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Fibrous absorbers can be installed with various air backing conditions to fulfil a given low frequency

acoustic requirement. Since absorber manufacturers cannot provide the absorption coefficients for all

possible mounting conditions, acousticians have difficulties knowing the absorption characteristics of

their own configurations. This study aims to predict the absorption coefficient for various mounting

conditions from a single measurement of an arbitrary mounting condition by extracting the air flow

resistivity of the test specimen and the frequency-dependent effect of the chamber on the measured

absorption coefficients. With two homogeneous fibrous absorbers, the predicted absorption coeffi-

cients agree well with the measurements. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4962232]

[FCS] Pages: 1498–1501

I. INTRODUCTION

Fibrous ceiling absorbers are often backed by an air cavity

depending on required low frequency acoustic demands

because they generally have insufficient absorption at low fre-

quencies when mounted directly on a rigid surface.1 The over-

all depth of the ceiling system including the absorber is found

to vary from 20 to 100 cm in 17 Swedish classrooms.2

However, the absorption characteristics of commercial prod-

ucts are presented for a few mounting conditions in their prod-

uct database, as ISO 354:2003 absorption measurements3 for

various mounting conditions require a lot of time and effort.

Therefore, the aim of this paper is to predict the absorption

property of homogeneous fibrous materials for many air back-

ing conditions from absorption measurement data performed

with a given backing condition. Such a numerical procedure is

a good compromise because users can predict the absorption

of any air backing conditions chosen for their own purposes.

The Sabine absorption coefficient, aSab,4 is the statistical

absorption coefficient deduced from reverberation time meas-

urements via the Sabine equation in accordance with ISO

354:2003. The calculation of aSab is based on the diffuse field

assumption. However, actual measurement conditions violate

the diffuse field assumption, particularly when a highly absorb-

ing specimen is installed, due to a non-uniform surface absorp-

tion distribution.5 aSab is also known to vary with the specimen

size due to diffraction by the specimen edge.6–8 Many round

robin tests reported a poor inter-chamber reproducibility, indi-

cating that aSab depends largely on the reverberation cham-

ber.9–11 Some chambers systematically overestimate, while

others underestimate the absorption coefficient. Therefore,

translating aSab between test chambers is a nearly impossible

task without knowing the exact diffuseness conditions. In this

regard, the main scope of this study is limited to predictions of

aSab for other mounting conditions, as if the same material is

measured in the same reverberation chamber.

Several conversion methods between acoustical proper-

ties have been suggested.12–14 Recently, Jeong proposed a

method to inversely estimate the surface impedance and flow

resistivity from aSab based on an equivalent fluid model to

estimate the random incidence absorption coefficient.13 A

similar conversion method was used to investigate the repro-

ducibility of the converted random incidence absorption

coefficient using a frequency-independent room factor.14

This study introduces a new frequency-dependent diffuse-

ness factor to extract the flow resistivity of the test specimen

from an arbitrary mounting condition.

II. METHOD

The basic assumption is that one can accurately predict

aSab with two independent corrections: a finite size correction

and room’s diffuseness correction.14 During the prediction, the

material production variability is assumed to be negligible.

The former correction can account for edge diffraction from a

finite specimen, whereas the latter can account for the inter-

chamber variation in aSab shown in the round robin tests.9–11

The room’s diffuseness correction can include many factors,

e.g., room geometry and diffuser setting, mounting and frame

around the sample, measurement method, etc.14 The main

challenge concerning the diffuseness correction is that there

are no well-established methods to compensate for the individ-

ual diffuseness condition, and therefore a frequency-

independent correction was initially suggested in Ref. 14. This

frequency-independent correction, however, is a crude approx-

imation because the diffuseness varies with frequency and the

absorption characteristic of the specimen. In this study, a

frequency-dependent diffuseness correction is suggested based

on recent round robin data,10 which is assumed to hold good

for porous materials. The most practical application of the sug-

gested method is to predict the absorption coefficients for othera)Electronic mail: chj@elektro.dtu.dk

1498 J. Acoust. Soc. Am. 140 (3), September 2016 0001-4966/2016/140(3)/1498/4/$30.00 VC 2016 Acoustical Society of America

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  192.38.90.17 On: Mon, 05 Sep 2016 09:30:04

http://dx.doi.org/10.1121/1.4962232
mailto:chj@elektro.dtu.dk
http://crossmark.crossref.org/dialog/?doi=10.1121/1.4962232&domain=pdf&date_stamp=2016-09-01


air backing conditions or other thickness cases with known

absorption data for a given mounting condition.

