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ABSTRACT: Blooms of the microalga Prymnesium parvum
cause devastating fish kills worldwide, which are suspected to be
caused by the supersized ladder-frame polyether toxins
prymnesin-1 and -2. These toxins have, however, only been
detected from P. parvum in rare cases since they were originally
described two decades ago. Here, we report the isolation and
characterization of a novel B-type prymnesin, based on
extensive analysis of 2D- and 3D-NMR data of natural as well
as 90% 13C enriched material. B-type prymnesins lack a
complete 1,6-dioxadecalin core unit, which is replaced by a
short acyclic C2 linkage compared to the structure of the
original prymnesins. Comparison of the bioactivity of
prymnesin-2 with prymnesin-B1 in an RTgill-W1 cell line
assay identified both compounds as toxic in the low nanomolar range. Chemical investigations by liquid chromatography high-
resolution mass spectrometry (LC-HRMS) of 10 strains of P. parvum collected worldwide showed that only one strain produced
the original prymnesin-1 and -2, whereas four strains produced the novel B-type prymnesin. In total 13 further prymnesin
analogues differing in their core backbone and chlorination and glycosylation patterns could be tentatively detected by LC-MS/
HRMS, including a likely C-type prymnesin in five strains. Altogether, our work indicates that evolution of prymnesins has
yielded a diverse family of fish-killing toxins that occurs around the globe and has significant ecological and economic impact.

Blooms of ichthyotoxic (fish-killing) microalgae are a
recurring phenomenon in coastal and river waters, with

huge impacts on wild fish stocks as well as caged fish. Such
blooms have detrimental economical consequences for the local
communities, fish farmers, and recreational and commercial
fishers. An algal species that has been associated with massive
fish kills in at least 14 countries is the haptophyte Prymnesium
parvum (the golden alga).1 In recent years, problems with P.
parvum have spread to all southern states in the USA,2 where it
has become endemic in several river systems, with estimated
economic losses higher than $10 million.3 Consequently,
programs have been initiated in countries such as the USA,
Norway, and Denmark in order to assess the ecological and
economic impacts of P. parvum blooms and to develop
management options for controlling fish kills.4 The possible
ichthyotoxic components of P. parvum have been extensively
studied,5 but due to their complex structures and low
abundance, it was not until 1996 that Igarashi et al.6 successfully
isolated and elucidated the structure of the two large polyether
ladder-frame compounds, prymnesin-1 and -2. Later, the
relative configuration of the prymnesins was revised by the
Yasumoto group using synthetic models.7−10 Despite the
numerous P. parvum blooms that have occurred during the

last two decades, prymnesin-2 has only once been tentatively
detected again by liquid chromatography combined with high-
resolution mass spectrometry (LC-HRMS).11 Other groups
have isolated and suggested “golden algae toxins” and fatty acid
amides12−14 as the principle toxins of P. parvum. However, we
have recently shown that these compounds are not ichthyotoxic
at ecologically relevant concentrations.15 On the basis of these
latter findings, our attention was drawn toward the prymnesins.
We hypothesized that the reason that so few groups have been
able to detect the original prymnesins could be that the
structural diversity of prymnesin-type compounds is larger than
previously realized. The current study supported our
hypothesis, because isolation and detailed analysis of 2D- and
3D-NMR data showed the novel compound prymnesin-B1 to
have a different polyether backbone structure compared to the
original prymnesins, altogether defining a novel B-type
prymnesin. Furthermore, LC-MS/HRMS analysis of 10 strains
of P. parvum collected worldwide indicated the B-type
prymnesin to be more abundant than the original prymnesins.
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■ RESULTS AND DISCUSSION

Purification of Prymnesins. Prymnesin-B1 (1) was
isolated from a Danish strain of P. parvum K-0081, as this
particular strain was found to be highly toxic toward rainbow
trout and did not produce the known prymnesins.15 By
screening different solid-phase columns, we successfully
established an efficient normal-phase purification strategy that
uses amino-functionalized silica. This strategy resulted in a
highly enriched fraction that finally was purified by semi-
preparative reversed-phase HPLC to afford 1.8 mg of
prymnesin-B1. In order to obtain heteronuclear NMR assign-
ment spectra for structural studies, we also isolated 1.0 mg of
90% uniformly 13C-enriched prymnesin-B1 from a culture
grown in artificial seawater containing 180 mg/L NaH13CO3.
Using a similar approach we isolated prymnesin-2 for biological
testing from a 100 L cultivation of the strain UTEX-2797.
NMR Spectroscopic Elucidation. The elucidation of the

