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Stability of rigid rotors supported by air foil bearings: Comparison of two
fundamental approaches

Jon S. Larsena, Ilmar F. Santosa, Sebastian von Osmanskia

aDepartment of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

Abstract

High speed direct drive motors enable the use of Air Foil Bearings (AFB) in a wide range of applications due to
the elimination of gear forces. Unfortunately, AFB supported rotors are lightly damped, and an accurate prediction
of their Onset Speed of Instability (OSI) is therefore important. This paper compares two fundamental methods for
predicting the OSI. One is based on a nonlinear time domain simulation and another is based on a linearised frequency
domain method and a perturbation of the Reynolds equation. Both methods are based on equivalent models and should
predict similar results. Significant discrepancies are observed leading to the question, is the classical frequency domain
method sufficiently accurate? The discrepancies and possible explanations are discussed in detail.
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Nomenclature

CG Center of Gravity
FE Finite Element
LD Logarithmic Decrement, LD =−2πRe(λi)/Im(λi)
ODE Ordinary Differential Equation
OSI Onset Speed of Instability
PDE Partial Differential Equation
(¨) Time derivative, d2/dτ2

(˙) Time derivative, d/dτ
∇· Divergence
∇ Gradient, ∇ = {∂/∂θ, ∂/∂z̃}
A, B Bearings
C Radial clearance
D, D̃ Bearing damping, D̃ = ωC/(paR2)D
E Modulus of elasticity of foil
F, F̃ Bearing force components, F̃ = 1/(paR2)F
I Mass moment of inertia
K, K̃ Bearing stiffness, K̃ = C/(paR2)K
L, L̃ Bearing length, L̃ = L/R
N Number of fluid film nodes
Np Number of pads
R Journal radius
S Compressibility number, S = 6µω/pa (R/C)2

S b Bump foil pitch
W, W̃ Static load components, W̃ = 1/(paR2)W
a Scaler field quantity
b, b̃ Structural damping per unit area,

b̃ = C/(paω)b
e, ε Journal eccentricity (or e = element), ε = e/C
fγ Direction cosines
h, h̃ Film height, h̃ = h/C
hb Bump foil height
hc, h̃c Film height correction, h̃c = hc/C
hr, h̃r Film height (rigid), h̃r = hr/C
hs, h̃s Slope height, h̃s = hs/C
i Pad, i = 1, 2, . . . ,Np

k, k̃ Structural stiffness per unit area, k̃ = C/pak
l0 Bump half length
l1, l2 Distance to bearings
m Mass
p, p̃ Film pressure, p̃ = p/pa

pa Ambient pressure
pγ, p̃γ Perturbed pressure, p̃γ = Cpγ/pa

q, q̃ Structural flexibility per unit area,
q̃ = paq/C = 1/k̃
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qc Structural flexibility complex form
t Time
tb Thickness of bump foil
tt Thickness of top foil
x, y, z, z̃ Cartesian coordinates, z̃ = z/R
∆ε Perturbation amplitude
Φ Fluid domain
α Bearing position
η Structural loss factor of foils
γ Coordinates x, y
λ Complex eigenvalue, λ = ω̃ni + β̃
µ Dynamic viscosity
µ f Foil friction coefficient
ν Poisson’s ratio of foil
ω Angular speed of journal
ωn, ω̃n Eigenfrequency, ω̃n = ωn/ω
ωs, ω̃s Excitation frequency, ω̃s = ωs/ω
ψ Film state variable, ψ = ph
τ Dimensionless time, τ = ωt
θ, θ̃ Circumferential angle, θ̃ = θR
θl First pad leading edge angle
θs First pad slope extend
θt First pad trailing edge angle
ξi, η j Gauss points
f, f̃ Bearing force vector, f̃ = 1/(paR2)f

r Residual vector
s Advection vector, s = {S , 0}T

w, w̃ Load vector, w̃ = 1/(paR2)w
ψ Film state vector
h̃c Foil deformation vector
p̃ Pressure vector
p̃m Arithmetic mean pressure vector
ε Eccentricity vector
a Nodal vector
g() Nonlinear vector function
y State vector
z Rotor state vector
z1 Rotor displacement vector, z1 = ε
z2 Rotor velocity vector, z2 = ε̇
0 Zero matrix
A State space matrix
B Shape function derivatives matrix
D, D̃ Damping matrix, D̃ = ωC/(paR2)D
G, G̃ Gyroscopic matrix, G̃ = ω2C/(paR2)G
I Identity matrix
K, K̃ Stiffness matrix, K̃ = C/(paR2)K
M, M̃ Mass matrix, M̃ = ω2C/(paR2)M
N Shape function matrix
Γ Fluidity matrix
D̃s First order coefficients, D̃s = D̃ − G̃

