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Abstract. The objective of the present study is to assess the effect of enzymatic fibre 

treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the 

volumetric composition and mechanical properties of the composites. It is shown that the 

applied models can well predict the changes in volumetric composition and mechanical 

properties of the composites when differently treated hemp fibres are used. The decrease in the 

fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of 

pectin by pectinolytic enzymes results in a better fibre impregnation by the epoxy matrix, and 

the mechanical properties of the composites are thereby increased. The effective fibre stiffness 

and strength established from the modelling show that the enzymatic removal of pectin also 

leads to increased mechanical properties of the fibres. Among the investigated samples, the 

composites with hydrothermally pre-treated and enzymatically treated fibres have the lowest 

porosity factor of 0.08 and the highest mechanical properties. In these composites, the effective 

fibre stiffness and strength are determined to be 83 GPa and 667 MPa, respectively, when the 

porosity efficiency exponent is set equal to 2. Altogether, it is demonstrated that the applied 

models provide a concept to be used for the evaluation of performance of treated fibres in 

composites. 

1.  Introduction 

As a result of increasing environmental awareness, research interest has been shifting to use natural 

fibres as substitute to man-made fibres in fibre reinforced composites due to their unique advantages, 

such as environmental sustainability, low cost, low density, together with their high stiffness and 

strength to weight ratio [1,2]. However, their potential use as reinforcement could be considerably 

reduced by some of their disadvantages including moderate strength of fibres, less controlled 

processing methods, and seasonal variation in quality [3–5]. 

In principle, the aim of fibre processing is to obtain more separated and cellulose rich fibres by 

removing non-cellulosic components, in order to optimize the strength and form of the fibres before 

being used as reinforcement in composites. Traditional cellulose fibre processing methods for hemp 

and flax fibres, which have mainly been targeted for yarn production, include field retting and water 

retting. These retting methods remove non-cellulosic components via spontaneously flourishing 

microbial activity, and they have been reported to have negative impacts on both fibre properties and 

the environment [5,6]. As an alternative method, treatment of fibres with pectinolytic enzymes could 
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be a more efficient and controlled method, in addition to overcoming the limitations of the traditional 

fibre processing methods [7–9]. 

Porosity is a parameter that is used to assess the quality of composites. Porosity in natural fibre 

composites is not only created due to insufficient impregnation of the fibres by the matrix, but also due 

to the air filled cavities inside the fibres, the so-called lumen. Porosity has a direct influence on the 

volumetric composition (i.e. the volume contents of fibres and matrix) and the mechanical properties 

of composites [9–11]. A study of the relations between fibre processing routes, and the volumetric 

composition and mechanical properties of composites is central to the goal of assessing the effect of 

various fibre treatments. 

In the present study, enzymatic treatments with and without hydrothermal pre-treatment were 

carried out on hemp bast fibres. For comparison, traditional field retting of fibres was also carried out 

[5]. It is expected that porosity is highest in the composites with the untreated fibres due to the 

presence of the epidermis layer and parenchyma cells, which consist of a large amount of voids [9,12]. 

In contrast, it is expected that the enzymatic treatments will produce fibres where the epidermis layer 

and part of parenchyma cells are removed, in addition to splitting larger fibre bundles into smaller 

ones [7,9,13]. Those changes are expected to decrease the porosity in the composites, and the 

mechanical properties will thereby be increased.  

The objective of the present study is to use previously developed models for composite volumetric 

composition and mechanical properties for a quantitative analysis of the effect of enzymatically based 

fibre processing methods. This approach is shown to provide valuable understanding of the effect of 

the fibre treatments on the properties of the composites. 

2.  Model 

In the present study, experimental data is modelled by previously reported models [11,14]. 

Experimental data for composite volumetric composition, density and mechanical properties (i.e. 

stiffness and strength) were obtained for composites with a fibre weight content (Wf) below the 

transition value (Wf trans). For the modelling of composites with Wf above Wf trans only model lines will 

be shown. A summary of the applied model parameters is shown in Table 1. The parameters, fibre 

density (ρf), matrix density (ρm), matrix correlated porosity factor (αpm), maximum obtainable fibre 

volume content (Vf max), and porosity efficiency exponent for composite stiffness (nE) and strength (nσ) 

are assumed to be constant and independent of the applied fibre treatments. The parameters, transition 

fibre weight content (Wf trans) and fibre correlated porosity factor (αpf) are assumed to be dependent on 

the fibre treatment. 

