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Abstract

A good User Experience is not about just “getting the job done” in the most efficient

way. It is also about the subjective elements, providing a positive experience to the

user while doing so; emotionally and affectively, having the user engage with the

service or product.

Knowing when this takes place means we need ways of measuring concepts like

attention. The basis for this should preferably be rooted in our understanding of the

anatomically based attention networks of the brain.

This thesis looks at biometric markers of cognitive and affective processes; at

the overview level Electroencephalography (EEG), Galvanic Skin Conductance (GSR),

Heart Rate and Heart Rate Variability as well as Face Expression Detection – and in

much more detail Eye Tracking.

A simple framework for relating eye movements and pupil dilations to the visual

processing system and to the attentional networks is suggested. It is demonstrated

that it is possible to identify components of attention and cognitive load using low

cost eye tracking in conventional office settings. It is also shown that aspects of

surprise, similar to negativity feedback error coding, is measurable. Behavioural

patterns possibly related to time on target, cognitive load, performance or stimuli

are inferred. The existence of possibly unique individual gaze patterns related to

visual stimuli or to the brain’s Default Mode Network are shown.

A way of synchronizing EEG and Eye Tracking is also suggested, and in addi-

tion, a few software assets (a Python interface to The Eye Tribe tracker and an

implementation of the Attention Network Test (ANT)) have been created.





Resumé (Dansk)

AT FORBEDRE BRUGEROPLEVELSEN I NÆSTE GENERATION AF MOBILE ENHEDER VED

HJÆLP AF ØJENSPORING SOM EN BIOMETRISK SENSOR

En god brugeroplevelse handler ikke bare om at få ting gjort på den mest effektive

måde. Det drejer sig også om de subjektive elementer; at give brugeren en positiv

oplevelse undervejs: De følelsesmæssige og affektive aspekter, som får brugeren til

at være engageret i et produkt eller i en service.

For at vide hvornår det sker er det nødvendigt at kunne måle begreber som

opmærksomhed. Basis for sådanne målinger bør tage udgangspunkt i vores forståelse

af det, som anatomisk udgør hjernens opmærksomheds-netværk.

Denne afhandling kikker på biometriske markører for kognitive og affektive

processer. Den giver en overfladisk indføring i Electroencephalography (EEG), hudens
galvaniske ledningsevne (Galvanic Skin Conductance) (GSR), hjerterytme og variation
af hjerterytmen og detektion af ansigstudtryk – og på et noget mere detaljeret niveau

sporing af øjenbevægelser, Eye Tracking.

Der fremlægges en enkel model, der kan bruges til at relatere øjenbevægelser

og pupil-udvidelser til det visuelle system og til opmærksomheds-netværk. Det

demonstreres at det er muligt at identificere komponenter af opmærksomhed og

kognitiv belastning under anvendelse af billigt udstyr til øjensporing. Det vises også

at elementer af overraskelse, modsvarende kodning af fejl i negativity feedback, kan

måles. Adfærdsmønstre, som muligvis kan være relateret til opgavetiden, kognitiv

belasning, hvor godt man udfører opgaven eller til de anvendte stimuli, bliver udledt.

Eksistensen af potentielt unikke individuelle øjenbevægelser, som kan være relateret

til visuelle stimuli eller til hjernenes default mode netværk, bliver påvist.

En måde at synkronisere optagelser af EEG og øjensporing bliver foreslået. Deru-

dover er der fremstillet nogle forskellige programbiblioteker (en Python grænseflade

til The Eye Tribes øjensporingsenhed og en implementation af opmærksomheds-

netværks-testen (Attention Network Test, ANT)).
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Chapter 1

Introduction

1.1 Towards a Better User Experience

The quest to put the user at the center of the experience has been ongoing long

before the term User Experience (UX) in the 1990s became a buzzword. Keith [12]

put it like this back in 1960:

The consumer, not the company, is in the middle. In today’s economy the
consumer, the man or woman who buys the product, is at the absolute dead
center of the business universe. Companies revolve around the customer,
not the other way around.

To some, this may still be wishful thinking!

While traditional Western manufacturing was centered around materials resource

planning, the Japanese concept of lean, which originated as early as 1940 with

Toyota [13], focused on what adds value to the end customer and ultimately aimed

for perfection. Lean has since spread to other parts of the world and to many other

domains; we now even have Lean UX, which focuses on creating products in lean

startups (and maybe also elsewhere) while having the creation of value for the user

at the center.

Indeed, to the author of this thesis, UX is about putting the experience of the

users at the center of thinking, in planning, execution, delivery and maintenance.

But not only that! It is also about moving beyond the instrumental; away from

naïvely thinking about how to most efficiently allow the user to solve a set of tasks

and towards providing a more holistic experience to the users engaged with a product

or service!

In an influential paper, Hassenzahl and Tractinsky [14] looks at UX from three

different perspectives of:
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• Beyond the instrumental: Holistic, Aesthetic and Hedonic

• Emotion and affect: Subjective, Positive, Antecedents & Consequences

• The experiential: Dynamic, Complex, Unique, Situated, Temporally-Bounded

This type of thinking has profound impacts on the way we design our products and

services. Forlizzi [15] even puts it like this: “Emotion is at the heart of any human
experience”.

The author of this thesis can share a personal experience of living through

a business transformation with the decline and fall of a company that failed to

understand (or at least to execute) in a global market where delivering the “best”

performing technical solution was not enough, and where at least one competitor

much better understood the dynamics of these elusive, intangible and emotional

drivers [16, 17]! If nothing else, this now provides ample motivation for doing

better.

Hassenzahl and Tractinsky [14] conclude as follows:

UX is about technology that fulfils more than just instrumental needs [...]
UX is a consequence of a user’s internal state (predispositions, expectations,
needs, motivation, mood, etc.), the characteristics of the designed system
[...] and the context [...] within which the interaction occurs [...].

This thesis will take an extremely narrow focus on improving UX in mobile

systems; we will single in on the aspect of the user’s internal state, and look at ways

through which systems can get additional insights into the cognitive and/or affective

processes that take place internal to (and sometimes unconsciously to) the user. And

we will exclude technologies that are not (becoming) mobile and have a fair chance

of becoming ubiquitous.

It is not a thesis that digs up completely new findings in neuroscience; we aim

to build on foundations that others have prepared. Rather, we will in try to utilize

findings “from the lab” in-the-wild, with all the complexities and challenges that may

bring.

1.2 Biometric Markers of Cognitive Processes

In looking for insights into cognitive processes, we have seen remarkable steps

forward in the last decades due to advancement of technologies such as Electroen-

cephalography (EEG) and Functional Magnetic Resonance Imaging (fMRI)1, which

1...even though we may also have suffered from a few potential setbacks too [18]!
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have brought us a much better and anatomically grounded understanding of many

cognitive and affective processes. Some of these technologies are becoming portable,

in part helped by the Quantified Self (QS) movement [19]: ([20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31, 32] and many others). One review that sums up several of

the advantages and challenges of the different modalities, although with a primary

focus on psychophysiological methods in games development, is done by Kivikangas

et al. [33]. We will have a very brief look at some of these before looking further at

the technology of choice in this thesis: eye tracking.

Not all of them are, however, equally practical from a mobile or a QS perspective,

even though they are known to have strong cognitive neural correlates; as we shall

see, EEG Event Related Potential (ERP) components are relatively well described, but

currently not so practical from a mobile or QS perspective. Hence, our interest is also

as to whether some of the same underlying signals can be detected in contact-less

and non-invasive eye tracking measures.

The value of some of these technologies may, incidentally, not just lie in what

they can do alone, but even more in what can be done when combining several

modalities.

Other technologies which are not going to be portable in a foreseeable future

will only be referred to briefly as/if needed.

1.2.1 EEG

EEG has long been a “tool of the trade” in neuroscience and elsewhere, and has

been around for a long time. It has almost the opposite characteristics of fMRI; it is

characterized by high temporal resolution, but a relatively low spatial resolution [34].

In its most basic form, an EEG is simply a recording in multiple channels of the

electrical potential with respect to some selected point of reference on the outer

surface of the scalp. It originates from the firing pattern of (groups of) neurons

inside the brain, but is also heavily influenced by powerful artifacts, such as muscle

activity and eye movements. Fig. 2.5 (chapter 2) illustrates this well: The large peak

is an artifact related to a blink, whereas the hardly visible activity is the desired

signal from the brain. Additional processing is thus required to remove the unwanted

parts of the signal in order to estimate the original source(s), such as Independent

Component Analysis [35] or other techniques needed to solve the so-called “Inverse

Problem” of Source Localization [36, 37].

Modern EEG studies are typically based on either ERP paradigms or are done in

continuous mode, where focus is on fluctuations in frequency bands over time (e.g.

by looking at the power spectrum).
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Just to give a few examples; Coull [38] lists a number of attentional neural

correlates that are visible in the EEG: In the ERP paradigms, some of the more well-

known may be 1) the N100/P100 modulation by attention/early selection processes

in the early visual or auditive stages [39], 2) the P300, positive deflections elicited

around 300 ms, seen when attending to task stimuli and modulated in magnitude

and latency (P3a and P3b components) by the degree of the unexpectedness of the

event and by how difficult discrimination is against the expected target [40, 41, 42]

(this includes the so-called “oddball” paradigm), or 3) the N400, which is a negative

waveform around 400ms, indicating continued allocation of resources to semantic

processing [43]. Arousal is visible in the High Frequency (HF)/Low Frequency

(LF) ratio; activity in the HF bands (α and β) declines with decreasing vigilance or

gradual sleep onset and LF activity increases in the (δ and θ bands) [38].

EEG has the disadvantage that it requires direct skin contact and unless special

measures are taken, for instance as proposed by Debener et al. [44], it is somewhat

unpleasant to wear for extended periods. To the authors knowledge, very few

continuous EEG recordings are done in the QS domain, and probably for a good

reason.

1.2.2 Galvanic Skin Response (GSR)

The idea of looking at electrical signals through the skin dates back to 19th cen-

tury [45], (originally involving zinc sulfate solution), but the more modern concepts

probably were introduced by Johnson and Lubin [46], and soon after (1971) efforts

to standardize measurements were brought in place [47]. In its modern form, it

typically uses two electrodes to measure a signal (part of what is also called the

Electrodermal Activity (EDA)), which essentially is the electrical conductivity (or

resistance) of the skin, which in turn is strongly impacted by the activity of the

approximately 3 million sweat glands.

Fundamentally, according to Critchley et al. [48] and Boucsein [45], skin con-

ductance corresponds to the level of sympathetic activation, and thus can, in our

context, be used as an (indirect) measure of attention, effort or arousal2. Critchley

et al. also demonstrate how changes in the GSR signal is related to activity in specific

parts of the brain, as seen via fMRI Blod-Oxygen Level Dependent (BOLD) activity.

A more detailed summary is found in [45].

One of the reasons GSR is of interest outside lab settings is that GSR sensors can

be worn unobtrusively. Dr. Rosalind Picard of MIT is, at least in some circles, known

for pitching the idea of constantly monitoring this signal3 in order to find deviations

2As everyone knows, it is of course also an important part of the body’s thermal regulation system.
3https://nihrecord.nih.gov/newsletters/2016/04_22_2016/story2.htm
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from a “normal” baseline. Healey and Picard [49] henceforth tested out GSR in a

real-world setting and reported strong correlates between skin conductance and

perceived “stress” when driving a car. In a later work, Sano and Picard [50] used

daily monitoring of GSR to detect stress, and used this in a study with other stress

markers (some collected by a mobile phone) to check accuracy of the markers.

It is one of the more established markers of emotional variance and cognitive

load, and Holmqvist [51] suggests it to be used in connection with some of the eye

tracking parameters like pupil dilation and saccadic amplitude, as a multimodal

signal can help to deduce the underlying causality. However, in a more recent

work by Picard et al. [52], differences between left and right side upper body

measurements are seen, and should lead to some caution when trying to interpret

data and infer a traditional emotional arousal index. The paper suggests extensions

of previous theories and has lead to additional commentaries and discussions, also

addressed by Picard et al. [53]. So even if the situation may at present be somewhat

inconclusive, it may be wise to be careful with emotional interpretations of GSR.

1.2.3 Heart Rate (HR) and Heart Rate Variability (HRV)

Another technology that has seen some diffusion into the general society is measuring

HR and HRV data. Portable trackers used for fitness and smart-watches can often

collect heart related data; originally maybe with the intent of tracking how much

people exercised, but there are many other uses too.

The HR, which can be measured in several ways, is essentially the number of

heartbeats pr. minute. Originally this was referenced with respect to the distance

between the two strongest peaks of neighbouring heartbeats in an Electrocardiogram

(ECG), the R-R4 distance. An alternative to a direct electrical measurement (as

used in some portable chest-strap monitors like the Polar H75 chest band), is using

some variation of a Photoplethysmograph (PPG), possibly built into a watch or a

fitness tracker or a similar wearable device6. A PPG typically uses one or more LEDs

and photo sensors to measure variations in light absorption in the skin, and it can

estimate the heart rate based on fluctuations caused by the pressure pulse sending

blood through the tissue of the body.

4A normal ECG has three noticeable peaks in the central and most prominent wave, called Q (-), R
(+) and S (-), with the polarity indicated. The R-R distance is normally easy to identify and therefore
probably the best candidate for a standardized measure.

5http://support.polar.com/en/support/H7_heart_rate_sensor
6As an example, the Apple watch, according to an iFixit tear down/review, reportedly uses a PPG;

see http://www.cultofmac.com/320322/apple-watch-sensors-are-capable-of-measuring-blood-oxygen/
which summarize the iFixit review.
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HRV is a measure of the variability of the R-R intervals. A signal can be formed

from the R-R distances, and the power spectrum of this signal is what is used to

estimate HRV. The HRV is often divided into it’s LF and HF content; The Task Force

of the European Society of Cardiology and the North American Society of Pacing

and Electrophysiology [54] recommends using power in the range of 0.04–0.15Hz

(LF) and 0.15–0.4Hz (HF) to characterize the HRV in a comparable way. Variations

in HR have (at least) two sources, that both stem from the autonomous nervous

system: Both the sympathetic7 and the parasympathetic8 nervous system influence

the HR. There is not complete agreement on the content of the LF component, but it

is thought to reflect either both the sympathetic and the parasympathetic systems or

predominantly the sympathetic system. However, the HF power is mainly thought to

reflect the parasympathetic system. Thus, the ratio of the power ratio LF/HF is an

indicator of the balance in activity between the sympathetic and the parasympathetic

nervous systems [54]. It may also be worth mentioning that there is a relation

between HR and respiration.

As examples of studies: Wallentin et al. [55] reported that the LF/HF ratio

correlated with the perceived intensity of a narrative (“The Ugly Duckling”) being

read out loud; hence an increased arousal with increased sympathetic activations

leads to an increased LF/HF ratio. Another example is Taelman et al. [56], that

intends to use HRV to assess “stress” by demonstrating increased LF/HF caused by

mental tasks. Löw et al. [57] used a prey-predator scheme to demonstrate several

body reactions, explaining that the underlying hypothesis is that motivationally

relevant stimuli leads to a heart rate acceleration, and tasks demanding vigilance

for response cues result in a heart rate decrease (not completely unlike orienting

bradycardia or fear bradycardia in animals). Lane et al. [58] looked at correlation

between specific brain regions thought to be involved in emotional processing, and

especially the HF components, and found that increased activity in certain regions

leads to a decrease in HR (which may sound counter-intuitive, but consistent with

theories proposed by the authors). A later study by some of the same group, Thayer

et al. [59] has a comprehensive meta-analysis, and amongst other things suggest

that HRV might serve as an index of how strongly autonomic activities are shaped

by top-down processes.

Kemper et al. [60], while looking at how to deal with outliers, also notes that

an increase in HRV (up to a point) reflects adaptability and resilience or can be the

result of therapeutic interventions, while decreases reflect rigidity and poor health

status and poor prognosis with a wide range of clinical conditions – so many factors

7Sympathetic: the “fight-or-flight” system; the excitatory system or the “gas pedal”.
8Parasympathetic: “rest and digest” system; the inhibitory system or the “brake”.



1.2. Biometric Markers of Cognitive Processes 7

Figure 1.1: HEART RATE AND VARIABILITY from three trials showing pleasant, neutral and

unpleasant images in different permutations to the subject. Variations in the Mean HR and

the ratio of LF to HF content in the HR may provide clues to the emotional and cognitive state

of the subject – although in this case, even though there may be a pattern in the Mean HR,

it turned out to be difficult to relate the LF/HF ratio to the presented stimuli... Illustration

from [8].

can impact the measurements! Other studies that look at more practical issues and

tools are Vila et al. [61], Rodríguez-Liñares et al. [62], and Pradhan and Islam [63]

Finally, Porges [64] has a very good overview of the history of HRV and presents

a comprehensive framework (“the polyvagal perspective”) that links neurophysiolog-

ical activity seen in the autonomous nervous system (and reflected in the HRV) to

behavioural patterns, and discusses the aspect of respiratory modulations of the HR

(Respiratory Sinus Arrhythmia, RSA) in more detail.

Using a PPG instead of performing electrical EEG recordings to derive HRV is

possible in some situations when subjects are at rest, as demonstrated by Giardino

et al. [65], but results do not translate directly between PPG and more conventional

EEG recordings.

One interesting and final twist on HR, although it may not fully be in our present

scope here – despite using mobile tools for recording HR and involving LEGO®

construction kits so we’ll mention it anyway – Social interaction impacts the heart

rate; Mitkidis et al. [66] found signs that heart rate synchrony was associated with

higher trust in social teams.

An example of HR and HRV recordings using a finger-PPG can be seen in Fig. 1.1.

Judging from the authors experiences, it is not always easy to reproduce larger

studies in smaller settings, and especially if dialing in on single-subject performance.
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Figure 1.2: AVERAGE SMILE SCORE of people watching a commercial, compared to an

average value published by Affectiva. Illustration from a M.Sc. thesis done by Bunk [69].

1.2.4 Face Expression Detection

Dr. Rosalind Picard, mentioned earlier in the context of wearable devices, also

co-founded Affectiva, which – on the basis of applying machine learning on a large

body of images (described by McDuff et al. [67]) – has created a service to interpret

facial expressions [28].

The basis for this is the works of Ekman and Friesen [68], who created the Facial

Action Coding System; an objective set of metrics that characterize facial expressions

in terms of individual components, decoupled from any emotional meaning. Some

simultaneously occurring components are known to correlate with specific emotions,

like disgust, anger or surprise. This can be used to give a semantic interpretation to

registered expressions, although it may be dependent on specifics of the person or

the context9.

Face expression detection is a new modality that could also serve as relevant

input, possibly in connection with other modalities. In some preliminary work done

by students working with the author, like Bunk [69] and others, it was possible

to reproduce some of the findings reported by Affective using their services on

data recorded in our settings (see Fig 1.2). It was also found, however, that social

interaction can have a strong impact on facial expressions, so it may not be as

straightforward as it could otherwise sound to bring this technology into practical

use.

9As anecdotal evidence: In some student work performed in our lab, it was for instance noted that
some people appeared – at least to the Affective system – to maintain a constant smile where a human
observer familiar with the subject interpreted it more like focused concentration or some other expression
not identified as a smile signalling joy.
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1.2.5 Eye Tracking

We will end our short summary with a couple of considerations on Eye Tracking

before we dig deeper into the details.

Eye Tracking has the advantage of being contact-less and non-intrusive in most

settings. It is also becoming mobile; the latest Samsung Note 7 phone reportedly has

a built-in Iris scanner10, which means it in theory might be capable of estimating

pupil size; a metric that is of particular interest.

There are many correlates between eye tracking metrics and cognitive and

affective processes – but it would be fair to mention also that there may not be

unanimous agreement on the applicability of all of the technologies, and in particular

of using pupillometry.

Based on the author’s own experiences, and further anecdotal evidence, there

can be at least four different approaches to eye tracking:

• Eye tracking in controlled, clinical conditions, is a useful tool (most would

probably agree to this view).

• Some see a big potential in eye tracking (or even a possible business case) and

may jump too quickly to unfounded conclusions, possibly extending the eye-

mind hypothesis and thus over-interpreting gaze patterns to equate interest

(i.e. “you looked at it” may become “you have an interest in it” or even “you

will buy it”).

• Others, maybe having seen the previous group or maybe themselves having dif-

ficulties reproducing previous studies in less controlled circumstances, declare

it a failure and run away, sometimes warning others not to go in the direction

they gave up on (as may be the case regarding pupillometry).

• Finally, there is a group that humbly believes there is a lot of hard work to be

done, aiming to understand the scientific basis, building on previous studies

and daring to test out “wild ideas in-the-wild” to check the robustness, with

the risk of failing and openly admitting so.

The author has met people of all 4 opinions, but would like himself to be counted as

part of the last group. We may certainly not have done everything “by the book”,

and many things should have been done differently had we been wiser. But we hope

we’re now a bit wiser due to all the things we didn’t get right the first time! And in

the process, we believe we have found bits and pieces of technologies that may be

robust enough to also have a practical use outside controlled settings.

10http://www.samsung.com/global/galaxy/galaxy-note7/security/
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Figure 1.3: THE EYE–MIND FRAMEWORK: The eye (figuratively illustrated at the CENTER),

can be directly observed by means of eye tracking technology, that can measure the current

gaze point and pupil size and detect blinks. The underlying saccades and fixations, which are

driven by muscles controlled by neuronal activity (BOX LEFT OF THE EYE), can be determined

based on analysing the observed gaze points. The brain (TOP LEFT), with its cognitive and

psychological processes, modulate and control this system. Where the eye itself and the

motor control to a large degree is part of the OPM, the focus of this thesis is more on gaining

information about the cognitive processes in the brain that control and modulate these aspects.

It’s also not all theories that we have met that are easy to reconcile. In fact, some

of them may be inconsistent or mutually exclusive with others. It may even not only

be the author that struggle to understand them. Some of what is presented here

may fall in any of these categories too, but hopefully it can serve as a bank of ideas

to pursue or at least as questions to clarify. Certainly the author have some of those!
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1.3 The Eye–Mind Framework

The drawing on Fig. 1.3, being a verbatim copy (i.e. a photo) of an original

whiteboard drawing11, has been guiding this work for a long time. It may be helpful

to view the eye–mind as a three layer model, with attributes on each layer:

• At the lowest level, we consider the eye having a gaze point (the foveal center

of the eye) that can be directly measured at a given time, as can the size of the

pupil (chapter 2).

• At the next level is the circuitry that moves, and controls the movements of, the

eye. This is partly described by the Oculomotor Plant Model (OPM) proposed

by Komogortsev and Khan [70], building on earlier works by Robinson [71],

[72], [73], [74], [75], Young and Stark [76], Sparks [77], Leigh and Zee [78]

as well as probably also others. Together with the lower levels of the neuronal

systems inside the brain, this system takes care of handling the next level of

eye activity: keeping the eye still for long enough to take in data (fixations),

moving it to the next position (saccades), closing it when needed (blink),

regulating the amount of light that hits the retina (pupil constrictions), etc.

These are usually not conscious processes. (Chapters 4 and 2).

• At the highest level we find cognitive and affective processes that modulate

the lower levels12. These are the systems that e.g. regulate attention, choose

an appropriate top-down search strategy and interrupts it when salient enough

stimuli appear (chapter 3).

It is our hope that we, by observing the lowest levels and deriving the “easy” next

level parameters eventually will be able to infer not only the presence of individual

finger-print like signatures on the second level, but also infer and understand some

of the variations at the cognitive and affective levels and thereby learn something

about the users experience in the present context.

1.4 An Overview of This Thesis

From this brief introduction to UX and to a few important biometric signals, we will

continue looking at, first the mechanics and methods of Eye Tracking, in order to

11Internally in the research group it was quickly coined “strudsen” (the ostrich) due to the similarity
between what the author intended to be an eye and an ostrich.

12Our main focus here is on the attentional systems rather than the visual processing systems, and we
will to some extent conveniently leave out discussions of the latter systems.
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build an understanding of not only the current state and the technological basis but

also of how cognitive processes can influence some the specifics (Chapter 2).

Next, we will look at attention and arousal; not primarily as psychological

constructs but more as concepts rooted in an anatomical understanding of the

brain’s networks, and we will investigate how it modulates the diameter of the pupil.

This further leads to an introduction to phasic and tonic activations related to the

sympathetic division of the autonomous nervous system, and how the pupil can be

used as a proxy for assessing such activations (Chapter 3).

Before looking at the details of these activations, we will make a short de-tour

into the land of individual differences, acknowledging that we’re all different and

that measurements need to allow for such differences before we can say anything

sensible with respect to the underlying causes of signals we see (Chapter 4).

Then we’re ready to look at application of measuring phasic activations (Chap-

ter 5), in particular in the context of paradigms where stimuli timing is known,

trying to infer elements of the cognitive impact we may temporally induce. From

there, we are ready to look at applications of measuring the tonic level (Chapter 6),

which can give us a further insight into arousal and maybe into levels of a subjects’

“engagement” or experienced “cognitive load”.

Before concluding, we will look at other ways “weak signals” can be used: what

can be learned from just knowing if a subject is looking at the screen or not, what

can we learn about a subjects’ sleeping patterns just by looking at whether the screen

on his/her smartphone is on, and how can we use (normally discarded) blinks to

synchronize between the modalities of EEG and Eye Tracking (Chapter 7).

1.5 Contributions in This Thesis

This thesis brings contributions in the following areas (primarily based on low cost

eye tracking):

• It demonstrates that it is possibly to identify components of attention and

cognitive load in decision tasks based on pupil dilations (chapter 5, Sections 5.1,

5.2 and related to Chapter 6).

• It additionally demonstrates that aspects of surprise in decision tasks, similar to

negativity feedback error coding, can be detected in pupil dilations (chapter 5,

Section 5.2).

• It identifies the existence of possibly unique individual gaze density patterns

related to both visual stimuli and to the brain’s default state mode, based on
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DBSCAN clustering, further proposing spatial Fourier filtering to extract these

(chapter 4).

• It shows that blink detection for synchronization of eye tracking and EEG may

be a feasible option (chapter 7, Section 7.3).

• It infers behavioral patterns from time on target, further attempting to relate

these to differences in induced cognitive load and own performance (chapter 7

Section 7.1 and Chapter 6).

While doing so, it proposes a framework, based on established theories, in which eye

movements including pupil dilations can be interpreted in terms of how they may

be affected by cognitive processes (Section 1.3 and Chapter 3). In addition, a few

software assets has been created that may be helpful to others: An interface [10]

to the low cost eye tracker from The Eye Tribe, a re-implementation [11] of the

Attention Network Test [79] in the PsychoPy [80] environment, as well as clustering

algorithms and tools for working with eye tracking data that have been used within

the project and in related student works.





Chapter 2

Eye Tracking Mechanics

The human eye is a remarkable and very complex instrument. Luckily, despite all of

it’s complexity, most of us don’t need to worry about how it works in order to use it

in our daily activities. In this chapter, however, we will nevertheless look at some of

the mechanics of the eye and of eye tracking.

2.1 Eye Tracking

Eye Tracking as a discipline dates back to the late 1800s [51], and the first solutions

were of limited practical use and very invasive, essentially gluing a ring1 to the eye

temporarily; one of the earliest pioneers Delabarre [82] sums up his experience as

follows:

As to whether there is any danger to the eye to be feared from using it in
this manner, I cannot say with assurance. I have myself always suffered
a little temporary inconvenience [...] I have also found it necessary to
allow a considerable interval to elapse between experiments [...] The
unpleasant effects have always soon passed, and now, a full year since my
last experiments, I can detect no ill effect. [82]

Obviously measuring this way impair the free movement of the eye significantly.

Dodge and Cline [81] were the first [73] to suggest a more practical way using

recordings on film instead, eventually paving the way for less invasive technologies.

Today there are even better, less cumbersome and time consuming and promising

solutions on the market, but we will refer to the excellent books of Duchowski [83]

and Holmqvist [51] for more thorough historical and technological reviews.

1This is what Dodge and Cline refer to as the “Delabarre eye cup” [81]
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Figure 2.1: THE HUMAN EYE. Light from the external scene passes through the lens, building

an image on the retina, from where it is encoded by light-receptive rods and cones, and passed

on to the brain for further processing. At the center of the retina is an area of densely packed

cones, fovea, providing high acuity. The point in the external scene that corresponds to the

central position of the fovea is often referred to as the gaze point or point of gaze. The pupil’s

main function is to regulate the amount of light that hits the retina; in high light scenarios the

normal pupil constricts whereas dim scenes causes the pupil to dilate. The front of the eye

is protected by the cornea. Illustration in the public domain, created by Rhcastilhos/From

Wikimedia Commons.

What has caused the recent increased interest in eye tracking is partly due to the

new data collection options that allow us to measure “how we view, see and experience
the world” [84, p. v], likely amplified by the availability of off-the-shelf solutions –

and now even at an entry price in the 100-200 USD range [26] for solutions that

can be used for research [85, 86].

Technology in the devices we have used is based on reflecting infrared light

off the pupil and cornea, determining the position of the pupil center relative to

(multiple) cornea reflections known as Purkinje reflections [87, 88, 89, 83, 90].

Multiple light sources reflecting off the cornea allow the tracker to distinguish eye

movements from head movements, giving the user some level of freedom to move

around, as in the “head-free” or remote The Eye Tribe system [26], where the tracker

is placed in a fixed position relative to a computer screen. Alternatively, it can be

built into a pair of glasses and thus mounted in a fixed position relative to the head,
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with a front-facing camera to determine the head pose, recording the scene in front

of the user, like the Tobii glasses [91] do.

Both technologies are mobile or could be used in mobile applications. Eye

trackers can also be built into Virtual Reality (VR) systems with the additional

purpose of enabling foveated rendering, like proposed by Guenter et al. [92] or

recently demonstrated by SMI [93, 94]. This, however, requires not only estimation

of the current gaze point, but also an effective eye movement prediction scheme [95],

which in turn needs eye tracking with high sampling rate and low jitter, and the use

of elaborate models like the OPM [70, 96, 97] or some other means at modelling the

trajectories [98]. Even though we suspect the use case of foveated rendering may

become the one that will drive a more widespread use of eye tracking, it’s details are

outside the scope of this thesis.

Duchowski [99] provides a hierarchical division of eye tracking applications

which at the top has interactive systems and diagnostic systems. At the next level,

interactive systems are divided into selective systems where the gaze point resembles

the use of e.g. a mouse, and gaze contingent2 systems where e.g. scene rendering is

contingent on the gaze point – like now seen in foveated rendering in VR glasses.