1. Introduction

For almost 150 years, bearing-influenced rotor vibrations have attracted the attention of engineers and researchers.
In one of the first documents found in the literature, dated 1869, Rankine [1] reported the amplification of shaft lateral
vibrations at different (critical) speeds. In 1894, Dunkerley [2] presented an approximate method for finding the
natural frequencies or critical whirling speeds of simplified rotor systems. In 1919, Jeffcott [3] published one of the
most significant contributions to rotor dynamics, in which the lateral vibration of loaded shafts in the neighbourhood
of a whirling speed was addressed. With the significant developments of rotating machines in the 1920s, especially
driven by steam turbines [4], the influence of fluid film bearings on the lateral shaft vibrations became a very important
research topic. Motivated by the necessity of enlarging the operational range of steam turbines, the influence of higher
angular velocities on the shaft lateral vibrations was investigated by Newkirk and Taylor [5] in 1925. They documented
not only the increase of shaft lateral vibrations while crossing over the first critical speed but also, for the first time,
the severe unexpected vibrations about twice the first critical speed. In 1927, with an iterative approach based on
assumed shaft mode shapes and the new concept of ”nonlinear oil springs”, Stodola [6] linked rotor lateral vibrations,
bearing stiffness and their dependence on journal eccentricity. Using a rigid rotor, Newkirk [7] experimentally proved
in 1931 that half-speed whirl could occur over a wide speed range, well below twice the first critical speed. Using
a simplified infinite-width bearing model and disregarding cavitation, Swift [8] analytically investigated the non-
steady conditions in journal bearings. Taking into account bearing as well as rotor flexibility, Smith [9] reported the
possibility of four critical speeds for non-symmetrical rotors, a remarkable achievement in the beginning of the 1930s,
an era characterised by the absence of digital computer power.

The development of digital computers since the 1940s has strongly facilitated researchers to evaluate more com-
plex and sophisticated mathematical models for describing rotor and bearing dynamics. It has encouraged the devel-
opment of new alternative procedures to predict bearing-influenced rotor dynamic response and stability [10–13] in
the 1950s and 1960s. From the viewpoint of solid mechanics, rotors with complex geometry could be refined using
the transfer matrix method [14, 15] and later on the finite element (FE) method [16] to account for distributed rotor
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mass, inertia, and gyroscopic effect. From the viewpoint of fluid film bearing dynamics, effects of fluid compress-
ibility [17–19] and inertia [20–22], cavitation [23] and turbulence [24] could be numerically investigated and more
accurately predicted. For example, lubricant compressibility strongly influences the static and dynamic behaviour of
gas bearings as already reported by Harrison in 1913 [17]. With the advent of digital computers, gas bearings have
been intensively investigated over the last five decades [18, 19, 25–35]. Even though the available computing power
has notably increased, the numerical simulation of complex mathematical models - linking several physical domains
in rotor-bearing dynamics - has become even more demanding. Such models arise, for example, when bump foil
structural compliance, dry friction and gas compressibility are considered in the context of bump foil gas bearings.

In order to predict lateral vibration response and stability of rotors supported by bump foil gas bearings, linear
[31–33, 35–42] and nonlinear analyses [34, 43–46] can be carried out. In the linear analysis, the gas film forces
are represented by equivalent springs and dampers. The springs and dampers are represented by eight coefficients,
strongly dependent on rotor-bearing system operational conditions and frequency of external excitation forces. Such
force coefficients are calculated numerically or analytically, as proposed by Lund in 1968 [28] for gas bearings. One
of the first theoretical contributions linking Lund’s perturbation approach to obtain force coefficients of bump foil
gas bearings is dated 1993 [40]. Such force coefficients are normally used to predict stability as well as unbalance
response. Following such an approach other authors also investigated the stability of rotors supported by bump foil
gas bearings [31, 32, 35, 36, 47].

In this paper, two fundamental approaches to predict lateral stability of rotor-bearing systems are presented and
compared: one based on linearised force coefficients as introduced in 1993 [40] based on Lund’s perturbation approach
and currently used by several authors; another based on the nonlinear behaviour of the fluid film forces and time
integration. A similar comparison by Hoffmann et. al. [47] has previously found good agreement between the methods,
while another by Kim [31] reported significant discrepancies. In the latter, it should however be noted that very low
stability limits were predicted by the applied linear approach.

The nonlinear time domain integration scheme applied in the present paper is based on a simultaneous solution of
all state variables in time as originally proposed by Bonello and Pham [43, 46]. This maintains the true simultaneously
coupled nature of the equation system and hence alleviates the potential issues of temporal convergence suffered by
decoupled integration schemes. Despite the larger time increments permitted by this simultaneous approach, the
method of nonlinear time domain integration is not so frequently used due to the computational time demanded. This
obstacle is partly handled in the present work using a highly optimised computer implementation, but it has been
demonstrated in [43, 44] that the stability of a static equilibrium can be assessed directly using the eigenvalues of the
system Jacobian matrix. While this method is considerably faster, it does not provide information of the nonlinear
rotor orbit or a possible limit cycle.