structure of prymnesin-B1 was largely achieved through
extensive interpretation of 2D COSY, TOCSY, and NOESY
NMR spectroscopy at natural isotope abundance, as well as by
3D 1H−13C HSQC-TOCSY, 1H−13C HSQC-NOESY, HCCH-
TOCSY NMR, and constant-time 1H−13C HSQC (CT-
HSQC) spectra on the ∼90% 13C-enriched version. Although
hampered by a very low solubility of the isolated prymnesin-B1
in CD3OD, which resulted in relatively poor signal-to-noise
ratio, the 1H NMR spectroscopic data (Figure S2) turned out
to be consistent with those of other ladder-like polyethers.17

The 1H and COSY spectra revealed 10 allylic protons.
Additionally, the HSQC spectrum showed one methyl group,
24 methylene groups, and 47 oxygenated carbons. Further-
more, the HSQC spectrum showed an anomeric proton,
confirming the presence of an attached carbohydrate.
The backbone structure was established through careful

analysis of COSY and TOCSY spectra. With these experiments
we initially identified the following structural parts: H-1 to H-

48, H-49 to H-54, H-55 to H-73, and H-74 to H-80. On the
basis of the extracted coupling constants all double bonds were
found to be of E configuration. The connection H-48/H-49 was
not clear in the COSY data due to signal overlap, but was
clarified from an HCCH-TOCSY correlation from H-48 to H-
50. Furthermore, the COSY connectivity was interrupted at H-
54 due to the equatorial position of this proton relative to H-
55, resulting in a very small coupling constant. The connection
was made by a NOE observed between H-54 and H-55. The
connection between the two H-73 protons and H-74 showed
no COSY cross-peak and was therefore established with the
observed correlations in the HCCH-TOCSY experiment. The
poly-hydroxylated side chain showed some overlapping proton
signals, hampering the elucidation by COSY correlations alone.
Analysis of 1H−13C HSQC-TOCSY planes and HCCH-
TOCSY planes aided the elucidation process. In addition,
NMR data obtained at a range of temperatures were used to
resolve overlapping signals. Thus, signals that overlapped at 313
K were partly resolved at 293 K. The connection of H-70 to H-
72 was hampered by the similar chemical shifts of H-70 and H-
71, but the HCCH-TOCSY experiment at 293 K showed that
H-72 had correlations to the two resolved protons, H-70 and
H-71. Positioning of the amine and chlorine atoms was based
on the 13C chemical shifts of attached carbons and was
consistent with chemical shift values and positions observed in
prymnesin-1 and -2. Due to the small amount of prymnesin-B1
in solution, we did not observe any of the quaternary carbons
C-3, C-8, C-81, C-82, and C-83 or the acetylenic C−H (pos
84) in the HMBC spectrum. A long-range (LR) optimized HC-
CT-HSQC using nJCH = 12 Hz (LR-HSQC) showed weak
correlations from H-5 and H-6 to C-4 and C-7, respectively
(see Figure S6). Furthermore, the coupling constants 5JH‑2,H‑5 =
5JH‑6,H‑9 = 3 Hz were of similar values to those reported by
Igarashi et al.,16 further confirming the alkynyl carbon atoms
(C-3/C-4 and C-7/C-8).

Chart 1

Journal of Natural Products Article

DOI: 10.1021/acs.jnatprod.6b00345
J. Nat. Prod. 2016, 79, 2250−2256

2251

http://pubs.acs.org/doi/suppl/10.1021/acs.jnatprod.6b00345/suppl_file/np6b00345_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jnatprod.6b00345/suppl_file/np6b00345_si_001.pdf
http://dx.doi.org/10.1021/acs.jnatprod.6b00345


Most ether ring closures were determined based on the
strong NOE correlations observed across the 1,3-diaxial
protons in the individual ether rings, as previously noted for
other ladder-like polyether natural products.17 Hence the rings
A to G and J to N were determined by NOE correlations
between H-20/H-24, H-23/H-27, H-26/H-30, H-29/H-34, H-
33/H-37, H-38/H-42, H-41/H-45, H-56/H-60, H-59/H-63,
and H-64/H-68. The ring closures of rings J and K were more
challenging to determine due to severe signal overlaps and due
to the fact that no ether-forming NOE correlations could be
observed from H-46 for the continuation of the trans-1,6-
dioxadecalin ladder, as seen in prymnesin-1 and prymnesin-2.
In order to elucidate the ether connectivities, deuterium