 

 

Table 1. Summary of model parameters applied in the present study. 

Parameter Meaning Value Way of determining the value 

ρf fibre density 1.50 g/cm
3
 assumed 

ρm matrix density 1.14 g/cm
3
 measured 

αpm matrix correlated porosity factor 0 assumed 

Vf max maximum obtainable fibre volume content 0.65 assumed 

nE porosity efficiency exponent for composite 

stiffness 

0 or 2 assumed 

nσ porosity efficiency exponent for composite 

strength 

0 or 2  assumed 

Wf trans transition fibre weight content see Table 2 determined from Eq.1 

αpf fibre correlated porosity factor see Table 2 determined from Eq.2 
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2.1.  Volumetric composition 

In the selected model [11], the volumetric composition in composites is correlated to the fibre weight 

content (Wf) in two regions: region A, where Wf is below a transition value (Wf trans), and region B, 

where Wf is above a transition value (Wf trans), respectively. The transition value (Wf trans) separating 

region A and B is calculated by Eq.1.  

𝑊𝑓 𝑡𝑟𝑎𝑛𝑠 =
𝑉𝑓 𝑚𝑎𝑥𝜌𝑓(1+𝛼𝑝𝑚)

𝑉𝑓 𝑚𝑎𝑥(1+𝛼𝑝𝑚)− 𝑉𝑓 𝑚𝑎𝑥𝜌𝑚(1+𝛼𝑝𝑓)+𝜌𝑚
                                                                                   (1)                                                                       

In this study, it is assumed that there is no matrix correlated porosity in the composites, and therefore 

αpm is set to 0. The fibre correlated porosity factor (αpf) is determined by using Eq.2, where the porosity 

(Vp) is assumed to be a linear function of the fibre volume content (Vf) [11]. 

𝑉𝑝 = 𝛼𝑝𝑓 × 𝑉𝑓                                                                                                                                      (2)                                                                                                                                                                     

 The volumetric composition in the composites in region A and region B are shown in Eqs.3 – 8. 

Region A (Wf ≤ Wf trans) 

𝑉𝑓 =
𝑊𝑓𝜌𝑚

𝑊𝑓𝜌𝑚(1+𝛼𝑝𝑓)+(1−𝑊𝑓)𝜌𝑓(1+𝛼𝑝𝑚)
                                                                                                   (3)                                                                                                                                                       

𝑉𝑚 =
(1−𝑊𝑓)𝜌𝑓

𝑊𝑓𝜌𝑚(1+𝛼𝑝𝑓)+(1−𝑊𝑓)𝜌𝑓(1+𝛼𝑝𝑚)
                                                                                                   (4)                                                                                                                  

𝑉𝑝 = 1 − 𝑉𝑓 − 𝑉𝑚 =
𝑊𝑓𝜌𝑚𝛼𝑝𝑓 + (1−𝑊𝑓)𝜌𝑓𝛼𝑝𝑚

𝑊𝑓𝜌𝑚(1+𝛼𝑝𝑓)+(1−𝑊𝑓)𝜌𝑓(1+𝛼𝑝𝑚)
                                                                           (5)                                                                                                                    

Region B (Wf ≥ Wf trans) 

𝑉𝑓 = 𝑉𝑓 𝑚𝑎𝑥                                                                                                                                          (6)                                                                                                              

𝑉𝑚 = 𝑉𝑓 𝑚𝑎𝑥
(1−𝑊𝑓)𝜌𝑓

𝑊𝑓𝜌𝑚
                                                                                                                          (7)                                                                                                                      

𝑉𝑝 = 1 − 𝑉𝑓 − 𝑉𝑚 = 1 − 𝑉𝑓 𝑚𝑎𝑥 (1 +
(1−𝑊𝑓)𝜌𝑓

𝑊𝑓𝜌𝑚
)                                                                                (8)                                      

2.2.  Composite density 

Equations for composite density, Eqs.10 – 11, can be derived from Eq. 9 by using the expression for 

volumetric composition in composites. 

