the two phenomena can be modelled in various ways, but 

how this should be done should be based on careful physical observations.  

The assumption that the mechanical behavior of the fiber/matrix interface can be adequately be 

described in terms of 
i

cG  and s  can to some extend be checked with the proposed approach outlined 

in Section 3.2 in which parameters are determined from combinations of measured experimental data (

f  as a function of d ) which according to (20) should result in linear relationships, as outlined in 

Figure 3a. In case the plots show that the experimental data come out with non-linear relationships, we 

must conclude that the models do not represent the experiments well. Then, more advanced interface 

model concepts should be explored. 

Finally a remark about the use of shear-lag model for the present problem. This is expected to be a 

fairly good approximation when the debond crack length is long. Hutchinson and Jensen [8] showed 

by comparing results from a shear-lag model with results from a more accurate numerical model that  

shear-lag models can be good approximations once the debond length is longer than about 2 -3 times r. 

This implies that the model is best suited for composites with relatively low values for the interface 

shear stress and debond energy. 

    

5.  Concluding remarks 

An analytical model was developed for debonding and sliding of a single fiber specimen supported at 

the matrix at the end where the fiber is loaded in tension. The model takes the fracture energy for 

fiber/matrix debonding, the interfacial sliding fraction and a strain mismatch as unknowns that must be 

determined from experimental measurements. An approach is presented for sequential identification of 

these parameters. Equations for debond length and fiber debond displacement were found to have 

similar form as equations derived for single fiber pull-out testing where the specimen is gripped at the 

opposite end and for single fiber fragmentation tests. 
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Nomenclature 

d  debond length 

s  embedded (sliding) length during pull-out phase 

r  fibre radius 

z  coordinate axis 

 

cE  Young's modulus of the composite 

fE  Young's modulus of the fibre  

mE  Young's modulus of the matrix material  



 

 

 

 

 

 

i

cG  interfacial fracture energy  

L  length of embedded part of the fibre (debond and sliding phase)  

fL  length of free fibre  

R  radius of matrix cylinder 

FS  surface area where frictional slip occurs 

T  temperature at which pull-out experiment is conducted 

0T  temperature at specimen is free of residual stresses 

V  volume of test specimen 

fV  fibre volume fraction 

 

f  thermal expansion coefficient of fibre 

m  thermal expansion coefficient of matrix 

  relative displacement between fibre and matrix at z = 0 
c  relative displacement between fibre and matrix at end of debonding phase ( d = L ) 

T  mismatch strain 

u  relative slip between fibre and matrix along the fibre matrix interface  


f  strain in the fibre in the debonded/slipping zone ( z < d ) 



m  strain in the matrix in the debonded/slipping zone ( z < d ) 

I  stresses associated with State I 

II  stresses associated with State II 

c  applied composite stress at the un-cracked end ( z = L ) 

f  applied stresses at the fibre end ( z = 0) 

c

f  applied fibre stress at end of debonding phase ( d = L ) 

d

f  applied fibre stress at end of beginning of the pull-out phase 

i

f  applied fibre stress at initiation of fibre/matrix debonding and sliding 



f  stress in the fibre in the debonded/slipping zone ( z < d ) 



f  stress in the fibre ahead of the debonded/slipping zone ( z > d ) 

res

f  residual stress in the fibre in the bonded zone ( z > d ) 

m  traction applied to the matrix at z = 0 



m  stress in the matrix in the debonded/slipping zone ( z < d ) 



m  stress in the matrix ahead of the debonded/slipping zone ( z > d ) 

res

m  residual stress in the matrix in the bonded zone ( z > d ) 

s  interfacial frictional sliding shear stress 

s
~  apparent interfacial shear stress 

F  frictional energy dissipation 



 

 

 

 

 

 

Appendix A 

In the following we wish to calculate the residual stresses at temperature T  accounting for a pre-

stress, 
0

f  , applied to the fiber during the processing at temperature 0T . The pre-stress is applied to 

the fiber only, see Figure A-1. The matrix remains stress-free at temperature 0T . Thus, the resulting 

strain in the fiber and matrix after the application of the pre-stress to the fiber are thus given by 

Hooke's law 
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Following the application of the pre-stress the matrix is cured and the single fiber composite is 

cooled down to temperature T . The fiber is taken to possess a constant thermal expansion coefficient 

f . We assume that the matrix solidifies and obtains its full stiffness, given in terms of its Young's 

modulus mE , during the curing. The matrix may undergo shrinkage before consolidation, but this will 

not be considered in the following, since residual stresses are not expected to build-up as long as the 

matrix is in a viscous state. The strain that the stress-free matrix material would undergo after 

solidification (usually contraction) is described in terms of a constant thermal expansion coefficient 

m .  

As a part of the consolidation, the matrix is assumed to form a chemical bond to the fiber. Thus, the 

matrix cannot contract freely but must undergo the same strain change as the fiber. This constrain 

induces a resulting stress in the fiber, denoted 
1

f  and a residual stress in the matrix, 
1

m . Following 

consolidation and cool down to temperature T , the strain in the fiber 
1

f  and the matrix 
1

m  are given 

by  
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The strain changes are obtained from (A-1) and (A-2) as 
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Taking the thermal expansion coefficients as know material properties we can determine 
1

f  and 

1

m  by the two conditions: The strain changes after matrix consolidation have to be identical, 

11

mf   , and the stresses 
1

f  and 
1

m  must be in force balance with the applied stress 
0

f . This 

leads to 
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where  

    ))(( 0TTmf
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is the mismatch strain. 

Finally, the pre-stress is released. This is equivalent to adding a pressure (a negative stress) to the 

free fiber end. This creates a stress change to both the fiber and the matrix, denoted 
2

f  and 
2

m , 

respectively. Again the two conditions must be fulfilled: force balance and the fiber and matrix 

undergo the same strain change: 
22

mf   , where the strain changes are given by Hooke's law 
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Solving for 
2

f  and 
2

m  we find: 
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The final stress state, the residual stresses in the fiber and matrix, 
res

f  and 
res

m , are obtained by 

adding the two stress fields (assuming linearity), Eq. (A-4) and (A-7): 
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The result is: 
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Figure A-1. Sketch of stress and strain during the processing of single fiber composite specimen with 

a pre-stressed fiber. (a) Pre-stress is applied at temperature 0T , (b) the stresses in balance at 

temperature T , (c) additional stresses induced as negative pre-stress is applied.    

 



 

 

 

 

 

 

In the absence of pre-tension, (A-9) reduces to 
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Obviously, (A-9) and (A-10) have very similar forms. It follows that experiments conducted with 

pre-tension ( 00 f ) can be analyzed as a problem without pre-tension by substituting  
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i.e., treating 
T~  as an "apparent" mismatch strain in the data analysis. When parameters e.g. (

i

cG , s  

and 
T~ ) are identified from experimental data, the true mismatch strain can be obtained from 
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Finally, it follows from (A-9) that the residual stresses 
res

f  and 
res

m  vanish when the pre-stress 

are chosen as: 
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