In this framework, the main contribution of this paper is to theoretically show that the bump structure compliance
has a strong influence on the journal lateral stability, and that the more compliant the bump structure or the heavier
the load, the larger the discrepancy between the two approaches becomes. And finally, the possible source of the
discrepancy between the two approaches, which is linked to the basic assumptions with regard to the perturbation of
the system equations, is discussed.

2. Mathematical model - time domain

In Fig 1, the schematics of a perfectly balanced rotor-bearing system is illustrated. With the nodal position vector
defined as ε = {εAx, εAy, εBx, εBy}

T describing the instantaneous position of the shaft in the bearing locations A and B,
and under the assumption that the shaft is rigid and subjected to small amplitude vibrations in the x- and y-direction,
its equations of motion can be written in dimensionless form as

M̃ε̈ − G̃ε̇ = w̃ − f̃. (1)

Here, the dimensionless mass and gyroscopic matrices, M̃ and G̃, are given in Appendix A, w̃ is the static load vector
and f̃T

= {f̃T
A , f̃T

B}
T is the reaction force vector stemming from the bearings. The reaction force vector f̃ is determined

by integration of the fluid film pressure for each bearing as

f̃α =

F̃x

F̃y

 =

∫ L̃

0

∫ 2π

0
( p̃ − 1)

cos(θ)
sin(θ)

 dθ̃dz̃ (2)
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Figure 1: Schematics and nomenclature of a rigid rotor supported by foil journal bearings.

where α = A, B. The pressure in each bearing can be obtained by solving the Reynolds equation for compressible
fluids. This equation can be written in dimensionless vector form [22] as

∇ ·
(
p̃h̃3∇ p̃

)
= ∇ ·

(
p̃h̃

)
s + 2S

d
dτ

(
p̃h̃

)
(3)

where the film height is defined as

h̃(εx, εy, θ̃, p̃, ˙̃hc) = h̃r(εx, εy, θ̃) + h̃c( p̃, ˙̃hc) (4)

and h̃r(εx, εy, θ̃) is the undeformed rigid height, which depends on the rotor eccentricity. For a segmented journal
bearing, with inlet slopes and the nomenclature as illustrated in Fig. 1b, the dimensionless rigid film height can be
written as

h̃r(εx, εy, θ̃) =

1 + εx cos(θ) + εy sin(θ) − h̃s
θ−θi
θs
, θli ≤ θ ≤ θi

1 + εx cos(θ) + εy sin(θ), θi < θ ≤ θti
(5)

where

θi = θs + θl +
2π
Np

(i − 1)

θli = θl +
2π
Np

(i − 1)

θti = θt +
2π
Np

(i − 1).

(6)

The pressure dependent deformation of the foils, referred to as the compliant height h̃c( p̃, ˙̃hc), is given in Appendix B
based on the assumption of the SEFM [29, 30].

2.1. Solution strategy
The equations (1) through (6) constitute the mathematical model for the perfectly balanced rotor-bearing system.

In order to simulate the nonlinear rotor response and preserve the true simultaneously coupled nature of the system,
a set of ordinary differential equations (ODEs) in the state variables ε, ψ, h̃c, where ψ = p̃h̃, is established. This
approach was originally suggested by Bonello and Pham [43, 44, 46] and later used by Larsen and Santos [34] for
obtaining the nonlinear unbalance response of a rigid rotor similar to the one treated here. In order to obtain the
coupled system of ODEs, the Reynolds equation needs to be discretised.

4



2.2. Reynolds equation - discretisation
The fluid film partial differential equation (PDE) (3) is discretised following a standard Bubnov-Galerkin FE

procedure with implementation of an isoparametric element formulation [48]. First, a partial substitution with ψ is
performed to obtain

∇ ·
(
p̃h̃3∇ p̃

)
− ∇ ·

(
p̃h̃

)
s − 2S

dψ
dτ

= 0 (7)

which, upon discretisation [49], yields a system of linear equations on the element level

Γeψ̇
e

= re (8)

where
Γe = 2S

∫
Φe

NT N dΦ , re = −

∫
Φe

BT p̃h̃3B dΦ · p̃e +

∫
Φe

BT sh̃N dΦ · p̃e. (9)

The element vectors and matrices are expanded to structure size by the usual element summation:

r =
∑

e

re; p̃ =
∑

e

p̃e; ψ̇ =
∑

e

ψ̇
e; Γ =

∑
e

Γe (10)

where the integrals are numerically integrated using a quadrature rule [48]. The scalar field quantities p̃, h̃, are
calculated in the respective Gauss points (ξi, η j) by use of the interpolation functions as:

a(ξi, η j) = N(ξi, η j)ae (11)

where a and ae are the scalar field quantities and nodal vectors respectively. Note that the right hand side of (8)
is denoted re. In fact, re is the residual that needs to be minimised in order to find the static equilibrium of the
journal. When integrating the nonlinear equation system in time to assess stability, it is required to start from this
static equilibrium position. An efficient method for minimising re is given in [45].