𝜌𝑐 =
𝑚𝑐

𝑉𝑐
=

𝑚𝑓/𝑊𝑓

𝑚𝑓/(𝜌𝑓𝑉𝑓)
=

𝜌𝑓𝑉𝑓

𝑊𝑓
                                                                                                                (9)                                       

Region A (Wf ≤ Wf trans) 

𝜌𝑐 =
𝜌𝑚𝜌𝑓

𝑊𝑓𝜌𝑚(1+𝛼𝑝𝑓)+(1−𝑊𝑓)𝜌𝑓(1+𝛼𝑝𝑚)
                                                                                                   (10)                                                                                                                    

Region B (Wf ≥ Wf trans) 

𝜌𝑐 =
𝑉𝑓 𝑚𝑎𝑥

𝑊𝑓
𝜌𝑓                                                                                                                                      (11)  
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In the modelling of composite density, the fibre weight content (Wf) is set as the independent 

variable, and composite density (ρc) is set as the dependent variable. The values of the other 

parameters are given in Tables 1 and 2. The experimental data of ρc vs. Wf is compared with the model 

predictions (Eqs. 10 − 11).                                                                                                             

2.3.  Mechanical properties 

A large number of modified rule of mixtures models for stiffness of composites have been proposed in 

the literature [14,15]. In one of these models, by including the effect of porosity [14], stiffness (Ec) and 

strength (σcu) of composites with a unidirectional fibre orientation and with continuous fibres can be 

expressed by Eq.12 and Eq.13, respectively.  

𝐸𝑐 = (𝑉𝑓𝐸𝑓 + 𝑉𝑚𝐸𝑚)(1 − 𝑉𝑝)
𝑛𝐸

                                                                                                        (12)  

𝜎𝑐𝑢 = (𝑉𝑓𝜎𝑓𝑢 + 𝑉𝑚𝜎𝑚
∗ )(1 − 𝑉𝑝)

𝑛𝜎
                                                                                                     (13)                                                                                                                                                                                              

where E is the stiffness, V is the volume content, the subscripts c, m, f and p are composite, matrix, 

fibres and porosity, respectively. σcu is the composite strength, σfu is the fibre strength, and 𝜎𝑚
∗  is the 

stress in the matrix at the failure strain of the composite, and nE and nσ are the porosity efficiency 

exponents (PEE) for stiffness and strength, respectively. When PEE = 0, it is assumed that the porosity 

in the composites has no effect on the mechanical properties of the composites beyond lowering the 

load bearing volume. When PEE > 0, it is assumed that the porosity in the composites has an effect on 

the mechanical properties of composites by introducing stress concentrations [14]. Values of PEE 

equal to 0 and 2 are used in the present study to show these two cases.  

By using the models for the composite volumetric composition, equations for the correlation 

between composite stiffness (Ec) and strength (σcu) and the fibre weight fraction (Wf) can be 

established. 

 

Region A (Wf ≤ Wf trans) 

𝐸𝑐 =
(𝑊𝑓𝜌𝑚𝐸𝑓+(1−𝑊𝑓)𝜌𝑓𝐸𝑚)(𝑊𝑓𝜌𝑚+(1−𝑊𝑓)𝜌𝑓)

𝑛𝐸

(𝑊𝑓𝜌𝑚(1+𝛼𝑝𝑓)+(1−𝑊𝑓)𝜌𝑓(1+𝛼𝑝𝑚))
𝑛𝐸+1                                                                                  (14)                             

𝜎𝑐𝑢 =
(𝑊𝑓𝜌𝑚𝜎𝑓𝑢+(1−𝑊𝑓)𝜌𝑓𝜎𝑚

∗ )(𝑊𝑓𝜌𝑚+(1−𝑊𝑓)𝜌𝑓)
𝑛𝜎

(𝑊𝑓𝜌𝑚(1+𝛼𝑝𝑓)+(1−𝑊𝑓)𝜌𝑓(1+𝛼𝑝𝑚))
𝑛𝜎+1                                                                              (15)                                                       

Region B (Wf ≥ Wf trans) 

𝐸𝑐 =
(𝑊𝑓𝜌𝑚𝑉𝑓 𝑚𝑎𝑥𝐸𝑓+(1−𝑊𝑓)𝜌𝑓𝑉𝑓 𝑚𝑎𝑥𝐸𝑚)(𝑊𝑓𝜌𝑚𝑉𝑓 𝑚𝑎𝑥+(1−𝑊𝑓)𝜌𝑓𝑉𝑓 𝑚𝑎𝑥)

𝑛𝐸

(𝑊𝑓𝜌𝑚)
𝑛𝐸+1                                            (16)                                                                                                                                  