exchange experiments in CD3OH and CD3OD were carried
out. These exchange experiments identify ether linkages
through a deuterium isotope effect on HSQC signals of
alcohol, but not on ether groups.18,19 This procedure clearly
showed that C-46, C-50, and C-54 as well as C-32, C-61, C-62,
C-65, C-66, C-67, C-70, C-72, C-74, C-75, C-76, C-77, and C-
78 were hydroxy-bearing carbon atoms, as they all shifted 0.1−
0.2 ppm from their 13C chemical shift in CD3OD; see Figure
S5. Consequently, these exchange experiments established the
connectivity of rings J and K as an additional dioxadecalin
ladder ring system (similar to that of prymnesin 2) with ether
linkages between C-48 and C-52 (consistent with an
inconclusive NOE correlation observed near the diagonal of
the NOESY spectrum) and between C-51 and C-55.
Importantly, this ring closure established a short linear C2

moiety of C-46 and C-47 (−CHOH−CH2−) that bridges the
G and J rings, thus providing a new structural motif distinct
from the established backbone of prymnesin-1 and -2. This
structural motif is consistent with the similar proton chemical
shifts observed for the two H-47 protons (1.61 and 1.69 ppm),
which would not be expected if these had been part of a ring, as
is the case in prymnesin-1 and -2, where such protons are
observed at 1.61 and 2.02 ppm, respectively. It is noteworthy
that other notorious algal toxins such as brevisulcenals and

maitotoxins similarly contain small acylic linkers (3−4 carbons
long) as part of their large polyether structures.20

Relative Configuration of Prymnesin-B1. Assignment of
the relative configuration of the rigid ring systems was based on
the observed coupling constants measured with the DQF-
COSY spectrum and from NOE correlations. These data are
consistent with chair conformations and indicate that the cyclic
ethers were trans-fused as observed in other ring structures of
marine polyethers.16 Axial protons of methylene groups were
observed shielded (1.46−1.95 ppm) relative to their equatorial
counterparts (2.04−2.35 ppm). We found that the relative
configuration of rings A to G had adopted the same geometry
as in prymnesin-1 and -2.16 As originally observed for the
linkage between rings E and F,16 we also observed an
intermediate coupling constant, 3JH‑37,H‑38 = 7 Hz, as well as a
strong NOE correlation between H-37/H-38, suggesting a
twisted gauche rotamer. The configuration of the linkage
between rings E and F in prymnesin-2 has also been studied
using a synthetic model pointing toward the anti rotamer,8 but
this model still did not explain the original observed NOE
correlations for H-37/H-38.16

Rings J through N were likewise found to share the same
relative configuration as seen in prymnesin-1 and -2 (for further
details see the Supporting Information). The linkage between
rings M and N was identified as the anti rotamer from a large
coupling constant, 3JH‑63,H‑64 = 9.5 Hz. In agreement with this
finding we did not observe any NOE correlations between
these protons. For the J and K ring system of prymnesin-B1, we
found the OH-50 to be axial, as evident by a small coupling
constant, 3JH‑50,H‑51 = 4 Hz. The axial conformation for OH-50
was further supported by two strong NOEs to H-49a,b from H-
50. Furthermore, OH-54 was found to have adopted the axial
geometry, based on the fact that no COSY cross-peak was
observed between H-54/H-55, indicative of a small coupling
constant. The sequence of coupling constants (12/4 or 4/8.5
Hz) for the H-52/H-53a,b/H-54 protons together with a
strong NOE correlation from H-54 to H-53a,b also supported

Figure 1. LC-MS/HRMS screening of 10 P. parvum strains. (A) Summed EICs (doubly charged) of all prymnesin-like molecules in 10 worldwide-
distributed strains of P. parvum. Green EIC was created for original prymnesin-1 and -2. Red EICs show B-type prymnesins. Blue EICs show
tentatively identified C-type prymnesins. (B) MS/HRMS spectra of [M + 2H]2+: (top) prymnesin-1 and -2, (middle) prymnesin-B1 and -B2,
(bottom) tentatively assigned C-type prymnesins. Δ66 shows a loss of a pentose (m/z 66.021, doubly charged) and Δ81 a loss of a hexose (m/z
81.026, doubly charged). Asterisk (*) denotes tentatively characterized by MS/MS, UV, and chiral-phase GC-MS.
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this finding (Figure S9). The linkage between rings K and L
was found to be the anti rotamer based on the large coupling
constant, 3JH‑55,H‑56 = 10 Hz, and supported by the fact that no
NOE was observed for H-55/H-56 (Figure S9).
Carbohydrate Identification by NMR, LC-MS/HRMS,