2.3. Coupled system of ODEs
With the film PDE discretised, the mathematical model can be written as a system of ODEs, on the form ẏ =

g(τ, y), and solved for all state variables simultaneously. The state-vector is defined as

yT = {ψT
A , ψ

T
B, h̃T

cA, h̃T
cB, zT

1 , zT
2 }

T (12)

with z1 = ε and z2 = ε̇. For the particular case of a rigid rotor supported by two bearings, the system dimension of the
coupled ODEs are 4N + 8 with N being the number of nodes in the fluid film FE model of each individual bearing.
The system of ODEs takes the form:

ψ̇A
ψ̇B
˙̃hcA
˙̃hcB

ż1
ż2


=



0 · · · 0 0

...
. . .

...
...
0

0 · · · 0 I
0 · · · 0 M̃−1G̃





ψA
ψB
h̃cA

h̃cB

z1
z2


+



gψ̇A(ψA, z1, z2, h̃cA,
˙̃hcA)

gψ̇B(ψB, z1, z2, h̃cB,
˙̃hcB)

g ˙̃hcA(ψA, z1, z2, h̃cA)
g ˙̃hcB(ψB, z1, z2, h̃cB)

0
M̃−1(w̃ − f̃)


. (13)

The nonlinear functions on the right hand side are defined as

gψ̇α(ψα, z1, z2, h̃cα,
˙̃hcα) = Γ−1

α rα (14)

and by vectorising the pad deflection given in (B.3)

g ˙̃hcα
(ψα, z1, z2, h̃cα) =

(
p̃α − 1

k̃α
− h̃cα

)
1
ηα

(15)

where α = A, B denotes the individual bearings. In this work, the system of ODEs is solved using the ’CVODE’ solver
from the Sundials package [50] which is written in C. This solver is based on the backward differentiation formulas
and implements an iterative solver procedure for the nonlinear iterations. An efficient program is written in C, and
the solution of (8) in each time step is performed using the efficient banded solver DGBSV from the LAPACK library
[51].
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3. Mathematical model - frequency domain

In the time domain model, the bearing forces f are applied on the right hand side (1). Following a perturbation
approach, the linearised stiffness and damping of the bearings can be obtained and an equivalent linearised model,
with the dynamic contribution from the bearings on the left hand side, can be established as

M̃ε̈ +
(
D̃ − G̃

)
ε̇ + K̃ε = 0. (16)

Here K̃ and D̃ are the dimensionless stiffness and damping matrices containing the linearised bearing coefficients. To
obtain these coefficients, a harmonic perturbation method is employed. The method was first suggested by Lund [28]
who applied the procedure on rigid gas and oil lubricated bearings. However, the method is commonly used for foil
bearings as well [31–33, 35, 36, 38–40, 42]. Assuming that the shaft exhibits small harmonic oscillations around its
equilibrium position in the bearing (εx0 , εy0 ), the shaft motion can be written as

εx = εx0 + ∆εxeiω̃sτ and εy = εy0 + ∆εyeiω̃sτ (17)

where the amplitudes are assumed to be small, that is, ∆εx � 1 and ∆εy � 1. This enables a first-order Taylor
expansion for the bearing pressure to be obtained as

p̃ = p̃0 + (∆εx p̃x + ∆εy p̃y)eiω̃sτ. (18)

Next, the foil flexibility can be expressed on complex form

q̃c = q̃
1 − iη
1 + η2 (19)

and the film height then becomes

h̃(εx, εy, θ̃, p̃, η) = h̃r(εx, εy, θ̃) + q̃c( p̃ − 1) (20)

where h̃r(εx, εy, θ̃) is given by (5) and (6). Substituting (17), (18) and (19) into (7) and (20), discarding second- and
higher order terms yields, upon separation of variables, the zeroth- and first-order equations:

∇ ·
(
p̃0h̃3

0∇p̃0

)
− ∇ ·

(
p̃0h̃0

)
s = 0 (21)

and

∇ ·
(
p̃0h̃3

0∇p̃γ
)

+ ∇ ·
((

h̃3
0 + 3h̃0 p̃0q̃c

)
∇p̃0 p̃γ

)
− ∇ ·

((
h̃0 + p̃0q̃c

)
p̃γ

)
s − 2iω̃s

(
h̃0 + p̃0q̃c

)
p̃γS

= −∇ ·
(
3p̃0h̃0 fγ∇ p̃0

)
+ ∇ ·

(
p̃0 fγ

)
s + 2iω̃s

(
p̃0 fγ

)
S (22)

where γ = x, y and fx = cos(θ) and fy = sin(θ). The film height at the static equilibrium position is given by

h̃0(εx0 , εy0 , θ̃, p̃0, η) = h̃r(εx0 , εy0 , θ̃) + q̃c( p̃0 − 1). (23)