Examples of diagnostic systems outside of neuroscience and psychology are e.g.

found in human factor studies or within marketing and advertisings. Further, Karray

et al. [100], looking at aspects of Human Computer Interaction (HCI), describes

adaptive HCI designs which adapt to the “cognitive and affective levels of user activity”.

Hence, for our purposes, it may be helpful to consider applications of eye tracking

as broadly falling into one or more of three main categories (that are not mutually

exclusive):

• Active systems, where the main focus is on the user who interacts with the

system, giving commands or entering input.

• Passive systems, where data is collected for offline research and analysis, possi-

bly impacting later revisions of the system.

• Adaptive systems, where the system uses signals from the relevant modalities

to adapts its behaviour to e.g the cognitive and affective level of the user.

Naïve ideas of gaze control in active systems may have lead to naming the Midas
Touch problem in eye tracking, described by Jacob [101]: If gaze activates a com-

mand, then you cannot look anywhere without activating a command, which quickly

makes it very hard to navigate a user interface! Better solutions have been proposed,

2Duchowski further divides gaze contingent systems into screen based and model based systems.
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which can be divided into fixation, saccade or smooth pursuit based. Møllenbach

et al. [102] has a summary of the methods and suggests a unifying taxonomy.

Similarly, naïve ideas of using passive systems can also lead to incorrect con-

clusions. For instance, directly coupling the gaze point to attention is prone to

mistakes: As shown by Posner et al. [103] and Posner [104], the attentional focus3

is not directly coupled to the foveal focus (or gaze point in our terminology). And

even if it would have been, equating gaze points or foveal attention to interest in

that particular area cannot be done; as noted by Hyrskykari et al. [105], a long

gaze does not mean the subject has difficulties comprehending the meaning of, or

recognize and has an interest in, the area. It might as well indicate the subject is

considering other aspects of an ongoing task or finds some parts confusing. Bol

et al. [106] surveys how eye tracking is currently used in communication research,

and in particular in advertising, with often very large number of participants, and

politely points out that there is no commonality to how results are reported, making

them incomparable, and that there is a need for identifying other ways of using eye

tracking to maximize its benefits. Thus, taking a more rigorous approach, based on

established cognitive paradigms related to e.g. activation of attention– and default

mode networks in the brain, as well as improved methods of classifying gaze density

patterns and relating these to individual baselines, is called for.4

Taking heed in the warnings from these areas, we will nevertheless in the present

work focus on aspects of eye tracking that can lead to insights into the user’s level

of cognitive effort. As such we’re mainly driven by its potential use in adaptive

systems, although the same insights can also be of value when doing offline analysis

in passive systems.

One final comment is called for: Since we’re particularly concerned about mobile

applications, we’re looking for potentially robust signals that translate well between

different environments and thus can be used “in-the-wild”. It also often implies

a scarcity of computational resources and maybe lower resolution, precision and

accuracy. We may not be able to deliver on this promise just yet, but it is our hope

that building on existing and well understood paradigms, showing how they can

translate in-the-wild, is a valid scientific approach that can lead to new applications.

2.2 Classification of Eye Events and Key Metrics

Eye movements can conveniently be grouped into three main classes, as detailed

in textbooks like Holmqvist [51] and Duchowski [83], which this summary is

3Posner et al. calls this the “attentional spotlight”.
4From a computational perspective, a recent summary of visual attention modelling with a taxonomy

of nearly 65 previous models can be found in Borji and Itti [107].
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based upon and to which we will refer for additional details beyond what is briefly

mentioned here. We will include also blinks and pupil size metrics, and hence cover:

• Fixations: when looking at Area(s) of Interest (AOI)

• Saccades: when moving between fixations, and

• Smooth Pursuit: when following an object, as well as

• Blinks: when the eyelids cover the eyes.

• Pupil Size: Changes to the pupil size.

2.3 Fixations

Fixations are periods where the eye is (almost) at rest, and all gaze points are densely

grouped around an AOI, for at least some tens of milliseconds and up until several

seconds, but typically in the range of 0.2–0.3s5.

Microsaccades are small movements of the eye during fixations. These fixational
eye movements have been thought to be a “bug-fix”; a way of counteracting neuronal

adaptation in the spatial domain, as documented by Martinez-Conde et al. [109]

and Martinez-Conde and Macknik [110]. This has been somewhat disputed [111],

and in a recent work by Rucci and Victor [112] it is suggested that “the unsteady eye”

may be more of a “feature” than a “bug”, helping to encode spatial information in

the spatio-temporal domain, facilitating higher-level processing in a more complex

way rather than simply a means of encountering neuronal fading.

Fig. 2.2 visualizes a 10 second section of a high sample-rate eye tracking session.

The gaze point of each data frame from the eye tracker is marked with a dot; green

dots are part of saccades and pinkish dots are part of fixations. Microsaccades

are clearly visible, and here predominantly vertically oriented. There is anecdotal

evidence6 that eye tracking researchers can differentiate between a smaller group of

participants just by looking at their microsaccades, so possibly these are influenced

by the specific characteristics of the OPM. Methods exist or are being proposed that

can characterize sequences of fixations (section 2.3.2); we would suggest that some

of these could also be used to characterize a fixation as a sequence of individual

gaze points (or by some other means) in order to highlight the internal structural

5Velichkovsky et al. [108] reports that fixations can vary between 100ms and up to several seconds
in free viewing conditions (as seen in e.g. top-down visual processing). The fixation durations are
distributed with a positive skew; the modal value is often in the same range as the saccadic reaction times:
saccadic latencies (often seen in the context of salient stimuli) has a much narrower range, typically
between 150–250ms.

6Confirmed to the author in private discussions with some eye tracking experts.
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Figure 2.2: FIXATION CLUSTERS from a high-resolution, medium sampling-rate (250 Hz) eye

tracking capture, showing both captured gaze points and derived clusters for a 10 second

period, with the oldest parts fading away. The green dots are individual gaze points classified

as saccades, and the pinkish dots are fixations that belong to clusters, which themselves are

marked as shaded areas. The more dense a fixation is, the more coloured it also appear. The

illustration is a screen-capture from a web-based tool for visualizing gaze points, fixation

clusters and saccades, created by the author. The clustering used here is the DBSCAN-based

algorithm also implemented by the author (see Section 2.5.2).

elements and their relationship. A related attempt is found in Paper G; using a

similar Digital Fourier Transformation (DFT) may also be used to characterize the

gaze points within one fixation.

Individual fixations can be characterized in many ways; at the most basic level

they each have an average spatial position (x,y) and a temporal duration, t. Some-

times the dispersion is also reported in the form of an Root Mean Square (RMS),

Variance or Standard Deviation value. Additional moments can be included, as can

many other metrics. We again refer to [51] for an exhaustive list.

Fixations (or by extension AOI) can also be compared to others of the same kind

and reported with metrics like number of fixations, fixation rates or proportion of

fixations.

If a fixation is within an AOI, it is often counted as a dwell within that specific area,

and the duration of the fixation contributes to its weight compared to other AOIs
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Figure 2.3: TRADITIONAL HEATMAP (LEFT), as output from The Eye Tribe’s EyeProof system,

showing the density of fixations overlaid the stimuli for multiple users. Taken from the

experiment described in Section 6.4. FIXATION DENSITY MAPS (RIGHT) that similarly show

fixation densities for two different subjects, in two different situations. At the top, no specific

stimuli is presented, so eye movements may reflect activity in the brain’s Default Mode

Networks. At the bottom, the subjects tend to salient stimuli at the presented locations. Apart

from the apparent miscalibrations of the eye tracker, there are also significant differences

between the signatures of the two persons. Generated by the author as an illustration included

in [2].

as well as to the overall Fixation Density Map (FDM), which shows the aggregated

spatial distribution of fixations:

2.3.1 Fixation Density Maps

Even though there is not a direct coupling of fixations to attention, it is often

imagined that the sum of fixations somehow reflect areas we attend to: The central

foveal area has the highest resolution, and we tend to put things into this central

view when we want to study their details. As Duchowski [83] notes, “most often” we

also tend to put our cognitive attention to this area.

For this reason a Fixation Density Map (FDM) or a Heatmap can be used (Fig. 2.3).

It is also sometimes assumed in passive eye tracking studies, that even though there

can be large individual differences in fixation patterns, when many subjects’ data

are summed, the most important AOIs becomes visible. Fig. 2.3 shows such an

example (left), but adjacent to the data (right) are shown sample heatmaps from

two different individuals looking at the same stimuli, where the large individual

variation becomes very visible.

FDMs are also good for summarizing the results of many persons. Given the same

scene, multiple FDM can simply be averaged in order to create a between-subject
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aggregate. Differences between two different FDM – in their original form or after a

transformation – can also be calculated.

The Mannan similarity index [113, 114] was one of the first attempts at quan-

tifying similarity between two sets of positions, using a least-square measure of

similarity between two sets of fixations. It has a number of shortcomings, and other

ideas have since been added to the toolbox. We will show a practically use hereof in

Chapter 4, where 1-MIN, Mean Square Error (MSE), Kullback-Leibler Divergence

(KLD) and Euclidean based metrics are used.

2.3.2 Fixation Scanpaths

Even though the duration of a fixation impacts the FDM, the order of the individual

fixations disappear. A person looking first at object A and then at object B may

appear very similar to a person inspecting the objects in the reverse order, when

comparing their resulting FDM. In this case, a fixation scanpath can conveniently be

used. Fig 2.4 shows an example of the visits paid by a person counting the number

of screws needed to assemble an oven.

As an exploratory tool, scanpaths and similar visualizations can be helpful, but

they can be difficult to compare with other scanpaths. Comparing the order of visited

AOI or dividing the sequence into consecutive FDM that can then be compared has

been proposed [51], as has been counting the number of permutations to make one

sequence equal to another (the Levenshtein distance, [115]). Other ideas exist as

well, and one we suggest might be worth exploring is the HDBSCAN based clustering

algorithm proposed by Wilson et al. [116]. Although it originates in another context,

it looks to us as if it could be a promising idea for comparing the similarity of

two (sections of) scanpaths between visited AOI or a set of fixations – or even to

characterize the internal structure of one fixation, as previously suggested.

2.4 Saccades

Saccades are fast movements of the eye from one fixation to the following.

Holmqvist [51] considers saccades to be the fastest movement the body is capable

of producing, typically moving at angular velocities of 30–500°/s and lasting 30–

80ms. The eye seldom moves in a straight line, but can move at different latencies

and speeds in the horizontal and vertical dimensions, and may wobble a bit before

coming to rest (sometimes referred to as a glissade, which is a small adjustment to

the eye position, typically less than 1°).

If the initial target is somehow missed, e.g. due to an inaccurate long initial

saccade, one or more corrective saccades may follow.
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Figure 2.4: FIXATION SCANPATH: An adult subject trying to count the numbers of screws

needed to assemble an oven made 163 fixations in 65 seconds to do this. Each circle shows a

fixation of more than 125 ms, with the diameter proportional to the duration. Illustration

from [5].
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Visual processing of low spatial frequency content is suppressed during sac-

cades [117, 118]. Had it not been for saccadic suppression, the world might not

have remained as stable as we purport it to be!

Bahill and Troost [119] provide a taxonomy with a detailed hierarchical descrip-

tion of saccadic eye movements.

Individual saccades can be quantified in many different ways, such as by their

direction, duration, amplitude, velocity, acceleration, trajectory and latency/delay

from stimuli to onset or arrival time. They can also be quantified by their average

rate.

2.5 Classification of Gaze Points as Fixations or Saccades

Even though as a concept fixations are not difficult to understand, comparing

fixations from one experiment to another is not always easy. What should a minimum

fixation length be so that short stops between inaccurate and corrective saccades are

not counted as fixations? And if we insist on sticking to a minimum fixation length

as a key parameter, how long should it then be?

Different manufacturers provide algorithms that classify fixations, often based

on proprietary methods. Manufacturers may suggest different settings, sometimes

dependent on what kind of study is being performed. Holmqvist [51] has a detailed

discussion of these issues.

Further, all systems have different levels of noise and precision. Tole and Young

[120], Behrens et al. [121], and Nyström and Holmqvist [122] suggest using systems

that adapts to an estimated noise level. But this may again make comparison difficult

if events are not classified in similar ways between recordings.

To illustrate some of the practical issues: The Eye Tribe tracker has a flag that is

passed on to the application as part of each data frame, but given the constraints of

having to provide near real-time information from the relatively low sample rate, it

cannot flag the start of a fixation until it has seen some part of it. It therefore may

miss the first data frames of the fixation. The accompanying Eye Proof tool has a

better clustering (even though it is also not publicly documented how it works), but

it is meant to work only within its own environment.

For that reason, for many of the experiments described herein using The Eye

Tribe tracker, a modified DBSCAN [123] based algorithm has been deployed as a

workable solution for the lower sample rate data.

Two main classes of classification methods will briefly be mentioned below.

Salvucci and Goldberg [124] provides a taxonomy and an overview of representa-

tive methods, and Holmqvist [51] and Duchowski [83] also have good and more
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recent summaries of the field. Note that work very much seem to continue in this

field, and more recent proposals using probabilistic methods like a Bayesian Mix-

ture Model [125] may eventually prove to be more robust, requiring fewer prior

assumption (like setting parameter values).

2.5.1 Velocity Based Methods

The basis for classification are the gaze point estimates (xti ,yti) at the sampled

intervals [ti, ti+1, ...]. From this, the (angular) velocity (vx,ti ,vy,ti) (°/s) as well as

acceleration (ax,ti ,ay,ti) (°/s2) can be derived. Simply calculating the velocity by

subtracting gaze point estimates and dividing by the sample interval creates a very

noisy signal. Based on ideas originally proposed by Tole and Young [120] (in a hard

to come-by article), Duchowski [83] shows how using Finite Impulse Response (FIR)

filters matching idealized saccade profiles improves saccade detection. It is likely

that other (more advanced) models of the OPM system could also be used for this

purpose, further improving event detection.

As it is required to estimate high velocities, a sufficiently high sampling rate7 and

low jitter is needed for the velocity or velocity/acceleration based methods to be

effective in identifying saccades. For lower sampling rates, as seen in current mobile

applications, density based methods may be more feasible at present:

2.5.2 Density Based (Clustering) Methods

Density based methods, or dispersion and duration based methods, work by locating

fixations which are characterized by a high spatiotemporal density of gaze points.

A method often used is the I-DT method, which is outlined in e.g. [124, 126].

We have chosen, however, to use a modified version of DBSCAN [123], where

the temporal order is included as well so that the presence of more points than a

given specified noise parameter outside the current cluster will break it, and no

additional points can then be added to that cluster. Although it is a parametric

method (it needs a minimum density and a noise tolerance parameter), it has, for

our purposes, the advantage of being able to pick up smooth pursuit and larger-than-

normal microsaccades, as well as drift8 caused by head movement, inside one cluster.

This may make sense here, since visual processing continues in ways that may more

resemble fixations than during saccades. A very similar parametric algorithm, based

on the same idea, has recently been published by Li et al. [127].

7Holmqvist [51] set a lower limit for velocity and acceleration based methods around 200 Hz.
8The Eye Tribe tracker now has improved 3D tracking, but earlier versions benefited from the ability

to maintain a fixation even if the head position moved forward or backwards towards the screen.
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2.6 Smooth Pursuit

Smooth pursuit are slower movements of the eyes, typically 10–30°/s, in pursuit of

an AOI that moves relative to the head pose.

Visual processing continues during smooth pursuits, which can only take place

when there is an object to follow.

Smooth pursuit has been proposed in active gaze control systems by e.g. Lorenceau

[128], Møllenbach et al. [102], and Esteves et al. [129], and may help to solve

the Midas Touch problem in that it may be easier to avoid accidental activations

compared to more naïve fixation based schemes.

We will not here consider smooth pursuit any further, but from an attentional

point of view regard it in similar ways to normal fixations (and knowingly disregard

a lot of additional complexity).

2.7 Blinks

Blinks are short periods where the eyelid covers the eye. The endogenous eyeblink

is a cortically controlled event with very specific properties, and different from the

reflexive and the voluntary closure of the eyelid. It is well described by Stern et al.

[130].

Blinks are often seen as an nuisance in that it occludes the pupil and thus makes it

impossible to track eye gaze, pupil size and other measures. Blinks also tend to take

place shortly after a stimuli has been presented or reacted to, further confounding

recording of the “more interesting” metrics: Siegle et al. [131] reports that blinks are

more frequent after stimuli presentation or after an extended cognitive processing

period. In our results, we have also seen this, and although it is not reported as a

separate metric, Fig. 3.3 hints at blinks occurring after a response has been given:

As an example, looking at the left eye congruent data (green dashed line), the

SEM grows as a consequence of fewer data points representing the pupil size in the

period of 1.3–1.8s after the initial stimuli, which corresponds well with an increased

endogenous blink rate in this range.

Blinks may also carry meaning in themselves, and correlated with other factors,

such as e.g. time on task [132, 133, 134, 135] or fatigue – as everyone that has

tried a long night-drive or in heavy rain [136] may have encountered first-hand.

A phenomena opposite to the blink-after-stimuli-presentation also exists; it is not

uncommon to see periods of blink inhibition when subjects actively engage with a

scene, and Shultz et al. [137] shows that in natural viewing conditions inhibition

could be used as an index into how important a subject perceives a visual scene

to be. The blink signature itself is also modulated by fatigue; Caffier et al. [135]
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report an increase in blink duration from 202ms to 259ms comparing alert to drowsy

conditions, and especially the reopening time seems affected from 138ms to 187ms.

In addition, the rate of long-closure blinks increases significantly from 9% to 29%.

The most common aggregated measure is the blink rate, but blink velocity and

duration of eyelid closure and opening times may also be of value. We suspect that,

as these are not so easy to measure with optical eye tracking equipment and may

require the use of Electrooculography (EOG) or EEG equipment, they appear less

frequently in conventional eye tracking.

2.7.1 The Eye Dipole

The eye holds an electrical potential between the (positive) cornea and the (negative)

retina. Moving the eyes causes not only Electromyography (EMG) activity but also

a signal caused by moving this eye dipole. In addition, a blink also causes a

strong signal when the eyelid closure changes the electrical fields around the eye

dipole [138].

This is an unwanted signal in the EEG [139] and usually needs to be corrected

for in order to get to the weaker EEG signals. It is particularly confounded by the

fact that blinks occur more frequently just after cognitive processing, which may be

a period of particular interest for ERP paradigms.

It also, however, means that there are other ways of measuring a blink and

estimating blink velocities, and it further provides a way of synchronizing EEG and

Eye Tracking (ET) recordings, as we will detail in Chapter 7. Fig. 2.5 shows an

example of blink signatures recorded in the EEG modality.

2.8 Pupil Size

The main function of the pupil is conventionally ascribed to regulation of the amount

of light that hits the retina, similar to a diaphragm in a photographic lens that

controls the aperture stop. The pupillary light reflex [142] causes large variations

depending on the scene luminance. This is controlled by the parasympathetic

division of the autonomous nervous system: the Edinger-Westphal nucleus controls

the rapid constriction phase, and the slower dilation is likely caused by a subsequent

parasympathetic relaxation, as suggested by [143].

The pupil is, however, also influenced by cognitive processes, and is therefore of

particular interest to us. This will be detailed in the following chapter.



28 Chapter 2. Eye Tracking Mechanics

−0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative time vs lblink onset (s)

P
bl

(t
)

Figure 2.5: TYPICAL BLINK SIGNATURES, here shown as normalized EEG power in the elec-

trodes FPz and AFz for 21 blinks in [140], aligned to when an eye tracker sees the left eye

closing (the overall mean value is shown darker). An electrical dipole between the positive

cornea and the negative retina [141] generates an electrical signals in EEG and EOG record-

ings when the eye moves or blinks (which is significantly stronger than the normal EEG signal

originating from the brain). A faster closing time is seen when comparing to the reopening

time. Illustration from [1].

The basic pupil measure is the size9. Often (as with The Eye Tribe tracker) a

linear measure is returned, which is essentially the diameter of the pupil in some

arbitrary scale (sometimes just in pixels). It is also not uncommon to estimate the

area of the pupil, possibly by measuring the diameter and correcting for any optical

distortions when the eyes look away from the center of the eye tracker camera,

which causes the pupil to appear more or less elliptical.

9The size sounds like a very simple concept – but there are different traditions here in the literature;
some (like many of the cited earlier studies) use absolute size and express e.g. a pupil dilation in (fractions
of a) millimeter in addition to sometimes also reporting the baseline pupil, whereas others only report
a percentage of the baseline, like we generally have done in this thesis. The later has the advantage of
making it easier to aggregate across different baselines in the varying conditions we generally see in our
settings. Also, there has been no way of establishing a calibrated measurement until now, so our choice
has largely been relative measurements out of convenience. Beatty and Lucero-Wagoner [144] deals
in more details with the methods, and we would like to point out that as pupil dilations appear more
constant in absolute size (i.e. mm) across different light conditions Bradshaw [145], it may however be
the preferential choice.
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Figure 2.6: NATURALLY OCCURRING VARIATIONS IN PUPIL SIZE (LEFT) over part of an ex-

perimental session. A combination of task-evoked pupillary dilations and noise is visible,

as is a slower varying modulation on a timescale of 30-60 seconds. The blue curve is the

relative pupil size and the green the distance between the eyes, as reported by the eye tracker.

Illustration from [3]. HEAD MOVEMENT (RIGHT) over a full experimental session, consisting

of 3 individual blocks of reaction time tests. It is likely that the subject moves closer and closer

to the screen, becoming more and more tense within each block, but takes a deep breath and

restarts at a longer distance when the next block starts. This makes it important to correct for

head movements. Note that the slow modulation is also visible here, although confounded by

the (uncorrected) head movement. Right illustration originates from the same study [3].

Some trackers like the EyeLink 1000 series [146] can utilize a paper target

of known size fixated on the forehead to estimate the absolute measure (mm) of

the pupil, independent of any accidental head movements. Others like the Tobii

trackers [91] use an eye model to estimate the eye position and distance and also

return an absolute measure.

The absolute size is, however, not a requirement for many types of measurements.

Thus, in our case, we have resorted to reporting the pupil size as a percentage

deviation from the mean or median value over a section of the experiment, and

when required, the inter-pupil distance reported by the eye tracker (also in arbitrary

units) has been used to compensate for head movements towards or away from

the tracker. Whereas a normal standard- or z-score normalizes with respect to the

mean and the standard deviation of the measurements, z = (p− µ)/σ , we favour

normalizing with respect to the mean (or median) only, pn = (p−µ)/µ, as we are

then more likely able to compare pupil dilations between experiments or subjects.

Fig. 2.6 shows two examples of pupil size variations over a 3 minute and a 23

minute period respectively. The variations are large and slowly occurring in the

example on the left side, that also has a stable inter-pupil distance. To the right,

however, variations in head-to-tracker distance causes variations in the inter-pupil
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Figure 2.7: PUPIL SIZE AND LUMINANCE over time. The (TOP) graph shows the pupil size

from left and right eye (blue and yellow) after correcting for changes in inter-pupil distance,

with an exponentially averaged mean value (cyan) overlaid. The magenta lines show a 2nd

order polynomial approximation to the curve. When the subject is looking away from the

screen, no pupil data is recorded. The (MIDDLE) graph shows the same pupil measures

after compensating for screen luminance levels. The (BOTTOM) graph shows the reported

inter-pupil distance vs the median value (black), the estimated luminance of the screen in

magenta, and the progress through the steps of the assigned task(s). See study in Section 6.4

from where these data originated.

distance, and the pupil size needs to be corrected for some types of comparisons

to be meaningful. In both cases, the luminance changes on the screen are small

(estimated to be less than 3%) compared to the pupil size variations measured.

Fig. 2.7 shows another example of pupil size variations. The data here are from

an experiment with children in a LEGO® assembly process. In this case, the screen

luminance can be estimated, and a regression versus the pupil data (after correction

for head movement) can estimate the effect of luminance changes,10 and the residual

can be used as an approximation of the non-luminance related pupil size changes.

10This is obviously only a first level approximation. A better method, as also suggested by Lang
and Bradley [147, p. 445] might be to detect the unique signature of the pupil constriction caused by
the pupillary light reflex, but due to the many other confounding factors, we settled for a first-level
approximation.
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In this particular case, we found the effect of luminance on the pupil size to vary

considerably between subjects; in a few cases more than 35% of the variance could

be explained by luminance, but values around 10% were more typical.

Other approaches exist for extracting the cognitively induced signal. In the body

of work presented here we have in some cases divided tasks into smaller subtasks,

and used within-subject comparisons between subtasks. Especially in cases where

variations in conditions change slowly this may work well. As similar methodology,

dividing tasks into subtasks and comparing between these, was also demonstrated

by Wang et al. [148].

In general, pupil size measurements contain a lot of random variation. Duchowski

[83] addresses some general issues of noise, and Klingner et al. [149] specifically

deals with noise in pupil size measurements using remote eye trackers. Some may

be caused by the measurement method, but the pupil itself is known to undergo

small fluctuations all the time, as reported e.g. by Stark et al. [150]. Stark et al. find

that it is cannot just be caused by a badly tuned servo-loop, and speculates that the

±15% fluctuations are small enough not to disturb the visual acuity of the eye, and

it could be “an example of economy in construction”, although it is not ruled out that

it could have a specific role in the visual process. Compare also [150, Fig. 1] with

Fig. 3.4.

It is, however, unlikely that the pupil size jumps e.g. 30% or 50% in a 16ms

timespan, and therefore in many experiments herein, we have applied a hampel

filter with a window size of approximately ≈ 2 · 80ms and a threshold of 3σ , to

remove outliers. It is also important to filter out blink-affected periods. We find that

pupil size estimates immediately before and after blinks deviate strongly from the

neighbouring values; an effect likely caused by not correcting for the now distorted

pupil. These periods also needs to be removed from the data. After this filtering, for

many experiments we find a high degree of correlation between left and right eye

pupils size measurements, typically with Pearson Correlation Coefficient R between

0.8 and 0.95. This indicates that there is a common causality for the variations.

We will mention also just briefly another pupil related measure that is sometimes

used, the pupil (dilation) latency, which is the time it takes for the pupil to react to

external stimuli (light or cognitively induced, as we will detail later).

2.9 Modulation by Cognitive Processes

Komogortsev et al. [151], Holland and Komogortsev [152], and Rigas and Ko-

mogortsev [153] have shown that there are several apparently unique physical and

neurological characteristics of the OPM, as well as individual behavioural traits, that
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leads to unique signatures that can be derived from eye movements or simply from

FDMs recorded under many different kinds of stimuli.

It is therefore not unexpected that individuals have very different measures under

similar conditions, even though within-subject stability can be very high. Holmqvist

[51] reports this for e.g saccadic amplitudes and fixation durations.

When comparing within-subject, variations can be caused by cognitive or affective

processes. There are often multiple other factors that can influence eye related

metrics, and it is important to disambiguate the signals in order to account for other

factors as well, for instance by combining combining several metrics or modalities

and/or by careful experimental design to separate other factors.

Some of the maybe more commonly proposed metrics when investigating cogni-

tive or affective processes are:

• saccadic amplitude (extent) is impacted by cognitive workload:

May et al. [154] finds reduced saccadic amplitude in both saliency-driven and

spontaneous saccades when workload increases;

Recarte and Nunes [155] reported spatial gaze concentration in a simulated

driving scenario when “mental workload” increased.

• pupil dilation is also related to various cognitive processes; we will deal with

aspects hereof in the following chapter, so just a summary here of some of the

relations reported in the literature:

Kahneman and Beatty [156] found pupil dilation to relate to task difficulty;

Beatty [157] reviewed the body of evidence at the time of writing and con-

cluded that phasic pupil dilations reflect cognitive processing load;

Hyönä et al. [158] reports a correlation of pupil dilation and processing load

caused by interpretation/language tasks;

Einhäuser et al. [159] reports that perceptual selection and rivalry is reflected

in pupil dilations;

Privitera [160] finds pupil dilations relate to target detection,

Preuschoff et al. [161] finds pupil dilations signals surprise (and so do we [4]);

Siegle et al. [162] reports depressed individuals respond to emotional process-

ing tasks with sustained pupil dilations;

Gee et al. [163] found that an extended decision process results in a sus-

tained pupil dilation with a smaller transient component when the decision is

effectuated;
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Kuchinsky et al. [164] finds pupil dilation correlates with indices of tonic

alertness and inversely correlates with Default Mode Network (DMN) activity;

Kuipers and Thierry [165] finds a greater pupil dilation relates to a less negative

N400 in the ERP pointing (within the experiment) to a correlation to matching

meaning between pictures and words;

Mill et al. [166] reports increased pupil dilations in relation to unexpected

memory recognition vs expected recognition.

Bradley and Lang [167] however warns that pupil diameter is not a straight-

forward indicator of previous occurrences in natural scenes;

Zekveld et al. [168] finds pupil dilations to be larger for degraded speech

compared to normal or less degraded speech;

Siegle et al. [131] reported pupil dilations to correlate with cognitive load in

digit sorting tasks;

Partala and Surakka [169] reported larger pupil dilations when listening to

positive or negative highly arousing sounds compared to neutral sounds;

Stanners et al. [170] investigated the relation of arousal and cognitive factors

on pupil dilation, and reported that cognitive demands take priority and reflect

in pupil dilations, and arousal only becomes visible when the cognitive loads

are small

Bradley et al. [171] further found emotionally arousing pictures to solicit a

larger pupil size;

Geng et al. [172] found pupil diameter to reflect uncertainty in a visual

selection and search process;

Laeng et al. [173] used a Stroop task to find larger pupil dilations for incon-

gruent tasks compared to congruent tasks (and so did we in another task [3]);

Beatty [174] investigated the relation between phasic and tonic pupil dilations

and found only phasic response to vary with vigilance performance;

Alnæs et al. [175] found pupil dilations to reflect activity in LC-NE and thereby

related to how the brain allocates its processing resources; a similar finding

was also reported by Murphy et al. [176];

Wilson et al. [177] found a correlation between pupil size and cognitive load,

but no correlation between pupil size and fatigue (and speculates that it could

be caused by increased cognitive load in the experiment);



34 Chapter 2. Eye Tracking Mechanics

Liao et al. [178] tested an auditory oddball scenario and found phasic pupil

dilations as a response to some types of oddball sounds, dependent on the

tested conditions;

Gabay et al. [179] found that more demanding discrimination tasks results in

phasic dilations;

Holmqvist [51] sums up a range of research, and lists cognitive and affective

processes related to mental workload, emotion, anticipation, drowsiness and

fatigue as factors that impact the pupil size (and so do diabetes, age, pain and

certain types of drugs);

finally, we should note that Eldar et al. [180] found that measures of the pupil

size reflected the degree to which learning was focused on stimuli that the

subjects were more predisposed to, and although the relationship here may be

the other way (i.e. the pupil size, reflecting underlying neural activity, impacts

the degree of learning), it may still be of importance also for this discussion.