and GC-MS Analysis. The LC-MS/HRMS analysis showed a
neutral loss matching the presence of a hexose in prymnesin-B1
(Figure 1B). The nature of the hexose was further investigated
using both NMR data and GC-MS analysis of the acid-
hydrolyzed sample. The hydrolysis of the 13C-enriched sample
and subsequent GC-MS detection as an oxime-TMS
derivative21 established that the hexose was a galactose, based
on comparison with sugar standards (see Figure S10). Next the
sugar was derivatized with N-methyl-bis-trifluoroacetamide
(MBTFA) to the corresponding trifluoroacetyl ester and
analyzed by chiral-phase GC-MS,22 altogether establishing
that prymnesin-B1 contained a D-galactose (see Figure S10).
The precise attachment of the galactose in prymnesin-B1 was
established by a long-range HSQC experiment (optimized for
nJCH = 12 Hz) to C-71. This attachment was further supported
by the deshielded 13C chemical shift (δ13C = 90.3 ppm) of this
carbon as well as a NOE correlation between H-1′ and H-71.
The galactosyl unit was identified as an α-D-galactopyranosyl
form evident from a 3JH‑1′,H‑2′ = 4 Hz and 13C chemical shift
values.23

The LC-MS/HRMS and GC-MS analyses also revealed the
presence of a minor component (prymnesin-B2), not observed
in the 1H NMR spectrum. The LC-MS/HRMS spectrum
clearly indicated the impurity to have the same backbone
aglycone ion as seen for prymnesin-B1 and to have a neutral
loss (m/z 66.021, doubly charged) matching that of a pentose
unit (Figure 1B), which could be further established to be D-
ribose by chiral-phase GC-MS (see Figure S10). The NMR
assignment of the ribose moiety of the minor prymnesin-B2
was unsuccessful due to its presence in trace amounts, which is
why the exact connectivity of the sugar moiety in prymnesin-B2
could not be resolved. However, we speculate it to be attached
to the same oxygen atom as in prymnesin-B1.

Mass Spectrometric Analysis Indicated Numerous
Prymnesin-like Compounds in 10 P. parvum Strains.
Having defined a novel B-type prymnesin, we were encouraged
to explore the distribution and chemical nature of prymnesins
across several strains. Hence, a total of 10 P. parvum strains,
sampled from Europe, Scandinavia, USA, Japan, Australia, and
Madagascar, were purified by normal-phase SPE columns (NH2

functionalized silica) and screened by means of LC-DAD-MS/
HRMS. Interestingly, the original prymnesins11 were detected
in only one strain (UTEX-2797), whereas four strains produced
up to five B-type prymnesins all having the same elemental

Table 1. NMR Spectroscopic Dataa (800 MHz, CD3OD) for Prymnesin-B1

pos δC δH (J in Hz) pos δC δH (J in Hz) pos δC δH (J in Hz)

1 129.2, CH 6.58, d (13.9) 33 84.4, CH 3.00, m 66 68.6, CH 3.90, m
2 112.7, CH 5.98, dt (13.7, 2.1) 34 74.4, CH 3.67, m 67 69.0, CH 3.54, m
3 n.d. 35 30.2, CH2 1.45, 2.09, m 68 71.9, CH 3.80, m
4 89.5/91.6, C 36 28.5, CH2 1.33, 2.03, m 69 34.6, CH2 1.53, 2.03, m
5 19.0 2.52, m 37 75.9, CH 3.18, m 70 67.0, CH 4.06, m
6 19.0 2.54, m 38 82.2, CH 3.33, m 71 90.3, CH 3.59, m
7 89.5/91.6, C 39 29.5, CH 2.27, m 72 69.0, CH 4.03, m
8 n.d. 40 36.2, CH2 1.60, 1.83, m 73 33.2, CH2 1.73, 1.77
9 110.5, CH 5.57, dd (15.4, 5.6) 41 74.6, CH 3.21, m 74 68.8, CH 4.08, m
10 139.6, CH 6.50, dd (15.7, 10) 42 79.4, CH 2.96, m 75 69.9, CH 3.85, m
11 134.0, CH 6.18, dd (14.8, 10.7) 43 28.8, CH2 1.47, 1.99, m 76 73.8, CH 3.71, m
12 127.4, CH 5.78, ddt (14.7, 7.1, 6.2) 44 25.8, CH2 1.47, 1.88, m 77 72.2, CH 3.60, m
13 36.0, CH2 2.18, m 45 80.4, CH 3.25, m 78 69.5, CH 3.72, m