𝜎𝑐𝑢 =
(𝑊𝑓𝜌𝑚𝑉𝑓 𝑚𝑎𝑥𝜎𝑓𝑢+(1−𝑊𝑓)𝜌𝑓𝑉𝑓 𝑚𝑎𝑥𝜎𝑚

∗ )(𝑊𝑓𝜌𝑚𝑉𝑓 𝑚𝑎𝑥+(1−𝑊𝑓)𝜌𝑓𝑉𝑓 𝑚𝑎𝑥)
𝑛𝜎

(𝑊𝑓𝜌𝑚)
𝑛𝜎+1                                         (17) 

In the modelling of composite mechanical properties, the fibre weight content (Wf) is set as the 

independent variable, and composite stiffness (Ec) and strength (σcu) are set as the dependent variables. 

The effective fibre stiffness (Ef) and effective fibre strength (σfu) are set as derived parameters. The 

values of the remaining parameters are given in Tables 1 and 2. The models are fitted to the 

experimental data of Ec vs. Wf and σcu vs. Wf by using non-linear regression. The goodness of fitting is 

evaluated by adjusted R-squared values, which has been adjusted for the number of predictors in the 

model from R-squared values.     
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3.  Materials and methods 

3.1.  Plant material 

Hemp (Cannabis sativa L.), variety USO-31, was sown in France (N 48.8526°, E 3.0190°(WGS84)) 

as described in detail in Liu et al. [5]. The whole hemp stem under the inflorescence base was used as 

the starting material in the present study. Hemp stem pieces with a length of approx. 15 cm were 

randomly collected from the stems. The hemp stems were hydrothermally pre-treated at 121 °C for 30 

min in an autoclave. Hemp fibre strips were manually peeled off from the pre-treated stems, and then 

they were enzymatically treated by using pectinases as described in detail by Liu et al. [9]. After 

enzymatic treatment, the fibre strips were dried at 50 °C for 12 h. For comparison, field retting of the 

hemp stems was carried out for 20 days after harvest [4].  

3.2.  Manufacturing of composites 

The treated bast fibre strips were manually untangled and aligned to allow the fibres to be processed 

into unidirectional composites. Bundles of fibre strips were firstly cut to a length of 140 mm, and the 

fibre strips were then justified to a bunch of fibre strips with masses in the range 0.6 – 2.3 g. Bunches 

of fibre strips were then put in the mould chambers. Afterwards, a press beam was placed on the top of 

the fibre strips in each chamber, and two insert beams were used to fix the height of the mould 

chambers to 2 mm. An epoxy resin (Araldite® LY 1568) and its amine hardener (Aradur® 3489) were 

mixed at a 100/28 mass ratio, and degassed in a vacuum oven. The setup for the vacuum infusion and 

moulding process is described in detail in the study by Liu et al. [9]. After curing for 12 h at 80 °C, the 

composite tensile specimens with dimensions of 140 × 10 × 2 mm were demoulded. Tabs with lengths 

of 50 mm were mounted on the composite specimens using epoxy resin (DP 460). 

3.3.  Volumetric composition 

Composites with fibre weight contents (Wf) in the range 0 – 0.70 were obtained by varying the amount 

of fibres (mf) in the mould chambers during manufacturing of composites. The fibre volume content 

(Vf) was determined by Eq.18. 

𝑉𝑓 =
𝑚𝑓/𝜌𝑓

𝑚𝑐/𝜌𝑐
=

𝑚𝑓

𝑚𝑐
×

𝜌𝑐

𝜌𝑓
                                                                                                                       (18) 

where mc, ρf and ρc are composite mass, fibre density and composite density, respectively. When Wf 

was below 0.30, the composite specimens made by using the above mentioned moulding process were 

found to have irregular surfaces, and their thickness could not be measured accurately. For those cases, 

ρc was determined by the buoyancy method (Archimedes principle) using water as the displacement 

medium. When Wf was above 0.30, the composites specimens had flat surfaces, and their density (ρc) 

could be accurately calculated based on their dimensions (length, width and thickness). 

The matrix volume content (Vm) was determined using Eq.19. 

𝑉𝑚 =
𝑚𝑚/𝜌𝑚

𝑚𝑐/𝜌𝑐
=

𝑚𝑚

𝑚𝑐
×

𝜌𝑐

𝜌𝑚
                                                                                                                  (19) 

where mm is matrix mass. The porosity (Vp) was then determined using Eq.20. 