• saccadic speed is reduced when the subject deactivates (i.e. due to fatigue,

time on task, etc), as reported by [181]; Holmqvist [51] warns there can be

confounding factors based on work by McGregor and Stern [182], but more

recent surveys by Di Stasi et al. [183] suggests that peak velocity may be a

good indicator for arousal.

• blink rate goes up when subjects are fatigued or have increased time-on-task

(as mentioned previously), as reported by Stern et al. [132, 133], Schleicher

et al. [134], and Caffier et al. [135].

Holmqvist [51] also references literature that find blink rate to be impacted by

mental workload and time of day.

• fixation duration was found by Dambacher and Kliegl [184] to correlate to the

amplitude of the N40011 in ERP reading paradigms (though see also [185]).

Even though this thesis focuses on pupil dilations, there is a large body of (not always

easily comparable) research that investigates correlations between eye tracking

measures and the cognitive or affective level of the subjects. We will, however, again

have to refer to e.g. Holmqvist [51] that devote large sections to these subjects.

We will instead now narrow our focus more on pupil dilations caused by cognitive

processes.

11Known to relate to semantic processing; see Section 1.2.1.



Chapter 3

Attention, Arousal and Pupil Size

3.1 Attention and Arousal

Attention and Arousal are frequently used and helpful psychological and physiologi-

cal concepts. They may, however, not always be associated with a precise definition.

In our context, we perceive attention to be the process of allocating resources to

relevant stimuli. James [186] puts it like this:1

Every one knows what attention is. It is the taking possession by the mind,
in clear and vivid form, of one out of what seem several simultaneously
possible objects or trains of thought. Localization, concentration, of con-
sciousness are of its essence. It implies withdrawal from some things in
order to deal effectively with others, and is a condition which has a real
opposite in the confused, dazed, scatter-brained state which in French is
called distraction, and Zerstreutheit in German.

Duchowski [83] has a nice historical overview of how we have perceived visual

attention, from the “where” of von Helmholtz [187], the “what” of James [186]

and the “how” of Gibson [188] via Posner’s [103] “spotlight”, that separated the

foveal focus from the attentional focus, onto more modern elaborations building

here upon.

3.1.1 Attention Networks

Coull [38] attempts to divide attention into several subprocesses depending on how

one attends to stimuli, but this appears not to be linked to an anatomical view of the

brain’s networks. We prefer to relate attention more to functions of specific networks

and processes in the brain, based on insights gained during the last decades, and it

1... and everyone that try to define attention appear to include the very same quote!
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turns out that Posner’s concepts has evolved into a neurophysiological model. This

was originally proposed by Posner and Petersen [189] and updated again by Petersen

and Posner [190] with new insights from the 20 years in-between. The model has

three premises:

• It anatomically separates the attention system from the processing systems,

which take care of dealing with the input and generating the output.

• Attention uses different anatomical networks.

• Each network has a unique role that can also be specified in cognitive terms.

The three elements that are suggested are the networks of:

• Alerting, which functions as a “warning bell” preparing the subject for a stimuli

that may require a response.

• Orienting, which helps to focus sensory input to the location or modality from

where a stimuli is expected.

• Conflict Resolution or Executive Control (which may turn out to involve two

anatomically separate networks), playing an important role in what is also

called “focal attention”, selecting between multiple inputs or cues, directing

focus (and the ability to respond) to the relevant place.

Based on the concepts of goal-directed (top-down) and stimulus-driven (bottom-up)

attention, Corbetta and Shulman [191] and Shulman and Corbetta [192] proposes

that two segregated anatomical networks are involved in these attentional processes,

and further ties this into the model proposed by Posner and Petersen, [190], in

particular how it affect the orienting: the (dorsal) top-down visiospatial and the

(ventral) bottom-up reorienting networks. This is mentioned here as it may impact

how we should treat eye movements: if two different networks are involved between

e.g. search-strategies vs attending to more salient stimuli, we may also see different

modulations of the movements. See also [193].

Arousal is broadly understood as the level of being “awake”; i.e. somewhere

between drowsiness and panic at the two extremes. With the basis in Petersen and

Posner [190] and Coull [38], we suggest arousal to be understood as a level of

vigilance which modulates the attentional system, with the goal of being able to

perform sufficiently during expected tasks.
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Figure 3.1: AROUSAL AND ATTENTION. Illustration from [3]. This graph is a synthesis

borrowing from especially Aston-Jones et al. [194] and Joshi et al. [195]: As the “arousal”

(x-axis) increases from drowsiness [A] via exploitation with highly focused attention and

peaking task-specific performance [B] to a state of highly distractible explorative behaviour

[C], the LC-NE tonic activations increase and the pupil dilates, as illustrated by the blue curve.

The task-related performance (y-axis) in response to relevant stimuli increases from [A] to

[B], but declines again hereafter as the tonic level increases. At the peak [B], relevant stimuli

results in the largest phasic pupil response. At [A] and [C], task specific pupil responses are

very small or absent. The small blue graphs illustrate the resulting visible pupil dilation that

combine the output from both phasic and tonic processes.

3.1.2 The Role of Locus Coeruleus

Aston-Jones and Cohen [196] have investigated the role of the LC-NE system in

attention2 and arousal. They suggest that LC cells can function in two (overlapping)

2As additional examples of some of the links between attention (networks) and the LC-NE system we
refer to: Petersen and Posner [190] who links the alerting network to Norepinephrine (Noradrenadlin(e))
activations; Bouret and Sara [197] who sums up the Norepinephrine (a.k.a. Noradrenadlin(e)) (NE)
system as having an important role in regulating attention, learning and memory as well as suggesting a
role of Locus Coeruleus (LC) in regulating attention and promoting behavioural flexibility; Aston-Jones
et al. [194] who mentions that the LC-NE system is coupled to brain areas linked to attention, and give as
examples the parietal cortex (involved in the orienting network [190]) as well as pulvinar nucleus (also
linked to the orienting network [189]) and superior colliculus; and to Kuchinsky et al. [164] who links
attentional processes and the Cingulo-Opercular Neural (CON) network to LC activations. In another
recent work, which incidentally builds on similar ideas to what is analysed in our work, Geva et al. [198],
with an important commentary given by Ambrosini et al. [199], found that the LC-NE system is involved
in all three networks, as evidenced by two different pupillary reactions: an early component Pa and a
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modes: tonic mode and phasic mode. With little activity in LC-NE, subjects will appear

drowsy. As the tonic level increases, so does the ability to perform, until an optimal

level, with regards to the specific tasks, is reached. When responding to stimuli,

phasic activity is seen, and at peak performance, there is a strong phasic response

to relevant stimuli. This is the point of optimally focused, or selective, attention,

and grants the subject the ability to exploit the present scenario. However, if the

tonic level increases further, the ability to respond to the ongoing task diminishes,

and task-related performance drops3, although at the same time there can be an

increased response to other stimuli. At the higher level of tonic activity, phasic

response is again at a minimum and the mode of the subject becomes predominantly

explorative.

This resembles the classical Yerkes-Dodson relationship [200], and may in fact be

an important element in explaining the observed behaviour. See Fig. 3.1 for a graph-

ical explanation, with A corresponding to drowsiness, B to optimal performance4

and C to a state of very distractible and explorative behaviour or even some levels

of panic. Jepma and Nieuwenhuis [202], using a gambling paradigm, has found

empirical evidence that relate pupil size to the choice of explorative or exploitative

behaviour, consistent with the theory that LC-NE is having an important role in

regulating the explore–exploit trade–off. So rather that trying to explain the elusive

concept of arousal we will adopt a slightly more mechanistic view here, and focus

more on the tangible anatomical function of the LC-NE system.

The resulting LC-NE activity at any given time can be thought of as regulating

the overall gain in the innervated brain systems, as the neuromodulatory role of

releasing NE is to increase gain in the cortical circuitry involved in the tasks [196].

In normal conditions, the balance between the two modes is governed by a desire to

optimize utility, i.e. to seek the required level of performance with the minimum

amount of resources [196]. This system is aptly called the adaptive gain theory.

later component, Pe that is modulated by incongruency, which presumably involves the executive control
network.

3An analogy, however awkward it may be, is to think of a guitar amplifier. At low gain settings, the
signal is not loud enough, and gain needs to be increased for the sound to become louder. Increasingly,
noise will also grow, and at a certain point the signal-to-noise ratio is optimal. If, however, the gain is
further increased, distortion will become more and more prominent and random noise will also grow.
At some point the original signal from the guitar can hardly be recognized and all that is left is internal
noise from the amplifier.

4Note that performance is always in relation to a specific task, and different tasks may cause different
’curves’ describing the relationship in the diagram. An example, shown by Kahneman [201], a simple task
may peak at a higher arousal level whereas a more complex task, requiring a more focused performance,
peaks earlier.
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In the context of a specific task, a too high tonic level leads to decreased perfor-

mance. This may not be optimal seen in isolation, but Aston-Jones and Cohen [196]

suggests that it may nevertheless serve a wider role of disengaging performance

from the specific task, allowing us to sample other things around, and possibly seek

alternatives that could be more rewarding. Constantly operating at a too high tonic

level is not beneficial, though, as is likely seen with some attention deficit disorders.

The LC-NE system thus is, or becomes, involved in many cognitive processes, of

which some has already been listed in previous chapters. In addition, Chmielewski

et al. [203] found the LC-NE system to have an important role in response inhibition

and how it is modulated by working memory load. We should also note that Corbetta

and Shulman [191] mentions that the LC-NE system not only plays a role in vigilance

and arousal, but also has a role in selective attention and especially when it come to

salient unexpected stimuli (see also [4], where strong phasic responses are caused

by errors or surprise, and e.g. [161, 172]). And further, Eldar et al. [180] reports,

as partly mentioned earlier, that the brain-wide gain level correlates with learning:

An increased tonic level (gain level) helps to strengthen already established neural

connections in favour of weaker ones, thus reinforcing these already strong network

– even if they are not related to the immediate task, as long as stimuli is salient

enough. Conversely, lower gain states, where stronger phasic responses are seen,

facilitates flexibility when surprising or unexpected stimuli appear.

3.1.3 Regulation of the Adaptive Gain System?

Lastly, we couldn’t help but notice that not only do we very often see slow pupil

size variations in our own recordings, with cycles of 30s to several minutes, as

exemplified by Fig. 2.6, but also note it elsewhere, such as in Aston-Jones and

Cohen [196, Fig. 7] and partly in Joshi et al. [195, Fig. 2]. Stark et al. [150]

and Stark and Sherman [204] concludes that the variations are not caused by the

closed-loop properties (of the light reflex he investigated), and pointed out that the

cause for variations are induced from outside the loop and must be of central origin.

Klingner et al. [149] found that correlation between the pupil size of the two eyes is

very high at low frequencies but drops of sharply to below R=0.3 above 5Hz, and

also attributes low frequency variations to a central source. We would therefore

hypothesize that 1) the source of these variations might be the adaptive gain system,

and that 2) what is seen could be related to how the system regulates itself, adapting

to tasks and optimizing utility, thus balancing required (or anticipated) effort and

allocation of resources, and that 3) there could therefore potentially be clues to

the present state of this system that could be told on the basis of monitoring these

possible tonic level variations.
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We should caution, though, that even if Privitera and Stark [205] also conclude

that the source of the noise must be in the brain in a part that is common to both eyes,

it was also reported that the pupillary noise has the largest variance for mid-range

pupil sizes and diminishes as the pupil becomes larger or smaller. This would for

instance be consistent with the adaptive gain theory if the source of the ’noise’ is

either phasic activations to exogenous or endogenous stimuli or some other activity

that causes a response from the LC-NE system, but it may not be entirely consistent

if the ’noise’ is internal to the adaptive gain system. It is, however, not clear to us if

the concept of ’noise’ here also includes the slower variations found, and more work

is needed to understand this system.

Currently we only have observations that so far appear uncorrelated to any

independent and otherwise measurable variables, and we cannot therefore offer a

more coherent theory at this point.

3.2 Pupil Size

Modern pupillometry [144], [170], [206] probably started with an experiment

performed by Hess and Polt [207] in 1964. In a famous experiment using mental

multiplication problems, they demonstrated that not only (as shown earlier [208])

did the pupil dilate when subjects had an emotional interest in presented material,

it also dilated in relation to the cognitive load of the multiplication tasks. Kahneman

and Beatty [156] confirmed this finding and did further studies, and suggested

on the basis hereof that pupillary responses functions as an index of memory and

processing load.

Often such responses cognitively induces responses are smaller than light induced

variations [144, 142], in typical conditions they amount to maybe 15% of the

baseline pupil size, i.e. around 0.5mm of linear variation where light induced

variations can be significantly larger, of the order of several mm5. For this reason it is

common to present the same stimuli repeatedly, and calculate a stimuli-time-locked

average, similar to how it is conventionally done with ERP6. Such responses are

5It might be worth noting that the pupil constricts rapidly when the pupillary light reflex kicks in, with
latencies on the order of 200–400ms and full effect in around 1s [209, 142] but dilates somewhat more
slowly hereafter when light levels allow for it. Dilations caused by cognitive load also kicks in relatively
swiftly, on the order of maybe 500ms after neuronal activity [195], and in some of the paradigms used by
the author, it peaks 1-2s after stimuli onset, sometimes with a somewhat slower constriction. See Fig. 3.3
for an example.

6If measuring the phasic Task-Evoked Pupillary Response (Task-Evoked Pupillary Response) in eye
tracking in some sense resembles the methodologies used for ERP paradigms in EEG, the equivalent of
analysing the tonic level in eye tracking might be not unlike continuous EEG paradigms, looking for
instance at the spectral power distribution.
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Figure 3.2: AROUSAL AND PUPIL SIZE: TASK-EVOKED PUPILLARY DILATIONS. In each of the

3 conditions corresponding to [A] drowsiness, [B] focused attention (exploitative mode)

and [C] scanning (or explorative mode) the baseline pupil size is as illustrated in black. A

stimuli attended to will solicit a pupillary response of the magnitude illustrated by the green

area. The blue curves show the combined baseline pupil size and the task-evoked response.

The illustration is not to scale and is meant to illustrate the concepts in a simplified way.

Illustration from [3].

called Task-Evoked Pupillary Responses, likely coined so by Beatty [157] and Ahern

and Beatty [210].

Aston-Jones and Cohen [196] correlate LC-NE activity to pupil diameter, and

Murphy et al. [176] later report a positive correlation between fMRI BOLD activity

in (specific parts of) the LC-NE system and the pupil diameter. Further, based on

invasive testing in monkeys, Joshi et al. [195] have suggested that LC-NE mediated

activity is related to pupil diameter changes7. Such activations in LC-NE correlate

with pupillary responses with fast onsets and lasting on a timescale of seconds, consis-

tent with what is seen for cognitively induced pupillary responses [212]. Varazzani

et al. [213], while looking at the roles of NE and Dopamine in a reward/effort

scheme in monkeys, also reported correlation between pupil dilation, LC-NE activity

and effort/energization of behaviour (see also the commentary on the relation to

uncertainty by Ang et al. [214]).

Fig. 3.2 tries to illustrate how the pupil respond in each of the three conditions

shown in Fig. 3.1, corresponding to drowsiness, maximum performance and scanning

behaviour. The base pupil size corresponding to the tonic activity at the condition

7It is speculated that the pupil diameter and LC activations may have a common causal factor, which
for external events could be the paragigantocellularis nucleus (PGi) and/or, with reference to Wang and
Munoz [211], that pupil size changes caused by attention related aspects including orienting to salient
stimuli are related to a projection from superior colliculus (SC) to the pupillary control circuit. These
theories are not mutually exclusive, and the suggestion remains that LC-NE mediated activity (in some
parts of the brain) is reflected in pupil diameter changes that are not related to luminance.
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is shown in black, and the green area denotes the Task-Evoked Pupillary Response

driven by the phasic activations.

3.3 Estimating the LC-NE activity

It thus appears that the pupil can be a window into the mind – or to be more specific:

we can estimate the activity of LC-NE based on pupil dilations.

We will now look at how pupil dilations can help us to estimate LC-NE activity, but

we need remind ourselves that LC-NE activity is not the only regulatory mechanism

that impacts the pupil size, and that it might be a good idea to “disambiguate”

such signals (as suggested by Holmqvist [51]) using other modalities, such as

HRV. Further, Corbetta and Shulman [191] suggest that the baseline/tonic level

is representative (a “proxy”) of the LC-NE system gain level, but cautions that

comparing essentially non-normalized values between-subjects is very difficult, and

that relative phasic responses are better suited for between-subject comparisons.

Different proposals have appeared for how to essentially measure LC-NE activity,

or “quantify levels of attention or workload” in more fuzzy terms. Armed with the

knowledge above, we can divide these into methods of estimating:

• The Combined Levels of Phasic and Tonic Activity

• The Phasic Response

• The Tonic Level

3.3.1 Combined Levels of Phasic and Tonic Activity

As long as the impact of other factors, in particular variations in luminance, can be

accounted for, measuring the combined level of activity in LC-NE is straightforward.

We simply measure the pupil size during our experiment, average it over some

suitable periods to remove some of the inherent “noise”, and compare it to a baseline

that must have been established in some reference condition8. This appears similar

to the global processing load or the pupillometric estimate of mental load suggested

by Hyönä et al. [158], the percentage change in pupil size of Iqbal et al. [215] or the

mean pupil diameter change found in [216].
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Figure 3.3: (TOP) TASK-EVOKED PUPILLARY RESPONSES. The graphs show the difference

between three congruency conditions (left and right eye). The incongruent response may

have a larger magnitude and has a longer temporal duration compared to the two other

responses. (BOTTOM) “SURPRISE” PUPIL DILATIONS VS CORRECT RESPONSES for left and right

eye, in the incongruent condition. Note how significantly stronger the pupil dilation to an

incorrect response (surprise reaction, labelled NOK) appear; almost twice as large as for

correct responses. Illustrations partly from [4].
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3.3.2 Stimuli-driven Paradigms

If the timing of the stimuli is known, we can use the methods proposed above

by Beatty [157] and Ahern and Beatty [210] to measure the Task-Evoked Pupillary

Response, possibly averaging a number of similarly conditioned responses to improve

the signal-to-noise ratio. It may be important to bear in mind that slow oscillations

often are seen in the tonic level, so an appropriate baseline needs to be selected

for the intended purpose, representative of the conditions immediately before the

response is invoked. Fig. 3.3 shows an example of measuring such Task-Evoked

Pupillary Response. The OK conditions are each averaged over approximately 1500

trials and the NOK conditions around 150. These are averaged over different subjects,

so any individual differences will tend to disappear. Note also that different stimuli

may invoke responses of different magnitude and/or extent.

We can also measure the periods where no phasic responses are expected, to find

the mean tonic level and, for instance, see how it evolves over time or relates to

the task performance otherwise; one example of this is seen in Hyönä et al. [158].

An alternative to consider is to use an indirect measurement of the tonic level by

estimating the gain level based on comparing the magnitude of a response to a given

stimuli to previous within-session responses to the same stimuli. This might give an

indication of whether the gain has increased or decreased, and thereby indirectly an

indication of the tonic level. As the relationship between gain and tonic level is not

monotonous, this method may only work within certain confined ranges. We have

yet to see this used in practice, though.

3.3.3 Unconstrained Tasks

In unconstrained tasks, where the stimuli activating responses are not well timed,

unknown, or even endogenous to the subjects, we need other methods to differenti-

ate the phasic and tonic levels. Marshall [217] and Marshall [218] has proposed

a (patented) method using wavelets tuned to the expected pupillary response to

calculate an Index of Cognitive Activity (ICA) that appears to count the amount of

phasic activations. As long as the tonic level is between [A] and [B], and not too

close to [A], this may work well. If phasic activations start to diminish, they may be

harder to tell from the tonic level, and the ICA may no longer reflect the perceived

cognitive load or focus in the situation.

Lew et al. [219] also proposes the use of wavelets to estimate the power spectrum

for pupil dilations, as do Pinzon-Morales and Hirata [220] and Pedrotti et al. [221]

8An alternative to a baseline comparison is to divide the recording into suitable subtasks (as we do in
several of our studies here) and compare in-between the subtasks.
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Figure 3.4: PUPIL POWER SPECTRAL DENSITY (after filtering outliers and blinks and using a

blackman window, using Welch’ method), averaged over 17 sessions (each approximately 25

minutes long), for one subject. The stimuli timing is once every 4 second, leading to the peak

at 0.25 Hz. Data originally from [3].

whereas Lew et al. [222] (somewhat inconclusively) earlier had proposed the use of

short-time Fourier Spectra and Nakayama and Shimizu [223] also uses a frequency

domain based comparison; in the later case finding different power spectra in

the ranges of 0.1–0.5Hz and 1.6–3.5 Hz – likely a result of phasic dilations and

subsequent constrictions – depending on the estimated workload. Incidently, Lüdtke

et al. [224] earlier proposed the use of frequency domain analysis of pupil size, and

found differences between sleepy and alert states, and further suggested the use of a

pupillary unrest index.

One example of the power spectrum of the pupil is found in Fig. 3.4. In the

particular scenario, stimuli occur every 4 seconds, and thus a very sharp peak is seen

from the phasic dilations caused by this stimuli.

Depending on the experimental paradigm, one alternatives to consider is whether

fixation aligned averaging, as proposed by Klingner [225], could detect phasic

responses. Another idea that has initially been suggested by Bradley et al. [171] and

Lang and Bradley [147, p. 445] is to detect the rapid pupil constrictions associated

with the pupillary light reflex – unlike those from cognitive processes, which cause

rapid pupil dilations – and account for such changes in the experimental setup or

when analyzing data. This could possibly be combined with fixation alignment,

although we have not yet any experiment evidence for such a setup.
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3.3.4 Temporal Resolution

A final concern to mention is the temporal resolution. Pupil dilations take place

in the 1 Hz range9, whereas the underlying LC-NE processes operate at a higher

speed. Hoeks and Levelt [226] used deconvolution to model the attentionally driven

pupil dilation system and derived the impulse response of the pupil, and determined

the system to be linear, with additive effects of the neuronal pulses. Wierda et al.

[227] further developed this idea, using iterative convolution of attentional pulses

to match the measured signal in order to derive at the original neuronal signal; this

method may possibly be more robust when presented to a recorded “noisy” signal.

In a very recent work, Gollan and Ferscha [228], further suggests a modification of

the proposal by Wierda et al. and specifically intents this to be useful in online, low

computationally resourced environments.

9Stark and Sherman [204] reports a significant loss of gain in the pupil system around and above 2
Hz, at least when it comes to the pupillary light reflex



Chapter 4

Individual Di�erences

People are different... and so are their biometrics, which exactly for that reason

becomes useful for identification and verification purposes.

This is true also for many metrics of the eye. The most well-known is probably

iris recognition and identification, which surfaced in practical applications in the

1990s [229, 230, 231] and now is moving into mobile consumer devices. Hill

[232] patented retina scanning, which relies on the individual characteristics of

the retina in a similar way as for the iris, although it has a lower collectability and

permanence [233].

Kasprowski and Ober [234] suggested using eye movements solicited by highly

salient jumping points, and used as feature vector “reaction time” and “stabilization

time”, which in our terminology would include characteristics such as the saccadic

latency, saccadic velocity and some measure that includes inaccuracies and corrective

saccades. However, as we have seen, with the more elaborate OPM proposed by [151,

235], we are able to model eye movements to a significantly higher degree. It is

possible to estimate the individual 18 parameters1 of the OPM based on the response

of the eye when stimulated by visual patterns. The identification accuracy was over

90% Area-Under-Curve (AUC) scores in the best cases tested with proper stimulation.

Bednarik et al. [236] found it was possible to use pupil dilation measurements

as a method of identification, even with a low sample rate system (50Hz). The

experimental setup used (for this specific part) required participants to view a static

fixation cross (which would probably not involve a lot of cognitive load) while

the naturally occurring variations of the pupil diameter were recorded. Data was

analysed in several domains, including the frequency spectrum. Hence, we assume

that what may have been measured and compared was essentially variations of

1The parameters are constants describing e.g. the elasticity, length-tension relationship, force-velocity
relationship, viscosity, mass, (de)activation timing, neural pulse characteristics, etc [70, 235].
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the tonic level LC-NE, shaped and filtered by the characteristics of the individual

eyes. Using this method, with a small set of people (N=12), a cross validation gave

above-chance level identification results.

Based on our experience, it may additionally be possible to detect differences in

microsaccadic patterns. In discussions with others in the community there appear

to be anecdotal evidence that researchers can identify individuals based on the

characteristics of their microsaccades within fixations. We saw a similar trends in

a small group of test subjects where a high-resolution tracker was used: Not only

were there visible differences in the dispersion (which could have been an artifact of

the eye tracker used), there also appeared to be a preferential directions (up-down,

left-right, ...) for each individual. This, however, is not unexpected, given our

understanding of the OPM.

Some of the methods mentioned require high-resolution and accurate equipment.

For example, to estimate saccadic speeds, an eye tracker with a very stable sample

rate and low jitter is required, otherwise accuracy will be lost. We have instead

focused at how some of these results translate into a mobile, low-cost and low-

accuracy setting.

In order to perform the experiments, a Python interface to the eye tracker was

developed by the author [10].

4.1 Lessons Learned and Questions to Ask

A lesson learnt from these studies is that it is important to account for individual

differences when using eye tracking data that involves comparison between subjects.

Even though aggregating the results of many user tend to average out individ-

ual differences, comparisons between groups can be misleading due to individual

differences.

A question that it raises is of how stable these individual signatures are over

time? We may assume that the parameters of the OPM remain relatively stable over

time, since these are grounded in dimensional and physiological characteristics of

the eye. But some of the metrics may be modulated by higher level processes, as may

be the case for pupil size variations, and these may change over time and condition.

That is the topic of Papers [B] and [G].

4.2 Summary of Thinking Outside of the Box... [B]

To answer parts of the previous question, we recorded a series of eye movements in

a simple scenario: we presented a uniformly coloured screen for 4 seconds, followed
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by a contrasting target that appeared at 9 different position in semi-random order,

each time for a few seconds. The colour scheme changed between different colours.

The experiment was repeated approximately twice a day over a week, to see if there

were any variations in simple metrics we could detect.

We did not detect any measurable differences caused by the different colour

schemes.

We did, however, see very different fixation patterns between the subjects. Fig. 4.1

shows Fixation Density Maps (FDM) for each experiment and subject when the

subjects look at a blank screen. As the subjects wait for the next stimuli to appear, it

may be a good strategy to keep the eyes towards the middle of the screen, as the

chances of quickly detecting the target – directly or with a peripheral view – is then

probably largest. However, the fixation density maps we observe when the subjects

attend to the blank baseline screen, throughout the experiments, could indicate that

individual signatures in the gaze patterns are specific to each subject and preserved

across sessions, even in a state likely to involve the default mode network in the

brain

Not only are there differences in dispersion between subjects; there is also

a tendency for especially subject A to look towards the left side of the middle.

Unfortunately we did not analyse the pupil size variations, but we should have done

so, to compare with Bednarik et al. [236].

Further, when attending to the stimuli we see a difference between the subjects,

as evidence by Fig. 4.2. These are large differences; a human observer can pick

almost any of the plots and tell whether it is from subject A or subject B.

We were not able to detect any statistically significant variation in the dispersion

of the FDMs that we had hoped to relate to e.g. time of the day or other subjective

factors.

Additional studies (done by some of our volunteering students) also showed

similar individual differences with the paradigm, as illustrated by Fig. 4.3.

In addition to this analysis in the spatial domain, we also looked at variations

in fixation time. Fig 4.4 shows how it varies throughout a week for two conditions

(and we also see differences between subjects).

Even if the material here from a statistical point of view is quite small, it provided

an insight into a few unexpected phenomena. Also, after having done the experi-

ments, another paper by Rigas and Komogortsev [153] appeared that also looked

at FDM. Even if the paradigms here were different, similar results appeared, and it

caused an interest in repeating the experiment also to see how stable the signatures

were over a longer period:
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Figure 4.1: ASSUMED DEFAULT MODE NETWORK FIXATION DENSITY MAPS for two subjects A

(LEFT) and B (RIGHT). Illustration from [2].
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Figure 4.2: SALIENCY-DRIVEN FIXATION DENSITY MAPS for two subjects A (LEFT) and B

(RIGHT). Illustration from [2].

4.3 Summary of The Blank Stare [G]

The previous experiments were repeated again 3 months later, and inspired by Rigas

and Komogortsev [153] a more formal comparisons of the FDM (in particular) was

done.

In addition to comparing the FDM in similar ways to what was done by Rigas

and Komogortsev, a DFT was also applied in the spatial domain. This was done to

be more invariant of translation errors in the calibration, and also with an idea of

capturing “patterns” of the dispersion of the fixations. See Fig. 4.5.

The analysis showed a remarkable stability in the FDM within-subject. Depending

on the metric chosen, we could characterize any fixation density map as belonging
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Figure 4.3: ADDITIONAL DEFAULT MODE NETWORK FIXATION DENSITY MAPS for 9 additional

subjects. Illustration from a student paper by Andersen [237].
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Figure 4.4: VARIATIONS IN FIXATION TIME over two weeks of recordings, for one subjects,

in two different conditions: (LEFT) looking at a uniformly coloured screen, and (RIGHT)

attending to salient stimuli. Variations between sessions over a week appear larger in the

presumably salient mode. Illustration from [2].

to either subject A or B with high accuracy; the AUC was 0.996 for the classification

using a Kullback-Leibler [238] divergence based distance metric and an Equal Error

Rate of 2.4% even between the two weeks. Fig. 4.6 shows the confusion matrices

for the 4 proposed metrics. The DFT based ones improved performance compared

to not using it.

Seen as an argument for proposing new biometric system, it may not have much

value to compare only two persons. But as an experiment looking at the stability

of a signature over an extended period (3 months with 16 respectively 18 trials for
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Heatmap -:-:0 (mkp 20141212100230)

Heatmap -:-:0 (pgba 20141208115711)

-:-:0 (mkp 20141212100230)

-:-:0 (pgba 20141208115711)

Figure 4.5: CONVENTIONAL FIXATION DENSITY MAPS (LEFT) recorded during presentation

of solidly coloured screens, somewhat typical of subject A (TOP) and subject B (BOTTOM).