2.30, m 46 71.4, CH 3.62, m 79 32.5, CH2 1.65, 2.08, m
14 50.7, CH 2.95, m 47 38.5, CH2 1.61, m, 1.69, d (12.0) 80 14.8, CH 2.45, 2.50, m
15 36.0, CH2 2.17, 2.25, m 48 70.5, CH 4.05, m 81 n.d.
16 129.3, CH 5.70, ddt (14.6, 7.6, 5.8) 49 38.0, CH2 1.58, 1.90, m 82 n.d.
17 134.1, CH 6.11, dd (14.7, 10.2) 50 65.4, CH 4.10, m 83 n.d.
18 130.0, CH 6.24, dd (15.4, 10.5) 51 80.4, CH 3.13, m 84 n.d. n.d.
19 132.8, CH 5.60, dd (15.0, 5.9) 52 66.4, CH 4.00, m 85 12.0, CH3 1.01, d (7.1)
20 77.5, CH 3.96, m 53 36.2, CH2 1.59, 2.19 1′ 103.3,CH 5.03, b
21 31.0, CH2 1.51, 1.83, m 54 64.7, CH 4.18, b 2′ 69.5, CH 3.88, m
22 28.7, CH2 1.52, 2.04, m 55 82.3, CH 3.28, m 3′ 70.3, CH 3.80, m
23 77.8, CH 3.04, m 56 75.0, CH 3.55, m 4′ 68.5, CH 3.90, m
24 76.83, CH 3.17, m 57 28.0, CH2 1.41, 2.09, m 5′ 72.0, CH 4.13, m
25 35.3, CH2 1.46, 2.24, m 58 28.4, CH2 1.57, 2.05, m 6′ 61.3, CH2 3.71, 3.78, m
26 76.6, CH 3.00, m 59 76.0, CH 3.06, m
27 76.8, CH 3.07, m 60 78.7, CH 3.34,m
28 37.2, CH2 1.37, 2.27, m 61 72.2, CH 3.65, m
29 76.1, CH 3.90, m 62 68.9, CH 4.05, m
30 80.0, CH 3.38, m 63 75.4, CH 3.54, m
31 36.5, CH2 1.95, 2.35, m 64 70.7, CH 4.00, m
32 70.8, CH 4.05, m 65 70.6, CH 3.93, m

aChemical shifts are reported in CD3OD and referenced to δH 3.31 ppm and δC 47.9 ppm at 313 K. n.d. = not detected.
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composistion of their aglycone part (C85H122ClNO29), as
described above for prymnesin-B1 (Figure 1, Table 2).
The last five strains produced neither the original prymnesins

nor the novel B-type prymnesins (Table 2 and Table S1).
Excitingly, they instead contained peaks detected as doubly
charged adducts with complex isotopic patterns (Figure 1B),
clearly indicating them to be an even third type of chlorinated
prymnesins. The interpretation of the MS/HRMS data for this
tentative C-type of prymnesins was more challenging, as we
also observed variation in their degree of chlorination.
However, in all cases we found these tentative C-type
prymnesins to contain a C83 backbone (Table 2 and Table
S1). All three prymnesin types showed similar chromatographic
behavior on an NH2 SPE column and similar UV spectra and
fragmentation patterns. Altogether, these MS-DAD-based
investigations indicate the production of at least 16 different
prymnesins that can be further subdivided into three types
(original, B-type, and C-type).
The current study includes Scandinavian P. parvum strains,

strains from the English Channel, and strains isolated from
various parts of the world distant from Europe, near
Madagascar, Japan, and Australia, and from Texas (Figure 1).
Our screen currently points to some degree of regional
preference of prymnesin chemotypes (e.g., mostly B-type in

northern European strains), but to an overall diverse worldwide
distribution of the different types of prymnesins.

Biosynthesis of Prymnesins. Our findings of three types
of prymnesins suggest that evolution of the polyketide
biosynthetic machinery in P. parvum has led to the variety of
prymnesin backbone structures observed here. Previous
investigations on the biosynthesis of algal polyketides in
dinoflagellates24 have shown that formation of the backbone
polyketide chains often is not as simple as in, for example,
filamentous fungi, where the growing chain usually is extended
with two carbons each time. Algal polyethers on the contrary,
such as the six-membered fused ring system of yessotoxin, have
been shown to be formed by repeated condensation of a unit
consisting of a methyl group (derived from an acetate unit) and
an intact acetate unit.25 Future biosynthetic studies, such as
[2-13C]-acetate incorporation studies,26 will have to reveal how
the assembly of different backbones takes place in prymnesins
and especially why the backbone of the novel B-type
prymnesins is six carbons shorter than that of the original
prymnesins, leading to the lack of a complete 1,6-dioxadecalin
core unit.