𝑉𝑝 = 1 − 𝑉𝑓 − 𝑉𝑚                                                                                                                             (20) 

3.4.  Tensile properties of composites 

For tensile testing of the composite specimens, an Instron Testing Machine 5566 with a load cell of 10 

kN was used. Two extensometers were used for strain measurements, and a displacement rate of 1 

mm/min (corresponding to a strain rate of 2.5 %/min) was used. Based on the measured stress-strain 

curves, stiffness (linear regression in the strain interval 0.05 – 0.25%), strength and failure strain was 
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determined. For each type of composite with the differently treated hemp fibres, at least 10 specimens 

with varied fibre content were tested.  

4.  Results and discussion 

4.1.  Composite volumetric composition 

The fibre correlated porosity factor (αpf) of the composites manufactured with the differently treated 

fibres is determined in Figure1a based on the experimental values of Vp and Vf using Eq.2. The values 

of αpf for the different fibre treatments are shown in Table 2. As shown, composites with field retted 

and untreated fibres have the highest porosity factor of about 0.16. In contrast, composites with the 

enzymatically treated fibres have a much lower porosity factor of 0.12, followed by the lowest 

porosity factor of 0.08 for composites with the hydrothermally pre-treated and enzymatically treated 

fibres.  

The variation of the composite porosity factor with the different fibre treatments can be explained 

by the changes of the fibre microstructure. When the hemp fibre strips are subjected to pectinases, 

pectin in the epidermis, in the parenchyma cells, and in the middle lamella regions between fibre cells 

are partly hydrolysed by enzyme catalysed reactions. This degradation of pectin loosen the bonding 

between epidermis and cortex, between fibres and parenchyma cells, and between fibres, and 

consequently, the epidermis and parenchyma cells are partly removed from the hemp fibre strips. With 

the partly removal of epidermis and parenchyma cells, which consist of a large amount of voids, the 

fibre bundles are split into smaller fibre bundles [9]. All these changes to the fibre microstructure 

collectively contribute to the decrease of αpf after the enzymatic treatment.    

 The transition fibre weight content (Wf trans) for each type of fibre treatment was calculated by 

using Eq.1 with the obtained fibre correlated porosity factors. The values of Wf trans are shown in Table 

2. It is found that the transition value decreases from 0.77 for composites with field retted and 

untreated fibres, to 0.75 for composites with enzymatically treated fibres, and finally to 0.74 for 

composites with hydrothermally pre-treated and enzymatically treated fibres. According to Eq.1, it is 

evident that the decrease of Wf trans with fibre processing is directly governed by the decrease of the 

fibre correlated porosity factor. 

Experimental data on the volumetric composition in the composites with the differently treated 

fibres, and the corresponding model lines are shown in Figure 1b. Besides the difference in the values 

of Wf trans, it is shown that composites with hydrothermally pre-treated and enzymatically treated fibres 

have higher fibre volume content (Vf) and matrix volume content (Vm), and lower porosity than the 

composites with field retted and untreated fibres at any given fibre weight content below Wf trans. 

According to Eqs.3 – 5, the difference in αpf explains the difference in volumetric composition 

between the composites. Altogether, the results in Figure 1b reveal that the full volumetric 

composition in composites with a given type of fibre treatment can be predicted by using the model, 

and by using a given fibre weight content that is used for the manufacturing of the composites as 

input. 

Table 2.  Fibre correlated porosity factor (αpf) and transition fibre weight content (Wf trans) of 

composites with differently treated hemp fibres. 

Fibre sample 
Fibre correlated  

porosity factor (αpf) 

Transition fibre  

weight content (Wf trans) 

Field retted 0.162 0.772 

Untreated 0.157 0.770 

Enzymatically treated 0.119 0.753 

Hydrothermally pre-treated + enzymatically treated 0.084 0.738 
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Figure 1. Composite porosity vs. fibre volume content (a), and composite volumetric composition (Vf, 

Vm and Vp) vs. fibre weight content (b). 

4.2.  Composite density 

Figure 2 shows that the composites with the untreated and field retted fibres have the lowest density, 

which is a result of the highest porosity content and lowest fibre volume content in these composites 

(see Figure 1). In contrast, the composites with the enzymatically treated fibres, particularly the 

hydrothermally pre-treated and enzymatically treated fibres, exhibit clearly higher density due to their 

lower porosity contents and higher fibre volume contents. The model predictions of composite density 

in Figure 2 show that the predicted composite density is in good agreement with the experimental data. 