FOURIER TRANSFORMED VERSIONS (RIGHT) (in the spatial domain) corresponding to the

Fixation Density Maps to the left. The fixation density maps here represent aggregated

values and contain multiple fixations; the same transformation could also be applied to single

fixations to visualize microsaccadic movements. Illustration from [7].

each subject) it does provide valuable insights into the robustness of the individual

patterns which are seen in the fixation density maps.

We also hypothesize that what we see is not only the result of the OPM circuitry

and the lower visual processing layers, but may also reflect activity in the attentional

top-down processes that modulate the eye movements.

We also looked at saccadic latencies. Fischer and Boch [239] found a bi-modal dis-

tribution of saccadic latencies when testing monkeys, possibly indicating two differ-

ent types of saccades exist: express saccades and regular saccades; see also Holmqvist

[51]. Even though our experimental setup is not directly comparable, it is worth

noticing that we did not see any such indications

We also didn’t see much variation between sessions in saccadic latency, even if

the subjects self-reportedly at times felt more tired due to other activities. We did,

however, see significant differences in the average values between subjects and also

a dependency on the direction. This is in line with what we would expect from the

OPM, and it is worth noticing that even with the relative low sampling rate used

here (60Hz), we were able to measure some aspects of the saccades. See Fig. 4.7.
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Figure 4.6: CONFUSION MATRICES over all trials, based on computing the 4 dissimilarity

scores: Mean Square Error (TOP LEFT), 1-Min (TOP RIGHT), Kullback-Leibler Divergence

(BOTTOM LEFT), and the Euclidean distance (BOTTOM RIGHT) over Fourier Transformed

Fixation Density Maps across all trials. Each matrix is divided into 4 subgroups horizontally

and vertically. The first two SUBGROUPS (TOP and LEFT) represents week 1, and the last two

SUBGROUPS (BOTTOM and RIGHT) week 2. Within each week, the FIRST of the two SUBGROUPS

is from subject A and the LAST from subject B. Each line (row or column) within the subgroups

represent a single trial. The colours are chosen so that stronger red indicates a higher score,

i.e. decreasing similarity, and darker greens indicate a lower score, i.e. increasing similarities.

The split between red and green has been chosen at a threshold value that corresponds to the

highest F1 score achievable. Illustration from [7].
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Figure 4.7: SPLIT HISTOGRAMS of all time-to-target values for all trials for subject A (TOP)

and subject B (BOTTOM). Cyan, magenta, blue and yellow bars correspond to saccades in

the upwards, right, downwards and left directions respectively. The distributions overlap but

are clearly different between subjects and partly between directions (downward is slower).

Illustration from [7].
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Phasic Pupil Dilations

As we have seen, pupil dilation responses are correlated with LC-NE neurotransmitter

release which, according to the adaptive gain theory, reflect a fluctuating balance

between phasic and tonic aspects related to the activation of attentional networks in

the brain, as modulated by the arousal and impacted by stimuli attended to.

In task-evoked paradigms, such as Task-Evoked Pupillary Response, it is essential

to determine the timing of the stimuli. Since we intended to measure levels of

attention, the established Attention-Network Test, developed by [79], has for our

purpose been chosen as a point of reference in our studies. It was not available in

any form that could be used with our setup, so the author re-implemented [11] it in

the scope of PsychoPy [80].

The test, which is essentially a behavioral experiment focused on teasing apart

the three attention network components based on observed differences in reaction

time, is illustrated in Fig. 5.1 and works as follows: The subject looks at a fixation

cross, and after a (variable) delay, a cue is normally presented for 100ms and 400ms

later a target is shown, to which the subject must respond. The target holds an arrow

pointing to the left or to the right, and a key must be pressed on the keyboard in the

direction of the target. Sometimes the target has congruent flankers (arrows point

in the same direction), sometimes neutral flankers (no arrow head) and sometimes

incongruent flankers (pointing in the other direction). The target can appear either

above or below the initial fixation cross. Also, the cue that appears before the target

presentation may be either a central star, a star at the location where the target will

appear, two stars (above and below), or sometimes simply missing, so the target

appears without any cue.

This is thought to invoke either of the 3 networks, alerting, orienting and/or

conflict resolution [189, 190].
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Figure 5.1: THE ATTENTION NETWORK TEST PROCEDURE: Every 4 seconds, a cue (either

of 4 conditions (TOP, LEFT)) precedes a target (either of 3 congruency conditions (TOP,

RIGHT)), to which the participant responds by pressing a key according to the central arrow.

The reaction time differences between cue- and congruency conditions form the basis for

calculating the latencies of the attention, orientation and conflict resolution networks. This

figure and description is from [3].

Comparing the average reaction time of all the non-cued conditions with those

that are double-cued allows for an estimate of the impact of having invoked the alert-

ing network. Similarly, comparing the center-cued to the spatially-cued conditions

allows an estimate of the impact of the orienting network. And finally, comparing the

incongruent condition to the congruent condition allows an estimate of the impact

of the conflict resolution network.

This is all a standard procedure, so what we did was to record the pupil dilation

during the experiments, and we additionally performed it approximately twice a day
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Figure 5.2: AVERAGED LEFT-EYE PUPIL DILATIONS for each session, coloured according to

congruency (A (LEFT) and B). The all-session average shown in bold, with the shaded area

representing the standard error of the mean. The average incongruent (Red) pupil dilation is

stronger than the others, possibly indicating a higher cognitive load. These plots are from [3].

over a period of 2 weeks as a type of longitudinal study. Such an experiment has

not, to our knowledge, been done before.

5.1 Summary of Assessing Levels of Attention... [C]

The outcome of the ANT test in terms of reaction time was in line with previous

experiments; these are however typically an average over many subjects, so the

absolute numbers can be different in a small population of only two subjects. We

found the effect of being alerted to be around between 27–35ms and of being

oriented to 22–49ms. The conflict resolution network apparently causes a delayed

response of 81–85ms.

More interestingly, we also found differences in the pupil response, as shown

in Fig. 5.2. The solid line represents the average of all congruent, neutral and

incongruent pupil responses over all sessions, with individual session average values

shown as a thinner line. For both subjects, the incongruent response is stronger

compared to the two other.

Note how noisy the signal is, even after a relatively strong filtering and averaging

over many trials.

We also looked at how large the response was for each session. Fig 5.3 shows

the area under a (selected) part of of the pupil response curve, representative of the

level of the response.

For both subjects, the two experiments on the first day has a much stronger

response than the following ones. This could indicate a training effect; the stronger

phasic response may indicate that the gain setting of the LC-NE adaptive gain system
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Table 5.1: PEARSONS CORRELATION COEFFICIENTS between key metrics for A (TOP) and B. A

shows negative correlation between mean reaction time and error rate (“speed vs. accuracy

trade-off”). B (opposed to A) shows correlation between pupil dilations and error rate,

possibly indicating a different response to varying levels of fatigue or motivation; additionally

alertness (and partly orientation) may inversely correlate to pupil dilations. Both show

expected correlations between pupil dilation metrics. Data from [3].

Att.-Net/Reaction Time Pupil Dilation

Orient Conflict µ(RT) Incon Neutral Con δ(Incon) TOD Errors

Att.-Net/Reaction Time

Alert 0.112 −0.047 −0.189 −0.013 −0.131 −0.011 −0.008 0.061 −0.051

Orient −0.548 † −0.468 ∗ 0.274 0.269 −0.020 0.402 0.132 0.270

Conflict 0.474 ∗ −0.081 −0.149 0.035 −0.147 0.330 −0.416

µ(RT) 0.002 0.049 −0.069 0.068 0.237 −0.635 †

Pupil Dilation

Incon 0.767 ‡ 0.701‡ 0.737 ‡ 0.062 −0.098

Neutral 0.752‡ 0.362 0.222 0.109

Con 0.034 0.000 −0.018

δ(Incon) 0.087 −0.121

TOD 0.066

Two-tailed significance less than ∗7.5%, †5% and ‡0.25% marked.

Att.-Net/Reaction Time Pupil Dilation

Orient Conflict µ(RT) Incon Neutral Con δ(Incon) TOD Errors

Att.-Net/Reaction Time

Alert 0.015 −0.107 0.438 −0.499 † −0.534 † −0.231 −0.576 † 0.062 −0.358

Orient −0.094 0.352 −0.474∗ −0.407 −0.559† −0.155 0.056 −0.386

Conflict 0.289 0.431 0.439 0.362 0.309 0.411 0.301

µ(RT) −0.220 −0.286 −0.173 −0.173 0.481∗ −0.400

Pupil Dilation

Incon 0.894 ‡ 0.817‡ 0.746 ‡ −0.026 0.725 ‡

Neutral 0.831‡ 0.549 † −0.184 0.701 ‡

Con 0.224 −0.020 0.626 †

δ(Incon) −0.021 0.501 †

TOD −0.215

Two-tailed significance less than ∗7.5%, †5% and ‡0.25% marked.
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Figure 5.3: AREA UNDER LEFT-EYE PUPIL DILATION CURVES [1.5,2.5]s for each session, indica-

tive of the size of the phasic response, grouped according to congruency. Both A (LEFT) and B

show initial training effects; only A however show an increasing trend (in assumed cognitive

load) for the remaining sessions. Illustration from [3].

is higher during the first experiments. Note that even though we measure the

Task-Evoked Pupillary Response, since we’re using similar types of stimuli between

sessions, and only compare within-subject, we may be able to infer knowledge about

the tonic level/gain settings as a higher gain results in a comparatively stronger

response. The 3 responses can also be seen to co-vary (correlation coefficients are

over 0.7 between different indices of the pupil dilations; see Table 5.1).

It is also worth noticing that subject B remains at the lower levels whereas A show

an increasing trend. This could indicate different levels of adaptation, motivation,

fatigue or many other factors – we simply don’t know.

However, if we compare the correlations between mean reaction time and error

rate, for A we see that there is an inverse relationship. This is not be unexpected;

faster reaction times correlates with an increase in error rate, which is the classical

speed vs. accuracy trade-off. There is no relationship, however, between the error

rate and the size of the pupil dilation.

For B, this is different. There may be a (weaker) speed–accuracy correlation, but

it is not statistically significant. There is, however a statistically significant correlation

between the pupil dilation and the error rate. Whether this simply indicates (as

we soon shall see) that an increased error rate leads to a stronger pupil dilation in

response to having made an error, or if it also could be a signal that a perceived bad

performance leads to an increased effort and thus a higher gain setting cannot be

said on the basis of the available data at this point.

In any case, the difference between A and B is noteworthy.

We should also briefly note that the significance levels here are uncorrected. It

would be appropriate to use a correction such as Bonferroni or Holms-Bonferroni
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within the families of related hypotheses here, so it is best consider mainly those

that have a low uncorrected p-value, such as those marked to be below 0.25%.

5.1.1 Additional Note

After publication of the original paper we have become aware of a similar study

done by Geva et al. [198], albeit in more controlled conditions than ours. The

objective findings are consistent with what we see here: Geva et al. identify two

different pupillary reactions, referred to as Pa and Pe; the latter is hypothesized

to be modulated by incongruency, and then appear more prominently. Even when

accounting for components of surprise related to incorrect replies (see Section 5.2)

we also see the effect of the incongruent condition resulting in a stronger/more

prolonged response (see also Fig. 5.5).

Some of ideas suggested by Geva et al., especially on the relation of the ex-

plorative and exploitative modes to the attention networks, has been questioned

by Ambrosini et al. [199], and it remains inconclusive at this point.

With that in mind, some of the proposals listed by Ambrosini et al. on analysing

baseline pupil diameter and looking at performance harmonize with some of the

ideas that independently lead us to the following study:

5.2 Summary of Separating Components of Attention 1/2 [D]

The same experiment was repeated once with a larger group (N=18) of subjects.

This was partly done to verify the previous findings.

Fig. 5.4 shows the average between-subjects pupil response for all trials which

were correctly replied to. The magenta and cyan lines mark the confidence level of

the differences between the incongruent response vs the neutral response. There is,

as in the previous experiment, a difference, in this case from approximately 0.8s–2.0s

after target presentation, with possibly a slightly longer difference in the right eye

response.

It is not clear from the present data if the slight difference in left vs right eye

response could be related to lateralization of the networks involved; the difference

may not be statistically significant but comparing the significance levels between the

neutral and the congruent condition in the left eye to that of the right eye shows the

difference may be significant for a longer period, hinting at an extended reaction in

the right eye.

For most, we see a high correlation between left and right pupil size (typical

R-values are in the range of 0.80–0.95) although for some the recording quality or

the tracking between eyes may be less than optimal.
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Figure 5.4: TASK-EVOKED PUPILLARY RESPONSES. The graphs show the difference between

the three congruency conditions for the N=18 subjects of the study, for LEFT and RIGHT eye

respectively. The incongruent response is larger compared to the two others. The statistical

significance level is marked with magenta and cyan, when comparing the two set of data with

a non-parametric test. The shaded area is ±1 SEM. Illustration from [4].

We conclude that the we can replicate previous findings of a stronger response

for the incongruent condition also with a larger group of a different age distribution.

The mean reaction times between the younger group was lower (505ms) compared

to the older group from the previous experiment (569ms), but the limited amount

of participants in the older group makes it difficult to rule out it could be related

to individual variation. Also, accuracy cannot be compared meaningfully between

the groups since, in the longitudinal study participants may have been entrained

to the test, and if only including the results of the first experiment, the amount of

measurements in the group becomes too small (i.e. comparing 2 measurements only

with 18 other group).

Williams et al. [240] also finds differences in reaction times between age groups.

Even if some behavioural differences were reported between the age groups with

respect to alerting and not with respect to orienting and executive control, the ERP

components related to alerting and orienting (P1, N1 and CNV) showed similar

modulations between the groups whereas those related to executive control (N2 and

P3) differed.

Overall, this might indicate that the test and methodology is relatively robust

and translates between individuals although with some variation between those

(caused by physiological or other ingrained differences, possibly influenced by
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current affective condition, as reported by e.g. Bellaera and Mühlenen [241]). In

our (limited) studies, we can only conclude that the differences visible in the pupil

dilation related to the incongruent condition (and to surprise; see below) are seen

in both age groups.
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Figure 5.5: AVERAGE INCORRECT (SURPRISE) INCONGRUENT PUPIL DILATIONS vs correct

responses for LEFT and RIGHT eye, respectively, for the N=18 subjects. An incorrect response

invokes a statistically significant stronger pupil dilation, almost twice as large as for correct

responses. Illustration from [4].

Comparing the incorrectly vs the correctly replied responses in the incongruent

condition shows a large difference, which is statistically significant from 0.6s after

the target presentation. The large difference may indicate that the subjects continue

at an elevated phasic LC-NE stage in realization of having made an error – although

not necessarily consciously. A similar result was also found with the original dataset

from the longitudinal study (Paper [C]).

This could be related to the adaptation and required reorganization reported by

Bouret et al. [242], or it may be related to what Preuschoff et al. [161] reports as

surprise, and allow for an “adjustment” of the next expected response.

5.3 Concluding Remarks on Phasic Responses

We see that the phasic response differences can be divided into two components,

either:

• related to the incongruent condition, or
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• related to the incorrect response/surprise and the need for adjustments of

subsequent responses

We hypothesize that, to the extent the Task-Evoked Pupillary Response are cognitively

induced signals related to the LC-NE activity:

• engagement with a task, for instance through a decision process, causes a

phasic pupillary response

• the magnitude of the response reflects some degree of the induced cogni-

tive load, that different networks are involved or possibly that an extended

temporal processing is involved

• committed errors or surprise causes a further increased response, possibly

with the purpose of being able to reconfigure and be prepared for a (better)

response to the next event

We shall now look at the tonic pupil size dilations.





Chapter 6

Tonic Pupil Dilations

We have previously seen that the tonic pupil size, in addition to modulations by light,

also reflects the current gain level in the adaptive gain system controlled by the

LC-NE system, which projects to many other important networks and is an important

element in the sympathetic nervous system.

In this chapter, we shall look at some of the work we have done to measure and

analyse elements of the tonic level; alone or as a combination of tonic and phasic

activity.

6.1 Summary of Separating Components of Attention 2/2 [D]

In Paper [D], we additionally looked at elements of the tonic activity.

Fig. 6.1 shows the mean1 pupil dilation of each of the 4 divisions of the exper-

iment (training round and the 3 test blocks). The mean includes both tonic and

phasic activity. Since the foveal focus is mainly at the center of the screen (fixation

cross, cue and targets are all close to one another), we can assume that luminance

changes are minimal and – if nothing else – have an equal chance of being distributed

to any of the sections.

What we find for subjects in Paper [D] (Fig. 6.1, bottom), is that they have a

significantly larger pupil dilation in the training round compared to any of the other

three which, in between the three test blocks, do not differ statistically significantly.

For the subjects in Paper [C] (Fig. 6.1, top), we see a similar statistically significant

difference for Subject B, but not for Subject A. We hypothesize that this may again

1 It would, of course, have been beneficial to separate the phasic activations from the baseline tonic
level, but this was not possible to do reliably in the training round; further in the unconstrained task
conditions found in Paper [E] we also have no possibilities of separating the two easily, so to make the
studies somewhat more comparable, the overall means was chosen for this part.
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Figure 6.1: AVERAGE PUPIL SIZE for the initial trial run and the three test blocks for the

original longitudinal study [3], for Subjects A and B (TOP) and for the more recent study [4]

of N=18 subjects performing the test once. For B and the N=18 subjects, the average pupil

size is larger in the trial block compared to the rest of the blocks whereas A has very little

variation in the mean pupil size. For comparison, A’s Task-Evoked Pupillary Response is

typically larger than B’s. Illustration from [4].
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point to individual differences in characteristics, behaviour or preferences, and

warrant further investigations.

Figure 6.2: SCATTER PLOT OF THE TONIC PUPIL SIZE RELATIVE TO THE SESSION MEAN VS

REACTION TIME for incongruent conditions for all N=18 subjects (LEFT and RIGHT eye),

colour coded according to correct (green) and incorrect (red) responses. The mean reaction

time between correct and incorrect responses are significantly different for the incongruent

condition (Welch t-test t = 7.00, p < 0.000001). The mean relative tonic pupil size between

correct and incorrect responses do not differ significantly. Illustration and data from [4].

In addition, the baseline tonic activity level was estimated by calculating the

average normalized pupil size before the target was presented, and it was plotted vs

the relative within-subject reaction time for that trial, in all incongruent conditions,

grouped into those with a correct and an incorrect reply; see Fig. 6.2.

The distributions of the relative reaction times differs between the two conditions;

the average value is lower for the incorrect replies, which is consistent with the

normal speed–accuracy trade-of. This also applied to both subjects of the longitudinal

study; see Table 6.1.

There were no statistically significant differences between the baseline pupil size

for the present study nor for subject B of the longitudinal study; however subject A

showed a difference (p=0.014, uncorrected) between the two conditions, so that a

smaller average baseline pupil size is seen before incorrect replies.

We do not know why there is this difference, but again suspect that there can be

individual behavioural or motivational traits behind. It should be noted that for the

subjects of the present study, it cannot be ruled out that a further analysis and more

data would reveal that some may have similar correlations.
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Table 6.1: RELATIVE TONIC PUPIL SIZE AND REACTION TIME. Left eye tonic pupil size, as

measured immediately before target presentation, relative to each session’s mean, and the

reaction times, are listed across all N=18 subjects of the present study [4], and for both

Subjects A and B over all sessions of the longitudinal study [3], for the incongruent conditions,

divided into groups of correct and incorrect responses. The mean reaction time (µRT ) differ

between correct and incorrect responses in a significant way (Welch’ t-test t = 7.00, t = 5.99

and t = 21.29 respectively, p<0.000001) for both A and B. The means of the tonic pupil size

(PSz) differ significantly between correct and incorrect responses for A (Welch’ t-test t = 2.47,

p = 0.014); for B and the subjects of the present study, the means between the conditions do

not show a statistically significant difference. Almost identical results are found for right eye

pupil sizes (not listed here). Table from [4].

µ SEM N p()

All (N=18)

PSz

OK 0.998 0.002 1472

NOK 1.010 0.007 254

δ 0.017 0.116

µRT

OK 0.568 0.003 1472

NOK 0.496 0.010 254

δ -0.072 0.000

A

PSz

OK 1.003 0.003 1333

NOK 0.982 0.007 198

δ -0.021 0.014

µRT

OK 0.631 0.003 1333

NOK 0.572 0.009 198

δ -0.059 0.000

B

PSz

OK 1.000 0.002 1434

NOK 1.001 0.004 197

δ 0.001 0.845

µRT

OK 0.612 0.002 1434

NOK 0.519 0.004 197

δ -0.093 0.000

6.2 Concluding ANT Related Remarks

We have seen individual differences in several of the studies. Comparing in particular

Subjects A and B from the longitudinal study [4] (including some aspects only

reported in Paper [C] and not summarized here), we see a difference in that:

• The magnitude of the phasic response of Subject B stays at a comparatively

lower level after the initial 2-3 experiments whereas for Subject A it increases

again hereafter

• The accuracy of Subject A trends towards a decline (increasing error rate)

whereas it does not for Subject B
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• Subject A do show the expected accuracy–speed trade-off relationship whereas

Subject B (instead?) show a correlation between accuracy and phasic pupillary

responses

• The baseline tonic level of Subject A differs between correct and incorrect

replies, whereas this is not the case for Subject B

• Subject B has a difference in mean pupil size between the training round

and the following blocks whereas the mean pupil size stays on a flat level for

Subject A

We cannot at this point offer any clear explanation of why this is so, but may

hypothesize that Subjects A and B operate out of different strategies towards the

experiment, possibly with different levels of motivation, or at different arousal levels

compared to the task.

6.3 Summary of Pupillary Measurements... [E]

Even when performing eye tracking studies in an everyday context, where pupil data

may be very noisy, insights related to aspects of attention might still be assessed

based on aggregation of data from many subjects or even just based on the amount

of time subjects attend to visual stimuli, such as to building instructions, when

performing an assembly task.

This study involved approximately 60 children playing with LEGO®, following

two different kinds of instruction manuals based on a Tablet and a Booklet (the

media), in real “in-the-wild” conditions. We knew from the outset that this would be

a difficult case for pupillometry, but nevertheless decided to see what could possibly

be learned from such an experiment.

The children were divided into two groups, and given 10 minutes of building

time with first one type of media, and were then switched to another type of media,

continuing from where they were at that time in the building process. One group

started with the Booklet and the other with the Tablet before they switched to the

other media.

Fig 6.3 shows a graph similar to what was seen in the preceding section. At the

top is shown the relative (normalized) pupil dilation for each group (Booklet First

(blue), or Tablet First (green)) in each 5 minute block of the experiment, with two

measures for each media of 5 minute pupil dilation averages, referred to as a New

condition and a Known condition respectively. The statistically significant differences

are marked together with their significance levels.
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Table 6.2: CORRECTION TERMS FOR MODELS A AND B: These are percentage-points that can

be summed when estimating the model mean pupil size for a given block of the experiment.

The * indicates that the term differs from 0 at a significance level of p<0.05. The ‡ indicates

a p<0.001 significance level. Note that Model B, when compared to Model A, should also

include an additional factor of +0.21 to be added to the baseline for the slowest performers

(not shown in the table). Table from [5].

Legend Model A: All Model B / All but Slowest Model B / Slowest

Time Novelty Media Time Novelty Media Time Novelty Media Time Novelty Media

First 10 min

New
Booklet

Tablet -1.28‡ -0.71 -3.03‡

Known
Booklet -0.89* -0.89* -0.89*

Tablet 0.22 -1.28‡ 0.22 -0.71 0.22 -3.03‡

Last 10 min

New
Booklet

-1.71‡ -2.40‡ 0.33Tablet -1.28‡ -0.71 -3.03‡

Known
Booklet -0.89* -0.89* -0.89*

Tablet 0.22 -1.28‡ 0.22 -0.71 0.22 -3.03‡

At the bottom is another way of visualizing the same underlying data: For each

subject, a 2nd order polynomial was fitted to the pupil data of the screen at each

step, to achieve a very strong low-pass filtering effect. The average value of the

filtered version (i.e. the average polynomial points) between the group was then

calculated and plotted with the SEM shown shaded.

As can be seen, the Booklet First group starts out at a higher pupil size (approx-

imately 3% at the beginning of the experiment) and gradually drops and flattens

out around -1% for the 2nd half of the 20 minute total length of the experiment.

However, the Tablet First group has – although with a larger variation – a more flat

progress.

This leads to the model shown in Table 6.2. When trying to account for the

effects of media (Booklet or Tablet), of novelty (New or Known, i.e. first or last 5

min with the media) and the overall time (first or last 10 min of the experiment),

it can be seen that using the Booklet leads to a model 1.71% larger pupil size than

using the Tablet, and that the difference between the first and the second part of

the experiment is best modelled with a decline in pupil size of 1.28%. There are

also differences in novelty: The Tablet stays at roughly the same level (insignificant

increase of 0.22%) but the Booklet leads to a decline of 0.89% from the first 5 min

with it to the last 5 min with it.
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Separating the 25% slowest performers (those which had less than 25 completed

steps and needed more frequent help) shows that there is an even larger impact

of media type for that group: The Booklet now leads to a 3.03% larger pupil size,

and furthermore, the decline otherwise seen over the experiment for the rest of the

group (now at 2.40% decline) is no longer present.

So if the mean pupil size would be taken to be representative of the required

cognitive effort, the slowest performers need to keep their effort levels constant, and

receives relatively larger help from the Tablet than the other groups. The difference

between the slow performers is also shown in Fig. 6.4.

Thus, it may appear that even in these “in-the-wild” conditions, we were able to

see statistically significant correlations between the effects of media, time, novelty

and performance reflected in pupil dilations, and that the simpler explanation in this

case is that it is a real effect not just caused by uncorrelated luminance variations in

the environment, partly due to the structure of experiment.

6.4 The LEGO® VW Transporter Study 1/2

In a separate study carried out in LEGO® shops in Copenhagen and Frankfurt, a

gaze-controlled instruction manual was used by children assembling another small

LEGO® model (#10220, a small VW Transporter). In total 59 children participated

in the study, boys and girls between 5 and 13 years. This was done to experiment

with active gaze-control but at the same time, gaze and pupil data was recorded

for later analysis. We will report additional findings in the following chapter2, but

we will look at some of the recorded pupil data here. The subjects completed the

building process at different pace (more on this later), so to be able to compare the

results, we use as time-scale a relative fraction of the total time needed for each

subject.

Fig. 6.5 shows a graph of the mean pupil size during the experiment, similar to

Figs. 6.1 and 6.3, where the progress here has been divided, somewhat artificially,

into 4 equal-length blocks to make it comparable. In this case, however, we have not

only corrected for distance variations between the head and the Tablet3, but given

information on which step is being shown to the user, we can estimate the luminance

of the Tablet and do another linear regression4 with respect to the pupil dilation

2A separate paper is in preparation on this study with additional details of the setup.
3This is done by using the reported inter-pupil distance as a baseline with respect to which the pupil

size should be corrected. We have further validated by a linear regression that there is a strong correlation
between the inter-pupil distance and the pupil size (which needs to be corrected for here!), and that the
estimated model parameters fits with our theoretical model.

4See also Fig. 2.7.
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and use the residual as an estimate of the cognitively and affectively impacted pupil

signal. This is not perfect, but as a first approximation it may help to remove at least

some of the effects of luminance variation due to the differences in how the model is

presented. We find that the correlation between luminance and pupil size can vary a

lot (with this method), but typical R values may be in the range of -0.1 to -0.2.

We see a similar (statistically significant) difference between the first part of the

construction process and the remaining 3 blocks. This could, as previously, indicate

an increased initial arousal in preparation for a somewhat new situation, followed

by some entraining (familiarity effect).

When looking at the bottom graph in Fig. 6.5 we see that the mean pupil size

apparently increases towards the end of the building process. We hypothesize

that this is caused by the achievement or near-completion of the construction; an

increased baseline level would be consistent with task completion and the fact that

the subjects are about to move from exploitation mode (building the model) to more

of an exploratory mode (reorienting to other stimuli in the environment).

We cannot rule out other explanatory models; as noted by Kahneman [201],

arousal cannot be treated as a unitary dimension and even if the context and terms

in which he described it are different from what we discuss here, the warning still

applies!

Finally: As an additional test, we also analysed the impact of using data that is

not corrected for luminance. We still find similar differences, although with a less

pronounced increase towards the end of the construction process, as expected, since

the last part of the manual (with more white bricks) has a higher luminance level.

6.5 Concluding Remarks on Tonic Pupil Size

Across four different studies with 3 different age groups (people in their 50s, in their

20s and children between 5 and 13), we have, to varying degrees, seen an enlarged

pupil at the initiation of the experiment followed by a gradual decline and – in one

case – a slight increase again in pupil size towards task completion. This was seen

both in two studies with 2 and 18 subjects, respectively, where screen luminance

was relatively stable, in one study where we included 43 children using a different

system, a head-mounted eye tracker, and where light conditions were not controlled

for, and in a study of 59 children where light conditions to some extent could be

compensated for.

We hypothesize that, to the extent these are cognitively induced signals related

to the LC-NE activity:
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• This common pattern is related to an increased arousal level in anticipation of

the task to commence.

• The gradual decline reflects a degree of familiarization with the task.

• Conversely, no decline reflects a need for a continued sustained arousal.

• An increased arousal towards the end of a task might be related to a sense

of completion and preparing for a shift from exploitation mode to a more

explorative mode.
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Temporal Sequence and Media
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Figure 6.3: (TOP) Post-Hoc between the means of the data from each of the blocks of the

ANOVA regression colour coded according to the two groups of subjects that had Booklet first

(blue) and Tablet first (green), with corresponding significance levels marked as well as the

predicted value (dashed line). The red lines indicate one standard error of the means to each

side. The lines above the bars indicate where there are statistically significant differences,

with solid lines indicating within-group and dotted lines between-groups. The markers α

indicate uncorrected significance, h corrected with Holm-Bonferroni factor, and b the most

conservative with Bonferroni correction. The levels are at p<0.05 unless marked with a † or

‡, that indicates 0.01 and 0.001 respectively. (BOTTOM) Filtered trend of how the mean pupil

size develops over time for the two experimental groups of subjects that had Booklet first

(blue) resp. Tablet first (green). The graph is the result of filtering the data for each subjects

using a 2nd order polynomial (i.e. a heavy low-pass filtering) and then calculating the means

over all of these. The shaded area represents one standard error of the mean to each side.