Solving the zeroth-order equation (21) for the static equilibrium eccentricity position (εx0 , εy0 ) with η = 0 yields the
static film pressure p̃0. This pressure and the associated equilibrium position is then used when solving the first-order
equation (22) for the dynamic pressures p̃x and p̃y. The bearing reaction forces are found by integrating the static
pressure p̃0 for each individual bearing over the pad surface

w̃α =

W̃x

W̃y

 = −

∫ L̃

0

∫ 2π

0
( p̃0 − 1)

cos(θ)
sin(θ)

 dθ̃dz̃ (24)

and the linearised stiffness and damping coefficients are determined following a similar integration procedure of the
dynamic pressures ( p̃x, p̃y) for each individual bearing as

K̃α + iω̃sD̃α =

[
K̃xx K̃xy

K̃yx K̃yy

]
+ iω̃s

[
D̃xx D̃xy

D̃yx D̃yy

]
=

∫ L̃

0

∫ 2π

0

[
p̃x cos(θ) p̃y cos(θ)
p̃x sin(θ) p̃y sin(θ)

]
dθ̃dz̃ (25)
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where α = A, B corresponds to the individual bearing locations. Employing a Bubnov-Galerkin FE procedure to dis-
cretise and solve the nonlinear zeroth-order equation (21) for a set of eccentricities (εx, εy) corresponds to minimising
the residual given in (9). To obtain the equilibrium position (εx0 , εy0 ), this is then iteratively repeated following a
Newton-Raphson approach. The entire procedure is thoroughly explained in [45] together with the discretisation of
the first-order equation which leads to a set of linear complex algebraic equations.

With the bearing coefficients in hand, the rotordynamic stability of the linearised model can be evaluated in the
frequency domain. First, a state vector z = {z1, z2}

T is introduced in order to rewrite the second-order system (16) into
a first-order system in the form

ż = Az (26)

where the state matrix is given as

A =

[
0 I

−M̃−1K̃ −M̃−1D̃s

]
(27)

and the stiffness and damping matrices are composed of the local contributions from each bearing

K̃ =

[
K̃A 0
0 K̃B

]
, D̃ =

[
D̃A 0
0 D̃B

]
(28)

and D̃s = D̃(ω̃s)−G̃. Both the stiffness and damping matrices K̃(ω̃s) and D̃(ω̃s) are generally dependent on the angular
velocity of the journal and the excitation frequency. By assuming a solution of the form z̃ = z̃0eλτ and substituting
this into (26), the standard eigenvalue problem Az = λz can be obtained. Solving this eigenvalue problem yields
eight complex eigenvalues that come in complex pairs. The linear stability analysis is basically an evaluation of these
complex eigenvalues. If the real part of an eigenvalue is positive, it indicates that the associated eigenmode is unstable.

4. Boundary conditions

In dimensionless form, the edge boundary conditions for the bearings, as depicted in Fig. 1b, are:

p̃(θl, z̃) = p̃(θt, z̃) = 1
p̃(θ, L̃/2) = p̃(θ,−L̃/2) = 1.

(29)

For the linearised equations (23) and (24), these boundary conditions can be applied straight forwardly. However,
with the time domain model, it is necessary to evaluate the film state variable ψ̇ = ˙̃ph + ˙̃hp. On the pad edges p̃ = 1
so ˙̃p = 0. This means that when solving (15), the following boundary conditions must be imposed:

ψ̇(θl, z̃) = ψ̇(θt, z̃) = ˙̃h(ε̇x, ε̇y,
˙̃hc)

ψ̇(θ, L̃/2) = ψ̇(θ,−L̃/2) = ˙̃h(ε̇x, ε̇y,
˙̃hc)

(30)

which is achieved by using a standard FE procedure. Symmetry conditions can be exploited in both models by
neglecting (29) or (30) on one side respectively, for example on (θ, L̃/2). In this case, the reaction forces need to be
multiplied by two. A commonly used boundary condition [45], which is also used in this work, is to assume that the
bearing foils deform evenly over the length L̃ of the bearing. This condition is implemented by replacing p̃γ in (15)
by p̃γm, where p̃γm is the arithmetic mean nodal pressure over the length L̃.