A. Frequency-dependent diffuseness compensation

The frequency dependence of the inter-chamber variation

in aSab is extracted from a recent round robin test, where two

porous specimens were measured in 13 reverberation cham-

bers.10 The mean and standard deviation (STD) of aSab are cal-

culated from the 13 measurements in each third octave band in

Figs. 1(a) and 1(b). The inter-chamber STD indicates how

much the chamber biases the absorption measurement, on

average. STDs of two quite different porous absorbers differ

largely at low frequencies in Fig. 1(b), 10,14 mainly because

aSab differs a lot in Fig. 1(a). When STD is normalized by its

mean aSab, the relative standard deviations (RSDs) for the two

absorbers become quite similar in Fig. 1(c). These two RSDs

are averaged and named RSD(f), which serves as a predefined

frequency-dependent trend of the chamber’s influence on the

measured absorption of porous absorbers. With this newly sug-

gested correction, the flow resistivity as a material property of

the sample is extracted (step 1 in Sec. II B). Then, the absorp-

tion coefficient for another mounting condition is predicted via

the Miki model and the same diffuseness correction based on

the extracted flow resistivity information (step 2 in Sec. II C).

B. Step 1: Extracting the flow resistivity based on an
equivalent fluid model

The flow resistivity, r, is one of the most important

material parameters to estimate the absorption of fibrous

absorbers. The best known equivalent fluid model is the

model of Delany and Bazley,15 with a number of modifica-

tions available.16 In this study, the model of Miki16 is consis-

tently used, which was constructed based on the data of

Delany and Bazley in a limited frequency range between

0.01r and r. Once the characteristic impedance, Zc, and the

propagation constant, kt, are computed by Miki’s model, the

surface impedance for oblique incidence is expressed as17

Zw f ; hð Þ ¼ Zck �jZjx¼dcot kxdð Þ þ Zc
k

kx

� ��

kx Zjx¼d � jZc
k

kx
cot kxdð Þ

� �� �
; (1)

where h is the incidence elevation angle, k is the wavenum-

ber in air, kx is the normal component of the transmitted

wavenumber kt [kx¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kt

2 � k2 sin2ðhÞ
q

], and d is the

absorber thickness. For a rigid backing, Zjx¼d¼1. For an

air cavity backing, Zjx¼d¼�jðqocoko=kxÞcotðkodo cos hÞ,
where do is the air cavity depth.

To predict aSab, a size- and room-corrected absorption

coefficient, asize&room, was suggested,14,18 which assumes a

frequency-independent effect of the chamber on the mea-

sured absorption as follows:

asize&room fð Þ ¼ 2

ðp=2

0

4Re Zw f ; hð Þð Þ
jZw f ; hð Þ þ �Z

�
r f ; hð Þj2

sin hð Þdh

þ aroom ¼ asize fð Þ þ aroom: (2)

Here, �Zrðf ; hÞ is the average radiation impedance of a finite

specimen over the azimuth angle18 and aroom is the

frequency-independent room factor. A new frequency-

dependent correction is introduced as

asize&diff fð Þ ¼ asize fð Þ þ adif f
RSD fð Þ � asize fð Þ
RSD fð Þ � asize fð Þ½ �

: (3)

Here, RSDðf Þ � asizeðf Þ=½RSDðf Þ � asizeðf Þ� means the normal-

ized, predefined, frequency-dependent effect of the test

chamber on the measured absorption, with ½�� being the aver-

age over the frequency of interest. Therefore, adiff is inter-

preted as a single-valued overestimation or underestimation

by the test chamber based on the frequency-dependent cor-

rection, which is an equivalent concept to aroom in Eq. (2).