Illustrations from [5].
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Figure 6.4: DIFFERENCES BETWEEN THE SLOWEST AND FASTEST PERFORMING GROUPS vs all or

all others, here shown over the two 10 minute periods of the experiment (first 10 minutes

at the TOP, last 10 minutes at the BOTTOM). There are statistically significant differences

during the last 10 minutes when continuing on the Booklet (after 10 minutes of Tablet use), as

marked: The slowest performers have significantly larger pupil size compared to the normal

performers and to the overall mean (bottom). There is also a statistically significant difference

between the slowest and the normal performers for the group that start with Tablets during the

first 10 minutes (top). An α denotes significance at the p<0.05 level; a b denotes significance

at the same level after Bonferroni correction. Only comparisons within each media (Booklet

or Tablet) and time (first or last 10 min) between the 4 groups of performers have been tested

and is shown. Illustration from [5].
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Temporal Sequence and Media
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Figure 6.5: CONSTRUCTION MANUAL PUPIL SIZE DIFFERENCES (after correction for luminance

variations). At the (TOP) is shown the aggregated mean pupil size within each quarter of

the building progress, relative to the total length for each participant, across participants of

the study. The significance levels are also marked. (The “model” here is simply the means of

the measured value). At the (BOTTOM) is shown the aggregated pupil size resulting from a

low-pass filtered estimate using a 2nd order polynomial, similar to Fig. 6.3.



Chapter 7

Using Weak Signals

In this chapter, we will look at the use of “weak” signals, by which we mean signals

that may not in themselves individually carry meaning, but taken in context and

over time, they may be used to construct a more meaningful aggregated signal. Such

signals are for instance dealt with in the context of e.g. social-media streams, where

they are sometimes treated “more akin to art than to science” [243].

Here, we will however try to make systematic use of weak signals in three

different contexts, trying to find value in signals that are otherwise typically ignored.

The first signal is the presence of gaze vs no tracking: Is a subject looking at a

screen for instructions (where we can then get more detailed gaze and pupil data)

or have we lost tracking, and the subject is engaged in some other (possibly related)

activity than studying screen content? In combination herewith, we will also look at

information on which step is currently being shown, as a proxy for progress.

The next signal is a simple screen-on event recorded by a smartphone. We will

use that to infer sleep patterns in a larger population.

The final signal we will consider is a blink, and we will use that and show how to

synchronise recordings in multiple modalities in the absence of precise timestamps.

The overall motivation for looking at these signals is that they can often be

collected without too much extra effort, and they can in some cases be used to better

understand user behaviour and possibly adapt to individual needs.

7.1 The LEGO® VW Transporter Study 2/2

We will continue to analyse data from the LEGO® Study mentioned in Section 6.4.

The gaze controlled manual has 18 steps, some of which contains sub-assembly

steps. These are not shown individually here for clarity.
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Figure 7.1: LEGO® BUILDING PROGRESS for girls (LEFT) and boys (RIGHT), averaged over all

participants in the experiment. The visualization shows the distribution of time spent within

each step: The darkest color shows when 50% of the total time within each step has been

spent, with the lower and higher quantiles shown increasingly lighter. Within the analysed

group, girls progress slower than boys, and with a larger spread. The current step is shown

on the y-axis and the elapsed time in seconds on the x-axis.

Of the N=59 participants in total, there were in total 32 labelled sessions where

age and gender is known (20 boys and 12 girls, aged 5 to 12 with mean ages of 8.1

and 8.0 years respectively). Of these, 24 completed the building instructions (14

boys and 10 girls). For these, all steps forward or backwards were recorded, as was

the presence of gaze on the tablet that showed the construction manual. From this

data, we can build a progress model (with regressions) for each participant, and we

can also create one or several aggregated building metrics.

Fig. 7.1 shows the aggregated building progress for boys and girls, respectively.

Girls generally appear to progress slower and with more spread compared to boys.

This may be related to many factors which we cannot tell from the current

experiment (spending more time playing with the interface, more attention to detail,

differences in 3D perception, ...). The average age for boys and girls are comparable,

8.1 respectively 8.0 years; the age span is 5 to 12 years for boys and 5 to 11 for girls.

Assuming that the construction progress can be modelled as a function of 1)

gender, 2) age, and 3) difficulty of individual steps, based on the weak signal of the

time recorded within each construction step including any regressions, this can be

expressed as follows for boys and girls:

steptimeboy(N,age) = baseline(N)(1+ kage,boy ∗ (age−8))

steptimegirl(N,age) = baseline(N)(1+ kgirl + kage,girl(age−8))
(7.1)

where baseline(N) represents the step difficulty and is considered the time it would

take an average boy of age 8 to complete step N, kgirl accounts for differences
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between boys and girls at age 8, and kage,boy and kage,girl accounts for age dependent

differences for boys and girls, respectively.
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Figure 7.2: MODEL BUILDING PROGRESS (STEP VS TIME) showing the derived model, which

assumes an average 8 year old boy. To estimate another age and gender, the corrections in

Table 7.1 can be applied. Completed steps are shown on the y-axis and the elapsed time in

seconds on the x-axis.

Estimates of individual step baseline times and the relative dependencies of

age and gender have been derived using both a Bayesian model (using a Markov

Chain Monte Carlo simulation on a model that fits all data points individually,

with weak priors), as well as a conventional OLS regression (treating each gender

independently), fitting the existing labelled data of 14 boys and 10 girls that have

completed the construction process. The results are shown in Fig. 7.2 and Tab. 7.1.

The Bayesian and the conventional OLS regression models result in similar estimates,

especially given the limited amount of participants, but the confidence level of the

conventional regression is lower as the data is split into two groups1.

The results of the Bayesian model indicate that, with this construction set, a

girl at age 8 would on average be 68.9% slower than a similarly aged boy. As the

children grow older, the differences becomes smaller, as N additional years of age

makes a girl N ·12.6% faster compared to a boy that only gets N ·4.8% faster. The

1We’re using the mean value over normalized steps in each age group for the OLS regression and
estimated boys and girls separately; the first part to make the results more robust with respect to outliers.
However, the confidence interval is more difficult to properly evaluate as the number of data points
then becomes small. The explained variance, when comparing the fit to the relative mean value of each
age group, are 0.53 and 0.44, for boys and girls respectively. The Pearson Correlation R and p-values
are R=-0.730 and p=0.062 for boys and R=-0.665 and p=0.149 for girls respectively. Accordingly
there is not enough data to rule out that the correlations are accidental, based on conventional p=0.05
significance testing, when separating the genders.
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Table 7.1: BUILDING PROGRESS MODEL FACTORS. This table shows the estimated dependency

on gender and age for the progress through each building step vs its baseline: The gender

dependency shows the amount of time an 8 year old girl needs in addition to an 8 year old

boy following the same construction manual (though not necessarily ending up with the exact

same construction result). The age dependency indicates how much each year impacts the

amount of time needed to follow the construction manual for boys and girls, respectively. The

first line shows the results of a Bayesian model that fits all of the available data in one model.

The second line use conventional OLS regression on the mean values (of the normalized steps

for all users of each age group). OLS regression on gaze tracker data is performed as two

separate regressions, on boys and girls respectively.

Boys Girls

Age Factor Gender Factor Age Factor Gender Factor

Bayesian Model -4.8% - -12.6% +68.9%

OLS Model -5.1% - -12.3% +74.3%

95% confidence intervals of the Bayesianmodel estimates are -0.7% and +0.6% for

the gender dependency and approximately +/-0.2% for the age dependencies, based

on analysing the trace of the Monte Carlo Markov Chain simulation used by the

Bayesian sampler (PyMC3).

The building progress curve should be compared to an overall “designed experi-

ence”: Should progress be faster initially and slower in the middle section, with a

final fast progression, to make it more interesting and maintain some desired level

of arousal – or should it remain at equal speed, so all steps take up approximately

the same time?

Another view into the building progress is made possible by combining gaze data

with the overall progress log, and is shown in Fig. 7.3. This view shows the amount

of time spent on studying instructions vs. doing the actual building work (in this

case: working with the LEGO® bricks). It also shows how much regression time has

been spent, which may point to a failure in comprehending the instructions fully at

first visit. In this particular case, steps 8, 9 and 14 appear to have been more difficult

to understand at first visit.

Fig. 7.4 shows the relative time predicted by the model for each step (i.e. the

baseline(N)) compared to the overall average step time, and is as such an indication

of the “difficulty” of each step (or at least an estimate of how long it takes to complete

it). Comparing Fig. 7.4 to Fig. 7.3 can be helpful to understand if a given step is just

time-consuming (i.e. it may contain many tasks to perform) or if the instructions are

difficult to understand at first view.
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Figure 7.3: BUILDING PROGRESS WITH REGRESSIONS showing time spent on studying the

instruction Manual on first visit vs subsequent views going back to a previous step (“regres-

sions”). Overall model time (seconds anticipated for an 8 year old boy) is shown on the x-axis,

and relative fractions of time is shown on the y-axis. The height and colour of the coloured

bars show the fraction of time spent looking at the instruction manual on regressions: going

back to a construction step after having progressed to a subsequent step. The height of the

gray bar shows the fraction of the time that was spent studying the instruction manual on

first visit to the step. The remaining area, on top of the bars, show the time spent doing the

actual construction work, and not looking at the instruction manual. The width of the bars

correspond to the time spent in each step.

For each step, the mean step duration and the mean fraction (shown in percent)

hereof spent gazing at instructions can be calculated across all users that completed

the building process. Fig. 7.5 shows this correlation. When the outliers are excluded

from the calculation, a linear regression yields a statistically significant correlation:

gaze time(N) = [−0.44 · step time(N)+66.9](%) (7.2)

with an explained variance of 0.73, and a Pearson Correlation R=-0.853, with a

p-value of 0.000211. Thus, steps that take longer to complete apparently need

increasingly smaller fractions hereof for gazing at instructions

The outliers are the first and last step of the construction: At the first step,

more time is presumably taken to familiarize with the interface, and at the last

step, the instructor interviewed the participants. The 3 other outliers (steps 7,

10 and 17) turns out to be the (only) steps made up of additional sub-steps, and

thus can be expected to take longer to comprehend and navigate. This particular

construction manual is likely very well designed and only shows easily explainable

outliers. We suggest that had other steps shown up far away from the trend-line, it
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Figure 7.4: RELATIVE STEP DIFFICULTY: The relative time (in percent) spent for each step in

the baseline model, which can be taken as an indication of the “difficulty” (to comprehend or

complete) each step. Negative (green) numbers are faster than the mean of 37.7s, positive

(red) are slower. The blue lines indicate the Standard Error of the Mean, based on the

normalized distribution of each step taking into account each participant’s age and gender.

The x-axis shows the percentage and the y-axis the step number.
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Figure 7.5: GAZE VS STEP DIFFICULTY showing, for each step, the average amount of time

(y-axis, in percent) spent gazing at the tablet with instructions, as a function of the mean

step time (x-axis, seconds) for all participants at each step. The magenta dots are considered

outliers and are excluded from the trend-line, shown in blue. There is a significant correlation,

and steps that take longer to complete apparently need a smaller fraction hereof for gazing at

instructions.

is recommended to analyze the reasons in more detail to potentially improve the

instructions and the overall building experience.
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7.2 Summary of SensibleSleep: A Bayesian Model... [F]

We will continue with an even weaker signal, hardly considered a biometric marker:

Screen-on events from a smartphone.

Through the Sensible DTU [244] project, a large amount of personal data is

collected from the many participating students. We wanted to know if it would be

possible to extract data about sleep patterns from only this signal.
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Figure 7.6: SLEEP PATTERN extracted from screen-on events from a smartphone, using a

naïve approach of just finding the longest period with no (or only very short) uses of the

mobile device during the night. Even in this case, patterns (like waking up around sunrise,

including adaptation to daylight savings hour until some time in the spring when the sun rises

too early...) are easily visible. The x-axis shows the week number since Jan 1st and the y-axis

runs from 4 pm (bottom) to 4 am in the middle to 4pm the following day at the top, with the

coloured background indicating either daytime (yellow) or night (light blue).

Fig. 7.6 show a visualisation based on a very simple heuristic analysis that locates

the longest non-interrupted period (i.e. with no screen-on events) during the night,

using a prior probability that sleep is more likely to take place 12 to 24 hours after

the previous sleep period. A single short interruption does not break the registered

sleep cycle. This is somewhat similar to what was later proposed by [245].

Some patterns are clearly visible; there appear to be some weekly patterns

(getting late to bed happens more frequently during weekends than during weekdays,

for instance) and there is also some correlation to sunrise and waking up in the

spring and around the daylight savings time change.

However, we wanted to improve the method and build a more robust method.

For this, we built a Bayesian probabilistic framework with the assumption that there

would be two different rates of screen-on events depending on whether the person

is awake or at sleep – which is a rather weak prior belief.
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Figure 7.7: SCREEN ON EVENTS counted in bins of 15 minutes for a particular user, showing

the two different rates of events between day and night, and the switch-points between the

two. We assume that sleeping takes place in the period with the lowest event rate (here

between 11 pm an 6 am). Illustration from [6].

Fig. 7.7 shows the rate of events for an example user. It is easy to guess where

the user is sleeping based on this. The events seems to come from two different

distributions. We assume this would be Poisson distributions with different rates,

λawake and λsleep, with two different switch-points between the two distributions,

tsleep corresponding to “bedtime” and tawake corresponding to morning “wake-time”.

We developed several models of increasing complexity, including several hierar-

chical ones, and tested which ones would give sensible results based on the data we

had access to. In addition to Sensible DTU data, we had access to data courtesy of

Sony for which we also had sleep-tracker data to use as ground truth, in total more

than 400 users. We report several metrics related to the performance of the different

models, and also compare them to previous work.

We believe that our framework is more robust with regards to a few interruptions

during the night period. In addition, as a Bayesian framework, it quantifies also the

assumed distributions of the estimated parameters, and it can potentially encode

prior beliefs (when desirable). When using the hierarchical models, it can further

capture more complex patterns and dependencies between the variables of the model

and it may serve the purpose of also revealing patterns of commonality between

otherwise heterogeneous groups.

Fig. 7.8 shows an example of the output of the derived sleep period overlaid a

visualization of the screen-on events from one single user.
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Figure 7.8: SCREEN ON EVENTS AND DERIVED SLEEP PATTERN for a month for an example

user. The red circles indicate one or more screen on events during the particular 15-min time

bin, with a larger circle representing more events. The blue area is the probability of the user

sleeping, derived with the SensibleSleep method proposed in Cuttone et al. [6], from where

this illustration is also taken.

Figure 7.9: ACCURACY OF THE METHOD shown as complementary cumulative distributions

of accuracy, precision, recall and F1 scores, compared to rule-based models proposed earlier

by e.g. Abdullah et al. [245] (dashed line). The graphs show the proportion of users on the

y-axis that has a score less than, or equal to, the value on the x-axis. Illustration from [6].

Compared to previous work, using sleep trackers as the ground truth, the Sensi-

bleSleep model performs at least as well when it comes to accuracy and precision,

and has a very comparable (weighted) F1 score, as shown in Fig. 7.9.

Fig. 7.10 shows the aggregated sleep and wake times for a particular set of

analysed users. The distributions look somewhat akin to a Gaussian distribution,

with what is probably also an expected mean value of the group analysed.

Thus, the model seems to work and serve the purposes we intended it to. A

drawback currently, however, is the runtime since analysing longer periods of data is
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Figure 7.10: AVERAGE SLEEP AND WAKE TIMES for the set of users being analysed. Illustration

from [6].

rather slow due to the Markov Chain Monte Carlo (MCMC) sampling required of

sometimes relatively complex models.

7.3 Summary of In the Twinkling of an Eye... [A]

A final example of using a weak signal is that of using blinks to synchronize between

eye tracking and EEG. The motivation for this came from a rather practical challenge

in aligning properly data-stream from heterogeneous sources in multiple modalities

in an environment where multiple devices (smartphones, computers, tablets, ...)

could be in use.

Fig. 7.11 shows an example of blink probabilities (top, red) extracted from eye

tracking data alone, based on absence of pupil tracking. Also shown is the power in

two central EEG electrodes PFz and AFz, which provides a very “clean” blink signal2.

Even if there may not be complete agreement on when a blink takes place or

not, judging from the two modalities, as long as the blinks that are present have

similar timing, the offset between the two data-streams can be calculated by e.g. a

cross correlation and finding the timing of the peak – which then corresponds to the

offset. This is shown in Fig. 7.12.

Fig. 7.13 shows the variation in the determined offset depending on the length

of the analysed periods. As long as a few blinks are present, the offset can be

2Researchers whose main interest is in EEG would likely call this a noisy signal as there is a lot of
blink data present that is unwanted in the continued analysis.
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Figure 7.11: BLINK DETECTION in the ET data (TOP, red) and the EEG (BOTTOM, blue). As

expected, since there is a common cause for the two signals from either modality, there is a

high similarity between the two signals. Illustration from [1].
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Figure 7.12: CROSS CORRELATION BETWEEN ET AND EEG signals, showing that there is

one specific offset that can be used to align the signals so that they have the best match.

Illustration from [1].

determined to within a few samples, given the assumptions on how a blink looks

(see the paper for details).
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Figure 7.13: SENSITIVITY OF OFFSET TO ANALYSED PERIOD showing that even the derived

offset is relatively stable, typically on the order of a one or a few samples, as longer periods

are analysed. It may therefore also work in near real-time analysis. Illustration from [1].

7.4 Mentions of Your Heart Might Give Away... [H]

This study was an early attempt of estimating emotional responses using Heart Rate

and Heart Rate Variability, based on previously demonstrated paradigms, such as

those reported by Bradley et al. [171], Lang and Bradley [147], Löw et al. [57], and

Wallentin et al. [55].

We shall refer to the paper for the details, but just highlight the conclusion:

That finding a robust signal with a small set of subjects and a noisy signal was not

conclusive. Some trends were observed, but a statistically significant result in such

almost single-run conditions was difficult.

This lead to a search for other and potentially more robust signals.



Chapter 8

Summary

We set out to identify ways of measuring elements of attention based on eye tracking,

with the intent of improving the user experience and pave the way for e.g. adaptive

systems that can tailor their behaviour to some elements of the current cognitive

and affective condition of the user.

We succeeded in identifying components of attention and cognitive load in pupil

dilations, as well as elements of surprise.

We also found large individual differences and variations; some may simply be

related to the mechanics of the eye or the lower layers of the visual (control) system,

but some may also be related to cognitive and affective processes at higher levels.

Variations from the personal baseline between conditions may serve as indicators for

load or other cognitive or affective processes, and can in some cases be related to

objective measures like performance or time on target.

We did all of this “in-the-wild”, using low cost equipment, trying to build on

established paradigms and on the insight of scholars before ourselves.

But there is still some way to go. The signals are inherently very noisy, and

better methods for extracting the underlying signals of interest are needed. It may

also be worth combining signals across modalities to better disambiguate their

interpretation.

And even though we’re learned a lot during the last 30 years, there is still a need

for an improved understanding of the underlying networks and their interworking,

and how they modulate other processes.

But the results may turn out to be very rewarding, and could help create much

better user experiences for future products and services!
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ABSTRACT

ACHIEVING ROBUST ADAPTIVE SYNCHRONIZATION OF
MULTIMODAL BIOMETRIC INPUTS: The recent arrival of
wireless EEG headsets that enable mobile real-time 3D brain
imaging on smartphones, and low cost eye trackers that
provide gaze control of tablets, will radically change how
biometric sensors might be integrated into next generation
user interfaces. In experimental lab settings EEG neuroimag-
ing and eye tracking data are traditionally combined using
external triggers to synchronize the signals. However, with
biometric sensors increasingly being applied in everyday us-
age scenarios, there will be a need for solutions providing
a continuous alignment of signals. In the present paper we
propose using spontaneous eye blinks, as a means to achieve
near real-time synchronization of EEG and eye tracking. An-
alyzing key parameters that define eye blink signatures across
the two domains, we outline a probability function based
algorithm to correlate the signals. Comparing the accuracy
of the method against a state of the art EYE-EEG plug-in for
offline analysis of EEG and eye tracking data, we propose
our approach could be applied for robust synchronization of
biometric sensor data collected in a mobile context.

Index Terms— EEG, Eye Tracking, Synchronization

1. INTRODUCTION

As consumer grade wireless EEG headsets are becoming
available which turn smartphones into brain scanners en-
abling real-time 3D neuroimaging [1][2], and with low cost
mobile eye tracking sensors integrated into smartphones and
tablets, there will be an growing need for synchronization of
multiple sensors on mobile devices. EEG neuroimaging and
eye tracking data are traditionally combined by using external
triggers to synchronize and accurately timestamp signals in
standard experimental setups [3]. While this can be extended

Acknowledgment: This work is supported in part by The Danish Na-
tional Advanced Technology Foundation through the project Eye Tracking
for Mobile Devices

to mobile environments [4], it may not always be feasible for
e.g. continuous recordings from multiple sensors.

Although mobile neuroimaging and eye tracking data may
in terms of causality reflect common underlying events, they
are often recorded at different resolutions. To further compli-
cate matters, consumer-grade equipment might not perform
as reliably as medical equipment. Packets of data could be
lost in transmission or sampling rates may drift over time, es-
pecially taking into consideration the varying conditions in a
mobile context. In order to interpret signals from multiple
modalities, they need to be synchronized. For mobile appli-
cations it is desirable to synchronize without the overhead of
introducing additional signals. Both, to simplify the hardware
setup as well as avoiding dedicating channel resources for
this purpose. A challenge is to identify a robust and adaptive
method to synchronize signals, as a first step towards contin-
uous recording and aligning of data from multiple biometric
sensors in a mobile context.

2. METHOD

When several inputs within the same modality need to be
aligned, as when synchronizing multiple audio recordings
from different microphones in a video production, a related
and well-known problem occurs. This can be solved by ex-
tracting key signatures (“audio-fingerprints”) from the signal
[5]. Aligning these signatures proves to be more robust and
effective than a naı̈ve cross-correlation of the correspond-
ing raw audio signals. However, in the present case, we
are looking at vastly different signals retrieved from two
modalities: An EEG signal frequently consists of 16 to 256
channels recorded at sampling rates typically between 128Hz
to 2048Hz, and data from a visual Eye Tracker often reports
(x, y) coordinates for the fixation and saccades plus estimated
left/right pupil sizes at different sample rates. Yet other types
of biometric sensor data might at a later stage include heart
rate measurements or a one-dimensional measurement of skin
conductance at a low sample rate. It is therefore proposed to
identify signatures within each modality that arise from the
same underlying set of causal events and to correlate these
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to align the multimodal signals. In order to assure a robust
synchronization in a mobile context, we furthermore need to
take into account sampling rate drifts and loss of data.

3. IDENTIFICATION OF COMMON SIGNALS

Blinks reveal a lot of information about subject alertness [6]
and mental state/type of activity [7], but are discarded as
unwarranted artifacts in EEG recordings as they may over-
shadow the signals of interest related to neural processing.

However, blinks deserve more than being discarded, and
in this case our focus is on reusing spontaneous blinks re-
trieved from both EEG and Eye Tracking data as a common
causal event serving to synchronize the two domains.

A mean blink frequency around 16 min�1 is typically
found in healthy and alert adults with a mean duration of
around 200 ms, where the reopening time is around twice
the closing time [6] . Blink times can regularly increase to
above 400 ms when alertness levels drop, and especially the
proportion of long closure duration blinks and the reopening
time seems to be affected by drowsyness [6].

Blinks tend to be dependent on whether the subjects are
involved in active tasks or simply passively observing objects,
leading to large individual variations. However, even for the
least blinking subjects involved in active tasks, spontaneous
blinks occur naturally multiple times per minute [7].

V. Luca and M. Swirski [private correspondence] have
preliminarily found that with consumer grade EEG and Eye
Tracking equipment, blinks may be less easy to identify with
high confidence. It may thus be worth prioritizing a high
specificity in favor of a high sensitivity in blink detection, in
order to reduce false positives.

Hence, our focus will be on blink durations in the range
of 50 � 500 ms, with closing times < 150 ms in order “to
exclude so-called nonblink closures according to the criteria
of spontaneous eye blink defined by Stern et al. [8][9]”.

3.1. Blink signatures in the EEG

Blinks appear as a strong and common signature in the EEG.
Their signatures have therefore been extensively analyzed in
the literature, usually with the intent of being able to extract
and remove these unwanted artifacts [10][11][12][13]. Sev-
eral plug-ins to EEG Lab [14] like Eye Catch1 automatically
locate eye related ICA independent components.

Two classes of voltage generators contribute to the EEG:
dipole and eyelid movements [13]. The actual movement of
the eyelid is the very essence of a blink; thus all blinks contain
a strong signature in the EEG caused by this voltage genera-
tor. Particularly the frontal central EEG electrode sites, such
as the FPz, FP1 and FP2 and to some extent in AFz, AF7
and AF8, will frequently pick up this strong signature. Av-
erage blink amplitudes can be above 200 uV at supraorbital

1http://sccn.ucsd.edu/wiki/EyeCatch (accessed: 2014-02-10)
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Fig. 1. Typical EEG blink signatures shown as normalized
power in the electrodes FPz and AFz for 21 blinks in [16]
epoched to when the eye tracker sees the left eye closing. The
mean value is shown darker. A faster closing time is seen
when compared to the reopening time. The eyelid movement
signal is prominently present, but additional signals are visi-
ble before and after, most likely caused by EMG muscle ac-
tivity.

electrodes, and a strong average blink related signal may be
back-projected to FPz [15]. Blink related signatures collected
from the electrooculogram (EOG) electrodes placed near the
eyes peak above 20 uV, and are thus significantly stronger
than EEG voltage differences typically in the range of a few
uV [13]. This signature of the blink is likely caused by the
eyelids acting as a sliding potential source, but muscle elec-
tromyographic activity (EMG) can also be expected to be su-
perimposed. See Fig. 1

Generally, the function P
mod,ev

(t) is introduced as an
estimate proportional to the probability that event ev has oc-
curred at time t in modality mod. This function is derived
from each modality independently, taking into account the
archetypical signature of the causal event ev seen in that
modality mod. This need not imply specific training on a
dataset, although the estimate might be improved by wavelet-
identification or supervised machine learning techniques.

Removal of EEG artifacts may often be facilitated by In-
dependent Component Analysis (ICA), however, less gain is
found when applying ICA for detection of eye related mus-
cle activity [12]. Further, as the eyelid movement signature is
strong, the normalized electrical power summed over selected
key electrodes will henceforth serve as a rough approximation
of the blink probability function, P

EEG,bl

(t). To further im-
prove detection, we will consider only power within specific
frequency bands, and apply a band-pass filter between 2 Hz
and 20 Hz, corresponding to blink durations in the range of
50 � 500 ms. No prior extraction of archetypical signatures
is done here.

Events such as eye blinks are typically of a certain du-
ration. The corresponding archetypical signatures must be
aligned according to a common event reference point across
modalities. If the duration of an event is of varying length,
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Fig. 2. The epoched blink probability function from the same
21 blinks as in Fig. 1. The darker curve denotes the mean
value.

it is possible to introduce two or more probability functions
in the related modalities, P

mod,ev0(t) and P
mod,ev1(t) sig-

nifying the probability of the beginning and the end of the
event respectively, if it is more feasible than trying to identify
a common mid reference-point for the events; synchroniza-
tion can then be based on either or both.

Even though blinks can be considered as having three
phases: 1) closing of the eyelid, 2) the closed phase, and 3)
reopening of the eyelid, longer blinks primarily have a longer
opening phase [6]. This might imply that the closing phase
is the most well-defined, and it could alternatively be sug-
gested to base the synchronization on the probability function
of the closing phase P

EEG,bl0(t) instead of the entire blink,
P
EEG,bl

(t).

3.2. Blink signatures in Eye Tracking

Visual eye tracking equipment relies on tracing the move-
ments of the pupil relative to reflections of the cornea. Ad-
ditionally the dynamically changing size of the pupil is mea-
sured, and it is registered when the gaze no longer can be
traced due to either a blink or the user diverts his attention
outside the eye trackers field of view. Most modern visual
eye trackers, explicitly record these events in the output data.
This can be used directly for estimating the appearance of a
blink.

Loss of pupil tracking in the interval of 50 � 500 ms is
thus taken to be indicative of a spontaneous eye blink. It is
suggested to base the blink probability function on whether
the pupils are visible or not, filtering out appearances that are
longer or shorter than the indicated interval. Furthermore, us-
ing the initial, most well-defined part of the blink (the eye
closing) as key to synchronization might mitigate any poten-
tial detrimental effects of equipment related reacquisition tim-
ing once the pupil becomes visible again. See also Fig. 2.

It is assumed that the stated timing constraint will filter
out many false positives. If needed, blink detection could be
further improved by also detecting and filtering out obvious

loss of pupil tracking cases that arise from the user gazing
outside of the field of view, due to the preceding gaze tracking
coordinates.

3.3. Correlating Different Signatures

In the naı̈ve case, all probability functions P
mod,bl

(t) are first
converted to the same sample rate, and a cross-correlation
of the signals can then derive the inter-signal delay that will
make them appear in sync.

This is done by calculating the cross correlation between
the two probability function time series of length M and N ,
where typically M = N after sample rate conversion:

�
EEG,ET

(d) =

min(M�1+d,N�1)X

j=max(0,d)

P
EEG,bl

(j � d)P
ET,bl

(j)

and determining where �(d) has its global maximum, at
which the corresponding d value is an estimate of the delay
between the time series representing the EEG and ET values,
respectively. �(d) need not be normalized for this purpose.

For longer time series, and for real time use, a sliding
window should be applied to filter out older values. This
makes it possible to estimate the current inter-signal delay,
and by relating that to previous delay values, it can be used
to compensate adaptively for data loss and drift. In the sim-
plest possible case, at time t, the current delay, d(t), can be
estimated by cross correlating the functions P

EEG,bl

(t) and
P
ET,bl

(t) in the window t � w to t and deriving the actual
delay as above. By maintaining previously calculated delay
values d(t1), d(t2), d(t3), ... in overlapping windows, a lin-
ear regression can be used to estimate the drift rate ↵ and the
stability of the fit (the regression coefficient).

d(t) = ↵t+ �

(� is the initial delta at time t = 0). It is advisable to use a
piecewise linear regression to maintain estimates of the inter-
signal delay, to compensate for data loss.

The cross correlation between the probability functions
will reveal information about the goodness of the fit: The
width of the global maximum peak depends both on how well
the estimated signatures match and on stochastic variations.
Further, once drift rates have been estimated, the variance of
current delay estimates vs. the predicted value gives an in-
dication of how well the synchronization can be maintained.
Any discrepancy vs. “ground truth” is however not immedi-
ately observable.