In gas bearings, significant sub-ambient pressures may arise. These sub-ambient pressures can cause the top foil
to separate from the bumps into a position in which the pressure on both sides of the pad are equalised. Heshmat
[30] introduced a set of boundary conditions accounting for this separation effect. However, in this work, a simple
Gümbel [22] boundary condition is imposed, which means that sub-ambient pressures are discarded when integrating
the pressure (2) and (24) to obtain the bearing force and reaction components, (F̃x, F̃y) and (W̃x, W̃y) respectively,
essentially leaving the subambient regions ineffective. This, on the other hand, means that these regions of the bearings
need prescribed boundary conditions, p̃γ = 0 where p̃0 < 1, when solving the first-order equation (22). Even though
the subambient pressures are excluded when calculating the bearing forces and reactions, and in eccense inactivated
when calculating the linearised coefficients, it should be emphasised that for both the time- and the frequency-domain
solutions, the foil deformation h̃c are still based on the unmodified pressure. This was chosen to ensure that both
models are subjected to completely equivalent boundary conditions.
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5. Results

With the nonlinear time domain and the linear frequency domain based methods both defined, a direct comparison
between the two in terms of predicting the onset speed of instability (OSI) can be performed. For this comparison, the
rotor-bearing system in Fig. 1 with the dimensions and properties as given in Tab. 2 is chosen as the baseline system.

Table 1: Geometry, material properties and operating conditions of the Siemens foil bearing test-rig.

Parameters Values Parameters Values
Bearing radius, R 33.50 mm Bump foil height, hb 0.9 mm
Bearing length, L 53.00 mm Young’s modulus of bump foil, E 2.07 × 1011 Pa
Bearing radial clearance, C 40 µm Poisson’s ratio of bump foil, ν 0.3
Number of pads, Np 3 Foil friction coefficient, µ f ≈ 0.2
First pad leading edge, θl 30 deg Ambient pressure, pa 1 × 105 Pa
First pad trailing edge, θt 145 deg Air viscosity, µ 1.95 × 10−5 Pa·s
Slope extend, θs 30 deg l1 201.1 mm
Slope, hs 50 µm l2 197.9 mm
Bump foil thickness, tb 0.127 mm m = mx = my 21.1166 kg
Top foil thickness, tt 0.254 mm Ixx = Iyy 525.166 · 10−3 kgm2

Bump foil pitch, S b 7.00 mm Izz 30.079 · 10−3 kgm2

Bump foil half length, l0 3.30 mm Foil loss factor, η 0.15

This particular system is chosen due to experimental knowledge a priori, with specific regard to the unbalance response
at a range of rotor speeds and a variety of unbalance levels and configurations [34]. For the present analysis, the foil
structural stiffness is the only parameter to be varied. Three cases are defined with k = {8.8 × 1016, 8.8 × 109, 4.4 ×
109} N/m3. The first case corresponds to a rigid (non-compliant) bearing, the second case corresponds to the physical
case as reported previously [34], and finally, in the last case the foil stiffness is assumed half the actual value. Using the
time domain method, the OSI can be determined by repeatedly simulating the nonlinear rotor response at increasing
rotor speeds while starting each new simulation from its respective static equilibrium position. The stability of the
rotor is then evaluated by closely monitoring when a self-excited vibration starts growing. This is illustrated in Fig. 2
for each of the three cases with static vertical equilibrium positions of 0.719, 0.741 and 0.832, respectively. In order to
evaluate the rotor dynamical stability using the frequency domain method, the Logarithmic Decrement (LD) obtained
from the complex eigenvalues of (27) is examined. If the LD is negative, the associated eigenmode is unstable.
However, since the state-space matrix A is dependent on both the shaft speed and perturbation frequency, ω and ωs

respectively, the eigenvalue problem needs to be solved in the range of interest, for example, ω = [5; 45] kRPM and
ωs = [5; 450] Hz. A contour plot of the LD associated to the first eigenmode for the first stiffness case is illustrated in
the diagram of Fig. 3. If the eigenfrequency ω1 (imaginary part) is plotted in the same diagram, the linear stability of
the associated mode can now be evaluated. That is, at the point where ω1 (black full line) intersects the zero LD-line
and enters the area where the LD is negative, the mode will become unstable. In fact, a Hopf bifurcation [52] will
occur due to changes in the dynamic system parameters, which effectively are the stiffness and damping coefficients
of the bearings. According to the diagram, this happens at 20,583 RPM and the unstable mode is then vibrating with
a frequency of ω1 ≈ 95.2 Hz. The vibration is self-excited with an increasing amplitude (according to linear theory).
A similar analysis for the last three eigenmodes indicated no instabilities.

Based on a mesh convergence study, an FE mesh with 1,938 nodes is used for the discretisation, with both the
linear frequency domain method as well as the nonlinear time domain method. The linear stability maps for the
remaining cases are illustrated in Figs. 4 and 5. The OSI for the three different foil stiffness cases are compared
for both methods in Tab. 2. Both methods predict increasing OSI the softer the foil structure becomes, and for the
first case k = 8.8 × 1016 N/m3, the two methods predict a similar OSI. For the two remaining cases however, the
discrepancies in predicted OSI are significant, indicating that the discrepancies between the methods increase when
lowering the foil stiffness. Keeping in mind that the two methods are completely equivalent in terms of governing
equations, discretisation and boundary conditions, these discrepancies are not expected. The two methods should,
according to standard stability theory, yield the same results in terms of the OSI.
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Table 2: Foil stiffness for the three cases with the associated calculated linear and nonlinear onset speed of instability.