Bioactivity of Prymnesin-B1. A comparison of the
bioactivity of prymnesin-2 and prymnesin-B1 was complicated
due to the fact that the solubility of the compounds was
extremely low after purification. In order to quantify the

Table 2. Masses of Detected Ions and Predicted Elemental Compositions of the 16 Prymnesins Reported in This Study,
Including Prymnesin-1 and -2 Originally Described by Igarashi et al.16

name elemental composition [M + 2H]2+ elemental composistion of aglycone [M-glycone+2H]2+

A-type
Prymnesin-1

C107H154Cl3NO44 1131.9542
C91H128Cl3NO31 918.8853

(Δ −1.3 ppm) (Δ −1.3 ppm)

Prymnesin-2
C96H136Cl3NO35 984.9052

C91H128Cl3NO31 918.8837
(Δ 0.0 ppm) (Δ −0.4 ppm)

C96H137Cl2NO35 967.9247
C91H129Cl2NO31 901.9037

(Δ −0.01 ppm) (Δ −0.2 ppm)
B-type

Prymnesin-B1
C91H132ClNO34 909.9232

C85H122ClNO29 828.8965
(Δ 0.04 ppm) (Δ 0.4 ppm)

Prymnesin-B2a
C90H130ClNO33 894.9180

C85H122ClNO29 828.8960
(Δ −0.05 ppm) (Δ 1.0 ppm)
C96H140ClNO38 975.9443

C85H122ClNO29 828.8974
(Δ 0.07 ppm) (Δ −0.7 ppm)
C97H142ClNO39 990.9480

C85H122ClNO29 828.8962
(Δ 1.7 ppm) (Δ 0.8 ppm)
C85H122ClNO29 828.8968

C85H122ClNO29 828.8968
(Δ 0.03 ppm) (Δ 0.03 ppm)

C-type C88H125Cl2NO35 913.8777
C83H117Cl2NO31 847.8549

(Δ 0.04 ppm) (Δ 2.0 ppm)
C88H127Cl2NO35 914.8856

C83H119Cl2NO31 848.8630
(Δ −0.04 ppm) (Δ 1.7 ppm)
C93H135Cl2NO39 980.9037

C83H119Cl2NO31 848.8642
(Δ 3.0 ppm) (Δ 0.3 ppm)

C88H126Cl3NO35 931.8661
C83H118Cl3NO31 865.8431

(Δ −0.02 ppm) (Δ 2.1 ppm)
C88H124Cl3NO35 930.8557

C83H116Cl3NO31 864.8357
(Δ 2.7 ppm) (Δ 1.6 ppm)

C99H144Cl3NO44 1078.9123
C83H118Cl3NO31 865.8461

(Δ 1.2 ppm) (Δ −1.3 ppm)
C93H134Cl3NO39 997.8851

C83H118Cl3NO31 865.8437
(Δ 2.1 ppm) (Δ 1.4 ppm)

C88H125Cl4NO35 948.8461
C83H117Cl4NO31 882.8254

(Δ 0.5 ppm) (Δ 0.1 ppm)
aTentative identification based on MS/HRMS and UV spectra and chiral-phase GC-MS analysis.
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amount of prymnesins in solution, the amino groups of the
compounds were covalently tagged with 6-aminoquinolyl-N-
hydroxysuccinimidyl carbamate (AccQ tag), yielding a
fluorescent product, whose concentration could be externally
calibrated using the amino group containing mycotoxin
fumonisin B1 (certified reference solution) by UHPLC-FLD
(Figure S11). This approach allowed us to establish accurate
concentrations, showing that the prymnesin-B1 lysed the
RTgill-W1 cells with an EC50 value in the nanomolar range
(5.98 ± 0.65 nM), similar to the more homogeneous and
slightly more toxic prymnesin-2 (EC50 = 0.92 ± 0.05 nM, mean
values ± SE) (Figure 2). Consequently, we speculate that all

prymnesins are ichthyotoxic and that mixtures of several
prymnesins in combination are responsible for the massive
recent fish kills observed worldwide.
In conclusion, our work is the first in 20 years to address the

chemistry and structural diversity of prymnesins produced by
the ichthyotoxic alga P. parvum. The chemodiversity of these
toxins is proven to be much higher than previously realized,
explaining why it has been so challenging to detect previously
described prymnesins in various recent instances of algal
blooms. At the same time, our studies call for targeted
multiprymnesin analytical methods for the analysis of these
very toxic compounds in future, fish-killing algal blooms.