4. RESULTS

Fig. 3 to 9 details an analysis of the “Natural Reading”
Dataset 3 [16]. This dataset was synchronized by an external
trigger, so the “ground truth” is known. Data was recorded at
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Fig. 3. Blink probability, P
EEG,bl

(t), as estimated by nor-
malized power in selected EEG channels. Blue denotes the
FPz and AFz electrodes, cyan the FPz, FP1, FP2, AFz, AF7
and AF8, whereas light blue are all 72 electrodes. Fewer elec-
trodes gives cleaner signals but might be less robust.

512 Hz sample rate for the EEG and at 1000 Hz for the Eye
Tracker and has been synchronized in “Eye EEG” in the Mat-
Lab “EEG Lab” toolbox to an actual delay in the resampled
signals of 0 ms.

Initially, the full blink signature was used for synchroniza-
tion, i.e. the EEG probability function P

EEG,bl

was directly
based on the power of the FPz and AFz electrodes, as this pro-
vided the cleanest signal (Fig. 3). The delay was estimated by
correlating this with the corresponding ET probability func-
tion (Fig. 4 [Top]). The estimated delay can be derived from
Fig. 5. The stability of the estimate is illustrated by Fig. 6.

As an alternative, the blink onset was used for synchro-
nization. Here, the EEG probability function P

EEG,bl0 was
based on the results of cross correlating the first ⇡ 50 ms of
the mean EEG blink signature with the power of the FPz and
AP electrodes (Fig. 7); the ET probability function P

ET,bl0

is found similarly (Fig. 8). The delay was again estimated
by doing another cross correlation between the correspond-
ing EEG and ET probability functions. A comparison of the
two methods is shown in Fig. 9.

5. DISCUSSION AND FURTHER WORK

Based on the sample data analyzed above [16] the proposed
algorithmic method works satisfactorily. For the full blink
synchronization, the determined delay was 3.9ms vs. the cor-
rect value of 0 ms. For this dataset, synchronization could
thus have been achieved with an apparent error equivalent to
only two samples at 512 Hz, based on the full blink signa-
ture, without any machine learning. After the first blink, at
0.47 s relative to the shown period, the estimated delay fluc-
tuates between only 3 different sample values at 512 Hz as
more blinks are analyzed (Fig. 6). This may hint that the sta-
bility of the estimated delay is not strongly impacted by the
length of the period analyzed, as long as there are blinks to
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Fig. 4. [Top] The blink probability function, P
ET,bl

(t) in red,
as determined by data from the eye tracker: When the pupil is
lost for either eye, the probability is set to 0.5, and when both
pupils are lost, it becomes 1. To the same time scale [bottom]
is shown the same blue curve as in Fig. 3. Note that the initial
and final eye tracking data have been ”blanked” during the
manual synchronization.
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Fig. 5. A naı̈ve cross correlation between the FPz/AFz-based
EEG blink probability function P

EEG,bl

(t) and the ET blink
probability function P

ET,bl

(t). A clear peak denotes the es-
timated delta time between the two at 3.9 ms vs a “ground
truth” of 0 ms. The width of the peak at 95% is ⇡ 32 ms.

include, although the actual estimate may improve with mul-
tiple blinks in the presence of more noise than here. However,
as Figures 5, 6 and 9 shows, the peak of the correlated EEG
and ET probability functions is ⇡ 32ms wide. This might in-
dicate that the uncertainty of the synchronization here is larger
than the ⇡ 4 ms apparent precision seen.

Synchronizing at blink onset did apparently not improve
the accuracy. As it causes a further computational load it can-
not be recommended based on the present analyzed dataset.
However, additional datasets with more stochastic variation
and noise than the laboratory sample data used in this study
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Fig. 6. [Top] shows the estimated delta between the EEG and
ET time series as a function of how long a period has been
analyzed. [Bottom] shows the width of the cross correlation
peak at 95% of the peak value. It remains at similar levels
throughout the interval.
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Fig. 7. Blink onset probability, P
EEG,bl0(t), as estimated by

cross correlating the power in the FPz and AFz electrodes
with the blink onset signature (sampled from the mean EEG
blink signature in Fig. 1 in the inverval �15ms to 50ms). A
similar time series will appear from cross correlating the ET
time series with the start of the ET blink onset signature from
Fig. 2 or with a similar looking heaviside step function.

need to be analyzed in order to verify the stability and accu-
racy of the method, when based on data collected in a mobile
context. The uncertainty across larger sample sets needs to
be better determined, and more accurate derivations of blink
probability functions (possibly based on the suggested tech-
niques) might be required to improve upon the results.

The above outlined approach to synchronize EEG and eye
tracking could potentially allow us to move outside artificial
laboratory settings and instead monitor brain activity over ex-
tended periods of time under realistic conditions in an ev-
eryday context [17]. Rather than analyzing event related re-
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Fig. 8. All the probability functions for a sample blink (at
15.47 s), EEG in blue and ET in red. Blink onsets are dashed,
full blinks solid. The EEG blink onset P

EEG,bl0(t) (blue
dashed) is centered on the beginning of the blink as reported
by the eye tracker P

EEG,bl

(t) (red solid). Note also that the
blue EEG functions are centered within the red ET functions.
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Fig. 9. Comparing correlated EEG and ET probability func-
tions using full blinks (solid) vs. blink onset (dashed). The
blink onset peak is at �3.9 ms vs. the full blink at 3.9 ms.
Both have similar width at 95% peak value.

sponses elicited a few hundred milliseconds after images or
text appear on a computer screen, the ability to combine eye
tracking with neuroimaging on mobile devices, might provide
a foundation for continuous EEG recordings based on fixation
related potentials (FRP) [3]. That is, the sequences of rapid
saccades captured by the eye tracker when shifting our gaze
in the direction of something that capture our attention, may
be driven bottom-up by elements of visual perception as well
as top-down aspects of intended action. The ensuing fixa-
tions, typically lasting a few hundred milliseconds, might be
treated as virtual time stamps, corresponding to the onset of
visual processing when looking at objects [18]. This enables
capturing EEG event related responses in real life scenarios
[19], synchronized based on eye tracking derived patterns of
saccades and fixations [3]. Combining additional sensors like
heart rate correlated with eye tracking measurement of pupil
dilation, and EEG time series components might likewise im-
prove the classification of emotional responses [20]. The pro-
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posed framework for aligning EEG and eye tracking based
on blink signatures might therefore in a larger context en-
hance interpretation of inputs from multiple complementary
sensors, and thereby facilitate designing next generation cog-
nitive interfaces that dynamically reflect the state of the user.
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Abstract. The emergence of low cost eye tracking devices will make
QS quantified self monitoring of eye movements attainable on next gen-
eration mobile devices, potentially allowing us to infer reactions related
to fatigue or emotional responses on a continuous basis when interact-
ing with the screens of smartphones and tablets. In the current study
we explore whether consumer grade eye trackers, despite their reduced
spatio-temporal resolution, are able to monitor fixations as well as fre-
quencies of saccades and blinks that may characterize aspects of atten-
tion, and identify consistent individual patterns that may be modulated
by our overall level of engagement.

Keywords: Eye tracking · Fixation Density Maps · Fixation duration

1 Introduction

Although we may visually perceive whatever attracts our attention as a static
entity, our eyes process information from short fixations characterized by foveal
acuity interspersed by rapid saccadic eye movements. Essentially the oculomotor
plant can be modeled as a dynamic system which through contraction of muscles
and elastic tendons continuously pulls and rotates the eye globe when directing
our gaze towards an area of interest. These muscles are controlled by neural
signals modulated by areas in the brain responsible for constantly engaging and
relocating our visual attention [12], which at the same time reflect our cogni-
tive state as fatigue and demanding tasks have been found to lower saccadic
velocity, whereas higher peak saccadic velocity indicates increasing arousal [7].
It is also known that the frequency and duration of blinks can be indicative of
fatigue or time-on-task [8,9,16,17]. However, fixation density patterns and sac-
cadic movements differ highly across individuals [13,15] yet remain stable over
a variety of viewing conditions due to systematic endogenous factors [3,10]. We
would therefore expect that our current eye tracking study might reflect both
unique individual traits as well as variations in fixation patterns due to varying
levels of engagement. Applying a low cost eye tracker running at a low resolution
[6], we explore whether we are able to distinguish stable individual character-
istics when viewing suddenly appearing contrasting visual stimuli with uniform
c© Springer International Publishing Switzerland 2015
M. Antona and C. Stephanidis (Eds.): UAHCI 2015, Part II, LNCS 9176, pp. 186–195, 2015.
DOI: 10.1007/978-3-319-20681-3 17
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baseline metrics [5]. The experiment is repeated over a week in order to analyze
how eye tracking parameters related to fixation density maps may vary due to
changing levels of perceived fatigue.

2 Experiment

Being amongst the first eye-self-trackers, this experiment explores whether we
can identify individual signatures reflecting levels of attention in eye tracking

Fig. 1. Typical fixation density Maps, for A (left column) and B (right column), of
fixations in the baseline examples (upper row) when observing solid colors only, and
in trial (lower row) when the colored squares are presented against the complementary
color background.

The Trial Fixation Density Maps (lower row) reflect the position of the visual stim-
uli, nevertheless there are clear differences between the test persons; B has a higher
tendency to maintain focus within the frame of the squares. A appear less focused on
the frame and is rather thinking outside of the box, while overall fixations appear less
dense in the middle horizontal versus the lower and upper horizontal rows. Likewise for
B the central square in the lowest horizontal row shows a larger spread and overall this
row reflects a less dense focus, although we cannot rule out the possibility of calibration
errors for the eye tracker in the lower screen area.

The Baseline Fixation Density Maps (upper row) depict a higher degree of differ-
ence between the subjects. Again, B has a higher tendency to maintain focus towards
the center of the screen whereas A shows a tendency to focus at the middle vertical,
with fixations skewed towards the left side of the screen. We speculate that this con-
sistent offset for A, rather than being an artifact, could potentially be related to gaze
direction rooted in right hemisphere dominance when processing spatial information
[2] (Color figure online).
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Fig. 2. Variations in fixation density maps (baseline/trial combined). Although there are
variations in power within the fixation density maps for A and B over the week, individual
differences are discernible, where the upper row shows the largest spread of fixations
while the lower row represents more narrowly focused fixations (Color figure online).

Fig. 3. Differences in time to target reaction time when fixating on the presented
visual stimuli in trials throughout the week for A (left) and B (right); minimum, mean
standard deviation, mean, mean+standard deviation, and maximum. The dashed line
indicates the median.

This reaction time is measured from the presentation of the stimuli to the first
fixation starts at, or close to the presented, square. This includes the reactive saccade
between points. The saccade time cannot be accurately determined due to the 60Hz
sampling frequency of Eye Tribe tracker, but is estimated to be 30–50 ms. Fixations
typically jump to adjacent positions in space, so the variation in distance is not large, as
can be seen. The reaction time median, which best filters out any noise and accidental
mis-calibrations, remains remarkably consistent throughout the entire week, and clearly
differs between the test persons at around ∼269 ms vs ∼201 ms.
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Fig. 4. Fixation duration histograms (bars) and cummulative histograms (lines), for
both A (left) and B (right) during an experiment.

Fixation duration appears to be stimuli dependent with, in this case, a median
time of 1.695 s vs 0.270 s for person A in Trials (blue) vs Baseline (yellow) and 1.936 s
vs 0.516 s for person B. This indicates consistent differences in A and B’s fixation
durations. This stimuli-dependent difference when attending to the presented squares
versus the solid color backgrounds is not only observed in fixation durations, but also
to some extent in e.g. saccade frequencies and fixation patterns. No dependency on
color of the presented squares were observed, despite the large self reported perceived
differences related to the extreme complementary color contrasts such as green squares
on top of a red background or yellow squares presented against a blue background.

Fig. 5. Variations of the Fixation Duration for A across all experiments in the entire
week. The Baseline fixation length when observing solid background colors shows less
variation than when attending to the presented complementary colored squares.

data. During the experiment, eye tracking data has typically been collected
twice a day over a week, each consisting of 24 trials where 8 colored squares (∼3
degrees wide) are sequentially presented on the screen, alternating between the
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Fig. 6. Variations of the baseline fixation density maps for A plotted over the entire
week (beginning of the week at the top left corner; read left-right first).

Compared to Fig. 7, there are visible differences between A and B: B’s Baseline
fixations are less spread out and appear mainly towards the middle of the screen,
whereas A’s Baseline fixations have a tendency to be skewed towards the left side of
the screen and with a significantly larger spread.

Variations over the week are also visible although the general pattern for each
individual appear consistent from experiment to experiment.

colors blue, yellow, green, yellow, white and black. Each presented square
appeared for 2 s against their complementary color as screen background
(referred to as Trial conditions), followed by 4 s of solid complementary color
(referred to as Baseline conditions). In total, this constitutes 480 secs of visual
stimuli for each of 11 experiments performed over a week.

After an initial calibration at the beginning of each experiment, stimuli was
presented on a conventional MacBook Pro 13” in an ordinary office environment,
running PsychoPy software [14]. The Eye Tribe mobile eye tracking device, con-
nected via USB, retrieved the eye tracking data through the associated API [18],
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Fig. 7. Variations of the baseline fixation density maps for B plotted over the entire
week (beginning of the week at the top left corner; read left-right first).

Compared to Fig. 6, there are visible differences between A and B: B’s Baseline
fixations are less spread out and appear mainly towards the middle of the screen,
whereas A’s Baseline fixations have a tendency to be skewed towards the left side of
the screen and with a significantly larger spread.

Variations over the week are also visible although the general pattern for each
individual appear consistent from experiment to experiment.

using PeyeTribe [1]. Subsequently a density based clustering approach to define
fixations was applied. Two right-handed subjects (males, average age 55) partic-
ipated in the experiments and were not instructed to follow any specific viewing
patterns.
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Fig. 8. Variations of the combined trial fixation density maps for A plotted over the
entire week (beginning of the week at the top left corner; read left-right first).

Compared to Fig. 9 there are similar differences in these stimuli-driven Trial Fixa-
tion Density Maps as there are for the Baseline ones, although they are less pronounced.
B has again less spread-out fixations compared to A, and it’s likely that any random A
and B Fixation Density Map could be compared and classified as belonging to either
A or B based on their looks.

3 Results

Below, Figs. 1 and 2 compare typical Fixation Density Maps in Trial and Baseline
for A and B, and variations in spread of the combined Fixation Density Maps.
Figures 3, 4 and 5 show time to target reaction times and fixation durations.
Figures 6, 7, 8 and 9 illustrate variations in the Fixation Density Maps for the
entire week of experiments.
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Fig. 9. Variations of the combined trial fixation density maps for B plotted over the
entire week (beginning of the week at the top left corner; read left-right first).

Compared to Fig. 8 there are similar differences in these stimuli-driven Trial Fixation
Density Maps as there are for the Baseline ones, although they are less pronounced. B
has again less spread-out fixations compared to A, and it’s likely that any random A
and B Fixation Density Map could be compared and classified as belonging to either
A or B based on their looks.

4 Conclusion

While the time to target reaction time, reaching first fixation on the presented
visual stimuli, differentiates subject A from B, this eye tracking measure never-
theless appears constant within the two subjects during the whole week. This is
not inconsistent with the reported findings of Wang and Stern [19], as cited by
[17], which indicates reactive saccades to be invariant of time-on-task. It thus
seems to reflect a personal signature neither affected by training nor the differ-
ing complementary color contrasts of the presented stimuli in the experiments,
whereas the spread and length of fixations in response to the presented colored
squares varies within subjects A and B during the experiments over the week.
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Recent eye tracking studies indicate extended fixation duration time in sub-
jects reporting feeling fatigued at non-optimal periods during the day related
to their circadian rhythm [4], whereas shorter gaze duration has been found in
eye tracking experiments when subjects read emotionally positive versus neutral
words [11].

We initially hypothesized that the fixations on the presented visual targets
would likely be more focused in the morning, compared to experiments performed
in the afternoon where the subjects might presumably be feeling more tired, but
this seems not to be the case.

During some of the morning experiments which resulted in less focused fix-
ations the subjects actually reported that they felt more fresh and alert. Corre-
spondingly, some of the most dense fixations on targets were actually recorded
late in the afternoon for both subjects, raising an intriguing question as to
whether the wider distribution of the fixations in the Fixation Density Map
is correlated with the level of engagement of the subjects, or merely reflects
a less agile focus that might be inversely related to the perceived fatigue, as
reported by the subjects in some of the experiments.

Although the present study is clearly limited by the number of participants
and the duration of the experiments, we find that these questions merit explo-
ration in order to enable a continuous quantified self estimation of our changing
levels of attention and fatigue.
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Correction

Please note that Fig. 2 in the included official printed version for some reason has

lost the error trend. The correct figure is shown below.
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Figure C.1: Attention Network Timing over all sessions in the two week period. Conflict

Resolution (RED) is slower than Alertness (GREEN) and Orientation (BLUE). A (LEFT) shows

an increasing error rate trend (SOLID); Conflict Resolution for B gradually approaches the

other +>latencies. Both A and B have large variations over time, pointing to varying levels of

attention, fatigue and motivation.
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Abstract. The emergence of mobile eye trackers embedded in next gen-
eration smartphones or VR displays will make it possible to trace not
only what objects we look at but also the level of attention in a given situ-
ation. Exploring whether we can quantify the engagement of a user inter-
acting with a laptop, we apply mobile eye tracking in an in-depth study
over 2 weeks with nearly 10.000 observations to assess pupil size changes,
related to attentional aspects of alertness, orientation and conflict res-
olution. Visually presenting conflicting cues and targets we hypothesize
that it’s feasible to measure the allocated effort when responding to con-
fusing stimuli. Although such experiments are normally carried out in a
lab, we have initial indications that we are able to differentiate between
sustained alertness and complex decision making even with low cost eye
tracking “in the wild”. From a quantified self perspective of individual
behavioural adaptation, the correlations between the pupil size and the
task dependent reaction time and error rates may longer term provide
a foundation for modifying smartphone content and interaction to the
users perceived level of attention.

Keywords: Eye tracking · Attention network

1 Introduction

Low cost eye trackers which can be embedded in next generation smartphones
will enable design of cognitive interfaces that adapt to the users perceived level of
attention. Even when “in the wild”, and no longer constrained to fixed lab setups,
mobile eye tracking provides novel opportunities for continuous self-tracking of
our ability to perform a variety of tasks across a number of different contexts.

Interacting with a smartphone screen requires attention which in turn
involves different networks in the brain related to alertness, spatial orientation
and conflict resolution [20]. These aspects can be separated by flanker-type of
experiments with differently cued, sometimes conflicting, prompts. Dependent
on whether the task involves fixating the eyes on an unexpected part of the
screen, or resolving the direction of an arrow surrounded by distracting stimuli,
different parts of the attention network will be activated, in turn resulting in
varying reaction times [7].
c© Springer International Publishing Switzerland 2016
M. Antona and C. Stephanidis (Eds.): UAHCI 2016, Part I, LNCS 9737, pp. 409–420, 2016.
DOI: 10.1007/978-3-319-40250-5 39
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The dilation and constriction of the pupil is not only triggered by changes in
light and fixation but reflect fluctuations in arousal networks in the brain [13],
which from a quantified self perspective may enable us to assess whether we are
sufficiently concentrated when we interact with the screens of smartphones or
laptops, carrying out our daily tasks. Likewise the pupil size increases when we
face an unexpected uncertainty [1], physically apply force by flexing muscles,
or motivationally have to decide on whether the outcome of a task justifies
the required effort [23]. Thus, when we perform specific actions, the cognitive
load involved can be estimated using eye tracking. The pupil dilates if the task
requires a shift from a sustained tonic alertness and orientation to more complex
decision making, in turn triggering a phasic component caused by the release
of norepinephrine neurotransmitters in the brain [2,8], which may reflect both
the increased energization as well as the unexpected uncertainty related to the
task [1].

Whereas these results have typically been obtained under controlled lab con-
ditions, we explore in the present study the feasibility of assessing a users level
of attention “in the wild” using mobile eye tracking.

2 Method

2.1 Experimental Procedure

This longitudinal study was performed repeatedly over the course of two weeks
in September-October 2015. Two male right-handed subjects, A and B, (of aver-
age age 56) each performed a session very similar to the Attention Network
Test (ant) [7] approximately twice every weekday, resulting in 16 resp. 17 com-
plete datasets, totaling 9.504 individual reaction time tests. The experiment
ran “in the wild” in typical office environments off a conventional MacBook
Pro 13” (2013 model with Retina screen) that had an Eye Tribe Eye Tracker
connected to it. The ant used here is implemented in PsychoPy [18] and is
available on github [4]. Simultaneously, eye tracking data is recorded at 60 Hz
and timestamped for synchronization through the Eye Tracker API [21] via the
PeyeTribe [3] interface.

Before the actual experimental procedure starts, a calibration of the Eye
Tracker is performed. The experiment contains an initial trial run that the user
may select to abort, after which 3 rounds of 2 · 48 conditioned reaction time
tests follows (Fig. 1); each test is conditioned on one of 3 targets: Incongruent,
Neutral or Congruent and on 4 cues: No Cue, Center Cue, Double Cue or Spa-
tial Cue. At the start of each test, a fixation cross appears, and after a random
delay of 0.4–1.6 s the user is presented to a cue (when present for the particu-
lar condition). 0.5 s later the target appears, either with incongruent, neutral or
congruent flankers. The user is instructed to hit a button on the left or right
side of the keyboard with his left or right hand depending on the direction
of the central arrow of the target, which appeared above or below the initial
centred fixation cross. Half the targets appear above and half below the fixa-
tion cross, and left/right pointing central arrows also appear evenly distributed.
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Fig. 1. This Attention Network Test procedure used here: Every 4 s, a cue (either of
4 conditions (Top, Left)) precedes a target (either of 3 congruency conditions (Top,

Right)), to which the participant responds by pressing a key according to the central
arrow. The reaction time differences between cue- and congruency conditions form the
basis for calculating the latencies of the attention, orientation and conflict resolution
networks.

The resulting reaction time “from target presentation to first registered key-
press” is logged, together with the conditions of the individual tests, whether
the user hit the correct left/right key or not, and a common timestamp. For
further details on the ant please see [7].

Each test takes approximately 4 s to perform. With 2·3 repetitions of all com-
binations of conditions, left/right arrows and above/below targets, this results in
6 · 12 · 2 · 2 = 288 single tests. The user has the option of a short break after each
96 performed tests. A typical session with calibration, experimental procedure
and short breaks lasts approximately 25–30 min.
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2.2 Analysis

The reaction times for each experiment, for which the user responded correctly
within 1.7 s, are grouped and averaged over each of the 3 congruency and 4 cue
conditions, and the Attention Network Test timings can be calculated as follows:

talertness = tno cue − tdouble cue

torientation = tcenter cue − tspatial cue

tconflict resolution = tincongruent − tcongruent

where

tcond =
1
N

N∑

i|i=cond

ti

Linear pupil size and inter-pupil distance data can be somewhat “noisy” when
recording in office conditions. After epoch’ing to corresponding cue times for the
individual tests, invalid/missing data from blink-affected periods are removed,
and a Hampel [9] filter is therefore applied, using a centered window of ±83 ms
(shorter than a typical blink) and a limit of 3σ, to remove remaining outliers.
Data is then downsampled to 100 ms resolution using a windowed averaging filter,
and scaled proportionally to the value at epoch start (cue presentation), so that
the resulting pupil dilations represent relative change1 vs the pupil size at cue
presentation. This last part was done to compensate for varying environmental
luminosity changes and, to some degree, to offset any effect from immediately
preceding reaction time test(s) and to compensate for accidental head position
drift.

Time-locked averaging is then done by grouping data from similar conditions
within each experiment, from which the group-mean relative pupil dilations can
be derived.

At the same time, the inter-pupil distance is calculated, to ensure that pupil
size changes would not be the accidental result of moving the head slightly dur-
ing the experiment. Additionally, a “baseline” experiment has been performed,
recording eye tracking data in a condition where no action can be taken by the
user and when no arrow-heads are visible on the targets but otherwise presented
in similar conditions, in order to rule out that the recorded pupil dilations would
be the result of (small) luminosity changes caused by the presented cue and tar-
gets, or a result of slightly changing accommodation between the focus points of
the cue and the target.

The inter-pupil distance variation was found to be significantly smaller (typi-
cally much less than 0.2%) than the recorded pupil dilations, and the “baseline”
experiment could not account for the recorded pupil dilations from the real
experimental procedure either; it just showed the expected random variations.

1 The data received from the eye tracker is uncalibrated and cannot easily be refer-
enced to a metric measurement.
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The data processing has been done with iPython [19] using the numpy [22],
matplotlib [11], pandas [15], scipy [16] and scikit-learn [17] toolboxes.

3 Results

3.1 Attention Network Test Timings

Table 1 shows the aggregate Overall Mean Reaction- and Attention Network
timings for each subject A and B, with estimates of the variation over the
week. The figures are not significantly different from what is found in [7]; the
Meanrt reported here is slightly higher than an estimated 512 ms in the refer-
ence, whereas the alertness, orientation and conflict resolution are slightly lower
or similar to the 47 ms, 51 ms and 84 ms reported.

Table 1. Average Reaction- and Attention Network-Times over all correctly replied
experiments for the two week period for either user (the variation over the period is
given as estimated ± Sample Standard Deviation of the aggregate values), in millisec-
onds.

Subject Meanrt Alert Orient Conflict

A 577 (±54) 27 (±21) 22 (±18) 85 (±16)

B 559 (±55) 35 (±17) 49 (±15) 81 (±17)

There are, however, behavioural variations in reaction time throughout the
weeks. Figure 2 shows the variation of the derived ant timings throughout the
experimental period, and the relative error rate for each experiment. The varia-
tion appear to be statistically significant, as can be estimated from the standard
error of the mean (the shaded area), and may reflect underlying states of varying
levels of attention, fatigue and motivation.

To sum up the behavioural results, A shows a somewhat increasing trend in
error rate related to the objective task performance, whereas B shows a dimin-
ishing difference between the three estimated measures of conflict resolution,
spatial orientation and alertness reaction time.

3.2 Pupil Dilations

The group-mean relative linear pupil dilations for each of the 3 congruency
conditions are illustrated in Fig. 3.

Pupil dilation responses are all epoch’ed to the cue (at time 0 ms) and target
presentation (time 500 ms). A small and slow pupil dilation onset is seen <300 ms
after cue presentation, followed by a larger response likely triggered by the target
presentation, with an onset of approximately 700 ms and a peak approximately
1300 ms after target, with some variation between conditions, subject and eye.
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Fig. 2. Attention Network Timing over all sessions in the two week period. Conflict
Resolution (Red) is slower than Alertness (Green) and Orientation (Blue). A (Left)
shows an increasing error rate trend (Solid); Conflict Resolution for B gradually
approaches the other latencies. Both A and B have large variations over time, pointing
to varying levels of attention, fatigue and motivation. (Color figure online)
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Fig. 3. Averaged left-eye pupil dilations for each session, coloured according to con-
gruency (A (Left) and B). All-session average shown in bold, with the shaded area
representing the standard error of the mean. The average incongruent (Red) pupil
dilation is stronger than the others, indicating a higher cognitive load. (Color figure
online)

Even though the experimental conditions are not directly comparable, [14]
reported comparable peak latencies at 1400 ms after stimulus for a Stroop effect
experiment. Our results are thus in line with these previous findings of pupil
dilations, as well as with those reported in earlier processing load experiments
[12] at approximately 900–1200 ms. The initial onset of the pupil dilation can
occur even faster in some conditions [6,10] although generally onset and peak
latencies appear to be within the 150–1400 ms.

The incongruent pupil dilation is larger than the more similar neutral and
congruent dilations; there is however no such difference when comparing the 4
cue condition (not shown). The incongruent pupil dilation also has a tendency
to appear slightly later (most easily visible for A), consistent with the longer
reaction times for the inconsistent condition.
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Figure 4 shows the (relative) pupil size Blue vs the median value over a
selected period that covers 48 reaction time tests, in this case for B, for two
different experiments. Test-related pupil dilation responses, that occur every 4 s,
are not immediately visible in this graph due to random noise and a relatively
strong longer-periodic variation over 20–60 s2. The Green curve shows the rela-
tive variation of the inter-pupil distance, with variations an order of magnitude
smaller than the pupil size changes.
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Fig. 4. Filtered pupil size plots; 48-test long sections of two experiments (B, left-eye).
Relative inter-pupil distance (Green) indicates stable eye-to-screen distances. (Color
figure online)

Figure 5 shows the area under the pupil dilation curve between 1.5–2.5 s after
cue (1.0–2.0 s after target) for each experiment, serving as a very rough indicator
of the relative cognitive load caused by the tests. From these, also a δ(incon)
can be calculated by subtracting the congruent value from the incongruent.
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Fig. 5. Area under left-eye pupil dilation curves [1.5, 2.5] s for each session, indicative
of cognitive load, grouped after congruency. Both A (Left) and B show initial training
effects; only A however shows an increasing trend in cognitive load for the remaining
sessions. (Color figure online)

2 A frequency domain analysis of the signal shows, however, a distinct peak at 0.25
Hz, as expected.
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It is seen that both A and B have larger pupil dilation responses for the
initial two experiments, after which the level is lower. For B it remains at lower
levels, indicating a training effect. For A, the pattern is less clear, with possibly
an increased load towards the end of the two week period.

3.3 Predicting Congruency Condition from Pupil Dilations

In order to verify how well previous pupil dilations allow predicting the class
of congruency condition, a subset of the 3 within-experiment 96–average pupil
dilation responses from each subject were ordered in each of the 6 possible per-
mutations of the 3 congruency conditions. A neural-network type classifier was
then trained to identify which of the 3 averaged pupil dilations were the incon-
gruent.
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Fig. 6. Test error rates (0.9/0.1 train/test split) predicting averaged 3 s incongruent
pupil dilations after cue vs number of averaged experimental tests. At 48 averaged
experimental tests, the test error rate at 50% is clearly below chance (66.6 %, dotted).
(Color figure online)

Figure 6 shows the resulting test error rate vs. the number of averaged exper-
imental tests, dividing the 96 equal-condition responses of each experiment into
groups of 96, 48, 32 or 24 tests, and using a test/train split of 0.9/0.1. The
performance is clearly above chance level (66.6 %), and approaches 80 % accu-
racy for B vs 60 % for A. Even at groups of 24 averaged experimental tests, the
classifier operate above chance level, with continuing improved performance for
larger groups for B, however only marginally improving performance for A.