To find the optimal r and adiff (or aroom), the error function

to be minimized is defined as the summation of the absolute

difference between aSab and asize&diff (or asize&room) over the

frequency range as follows:

esize&diff ðr; adif f Þ ¼
Xfmax

f¼fmin

jaSabðf Þ � asize&diff ðr; adif f ; f Þj;

(4a)

esize&roomðr;aroomÞ¼
Xfmax

f¼fmin

jaSabðf Þ�asize&roomðr;aroom;f Þj:

(4b)

One can directly minimize the error function as performed in

Ref. 14 or simply explore the error distribution for a typical

range of r and adiff. The latter approach is chosen in this

study to clearly visualize the error distribution.

C. Step 2: Estimating asize&diff for other mounting
conditions

Once the flow resistivity value that minimizes the error

function is found, asize&diff for another mounting condition is
FIG. 1. (Color online) (a) aSab averaged over the chamber (Ref. 10), (b)

inter-chamber STD of aSab, (c) RSD of aSab.
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predicted according to Eq. (3). First, Zc and kt are estimated

by Miki’s model, and then a new surface impedance is esti-

mated by Eq. (1). Note that the correct backing impedance,

Zjx¼d, for the new mounting condition should be computed.

III. TWO FIBROUS ABSORBER EXMPLES

Two quite different fibrous materials were measured

according to ISO 354:2003 in two reverberation chambers.

The first one was Ecophon Industry
TM

Modus, which was a

10 cm thick glass wool absorber with a density of 26.5 kg/m3.

Its flow resistivity was measured to be 12.9 kNsm�4 according

to ISO 9053:1991.19 Two mounting conditions were measured

in a rectangular reverberation chamber of a volume of 214 m3

with six panel diffusers (Chamber 1): Rigid backing (Rigid1)

and 10 cm air cavity backing (Cavity1). The measured

absorber size was 10.8 m2. The second sample was Rockfon

Polar
VR

Colour, which was made of rock wool with two thick-

nesses. Its density was 126.7 kg/m3, but its flow resistivity was

unknown. Three mounting conditions were measured in a rect-

angular reverberation chamber, which had 85 boundary diffus-

ers and 12 panel diffusers with a volume of 215 m3 (Chamber

2): Rigid backing with a 4 cm specimen (Rigid2), 16 cm cavity

with a 4 cm specimen (LargeCavity2), and 10 cm cavity with a

10 cm specimen (SmallCavity2). The absorber size was 10.8

m2. Due to the second sample’s high density (and thus high

flow resistivity) and potential error by Miki’s model at low

frequencies, the absorption data below 200 Hz are excluded in

the prediction. All aSab values are shown in Fig. 2.

A. Ecophon Industry
TM

Modus

Four contour plots of the error function are shown in

Fig. 3. From the Rigid1 condition, (r, aroom) are found to be

(16.4 kNsm�4, 0.045) with the frequency-independent cor-

rection, whereas the optimum parameters, (r, adiff), are (12.6

kNsm�4, 0.040) with the frequency-dependent correction

shown in Figs. 3(a) and 3(b). In Figs. 3(c) and 3(d), the opti-

mized parameters from Cavity1 condition are (r, aroom)

¼ (26.4 kNsm�4, 0.085) and (r, adiff)¼ (9.6 kNsm�4, 0.050),

respectively. Note that the optimized values are global min-

ima in the typical r and adiff range in Fig. 3. The r prediction

with adiff agrees better with the measured r of 12.9 kNsm�4

than that with aroom. Based on the optimized sets of (12.6

kNsm�4, 0.04) and (9.6 kNsm�4, 0.05) extracted from Figs.

3(b), 3(d), asize&diff and aSab are compared in Fig. 4. The

absolute differences between asize&diff and aSab per frequency

band for Rigid1 and Cavity1 condition are smaller than 0.04.