■ EXPERIMENTAL SECTION
General Experimental Procedures. The optical rotation was

measured in MeOH using a PerkinElmer model 241 polarimeter. The
IR spectrum was measured on a Bruker ALPHA Platinum ATR FT-IR
spectrometer. NMR spectra were recorded in CD3OD (99.96 atom %,
Sigma-Aldrich). All data were acquired on a Bruker Avance II 800
MHz spectrometer equipped with a TCI Z-gradient CryoProbe and an
18.7 T magnet (Oxford Magnet Technology). Standard 1D, 2D
NOESY, 2D COSY, and 2D TOCSY spectra were recorded on the
nonenriched sample, whereas heteronuclear 2D and 3D experiments
were recorded on the 13C-enriched version at 313 K. These
experiments encompass 1H−13C CT-HSQC, 1H−13C HMBC,
LR-1H−13C-CT-HSQC, and HCCH-TOCSY. Deuterium exchange
was carried out in CD3OH (99.8 atom %, Sigma-Aldrich) at 293 K as
compared to a sample in CD3OD (99.96 atom %, Sigma-Aldrich) at
293 K. Further details on NMR experiments are provided in the
Supporting Information. High-resolution mass spectra were obtained
on a MaXis HD QTOF-MS (Bruker Daltronics). The mass
spectrometer was optimized to accommodate the larger ions by
setting the collision cell parameters: transfer time to 100 μs together
with collision RF to 1500 Vpp and a prepulse storage of 10 μs. MS/

MS was carried out by operating the qTOFMS in targeted MS/MS
mode (using 10 and 20 eV); the [M + 2H]2+ ions were selected for
fragmentation, as the single charged ions of prymnesin did not
generate any fragments. Analytical UHPLC was performed on an
Ultima 3000 UHPLC (Dionex) using a 100 × 2 mm, 2.6 μm Kinetex
C18 column (Phenomenex). The column was eluted by a linear
MeCN−H2O gradient, containing 20 mM formic acid, from 10% to
100% MeCN in 10 min, held at this composition for 2 min before
returning to starting conditions at a flow rate of 0.4 mL/min. All
solvents were purchased from Sigma-Aldrich and were HPLC grade
for extraction and isolation work. For LC-HRMS, all solvents and
additives were LC-MS grade.

Algal Cultivation and Harvesting. Nonaxenic algal cultures were
obtained from the Scandinavian Culture Collection for Algae and
Protozoa, the Marine Biological Section of the University of
Copenhagen, the University of Texas Culture Collection of Algae,
and Kalmar Algae Collection. Cultures were maintained in autoclaved
seawater with f/2 nutrition kept at 15 °C and an irradiance of 250
μmol photons m−2 s−1. All cultures were harvested in late exponential
phase, 20 L at a time. Artificial seawater was prepared as described by
Kester et al.27 All cultures were assessed by cell numbers, and the pH
was measured. Large volumes for the isolation of toxins were
centrifuged by means of continuous centrifugation using an Avanti
Series equipped with a JCF-Z rotor (3500 G, 40 mL/min, Beckman
Coulter). The P. parvum strain K-0081 was used for cultivation of the
novel B-type prymnesin-B1.

Isolation of Prymnesin-B1. The cell pellet (3.0 × 1010 cells) was
extracted with cold acetone followed by MeOH. The methanolic
extract was then separated on amino-propyl-derivatized silica (10 g,
Biotage) using a stepwise elution with CH2Cl2 and EtOAc followed by
MeOH. Final isolation of prymnesin-B1 was achieved on a 250 × 10
mm, 5 μm Gemini Phenyl column (Phenomenex) using a gradient of
(A) H2O and (B) MeCN−iPrOH (1:1) both containing 10 mM
formic acid at a flow rate of 4 mL/min from 37% B in 30 min.

Prymnesin-B1: pale yellow powder; [α]25D +7.5 (c 0.08, MeOH);
UV λmax 280, 268; IR νmax 3400, 1680, 1440, 1200, 1136 cm

−1; 1H and
13C NMR data Table 1; HREIMS m/z 1818.8390 (calcd for
C91H132ClNO34, 1818.8392).