Therefore, the density of composites with a given type of fibre treatment can also be well predicted as 

a function of the fibre weight content. 
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Figure 2. Composite density vs. fibre weight content. 

4.3.  Composite mechanical properties 

In Figures 3 and 4, showing composite stiffness and strength as a function of the fibre weight content, 

the starting points of the model lines at Wf = 0 are equal to the measured epoxy matrix stiffness (Em) 

of 2.7 GPa, and the epoxy matrix stress of 27 MPa at the average composite failure strain of 1.0%. 

Generally, the model lines are in good agreement with the experimental data. 

The model lines in Figures 3 and 4 are established by setting the porosity efficiency exponent (n) 

equal to 0 and 2. For n = 0, it is assumed that all the porosity is located inside the fibres, in the so-

called lumen, and this is assumed to have no effect on the mechanical properties of the composites. 

For n = 2, it is assumed that all the porosity is located outside the fibres, e.g. at the fibre/matrix 

interface or in the fibre bundles to produce un-impregnated fibres. This is assumed to lead to stress 

concentrations, which is modelled by setting n equal to 2 [14,15]. When n = 0, as shown in Figures 3a 

and 4a, composite stiffness and strength are increased non-linearly with Wf with a upward curvature 

until Wf trans, and thereafter, stiffness and strength are only slightly reduced. When n = 2, as shown in 

Figures 3b and 4b, composite stiffness and strength are increased non-linearly with Wf with a 

downward curvature until Wf trans, and thereafter, stiffness and strength are reduced radically. The 

downward curvature of the model lines is most obvious for the composites with the highest porosity 

content, such as the composites with the field retted and untreated fibres.  

When comparing the model lines in Figures 3 and 4 for composites with the differently treated 

fibres, it is evident that the composites with hydrothermally pre-treated and enzymatically treated 

fibres have the highest stiffness and strength, followed by the composites with enzymatically treated 

and untreated fibres, while the composites with field retted fibres have the lowest stiffness and 

strength.   

The fitted values of the effective fibre stiffness (Ef) and fibre strength (σfu) established by the model 

lines in Figures 3 and 4 are shown in Table 3. Field retted samples are found to have the lowest 

effective fibre stiffness of 52 and 61 GPa, and the lowest effective fibre strength of 474 and 558 MPa, 

when the porosity efficiency exponent is set equal to 0 and 2, respectively. There is a tendency that the 

effective fibre stiffness and strength increase from untreated fibres, to enzymatically treated fibres, and 

finally to hydrothermally pre-treated and enzymatically treated fibres, irrespective of the porosity 

efficiency exponent values. The hydrothermally pre-treated and enzymatically treated fibres have the 
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highest effective stiffness of 74 GPa and 83 GPa, and the highest effective strength of 625 MPa and 

667 MPa, when porosity efficiency exponent is set equal to 0 and 2, respectively.  

 

Figure 3. Composite stiffness vs. fibre weight content. Model lines are made using a porosity 

efficiency exponent of (a) 0 and (b) 2. Values of adjusted R-squared of fitting are shown next to the 

model lines. 

Table 3. Established values of effective fibre stiffness (Ef) and fibre strength (σfu) in composites with 

differently treated hemp fibres. The porosity efficiency exponents (nE and nσ) are set to be either 0 or 2. 

Fibre sample 
Ef (GPa) σfu (MPa) 

nE=0 nE=2 nσ=0 nσ=2 

Field retted 52 61 474 558 

Untreated 65 75 569 655 

Enzymatically treated 68 75 587 644 

Hydrothermally pre-treated + enzymatically treated 74 83 625 667 
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Figure 4. Composite strength vs. fibre weight content. Model lines are made using a porosity 

efficiency exponent of (a) 0 and (b) 2. Values of adjusted R-squared of fitting are shown next to the 

model lines. 

5.  Conclusions 

Models for the volumetric composition, density and mechanical properties (i.e. stiffness and strength) 

of composites with differently treated hemp fibres were applied for evaluating the effect of enzymatic 

fibre treatments on fibre performance in composites. It is shown that the applied models are in good 

agreement with the experimental data. The established effective fibre stiffness and strength are used to 

quantify the effect of the enzymatic fibre treatments on the performance of the fibres in the 

composites. Altogether, the applied models are shown to be useful tools for the prediction of 

properties of composites with differently treated hemp fibres.  
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