Stiffness, k OSI frequency domain OSI time domain Relative discrepancy
Case (N/m3) (revolutions per minute) (revolutions per minute) (%)

1 8.8 × 1016 20,583 19,450 5.83
2 8.8 × 109 37,039 28,900 28.1
3 4.4 × 109 43,287 31,400 37.9

While the linear stability analysis will only be able to predict the OSI and not the actual rotor response, this can be
achieved with the nonlinear time domain method. From Fig 2, it is seen that for the first case with a high foil stiffness,
the rotor becomes unstable and the vibration grows until a stable limit cycle occurs. For the two other cases, normal
and soft foil stiffness, no stable limit cycles are formed. Again, it is seen that the softer the foils, the higher the OSI
becomes, but the faster the vibration grows when crossing the OSI. In Fig 6, the time domain results are plotted in two
directions to form the rotor orbits at the OSI. It is clearly seen that the unstable mode is a forward precessing mode. In
the same figure, the frequency spectra of the two vibration components are illustrated, and as seen, these frequencies
compare reasonably well with those found with the linear frequency domain analysis Figs. 3, 4 and 5.

6. Conclusions & Future Aspects

The comparison between the two methods, described in this work, clearly and surprisingly indicates significant
discrepancies in the prediction of the OSI. This is an important finding because the linearised frequency analysis is
generally considered to be valid in terms of predicting both the linearised bearing stiffness and damping properties
as well as the OSI [31–33, 35–42]. That is, the perturbation technique proposed by Lund [28] is generally regarded
to be sufficiently accurate. As a consequence, much scientific research is thus focussed on improving the prediction
of these linearised stiffness and damping coefficients with special attention to the foil structure and overall geometric
details of the bearings. In the analysis presented in this work, one could question the estimated foil stiffness k and loss
factor η, but they are nevertheless the same for both methods, and hence both methods should yield the same results
in terms of the OSI. One possible explanation for the discrepancy between the two methods could be related to the
perturbation of the rotor according to (17). As mentioned, the perturbed pressure around e.g. εx0 with a perturbation
∆εx can be written as a first-order Taylor expansion as p̃(εx) ≈ p̃(εx0 )+ ∂

∂εx
(p̃(εx0 ))(εx−εx0 ). Note however, that this is

by assuming the pressure p̃(εx) to be dependent on the rotor eccentricity εx only. For a foil bearing with a complaint
foil structure, the pressure must also depend on the deformation of the foils. Assuming this, the Taylor expanded
pressure becomes:

p̃(εx, h̃c) ≈ p̃(εx0 , h̃c0 )︸     ︷︷     ︸
I

+
∂

∂εx

(
p̃(εx0 , h̃c0 )

)
(εx − εx0 )︸                            ︷︷                            ︸

II

+
∂

∂h̃c

(
p̃(εx0 , h̃c0 )

)
(h̃c − h̃c0 )︸                            ︷︷                            ︸

III

. (31)

Term I of (31) is the static pressure in the fluid film when the rotor is in its equilibrium position. Term II contains the
pressure derivative with respect to the rotor position in the x-direction, i.e. p̃x. This complex pressure derivative can,
as mentioned, be integrated over the bearing surface to obtain the bearing stiffness and damping according to (25).
However, since h̃c = q̃( p̃− 1) depends on p̃, which again depends on εx, term III of (31) will contribute to the bearing
stiffness and damping coefficients. Quantifying the significance of this term, with regard to the bearing coefficients
without including it in the perturbed solution, is difficult and considered outside the scope of this work. Nevertheless,
the comparison between the nonlinear time domain and the frequency domain methods in this present work indicate
that it is in fact significant for softer bearing surfaces.

Based on a bearing geometry, previously investigated by several researchers, and with a comparable foil structure
stiffness, Hoffmann et. al. [47] found good agreement between the OSI obtained from a linear model and that from
a nonlinear time domain model. Using the present time integration code, the 13.2 kRPM OSI found in [47] for a 5
N load has been reproduced using a uniform foil stiffness of both 3.87 × 109 N/m3, similar to that used in [47], and
a much higher value of 3.87 × 1018 N/m3. Considering the heaviest loaded case of 30 N and with a foil stiffness of
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3.87 × 109 N/m3, an OSI of approx. 20 kRPM is obtained. Having in mind the different foil stiffness distributions,
this is still considered reasonably close to the 22.4 kRPM found in [47]. Next, by increasing the foil stiffness to
3.87 × 1018 N/m3, only a slight reduction of the OSI to approx. 18 kRPM is observed. This indicates that for the load
levels assessed in [47], the foil stiffness is of limited importance and hence also that the compliance levels will be too
small for term III of (31) to be significant. The industrial Siemens AFB treated in the present paper is larger and more
heavily loaded, implying that the foil flexibility becomes critical to the stability limit. This reasoning is in line with
the method discrepancies reported in [47], as these are in fact increasing as the load level is raised (0.5%, 1.6% and
7.2% for loads of 5 N, 15 N and 30 N, respectively). In this context, a near-perfect agreement in predicted OSI should
be expected for case 1 of the present paper. Much effort has gone into making the two applied models equivalent,
but they are however discrete and their implementations rather comprehensive, taking into account two segmented
three-pad bearings, inlet slopes and a rigid rotor. The relatively complex rotor-bearing setup was chosen due to the
availability of experimental data [34], but in terms of the presented comparison it would possibly have been wiser to
model a much simpler system, i.e. a mass supported by a single foil bearing with a single 360◦ pad. The remaining
discrepancy of 5.83% is hence ascribed to numerics and to subtle model differences. One such difference could be
related to the Gümbel boundary condition, which is enforced separately in the zeroth- and first-order equations in the
linear case, while only once in the time domain integration.