Isolation of Prymnesin-2. Prymnesin-2 was isolated from the
biomass (1.0 × 1010 cells) of a 100 L culture of P. parvum UTEX-2797
similar to that of prymnesin-B1, but the final isolation was achieved on
the Gemini Phenyl column using a gradient of (B) MeCN−iPrOH
(1:1) and (A) H2O (45−55% B in 30 min) both containing 5 ppm
TFA at a flow rate of 4 mL/min.

Sugar Analysis. Saturated prymnesins in MeOH (10 μL) were
hydrolyzed by 6 M TFA in LC-MS-grade DI H2O (Sigma-Aldrich) at
70 °C for 1 h and then evaporated to dryness under a stream of N2.
The hydrolyzed sample was reacted with 10 μL of O-methylhydroxyl-
amine hydrochloride in pyridine (40 mg/mL) for 90 min at 40 °C,
followed by 90 μL of N-methyl-N-trimethylsilyltrifluoroacetamide
(MSTFA) with 1% trimethylchlorosilane (TMCS) (1 mL ampules,
Thermo-Scientific, Waltham MA) and heated to 40 °C for 30 min for
trimethylsilylation. The product was then analyzed on a 30 m × 0.25
mm × 0.25 μm DB5 capillary column (Agilent Technologies, Santa
Clara, CA, USA) programmed to 60−325 °C at 10 °C/min. For chiral-
phase analysis, the sample was reacted with 10 μL of N-methyl-bis-
trifluoroacetamide (MBTFA) (GC-grade, 99%, Sigma-Aldrich) and 40
μL of dry pyridine and then heated to 65 °C for 40 min. The sample
was cooled to room temperature and subsequently analyzed on a CP-
ChiraSil-L-Val GC column (25 m × 0.25 mm × 0.12 μm, Agilent
Technologies) programmed to 70−150 °C at 4°/min using an HP
6890 series GC system and Agilent 5973 mass selective detector. The
sample was compared to the standards, D-arabinose, D-xylose, L-
galactose, (>99%, Sigma-Aldrich), D-ribose (>99%, Merck), L-
arabinose, D-galactose (>97%, Sigma-Aldrich), L-lyxose, L-ribose, and
L-xylose (>99%, CarboSynth Ltd.).

Prymnesin Calibration. Prymnesin was dissolved in MeOH. A 10
μL amount was added to 60 μL of pyridine, the mixture was vortexed,
and 20 μL of AccQ tag reagent (Waters) was added. This reaction
mixture was immediately vortexed and left for 1 min at room

Figure 2. Dose−response curves for prymnesin-2 and prymnesin-B1
using an RTgill-W1 cell assay on the externally calibrated prymnesin
standards. The reported EC50 values (n = 9 replicates per
concentration, symbols represent mean values ± SE) are after 3 h of
exposure.
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temperature followed by 10 min at 55 °C. Excess reagent was
quenched by addition of 10 μL of Milli-Q H2O (resulting in a final
dilution factor of 1/10). A fumonisin-B1 (Romer Labs) calibration
curve was prepared by serial dilution, each dilution, 10 μL, by its
individual reaction with 20 μL of AccQ tag and 70 μL of borate buffer.
Analysis was performed on an Ultima 3000 UHPLC (Dionex)
equipped with a 1200 series fluorescence detector (Agilent), with λex =
250 and λem = 395 nm. Separation was achieved on a 100 × 2 mm, 1.7
μm Kinetex C18 column (Phenomenex) using a MeCN−H2O gradient
containing 50 ppm TFA at a flow rate of 0.4 mL/min.
RTgill-W1 Cell Assay. Purified and calibrated toxins in MeOH

(highest MeOH concentration in assay was 1%) were added in 10
concentrations in a serial dilution manner (7 replicates) to a 96-well
plate (TPP) containing 20 000 RTgill-W1 cells per well. The cells had
been plated 48 h prior to the experiment in 200 μL well−1

BioWhittaker Leibovitz’s L-15 media (Lonza). The gill cells were
incubated in the dark at 19 °C for 3 h, and subsequently 100 μL of L-
15 media with 5% Presto Blue cell viability reagent (Invitrogen) was
added to each well and left for incubation for 30 min under identical
conditions.28 The plates were read on a FLUOstar OPTIMA plate
reader (BMG LABTECH) with λex = 540 nm and λem = 590 nm. The
viability of the gill cells was calculated as percentage of an L-15 media
control. A control plate with MeOH starting at 5% in L-15 media did
not show any cell viability at the highest tested MeOH concentration.
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