3.4 Correlating Response Times and Pupil Reactions

Table 2 show the Pearson Correlation Coefficients for all combinations of Atten-
tion Network- and Reaction-Times, Pupil Dilation metrics and Time-of-Day for
each subject, as it varies over the two week period. As the data sets are small (16
and 17 sets), caution is needed when judging the significance levels (p-values).

With some variation between subjects, pupil dilation responses appear
correlated.
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Table 2. Pearsons correlation coefficients between key metrics for A (Top) and B. A
shows negative correlation between mean reaction time and error rate (“speed-accuracy
tradeoff”). B (opposed to A) shows correlation between pupil dilations and error rate,
possibly indicating a different response to varying levels of fatigue or motivation; addi-
tionally alertness (and partly orientation) may inversely correlate to pupil dilations.
Both show expected correlations between pupil dilation metrics.

Att.-Net/Reaction Time Pupil Dilation

Orient Conflict μ(RT) Incon Neutral Con δ(Incon) ToD Errors

Att.-Net/Reaction Time
Alert 0.112 −0.047 −0.189 −0.013 −0.131 −0.011 −0.008 0.061 −0.051

Orient −0.548† −0.468∗ 0.274 0.269 −0.020 0.402 0.132 0.270

0tciflnoC .474∗ −0.081 −0.149 0.035 −0.147 0.330 −0.416

μ(RT 0) .002 0.049 −0.069 0.068 0.237 −0.635†

Pupil Dilation
Incon 0.767‡ 0.701‡ 0.737 ‡ 0.062 −0.098

Neutral 0.752‡ 0.362 0.222 0.109

Con 0.034 0.000 −0.018

δ(Incon) 0.087 −0.121

ToD 0.066

Two-tailed significance less than ∗7.5%, †5% and ‡0.25% marked.

Att.-Net/Reaction Time Pupil Dilation

Orient Conflict μ(RT) Incon Neutral Con δ(Incon) ToD Errors

Att.-Net/Reaction Time
Alert 0.015 −0.107 0.438 −0.499† −0.534† −0.231 −0.576 † 0.062 −0.358

Orient −0.094 0.352 −0.474∗ −0.407 −0.559† −0.155 0.056 −0.386

0tciflnoC .289 0.431 0.439 0.362 0.309 0.411 0.301

μ(RT) −0.220 −0.286 −0.173 −0.173 0.481∗ −0.400

Pupil Dilation
Incon 0.894‡ 0.817‡ 0.746 ‡ −0.026 0.725‡

Neutral 0.831‡ 0.549 † −0.184 0.701‡

Con 0.224 −0.020 0.626†

δ(Incon) −0.021 0.501†

ToD −0.215

Two-tailed significance less than ∗7.5%, †5% and ‡0.25% marked.

Subject A shows correlation between orientation and conflict resolution tim-
ings, which is however not seen at all for B. A also may have some correlation
between mean reaction time and orientation resp conflict resolution timings,
which are however again not quite as present with B.

Subject B shows correlation between alertness timing and both incongruent,
neutral and δ(incon) pupil dilations, as well as correlation between orientation
timing and congruent pupil dilations. These are not present for A, however.
Also, there are indications of a correlation between the time of day and the
mean reaction time; the experiments done on B were spread out over larger
sections of the day than for A, which might explain why this is not seen for A.
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[7] reported correlations between the conflict resolution timing and the mean
reaction time over a large group of people. As such, the conditions are not similar
to the within-person variation, but it might be worth pointing out that a similar
correlation is partly present for A and cannot be ruled out for B.

4 Discussion

Using low cost portable eye tracking to measure the variations in pupil size, we
have initial indications that we were able to differentiate and predict whether
users were engaged in more complex decision making or merely maintaining a
general alertness when interacting with a laptop, over nearly 10.000 tests. A par-
allel single-experiment study [5] repeating the experimental setup with nearly
10.000 additional tests over 18 more subjects, have confirmed that similar signif-
icant pupil response differences characterize the contrasts between incongruent
versus neutral or congruent task conditions.

In the present study, we found a significant difference based on the left eye
pupil size for the conflict resolution task in contrast to the attentional network
components of alertness and re-orientation, but not between these two latter
tasks. These results may reflect findings in other studies indicating that the
phasic component in attention is predominantly triggered by tasks requiring a
decision, whereas the tonic alertness may suffice for solving less demanding tasks
like responding to visual cues or re-orienting attention to an unexpected part of
the screen [2] as seen in the “baseline” experiment, where no decision needs to
be made and no motor cortex activation takes place.

From a quantified self perspective of individual behaviour, using mobile eye
tracking to assess levels of engagement, the relations between pupil size (a possi-
ble quantification of the cognitive load), and error rate/reaction time (a quantifi-
cation of the objective task performance), indicate individual differences among
the subjects’ behavioural adaptation to the attentional tasks. Participant A is
apparently coping with the cognitive load by trading off speed and accuracy to
optimize performance, as indicated by the lack of correlation between pupil size
and either of the performance related measures. However, for Participant B the
correlation between pupil size and accuracy may suggest a behavior character-
ized by applying more effort to the task if the number of errors increase.

As we have in this study only used the pupil size as a measure of atten-
tion, even without considering the spatial density of fixations or the speed of
saccadic eye movements that could entail further information, we suggest that
mobile eye tracking may not only enable us to assess the effort required when
undertaking a variety of tasks in an everyday context, but could also longer term
provide a foundation for continuously adapting the content and interaction with
smartphones and laptops based on our perceived level of attention.

Acknowledgment. This work is supported in part by the Innovation Fund Denmark
through the project Eye Tracking for Mobile Devices.
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Abstract
Cognitive processes involved in both allocation of attention during decision making as
well as surprise when making mistakes trigger release of the neurotransmitter
norepinephrine, which has been shown to be correlated with an increase in pupil
dilation, in turn reflecting raised levels of arousal. Extending earlier experiments based
on the Attention Network Test (ANT), separating the neural components of alertness
and spatial re-orientation from the attention involved in more demanding conflict
resolution tasks, we demonstrate that these signatures of attention are so robust that
they may be retrieved even when applying low cost eye tracking in an everyday mobile
computing context. Furthermore we find that the reaction of surprise elicited when
committing mistakes in a decision task, which in the neuroimaging EEG literature have
been referred to as a negativity feedback error correction signal, may likewise be
retrieved solely based on an increase in pupil dilation.

Introduction
The pupil provides a window into some of the processing that otherwise takes place
invisibly inside the human brain. Hess and Polt [1], [2] as well as later Kahneman and
Beatty [3], [4] found evidence that linked emotional and cognitive processes to pupil
dilations, and Aston-Jones et al. [5], [6] and Joshi [7] have provided a framework for
understanding some of the anatomical processes that take place in regulating the gain of
the networks involved, and why pupillary reactions are visible:

At the core, the Locus Coeruleus-Norepinephine (LC-NE) system operates in two
different modes, tonic mode that regulates the overall level of preparedness or arousal
and phasic mode that is involved in responding to task-relevant stimuli. As task
difficulty increases, so will tonic mode activity, modulating the gain, which in turn leads
to a increased performance and a stronger phasic response to task-relevant stimuli. If,
however, the arousal system and tonic activity mode increase beyond a certain peak
point, the phasic responses decrease, leading to an explanation of the classical trade-off
between arousal and optimal performance first analysed by Yerkes and Dodson [8].

Activity in LC-NE cells are further reflected in pupillary dilations [7], and the pupil
can thus be interpreted as a marker of LC-NE activity (see also Fig. 1 and Fig. 2).
Baseline pupil size varies on a large scale of 3-4mm as a response to changes in light
levels [9], [10] whereas variations caused by cognitive processes are much smaller,
typically on the order of 0.5mm or 15% compared to typical pupil sizes found in normal
conditions [4].

The baseline pupil size is modulated by the tonic activity in LC-NE, and is never at
rest; it has been known for a long time to vary. Stark et al. [11] speculated that this
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Fig 1. Performance vs Tonic Level, illustrating pupil dilations resulting from a
phasic response to relevant stimuli vs the tonic baseline level, regulated by the LC-NE
system. Sensitivity to task specific relevant stimuli is greatest at [B], where the largest
phasic dilations are seen as compared to at [A] and [C]. Note that the graphs are not
actual data to scale but is drawn for illustrative purposes. (Adapted from [5] [7],
resembling the classical Yerkes-Dodson relationship [8] )

could be part of an “economical” construction of the eye in the sense that there is no
need for the eye to operate at a more narrow range, and in our previous study [12] we
also noted slow variations of the baseline pupil size of +/-10% on a timescale of 30–60s.
Task-Evoked Pupillary Responses [13], [14] (TEPR) above the current baseline are
caused by phasic activity in the LC-NE system, and by averaging over many similarly
conditioned tests time-locked to the stimuli, other factors can be filtered out.

Recent fMRI studies by Kuchinsky et al. have further established that activity in
saliency networks triggered by attentional tasks are reflected in increased tonic pupil
size, in contrast to the decreased pupil dilation typically observed when we are in a
default resting state [15].

Phasic activations of the LC-NE system in the noradrenergic (NE) neurons also play
a role in rapid adaptation to changing conditions, as demonstrated by Bouret et al. [16],
in that it may facilitate reorganisation of the innervated areas. This allows for adaption
of behaviour to changes in task conditions; real or when they deviate from anticipation.

Preuschoff et al. [17] have found that pupil dilations not only reflect decision making
per se or the level of engagement, but also indicates surprise when committing mistakes
in decision tasks, suggesting that NE plays a role in error signalling. This appear similar
to the negativity feedback components, which is an Event Related Potential (ERP)
typically observed in EEG neuroimaging experiments 250-300 ms after participants
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Fig 2. Pupil dilation baseline vs respose to relevant stimuli in 3 different
conditions, corresponding to drowsiness [A], highly focused task-specific attention [B]
and distractible, scanning attention [C]. The blue curve illustrate the level and
fluctuations of the pupil size at each condition. The baseline pupil size is shown in
black, with the green area denoting the size of the response present when a task-relevant
stimuli appear. Note that the drawing is not to scale.

realize that an incorrect choice was made [18].

Materials and Methods
While attention can be broadly understood as “the appropriate allocation of processing
resources to relevant stimuli” [19], Posner and Petersen [20], [21], [22] have shown that
three systems, which regulate attention, are anatomically separate from other processing
systems and carry out different cognitive roles as part of the attention networks. These
are:

• Alerting,

• Orienting and

• Executive Control.

Fan et al. [23] designed a behavioral experiment, known as the Attention Network Test
(ANT), to assess which of the network components are activated based on differences in
reaction time when responding to visual cues.

We have in a previous experiment [12], measured Task-Evoked Pupillar Responses
during the ANT test in a longitudinal study of two subjects. A stronger response was
triggered by incongruent conditions in the conflict resolution decision task, likely
involving the executive network.

This study expands the number of subjects, investigates the changes in mean pupil
size over the experiment, and look at the relationship between the tonic level and the
accuracy of the responses.

Experimental Procedure
The procedure followed and the equipment used is identical to that described in [12],
and is further illustrated in Fig. 3. In this present study, in total N=18 participants (7

3
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Fig 3. The Attention Network Test procedure used here: Every 4 seconds, a cue (either
of 4 conditions (Top, Left)) precedes a target (either of 3 congruency conditions (Top,
Right)), to which the participant responds by pressing a key according to the central
arrow. The reaction time differences between cue- and congruency conditions form the
basis for calculating the latencies of the attention, orientation and conflict resolution
networks. This figure and description is from [12].

female and 11 male) with a mean age of 25.3 years were tested once. None used glasses
or contact lenses, and all but one were right-handed.

The participant were all volunteers that were only allowed to complete the test if
they gave consent to their data being used anonymously for research purposes. The
ANT test itself is a standard paradigm in widespread use.

Analysis
Pupil size is recorded at 60 Hz, and blink-affected periods are removed. A Hampel [24]
filter with a centered window of +/-83ms and a limit of 3σ is applied to remove outliers,
and when data is not present in at least half the window, the center point is also
removed. This later part takes care of removing any samples immediately before and
after blinks, to avoid accidental pupil size changes caused by distortion of the visible
part of the eye. Finally data is downsampled to 100ms resolution with a windowed
averaging filter.
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For the TEPR calcuation, data is epoch’ed to the cue presentation and individually
scaled to the value at the start of the epoch.

For the tonic pupil size, a period of 1s immediately before target presentation is
sampled to give a representative value without the phasic response, that in most
conditions appear to fade away after around 2.5s after stimuli. The pupil was further
corrected for variations in head-distance by means of the eye-to-eye distance reported by
the eye-tracker.

The mean pupil size was calculated in each of the 4 periods (the initial trial round
and the three actual blocks of reaction time tests) as the average value of the filtered
pupil data corrected for head-distance variations, which means it is representative of
both the tonic pupil size and the ovelaid phasic responses.

Results

Table 1. Average Reaction- and Attention Network-Times over all correct tests across
all users (± Sample Standard Deviation listed in parenthesis), in seconds.

Meanrt Alerting Orienting Conflict

0.505 (±0.074) 0.033 (±0.022) 0.019 (±0.016) 0.093 (±0.033)

The mean reaction time and the effect of the alerting, orienting and conflict resolution
networks are summarized in table 1. The mean alerting effect was 33ms (±22ms),
comparable to the 47ms (±18ms) reported by Fan et al. [23]. The mean orienting and
conflict effecs were 19ms (±16ms) and 93ms (±33ms) respectively, to be compared
against somewhat higher 51ms (±21ms) and more similar 84 ms (±25ms).

Phasic Pupil Dilation vs Condition and Surprise
Fig. 4 shows the average pupil dilation for all correctly replied tests at the three
congruencies as an average value of all correctly replied tests for all subjects, for both
left and right eye. The incongruent condition, where the executive control network is
also invoked, shows a longer-lasting response in both eyes. Left and right eye responses
do not appear statistically significant.

Fig. 5 shows the difference between correct and incorrect (incongruent) responses. A
statistically significant stronger response is seen when an error is made, which indicate
that the subjects are aware of having made an error. Similar results are seen also for
the other congruency conditions, and is also seen for the original longitudinal study
when analysed in the same way (not shown).

Tonic Pupil Dilation vs Accuracy and Reaction Time
Fig. 6 and Fig. 7 show scatter plots of all correct (green) and incorrect (red) responses
to the incongruent condition according to the reaction time and the tonic pupil size
immediately before the test. Incorrect replies are associated with shorter reaction times.
The reaction times are statistically different between conditions for all participants of
the present study and for A and B in the longitudinal study. The tonic pupil size does
not differ in the present study between conditions. However, for the original longitudinal
study, participant A shows a statistically significant difference between conditions, with
the mean tonic pupil size smaller when incorrect replies are given. See also Table 2.

5
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Fig 4. Average Pupil Dilation at the three congruencies for left and right eye,
respectively, for the N=18 subjects of the present study (correct responses only). A
slight initial reaction appear to the presentation of the cue at t = 0, followed by a
continued and stronger response to presentation of the target at t = 0.5. The congruent
(green) and neutral (blue) pupil dilations are similar, but the incongruent (red) response
is stronger and lasts longer. The shaded areas represent one standard error of the mean
(SEM) to each side. As blinks are more frequently occuring somewhere in the range of t
between 1 and 2 seconds, the SEM is somewhat larger here. The magenta line shows
where a Welch t-test between the incongruent and the neutral conditions are
significantly different with a confidence level of p < 0.05; the cyan line marks the
p < 0.005 level.
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Fig 5. Average incorrect incongruent Pupil Dilations vs correct responses for
left and right eye, respectively, for the N=18 subjects, graphed similarly to Fig 4. An
incorrect response invokes a statistically significant stronger pupil dilation, almost twice
as large as for correct responses.

Tonic Pupil Dilation over time
Fig. 8 shows an illustrative sample of how the mean pupil size (corrected for variations
in head distance) varies over the course of the initial training round and the three actual
trial blocks. Left and right pupil size are slightly different for this particular subject,
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Fig 6. Scatter plot of the tonic pupil size relative to the session mean vs
reaction time for incongruent conditions for all participants (left and right eye),
colour coded according to correct (green) and incorrect (red) responses. The mean
reaction time between correct and incorrect responses are significantly different for the
incongruent condition (Welch t-test t = 7.00, p < 0.000001). The mean relative tonic
pupil size between correct and incorrect responses do not significantly.

Fig 7. Scatter plot of the left eye tonic pupil size relative to the session
mean vs reaction time for incongruent conditions for both participant A (left) and B
(right) over all sessions of the longitudinal study, colour coded according to correct
(green) and incorrect (red) responses (left eye only shown). The mean reaction time
between correct and incorrect responses are significantly different for the incongruent
condition for either participant; see Table 2. The mean relative tonic pupil size between
correct and incorrect responses only differ significantly for participant A (Welch t-test
t = 2.47, p = 0.014 left eye and t = 2.39, p = 0.017 right eye); for B they appear very
similar. Also note that variations in the relative tonic pupil size appear larger for A
than for B.

but there is good correlation between variations of the two (Pearson’s R = 0.948). An
regression corresponding to a low pass filter (a 2nd order polynomial fit) is shown
overlaid, and can explain approximately 30-35% of variance (explained variance
R2 = 0.345 and R2 = 0.301 respectively).

It also appears as if each block has a slightly larger tonic pupil size initially followed
by a decline of approximately 10%. The means for each block also apper to differ, with
the initial training round having the larger tonic pupil size.

When comparing the mean tonic pupil size between the initial training round and

7
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Table 2. Relative tonic pupil size and reaction time
µ SEM N p()

All (N=18)

PSz
OK 0.998 0.002 1472
NOK 1.010 0.007 254

δ 0.017 0.116

µRT
OK 0.568 0.003 1472
NOK 0.496 0.010 254

δ -0.072 0.000

A

PSz
OK 1.003 0.003 1333
NOK 0.982 0.007 198

δ -0.021 0.014

µRT
OK 0.631 0.003 1333
NOK 0.572 0.009 198

δ -0.059 0.000

B

PSz
OK 1.000 0.002 1434
NOK 1.001 0.004 197

δ 0.001 0.845

µRT
OK 0.612 0.002 1434
NOK 0.519 0.004 197

δ -0.093 0.000

Left eye tonic pupil size, as measured immediately before target presentation, relative to
each session’s mean, and the reaction times, are listed across all subjects of the present
study, and for both participant A and B over all sessions of the longitudinal study, for
incongruent conditions, divided into groups of correct and incorrect responses. The
mean reaction time (µRT ) differ between correct and incorrect responses in a significant
way (Welch’ t-test t = 7.00, t = 5.99 and t = 21.29 respectively, p<0.000001) for both A
and B. The means of the tonic pupil size (PSz) differ significantly between correct and
incorrect responses for A (Welch’ t-test t = 2.47, p = 0.014); for B and the participants
of the present study, the means between the conditions do not show a statistically
significant difference. Almost identical results are found for right eye pupil sizes (not
listed here).

the three actual trial blocks, there are statistically significant differences across all
participants of the present study, and also for participant B of the longitudinal study.
For participant A, however, there are no statistically significant differences. See Fig. 9
and Fig. 10

Fixation Density Map Differences
Average Fixation Density Maps, adjusted for accidental mis-calibrations, were built for
each experiment, and were compared between conditions. We did, as expected, see
recognisable differences when the target presentation was above vs below the fixation
cross, but we were not able to detect any significant spatial differences between
congruency conditions nor between cue conditions.

Discussion
The results of this study, with a larger population, supports our previous findings:
There is a difference in the incongruent vs congruent/neutral flanker scenarios in that
an incongruent condition solicit a larger pupillary response compare to the other two

8
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Fig 8. Pupil Size over a sample session that illustrates interesting trends
clearly. This session is a first-run for a participant in the larger study. Red and Green
marks the measured pupil size (compensated for changes in head distance) for left and
right eye respectively. The solid magenta and cyan lines are 2nd order approximations
to the pupil size; the explained variance (R2) are 0.345 and 0.301 respectively. Initiation
of each of the 3 rounds of the session are marked with dashed lines. An initial increased
pupil dilation diminishes over time as entraining takes place, with a slight increase
towards the end. It can also be seen that, in this case, each round starts out with an
increase pupil dilation.
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Fig 9. Mean Relative Pupil Size for all subjects in this present study
divided into the initial training round and the three actual trial blocks. The red line
denotes the SEM. The differences between the initial training round and any of the
three other blocks are statistically significant (Wilcoxon signed-rank test T = 12,
T = 111, T = 35, all with a confidence level p < 0.001). The differences between the
other blocks are not statistically significant.
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Fig 10. Mean Relative Pupil Size for all subjects in the longitudinal study
divided into the initial training round and the three actual trial blocks. The red line
denotes the SEM. The differences between the initial training round and any of the
three other blocks are statistically significant for B (Wilcoxon signed-rank test T = 18,
T = 13, T = 18, all with a confidence level p < 0.001). The differences between the
other blocks are not statistically significant. However, for A there are no statistically
significant differences between the blocks; the variations between the 4 blocks are
comparatively much smaller than than what is seen for other participants.

conditions. As the age group is different compared to the previous study, there are
indications that the results may be robust and can translate to different settings..

In most cases we see a high correlation (R values from 0.8–0.95) between left and
right pupil size, although a few have what may be less than optimal tracking. We cannot
conclude any significant difference in the pupil dilation responses between the two eyes,
but we notice that the significance level of the difference between the incongruent and
the neutral condition is higher and lasts slightly longer for the right eye.

In addition, we also found a significantly different response when subjects replied
incorrectly, which happens much more frequently for the inconguent condition. This
response may be related to the adaptation and required reorganization reported by
Bouret et al. [16] and/or to the surprise elements reported by Preuschoff et al. [17].

Thus, the phasic response reported here as well as in our previous study can be
divided into two components that apparently cause a higher level of LC-NE activations:
one related to the incongruent condition and one to the incorrect reply.

Comparing the mean relative pupil size over the 4 parts of the experiment (training
round and 3 blocks of tests) we found that for the subjects of the present study, as well
as for subject B of the longitudinal study, the training round had a statistically
significant higher level, around 5%, compared to the other three blocks that averaged
around -2%. The subject A of the longitudinal study, however, did not show any such
variation between the blocks. We hypothesize that this may point to differences in
individual characteristics, behavoiur or preferences.

Further, comparing relative normalized tonic pupil sizes (excluding the phasic
responses) showed a statistically significant difference between the level immediately
before an incorrect reply compared to the level before a correct reply for subject A of
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the longitudinal study but not for subject B nor for the participants of the present
study. However, while for subject B the levels are almost identical, there is a larger
difference even if not statistically significant for the participants of this study, and it
therefore cannot be ruled out that participants could fall in different groups that, with
more data, would reveal more individual variation.

We also point out that the possible familiarity effects of higher pupillary responses
mainly in the two first complete experiments were not tested for in the present
experiment, since it was performed only once for each participant. We do, however, see
hints at an overall adaptation, as the average (tonic) level decreases as initial entraining
to the tasks take place, with a flat or in some cases slightly increased tonic levels
towards task completion. This appear similar to the familiarity effect reported by
Hyönä et al. [25]

We were not able to find any spatial differences in eye movements, at the resolution
we worked with, that was related to the conditions of the test, apart from the up-down
position of the target.
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Pupillary Measurement During an Assembly Task
Per Bækgaard*, Shahram Jalaliniya‡, and John Paulin Hansen*

Abstract—This paper seeks to clarify whether pupillary mea-
sures can be used to analyse user experiences in-the-wild. We
conducted an empirical study of 57 children using a printed
Booklet and a digital Tablet instruction for LEGO R© construction
while they wore a head-mounted gaze tracker. There were
significant differences in the children’s pupil dilation under the
two task conditions, with Booklets causing a particularly strong
dilation when encountered as the first media. Overall, the relative
pupil size dropped 3% for those who started with the Booklet
and finished with the Tablet, in contrast to relative smaller pupil
size changes for the remaining participants. The children who
were least productive and asked for assistance more often had
a significant different pupil pattern than the rest. Subjective
responses confirmed the Tablet to be more fun, faster and
easier to use. We suggest how a possible link between pupillary
measurement and user experience might be explained in terms
of the Yerkes-Dodson [1] relationship between performance and
arousal. Finally, we envision how these measurements may be
collected automatically by digital devices with gaze tracking built
into them.

I. INTRODUCTION

Children are introduced to pictorial instructions for con-
struction toy sets. Instructions remain important throughout
adulthood for do-it-yourself assembly of machinery, household
appliances, furniture, etc. In the near future, successful joining
of homemade 3D-printed components may depend on easy-to-
follow instruction material. While 3D-printing offers in-situ
production, the pieces fabricated need to be assembled, and
without clear instructions on how to do this, the maker will
be lost.

Unclear instructions pose a risk that the assembled products
will not work or will become unsafe. Safety is of particular
concern when people do maintenance or repair on machinery
from drawings not fully understood. Emergency procedures,
e.g. a defibrillator or a fire extinguisher, require that step-by-
step instructions can be read under extremely stressful condi-
tions, emphasizing the need for careful design and evaluation
of the instructions.

An assembly task itself is part of the product experience.
If drawings are difficult to interpret, assembly may become
very frustrating. On the other hand, successful construction
guided by well-designed material may provide feelings of
achievement and joy [2].

Consequently, when pictorial instructions are a crucial part
of a task, it becomes important to consider the support they
provide. Is it easy to understand, safe and maybe even fun
to use? Ignoring these questions could make people break the
product or even injure someone.

* Technical University of Denmark
‡ Malmö University, Sweden

Construction tasks include manual assembly of the pieces
and handling the instructions, visual perception of the dis-
played information, and cognitive processing of the infor-
mation. Video analysis of manual activities and logging of
input to digital devices are common. Eye movement recordings
are used in a substantial amount of research on naturalistic
tasks, e.g. exploring daily activities [3] and web page use [4].
Measurements of mental workload are commonly done by
subjective ratings [5], which risk being rationalizations made
in hindsight, or using dual-task paradigms [6] that interfere
with execution of the primary task. EEG provides another
source of data for studying continuous cognitive load [7], but
placing electrodes on a participant’s head can be a challenge,
and subjects wearing them may feel awkward. Likewise,
Galvanic Skin Response (GSR) and heart rate measurements
require sensors to be attached to the subject, which may hinder
mobility.

Pupillometry holds potential as an unobtrusive way to
measure the cognitive effort associated with a given task. Data
may be collected remotely in real-time by a gaze tracking
camera. Gaze tracking is becoming low-cost and is likely to
be integrated with future displays. However, in real task situ-
ations, one of the main challenges is to distinguish the rather
large pupil reactions caused by unknown and uncontrollable
changes in the ambient light from the minuscule dilations
that reflect changes in cognitive effort. Another challenge is
the large individual differences in pupil size and in people’s
reactions to task difficulties. The pupil size may change over
time during execution of a task as people become more – or
less – engaged in it. Can noisy pupil data provide information
about the user experience and task engagement for a given
population? That is the main research question addressed in
this paper.

II. PICTORIAL ASSEMBLY INSTRUCTIONS

Since the pioneering work of Yarbus [8], it has been
well known that high-level cognitive goals will govern eye
movements in a top-down fashion (e.g. [9]). The task will
determine what parts of an assembly instruction get attention
at a particular time of the building process. As an example,
an initial question could be to establish what tools are needed,
or how many people to get involved (cf Fig. 1, left and right
respectively) whereas later the Areas of Interest (AOI’s)will
be determined by the current state of the building process.

The simplest form of assembly instruction is an image of
the final state, for instance on the package or a leaflet. More
advanced drawings may depict part-whole relationships by
slightly separating the pieces in an exploded 3D view. Often,
each piece has a number to indicate the order by which it
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should be added, and frequently a line shows exactly where
to mount it.

Exploded drawings (cf Fig. 2) can include numerous objects
in one perspective view, as seen in repair manuals for cars.
Complex assemblages may be hard to read for non-experts
because of difficulties identifying the individual parts [10]
and because the actual assemblage will change its appearance
from the original exploded picture when sub-parts are joined
together.

A common way to address complexity is by breaking the
building process into steps, with one picture for each step.
How best to decompose and depict an assembly process has
been extensively studied by e.g. Agrawala et al. [11] and
Schumacher [12]. They recommend that each step should
cover a significant action in a clear and explicit order, with
particular emphasis on new parts added. The angle of view
should be kept constant, similar to how it would appear on
the floor or workbench, and the orientation should minimise
obstruction of significant pieces. Novick and Morse [13] found
that the advantage of step-by-step breakdowns became more
evident when the number of steps increased (i.e. from 7 to 42
steps).

The preferred medium for step-by-step instructions has been
print on paper. However, paper manuals have serious short-
comings. They tend to be very large, heavy and less portable
if systems become complex [14]. Locating a particular item
in volumes of maintenance documentation may be extremely
difficult. Correcting an error after printing a manual is costly,
and the drawings will be out-dated when just a single piece
of the assemblage changes. Printed drawings offers one fixed
point of view and one zoom level only. Experts and novices
are served equally with no adaption to the changes in skill
level that comes with practise. Finally, printed instructions are
impractical because they take up (work-)space and because (at
least) one hand is needed when turning a page or unfolding
a leaflet. This is particularly inconvenient when people are
holding tools or assembly parts in their hands, or wearing
gloves.

In recent years, new digital forms of instruction material
have emerged. Video instructions are extensively shared on
websites like YouTube. They show how to do the assembling
task, most often guided by a speaker and sometimes with
graphics, text and animation overlays. Research has found
interactive video to be an efficient learning tool (e.g. [15]).
A common difficulty with video instructions, however, is to
locate specific information, for instance finding the sequence
where a particular item gets used [16].

Augmented reality (AR) projects an image next to or on
top of the items manipulated. Projectors may be mounted at
the workspace or embedded in head-worn displays. Several
studies have shown potential for AR assembly instructions.
Provided the AR systems are able to track the location of items
correctly, they may significantly improve work efficiency and
reduce cognitive load [17], [18], [19], [20], [21]. To overcome
the challenge of keeping the projections synchronized with
the assembly items, it has been suggested to use 3D motion
sensors and object recognition [22] or even to build sensors
into furniture pieces [23].

Apps with interactive building instructions have been pro-
vided by LEGO R© for some years. When downloaded to a
PC, Tablet or smartphone they offer step-by-step instructions
on how to build a model. Sequential navigation is done by
touching a forward or a backward button located in the corners.
Details can be examined by zoom and rotation; animations
show how to place a component and a forward/rewind slider
helps find a particular event in the construction sequence (cf
Fig. 3). Digital instructions often have more steps than the
Booklet that comes with the box, for instance model #42031
has 99 steps in the digital version and 84 on paper.