In the light of the current findings, the frequency domain methods derived from Lund’s perturbation, is considered
inaccurate for stability analysis of bearings with flexible foil structures and a certain level of loading. In that regard
it should be emphasised that when Lund [28] originally introduced his perturbation method it was for a rigid surface
bearing. In the future, the influence on the OSI attributed to the term III from (31) could be further investigated based
on a simpler system. For example, a single mass supported by a one-pad foil bearing, possibly without the Gümbel
boundary condition. Such investigation could potentially lead to the identification of a criterion for the validity of the
linear approach.
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Figure 2: Simulated nonlinear rotor response at the OSI in bearing A vertical direction for three different stiffness values; a) k = 8.8 × 1016 N/m3,
OSI = 19,450 RPM b) k = 8.8 × 109 N/m3, OSI = 28,900 RPM and c) k = 4.4 × 109 N/m3, OSI = 31,400 RPM. The simulations are started from
their static equilibrium positions with vertical eccentricities of 0.719, 0.741 and 0.832, respectively.
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Figure 3: Stability map for case 1 with a foil stiffness of k = 8.8 × 1016 N/m3. The first eigenmode enters the unstable region at a rotor speed of
ω = 20, 583 RPM and the frequency is ω1 = 95.2 Hz. Based on a 50 × 50 (ωs, ω) map.

Figure 4: Stability map for case 2 with a foil stiffness of k = 8.8 × 109 N/m3. The first eigenmode enters the unstable region at a rotor speed of
ω = 37, 039 RPM and the frequency is ω1 = 99.8 Hz. Based on a 50 × 50 (ωs, ω) map.
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Figure 5: Stability map for case 3 with a foil stiffness of k = 4.4 × 109 N/m3. The first eigenmode enters the unstable region at a rotor speed of
ω = 43, 287 RPM and the frequency is ω1 = 93.9 Hz. Based on a 50 × 50 (ωs, ω) map.
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Figure 6: Rotor orbits and frequency spectra obtained with the nonlinear time domain method for the three cases of foil stiffness. The frequency
spectra are all based on the first two seconds of each simulation. All simulations are started from static equilibrium. a) Limit cycle obtained for
case 1. b) Frequency spectrum for case 1 with a spike at 95.9 Hz. c) Unstable orbit obtained for case 2 with a spike at 95.9 Hz. d) Frequency
spectrum for case 2. e) Unstable orbit obtained for case 3. f) Frequency spectrum for case 3 with a spike at 90.4 Hz.
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Appendix A. Rotor model matrices

The mass and gyroscopic matrices for a rigid rotor can be written as:

M =
1
l2


l22mx + Iyy 0 l1l2mx − Iyy 0

0 l22my + Ixx 0 l1l2my − Ixx

l1l2mx − Iyy 0 l21mx + Iyy 0
0 l1l2my − Ixx 0 l21my + Ixx

 , G =
1
l2


0 −Izz 0 Izz

Izz 0 −Izz 0
0 Izz 0 −Izz

−Izz 0 Izz 0

 (A.1)

The nondimensional form of the mass and gyroscopic matrices are:

G̃ =
ω2C
paR2 G, M̃ =

ω2C
paR2 M. (A.2)

Appendix B. Film height

Discarding the mass of the foil structure, the equation of motion for the foil structure is:

p̃ − 1 = k̃h̃c + b̃ ˙̃hc or h̃c( p̃, ˙̃hc) =
p̃ − 1 − b̃ ˙̃hc

k̃
(B.1)

Introducing the mechanical loss factor

η =
bωs

k
=

b̃
k̃
ωs

ω
(B.2)

Inserting the loss factor into the foil equation of motion yields the first-order ordinary differential equation:

˙̃hc =

(
p̃ − 1

k̃
− h̃c

)
1
η

(B.3)

with ωs/ω = 1, meaning that the vibrations in the foil are assumed synchronous.
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