B. Rockfon PolarVR Colour

The optimized parameters (r, adiff) are (48.9 kNsm�4,

0.130), (54.7 kNsm�4, 0.164), and (52.0 kNsm�4, 0.192), for

Rigid2, LargeCavity2, and SmallCavity2, respectively. With

the frequency-independent correction, (r, aroom) becomes

(48.6 kNsm�4, 0.138), (50.6 kNsm�4, 0.163), and (51.6

kNsm�4, 0.180), for Rigid2, LargeCavity2, and SmallCavity2,

respectively. The optimized parameters are similar regardless

of the frequency-dependence of the room correction because

the frequency-dependence becomes weaker at frequencies

above 200 Hz, see Fig. 1(c). Although not measured, its flow

resistivity is likely to range from 40 to 60 kNsm�4 based on

the literature.1,20 In all conditions, the absolute absorption dif-

ference between the predicted and measured values are no

larger than 0.05. A prediction example from LargeCavity2 is

presented in Fig. 5, which shows that asize&diff predicts aSab

reasonably well, particularly the shape of the absorption curve.

Note the notable difference between aSab,SmallCavity2 and

aSab,LargeCavity2 in the 800–1000 Hz bands is well preserved in

asize&diff.

FIG. 2. (Color online) Sabine absorption coefficients of the two fibrous sam-

ples. (a) Ecophon IndustryTM Modus, (b) Rockfon Polar
VR

Colour.

FIG. 3. (Color online) The cost func-

tion as a function of flow resistivity

and diffuseness factor for IndustryTM

Modus. (a) Rigid1 with aroom, (b)

Rigid1 with adiff, (c) Cavity1 with

aroom, (d) Cavity1 with adiff.
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IV. REMARKS ON THE SUGGESTED METHOD

Considering the fact that the flow resistivity values of

fibrous materials can vary from 2 to 200 kNsm�4,21 the pre-

sent study investigates only two limited examples with r of

13 and 50 kNsm�4. There are several cautions when applying

the proposed prediction. First, some absorber manufactures

present only the practical absorption coefficient, ap, averaged

in the octave band, approximated in steps of 0.05, and trun-

cated in order not to exceed unity. Therefore, the correct

shape of the absorption coefficient may not be preserved in

ap, and thus aSab is preferred to ap. If absorber manufacturers

can provide the flow resistivity, the flow resistivity does not

need to be optimized. Second, absorption predictions for

absorbers having higher flow resistivity values are expected to

be less accurate. For example, Miki’s model is not sufficiently

accurate below 0.01r, which amounts to 500 Hz for Polar
VR

Colour.22 Accordingly, some low frequency absorption data

were removed for the optimization process, which includes

the most notable and useful difference between the two differ-

ent backing conditions below 200 Hz. However, the proposed

optimization process is able to notice another prominent dis-

crepancy in the 800–1000 Hz bands and the predicted absorp-

tion curves agree with the measurements in Fig. 5.

V. CONCLUSIONS

This study deals with a simple numerical prediction

method of the Sabine absorption coefficient for homoge-

neous fibrous materials from one to other mounting condi-

tions. From the measured Sabine absorption data for a given

mounting condition, one can extract the flow resistivity of

the test specimen and the frequency-dependent diffuseness

correction term, and then re-calculate asize&diff for other

mounting conditions. Two fibrous absorber examples show

that the prediction error is no larger than 0.05.
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FIG. 4. (Color online) A comparison between asize&diff and aSab for IndustryTM

Modus. (a) Conversion from Rigid1 to Cavity1 (r, adiff)¼ (12.6 kNsm�4,

0.04), (b) conversion from Cavity1 to Rigid1 (r, adiff)¼ (9.6 kNsm�4, 0.05).

FIG. 5. (Color online) Comparisons between aSab and asize&diff for Polar
VR

Colour using (r, adiff)¼ (54.7 kNsm�4, 0.164). To avoid overlap,

aSmallCavity2 and aLargeCavity2 are plotted with offsets.
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