Paper manuals are still dominant because they are univer-
sally accessible, robust and easy to produce. Digital manuals
require the end-user to possess a display device (e.g. a Tablet
or a head-mounted display), an on-line connection, as well
as electrical power to charge the device. The device itself is
costly and may be vulnerable in rough work environments; it
may be difficult to read in sunlight, and handheld devices are
almost impossible to operate with gloves or greasy fingers.
While it only takes an illustrator to make the drawings needed
for a printed manual, a digital manual requires an additional
team of software developers.

However, we expect digital instructions to become more
common in the future because they offer easy updating,
extended explanations (e.g. more steps and animations) and
because a large amount of products are routinely modelled
in 3D for design, production, and marketing, which makes it
less costly to produce digital instructions for end-users. New
display forms, like Microsoft HoloLens or virtual reality (VR)
headsets, equipped with so-called see-through capabilities,
may soon bring augmented reality to industrial and medical
settings – and even the general population. If this happens,
there are several reasons to believe that gaze tracking will
eventually become part of a head-mounted set-up:

• Substantial amounts of processing-power may be saved
by only displaying full image detail at the current fixation
point; so-called gaze contingent resolution [24], [25].

• Gaze may serve as a hands-free pointer for effortless
interaction with the AR-display [26].

• Content providers may collect rich information on what
users look at, what they ignore, and what causes signifi-
cant task-related changes in their pupil size. [27], [28].

• Adding an eye camera to the set-up is technically uncom-
plicated; several providers of gaze tracking equipment
offer to build binocular cameras into commercial VR
gear.

• The eye camera will be completely unobtrusive for the
user, unlike e.g. EEG or Galvanic Skin Response (GSR)
that require additional sensors to be mounted.

Consequently, it is timely to explore whether pupil mea-
surement could provide information about the user experience
when executing an instructed task. This may benefit designers
of digital instructions, and it might also provide feedback to
students and instructors on learning progress [29].

III. THE PUPIL AS AN INDICATOR OF COGNITIVE EFFORT

The size of the pupil varies from 2mm and 8mm across
different subjects and light conditions [30]. Large variations
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Fig. 1. Burn-through focus maps of 14 people (mean age 30.6 years, 8 males and 6 females) looking at Ikea instructions to determine whether a hammer is
needed (right) and to determine whether construction requires one or two people (left). The brightest areas show the areas looked at for the relative longest
time.

(3mm) within subjects are caused by changes in light levels
controlled by the pupillary light reflex, as reported by e.g.
Ellis [31].

However, in 1964 Hess and Polt [32], in a now famous
experiment, reported that pupil dilation could also be used as
an index of mental activity during multiplication problems.
This was based on earlier work [33] relating pupil size to
emotional interest in presented material, under control of the
sympathetic division of the autonomous nervous system and
independent of the light reflex, which is controlled by the
parasympathetic division. Kahneman and Beatty [34] subse-
quently confirmed this finding in a separate study, further
suggesting that pupil responses are indicative of memory and
processing load. This effectively re-introduced pupillometry as
a discipline [35], [36], [37].

Pupillary dilations in response to cognitive processes are
usually small [35], up to 0.5mm, which in typical conditions
may amount to around 15% of the baseline pupil size. It is
therefore common to record several responses from repeated
presentations of the same stimuli and conditions, and calculate
the average of these in order to filter out noise from other
processes. These are called Task-Evoked Pupillary Responses
(TEPR), a term probably coined by Beatty [38] and Ah-
ern [39].

Responding to external stimuli relevant to current tasks
requires a measured response, to which resources need to be
allocated. This process of allocating resources is commonly
seen as a key part of the brain’s arousal and attentional
systems [40]. Aston-Jones et al. investigated the relationship
between the Locus Coeruleus-Norepinephrine (LC-NE) sys-
tem and attention [41], and suggest that LC cells have two
overlapping modes of tonic and phasic activity respectively,
modulating attention between focused, or selective, attention
(phasic mode, used in exploitation) and scanning attention or
high behavioural flexibility (tonic mode, used in exploration).
The phasic system is responsible for the TEPR. The balance
between the modes is driven by a desire to optimize utility
over both short and longer time-scales [42] through an adaptive

gain system. The dominant mode impacts the (task-specific)
performance, and this system can help explain the classi-
cal relationship between arousal and performance originally
demonstrated by Yerkes and Dodson in 1908 [1].

Aston-Jones and Cohen further correlate the LC-NE activity
to pupil diameter, as also demonstrated later by Murphy et
al. [43] who reported a positive correlation between functional
neuroimaging BOLD activity of specific parts of the LC-NE
system and pupil diameter, and in a very recent work Joshi
et al. [44] show that LC-NE-mediated activity may reflect in
changes in the pupil diameter, based on (invasive) tests on
monkeys. Activation in LC-NE typically leads to pupillary re-
sponses on a timescale of seconds, with fast (250ms) response
onsets [45].

Other neural correlates classically known to correspond to
global arousal levels are seen in the distribution of power in the
Electroencephalograpic (EEG) spectrum, whereas components
of the Event Related Potentials (ERP) such as P100/N100
and P300 can be modulated by attentional processes [40].
However, EEG recordings are currently not necessarily a
suitable match for "in-the-wild" experiments, due to the often
invasive nature of the equipment needed and the setup time
usually required. For this reason, pupillometry suggests itself
as a non-invasive and contact-less alternative, as the arousal
and attention systems also appear to correlate with changes in
pupil size.

Fig. 4 illustrates a synthesis of these ideas, borrowing
especially from Aston-Jones et al. [41], [44]: As the arousal
level (x-axis) increases from drowsiness [A], via exploitation,
focused attention and peak task-specific performance [B], to
a state of highly distractible exploratory behaviour [C], the
LC-NE tonic activations increase and the pupil dilates, as
illustrated by the blue curve. The task-related performance (y-
axis) in response to relevant stimuli increases from [A] to
[B], but declines again hereafter as tonic level increases. At
the peak [B], relevant stimuli result in the largest phasic pupil
response. At [A] and [C], task-specific pupil responses are very
small or absent. The blue graph illustrates the resulting visible
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Fig. 2. Exploded 3D-view drawing of an oven (left). An adult subject trying to count the numbers of screws needed to assemble the oven made 163 fixations
in 65 seconds to do this (right). Each circle shows a fixation of more than 125 ms, with the diameter proportionate to the duration.

pupil dilation that combines the output from both phasic and
tonic processes.

Fig. 5 illustrates the pupil size at each of the conditions
[A], [B] and [C] (same as in Fig. 4), without task-relevant
stimuli (left) and with task-relevant stimuli (right). The green
area (right side only) marks the dilation, i.e. the change
from baseline (left, driven by tonic processes) to response
maximum when the phasic response is added to the current
baseline. At [A], corresponding to a state of drowsiness, and at
[C], corresponding to a highly distractible state, phasic pupil
dilations are absent or very small. At [B] they are most clearly
present.

In unconstrained tasks, the timing of events that trigger
phasic responses is typically not known. Marshall [46], [47]
has proposed a (patented) technology, the Index of Cognitive
Activity, based on filtering abrupt pupil dilations using wavelet
transforms to index and identify cognitively induced phasic
responses from constrictions and dilations caused by the
pupillary light reflex. In the present paper, we instead focus
on the simpler concept of averaged means of the pupil size; a
concept which reflects not only phasic responses but rather
a combination of the current tonic level (arousal) and any
phasic activations that take place. It may therefore serve as

an index into a combined level of cognitive effort1, which is
a result of the neural gain level modulated by activity in the
LC-NE system, even though it is also prone to be impacted
by changes in light level and therefore may require a balanced
experimental design.

Consistent with the Adaptive Gain theory proposed by
Aston-Jones and Cohen [42], it can be hypothesized that the
brain tries to economize the available resources, and thus
picks a tonic level that is motivated by solving a given
task and which leads to an adequate performance for the
anticipated tasks. Changes in this level may show as changes
in the baseline pupil size, e.g. with sustained processing
or increasing difficulties leading to an increase in the tonic
level [37], [51], [38]. When including the effect of phasic
responses in unconstrained tasks in the range from [A] to
[B], it can be expected that the mean pupil size will correlate
with both the tonic level and the phasic response. From [B]
to [C], however, the phasic response correlates inversely with
the tonic level and it is less clear what the mean pupil
size indicates, as it depends on the amount of task-specific
stimuli occurring. It can be assumed, however, that the pupil
size continuously reflects activity in LC-NE and as such still

1The concepts here are likely to be similar to what Hyönä [48] refers to as
global processing load or the pupillometric estimate of mental load. Similar
ideas have also been proposed elsewhere, e.g. Iqbal et al. [49] percentage
change in pupil size or Palinko et al. [50] mean pupil diameter change.
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Fig. 3. Left: LEGO R© TECHNIC digital building instruction. Arrows in the corners step backward (left corner) and forward (right corner). The play button
(middle section) offers a short animation of where to place the two pieces. The slider next to the play button allows the user to control the animation
frame-by-frame. The bottom slider with the circle serves as an interactive progress bar. Two-finger pinch on the touch-screen will zoom, and moving the
finger on the Tablet will rotate the model. Right: A slightly rotated view of the current build within a ghosted view of the final model.
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Fig. 4. Illustration of the pupil dilation (right y-axis) resulting from a phasic
response to relevant stimuli and the tonic baseline level (x-axis) regulated
by the LC-NE system (adapted from [41] [44], resembling the classical
Yerkes-Dodson relationship [1]). As the system gains and thereby tonic level
increases, and the dominant mode changes from drowsiness [A], via highly
focused task-specific attention (exploitation mode) [B] to distractible, scanning
attention (exploratory mode) [C], so does the baseline pupil size. Sensitivity
to task-specific relevant stimuli is greatest at [B], where the largest phasic
dilations on top of the baseline are seen. At [A] and [C] no or only small
phasic pupil dilations are seen. The mean measurable pupil size, averaged
over time, is a result of combining the phasic and tonic processes. The LC-
NE activity generally reflects in the mean pupil size, and even with phasic
activity, it can be expected that the mean pupil size increases as attention
to task-specific stimuli increases from [A] to [B]. The effort required at a
given level of performance manifests itself in the size of the phasic response.
Note that the graphs are not actual data to scale but are drawn for illustrative
purposes.

represents a level of cognitive effort invested in the current
scenario. Thus pupil size may contain important clues on how
subjects respond to a given situation. It is additionally worth
noting that the settings of the adaptive gain system also have
an influence on learning [52].

Response

A

C

B

Baseline

s s

s

s

s

Fig. 5. Pupil dilation compared to baseline as a response to relevant stimuli
in three different conditions, corresponding to drowsiness [A], highly focused
task-specific attention [B] and distractible, scanning attention [C]. The blue
graphs illustrate the pupil size, with fluctuations at each condition. The green
area in the pupil to the right illustrates the change from baseline. Note that
the drawing is not to scale; pupil variations caused by cognitive processes
are typically on the order of 0.5mm, corresponding to a 17% change on top
of e.g. a 3mm pupil. Adaptation to light levels causes a significantly larger
variation.

IV. PREVIOUS WORK

A number of human factor studies of building in-
structions has been reported (Table I). Common inter-
est was the impact of different media and display forms
([20], [17], [16], [18], [19]) and how to best present the
pictorial instructions ([53], [54], [55], [56]). A few studies
([56], [22]) looked at the influence of individual factors like
age, gender, education and building experience. The mea-
surements most often taken were task time and errors; while
five studies ([20], [55], [56], [16], [18]) included subjective
ratings of experienced difficulty, mental effort, fatigue and/or
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satisfaction and two ([17], [16]) asked for the participants’
preferences. Interestingly, three studies ([53], [55], [56] in-
cluded a manual record of visual behaviour (in terms of
"number of looks", "study time", "viewing time" and "gaze
time") but without the use of gaze tracking equipment.

The potential benefit of using eye activity to measure
cognitive workload in tasks has been addressed in several
previous studies. For instance, Van Orden et al. [57] presented
a display with target density as the workload variable. Blink
frequencies, fixation frequency and pupil diameter showed
strong correlation with the density of targets. The changes
in pupil size from 1 to 9 targets were highly significant, even
though the average change in actual size (calculated as moving
estimates of means over a 2 second window) was less than 1
mm. Ahlstrom and Friedman-Berg [58] found no significant
effects of task conditions on subjective workload ratings, but
significant effects on blink durations, which became shorter
when conditions were difficult. The mean pupil diameter
increased from 2.4 mm to 3.9 mm for the least responsive
subject, while the most responsive had an increase from
2.62 mm to 4.39 mm. The correlation between number of
objects (i.e. aircraft) to be supervised (in a simulated air
traffic controller operation) and the pupil dilations was rather
high (i.e. r2=0.7). They concluded that measurements of eye
activity provide a more sensitive measure of workload over
task time than subjective ratings, and suggest this to be partic-
ularly relevant when trying to identify display components that
cause workload changes which are not reported by operators
themselves.

Dehais et al. [59] conducted a study with six pilots flying
under low-light (nightfall) conditions with a remote gaze
tracker mounted in the cockpit. They observed a large dilation
after a simulated engine failure compared to the pilots’ pupils
during normal flight. Performance data recorded in a driving
simulator (i.e. variances of steering wheel angle and lane
position) showed a high correspondence to changes in pupil
size, even without explicit control of the lighting conditions,
in a study presented by Palinko et al. [50]. Finally, in a
recent experiment [60] the variations of operators’ pupil size
were found to be a reliable indicator of the perceived mental
workload during a simulated plant emergency; subjects with
low, moderate and high task loads showed distinguishably
different dilation patterns across the incident.

In summary, building instructions have been addressed in
human-factor studies for 20 years; some of them included
manual recording of visual behaviour. Human-factor studies
in several disciplines have found measurement of pupil size
to correspond with performance data and task complexity, but
none of these studies dealt with building instructions. Digital
building instructions with logging facilities could potentially
provide data for further analysis on e.g. task time (in total or on
individual steps). Automatic error detection from logs would
be more difficult to deal with. Regressions (i.e. "stepping
back") might indicate that something went wrong and the step
had to be re-built, but regressions due to errors are inseparable
from those instances where the user just made forward steps

2HMD = Head Mounted Display

to see what is coming next, and then went back to finish the
current part. If gaze tracking capabilities are built into the
display of digital instructions, additional visual behaviour may
be recorded which could provide an objective, physiological
source of data on e.g. fatigue by detection of blink rates [61]
and, as is the focus of this paper, an objective measurement
of cognitive effort from changes in pupil diameter. Research
indicates that detailed analysis of fixation patterns in real time
may catch particular types of errors (e.g. [62]). Preferences
and subjective impressions of pleasure would still have to be
gathered by post-hoc interviews, though.

V. EXPERIMENTAL SETUP AND RESULTS

A. Participants

57 children (54 boys and 3 girls) between 8 and 10 years-
old (average 8.3 years) were recruited in groups of four for
the experiment when they were standing in the entrance queue
for a LEGO R© exhibition. Two were Swedish, the remaining
55 were Danish. Only one participant used glasses; none
used contact lenses. All except five were frequent users of
smartphones or Tablets, having used one within the last week;
38 had used one the very same day. All participants had built a
LEGO R© model before, half within the last month. A majority
of 51 had never used digital building instructions before; 6
had used them once or a couple of times. The parents signed
a consent form, and after the experiment the child was given
a LEGO R© figure as appreciation for their participation.

B. Equipment

LEGO R© instructions served as our study material because
they are sufficiently feature-rich and visually compelling to run
naturalistic, engaging tests. The digital LEGO R© application
we used for our study showed model #42031, c.f Fig. 3, which
has a total of 99 steps. Details can be examined by zoom and
rotation; animations indicate how to place a component, and
a forward/rewind slider helps find a particular event in the
construction sequence. The Booklet used for comparison was
the insert from the box, featuring 84 steps on 31 pages. This
LEGO R© model has a total of 163 pieces. Since there was
a difference in steps between the Booklet and the Tablet we
converted all Booklet steps into corresponding Tablet steps for
the analysis of productivity (see below).

An Apple Ipad R©, model Air 2, with a "LEGO R© Building
Instructions" app turned on, provided the digital instructions.

A head-mounted tracker (Tobii model Glasses2 RU, 60 Hz,
binocular) was used to record eye tracking data, and the Tobii
Analyzer software, version 1.36.1430 (x64) was used to extract
fixation data with corresponding pupil sizes. Visit times on
manuals were scored manually, while the visit times on the
Tablet were mapped automatically by the analyzer software.
For automatic annotation of the videos, a snapshot image of the
Areas of Interest (AOIs) are defined in the analyzer software
(See Figure 8). The automatic annotation did not work well
for the Booklet so we used manual annotation in the Analyzer
software. We reviewed the output of automatic annotation
by the Analyzer software and fixed manually a few missing
annotations. For both manual and automatic annotation, gaze
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TABLE I
EXPERIMENTAL STUDIES OF ASSEMBLY TASKS WITH PICTORIAL INSTRUCTIONS

Author Year N Independent variables Dependent variables

Pillay, H. [53] 1997 40 Orthographic drawing; isometric drawing; physical
model

Task time; errors; correct completed models; number
of looks; study time.

Rodriguez, M.A. [54] 2002 40 Diagrammatic instructions; text and diagrams Task time; errors
Tang, A. et al. [20] 2003 75 Printed manual; computer,; HMD2; AR Errors; mental effort (NASA TLX rating)
Richardson, M. et al. [55] 2004 64 Number of items, symmetrical planes, fastening

points, fastenings, novel assemblies and assembly
steps

Subjective rating of assembly complexity (from just
reading the instructions); viewing time

Martin, C. V. et al. [56] 2008 24 Toy instructions (LEGO R©, K’NEX R©, Lincoln
Logs R©); age; gender; building experience

Task time; errors; usability problems found; gaze
time; subjective rating of ease and fun

Henderson, S. et al. [17] 2011 6 Computer; AR; HMD2 Task time; head movements; subjective preferences
Gupta, A. et al. [22] 2012 16 Spatial competence; gender; educational level, build-

ing experience; feedback guidance (tracking); figure-
based guidance

Task time; errors per step

Alexander, K. P. [16] 2013 28 Print; video Errors, comprehension, subjective rating of satisfac-
tion; preferences

Wille, M. et al. [18] 2014 20 HMD2 (Google Glass); Tablet PC Task time (per step); dual task performance; subjec-
tive rating of visual and mental fatigue

Funk, M. et al. [19] 2015 15 In-situ projections; print Task time; errors

fixations were detected automatically by the Analyzer software
using the Tobii I-VT (attention) gaze filter (with a minimum
fixation length of 60 ms).

C. Procedure

Upon arrival, the children were seated in groups of four
around one big table. Each child was randomly assigned
to start building the LEGO R© model with either a digital
instruction on an Apple Ipad (N=28) or the Booklet that comes
with the model used for the experiment (N=27). We told the
child that the task was to build a model of LEGO R© wearing a
pair of glasses that would record what he or she was looking
at. We emphasized that this was not any kind of competition
– the gift would be given no matter how much of the model
was completed by the end – and the child was told to ask for
assistance if there were any problems.

A pair of Tobii Pro gaze tracking glasses was put on, and
a one-point calibration procedure performed. Those starting
with a Tablet version were given a short introduction to the
main functions of it. Those starting with a Booklet were told
to open the box and take out the building instructions. For
both media we stressed that the child could go forwards and
backwards as they pleased.

After 5 minutes of building, the adult assistant would note
how far the child had progressed. When building using the
Tablet, the child would at this point be shown how the slider
feature for animation worked. Under the Booklet, the assistant
would just ask the child to continue. After 10 minutes, the
child was asked to pause for a short while for us to change
the instructions media; a child starting with a Booklet would
now try the Tablet version (given a short introduction) and a
child starting with the Tablet would switch to the Booklet. The
assistant made sure that the new instructions showed the step
currently in progress. If assistance was provided at any time
during the building process, the assistant made a note of this.

At the end of the session, the participants were asked which
of the two instructions they preferred and why. Also, they
were asked whether they thought each of these were easy or

difficult, slow or fast, and fun or boring (presented as forced
choices).

D. Experimental design

Three independent variables were considered in the exper-
iment:

• Media: [Booklet / Tablet ]
• Time: [First 10 minutes / Last 10 minutes]
• Novelty: [New: First five minutes with a given media /

Known: Last five minutes with the same media presenta-
tion]

This creates in total 8 blocks.
When comparing data between identical sets of participants,

within-group comparisons are used (e.g. related samples t-
test or Wilcoxon signed-rank test), otherwise between-group
comparisons are used (independent samples t-test or Mann-
Whitney rank test).

Four dependent variables were examined:
• Productivity: Number of building steps produced
• Assistance: Number of times an adult assistant was called
• Gaze time: The proportionate time (in %) of the build

time
• Pupil data: The mean pupil size (left and right eyes)

E. Results

We will first present some general results regarding perfor-
mance and preferences and then a detailed analysis of gaze
and pupil data.

1) Performance: Children were not significantly different
in their productivity (steps progressed) with the Booklet
(mean=18.4; SD=9.4) and the Tablet (mean=18.6 ; SD=10.1);
p=0.47, Wilcoxon signed-rank Test. There were large indi-
vidual differences, indicated by the high standard deviations.
The fastest child built 71 steps in total; the slowest only 13
steps. Productivity did not increase from the first 10 minutes
(mean=18.6, SD=9.1) to the last, (mean=18.3, SD=10.4);
p=0.30, Wilcoxon signed-rank Test.
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Fig. 6. A child wearing gaze tracking glasses while building LEGO R© with Booklet instructions (right) and with Tablet digital instructions (left).

There were no significant differences in the number of times
children were assisted with the Tablet (mean=0.7, SD=0.9)
and the Booklet (mean=0.9); p=0.25, Wilcoxon signed-rank
Test). Assistance was not requested more often during the
first 10 minutes (mean=0.9, SD=1.1 ) compared to the last 10
minutes (mean=0.7, SD=0.9); p=0.35, Wilcoxon signed-rank
Test. There was a moderate statistically significant correlation
between the number of times a child was assisted by an adult
and their productivity, R=-0.65, p<0.001.

2) Preferences: When asked during the post session inter-
view which of the two instruction forms the child preferred,
38 (66%) favoured the Tablet and 19 (33%) the Booklet.
Table II shows how the children rated entertainment, ease and
efficiency.

TABLE II
TWO-ALTERNATIVE FORCED CHOICE SUBJECTIVE EVALUATION OF

TABLET AND BOOKLET, N = 57

Was it... Tablet Booklet

fun 55 (97 %) 36 (63 %)
or boring ? 2 (3 %) 21 (37 %)

easy 53 (93 %) 44 (77 %)
or difficult ? 4 (7 %) 13 (23 %)

fast 41 (72 %) 27 (47 %)
or slow 16 (28 %) 31 (53 %)

3) Gaze fixations: We recorded reliable gaze recordings of
48 of the 57 children for both the Booklet and the Tablet
sessions, of whom 22 started with the Tablet and 26 started
with the Booklet. Nine recordings failed due to extreme
looking angles, hair dropping down and covering the eyes,
or participants moving the glasses. Only full data sets are
included in the analysis.

The children spent on average 52% of the time (SD=12%)
studying the Booklet and 64% (SD=12%) studying Tablet
instructions. The difference is significant (p<0.0001, Wilcoxon
signed-rank Test). The child who studied the Booklet least
spent 18% of his time; the child who looked most spent 81%;
the corresponding range for the Tablet was 34% to 86%.

Comparing visit time per step produced showed a similar
pattern, with Booklet being studied for 23.2s in each step
(SD=18.3s) and the Tablet studied 27.7s (SD=19.9s); again
this difference was significant; p=0.02, Wilcoxon signed-rank
Test.

There was a low but statistically significant correlation
between productivity and the time spent per building step
looking at the Booklet (R=-0.37, p=0.01), and a high and
statistically significant correlation for the Tablet (R=-0.71;
p<0.0001, Wilcoxon signed-rank Test), meaning that the more
the child had to look at the pictures for each step to decode
them, the less was built by the end of that session.

Participants spent relatively more time looking at the Book-
let instructions during the first 5 minutes than during the last 5
minutes (mean 54%, SD=15% versus mean 49%, SD=14%);
p=0.02, Wilcoxon signed-rank Test. This difference, however,
was not found for the Tablet condition (mean 64%, SD=15%
versus mean 63%, SD=13%); p=0.71, Wilcoxon signed-rank
Test. For the last 5 minutes, the difference between Booklet
and Tablet was still highly significant, p<0.0001, Wilcoxon
signed-rank Test).

We conducted an analysis on the fixation distribution for
the Tablet condition, with a predefined set of areas of interest
as shown in Fig. 8. The main attractor was the model with
66% of the proportional visit time during the first 5 minutes
(SD=16%) and 64% (SD=16%) during the last five minutes.
The slider area was the next most attended, with 7% (SD=8%)
in the first period and 9% (SD=9%) in the last. The small
rise in attention to the slider area between the first and the
second part was insignificant; p=0.06, Wilcoxon signed-rank
Test. Table III summarizes the distribution.

4) Pupil data analysis: When the eye tracker reported
fixations on the relevant instruction media, pupil data was
collected for left and right eye and averaged over blocks of
5 minutes, corresponding to New (first 5 min) and Known
(last 5 min) conditions for each of the two media, Tablet and
Booklet. Subjects were divided into two groups according to
the order of presentation, Tablet First or Booklet First. This
creates in total of 8 data blocks, with each subject contributing
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Fig. 7. Differences between fraction of time (in percent) with gaze at instructions between media (Booklet and Tablet; far left) and further split into first
and second block with that particular media (middle). There is a statistically significant difference (Wilcoxon signed-rank test, p<0.001) between the media
types, as indicated by the ‡, and also between the first and second block for the Booklet (p<0.05), but not for the Tablet. There is also a significant difference
(p<0.001) between the second block of Booklet vs Tablet. Also shown (right) is the average step time (seconds) for Booklet and Tablet. The difference is
statistically significant (p<0.05).

TABLE III
THE DISTRIBUTION OF AVERAGE PROPORTIONAL VISIT TIME ON AOI’S ON THE TABLET INTERFACE; N=48, NUMBERS IN PARENTHESES SHOW THE

STANDARD DEVIATION.

1:1 Backward Forward Menu List Model Slider

Tablet New
First 5 min

1%
(2%)

1%
(2%)

2%
(1%)

1%
(1%)

66%
(16%)

7%
(8%)

Tablet Known
Last 5 min

1%
(2%)

1%
(1%)

2%
(1%)

1%
(2%)

64%
(16%)

9%
(9%)

to 4 of these. The correlation between left and right eye
was calculated for each subject, and subjects who had very
low correlation, R<0.3, in any of the blocks were completely
discarded (the resulting median correlation was R=0.85 across
all remaining subjects). In addition, any subjects for whom we
did not have reliable gaze data were discarded. This resulted in
43 remaining subjects, 23 having Booklet first and 20 having
Tablet first. The pupil data was finally made comparable
between groups by normalizing to the relative deviation from
each subject’s overall median across all 4 blocks.

A three-way ANOVA analysis of the effect on the mean
pupil size for each 5-minute block of the three independent
variables Time, Media and Novelty (with interactions) was
performed. There were statistically significant (p<0.05) effects
of Time [F(1,339)=37.3, p<0.001] and Media [F(1,339)=6.8,
p<0.009], with the effect of Media:Novelty not being statisti-
cally significant [F(2,339)=2.7, p=0.07]. Table IV summarizes

the results (Model A).3

The slowest group of the 43 participants, which had
achieved less than 25 steps and had received assistance at
least twice, were picked out and marked as slow performers.
Similarly, those that built more than 50 steps and received
assistance at most once were marked as fast performers. This
resulted in 11 fast performers and 12 slow performers, leaving
20 as normal performers.

A further four-way ANOVA analysis was performed that
also included the effects of being slower to build on the
mean pupil size. There were statistically significant effects
of Time:Performance [F(2,336)=29.3, p<0.001] (the effect
of Time differed between the performance groups), Me-
dia:Performance [F(2,336)=10.2, p<0.001] (the effect of Media

3It was tested whether individual preferences for either Booklet or Tablet
stated after the experiment had an impact on the mean pupil size differences,
but no effect was found [F(1,338)=0.228, p=0.633].

148 Paper E. Pupillary Measurements During an Assembly Task



TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 10

TABLE IV
ANOVA MODEL A AND MODEL B FOR EXPERIMENT 1, WITH THE DEPENDENT VARIABLE BEING THE MEAN PUPIL SIZE DURING EACH OF THE 4 · 5

MINUTE BLOCKS FOR EACH PARTICIPANT. MODEL A INCLUDES AS INDEPENDENT VARIABLES time (FIRST OR LAST 10 MINUTES OF THE EXPERIMENT),
media (BOOKLET OR TABLET) AND INTERACTION BETWEEN MEDIA AND novelty (FIRST OR LAST 5 MINUTES WITH THE MEDIA). BOTH time AND media
HAVE STRONG STATISTICALLY SIGNIFICANT CORRELATIONS TO THE PUPIL MEAN SIZE. THE TOTAL EXPLAINED VARIANCE OF MODEL A, R2 , IS 0.133

(ADJUSTED 0.123). MODEL B INCLUDES ADDITIONALLY INTERACTION WITH THE performance. THE STATISTICAL SIGNIFICANCES ARE SIMILAR,
HOWEVER THE EXPLAINED VARIANCE, R2 , INCREASES TO 0.211 (ADJUSTED 0.195). THE AKAIKE INFORMATION CRITERION (AIC) IS 1635.0 FOR

MODEL A AND 1609.0 FOR MODEL B. HENCE, B MAY BE THE BETTER MODEL DESPITE THE ADDITIONAL PARAMETERS NEEDED TO ESTIMATE THE FIT.

SS df F p η2 ω2

A

Time 250.0 1 F(1,339)=37.3 0.000 0.096 0.093
Media 45.6 1 F(1,339)=6.8 0.009 0.018 0.015
Media:Novelty 35.9 2 F(2,339)=2.7 0.070 0.014 0.009
Residual 2270 339

B

Time:Performance 359.9 2 F(2,336)=29.3 0.000 0.136 0.131
Media:Performance 187.4 3 F(3,336)=10.2 0.000 0.071 0.064
Media:Novelty 35.9 2 F(2,336)=2.9 0.055 0.014 0.009
Residual 2065.8 336

Menu list

1: 1 

Model

Back
ward

For-
wardSlider

Fig. 8. The Areas of Interest defined for analysis of the visit time on the
Tablet instructions.

differed between the performance groups). Media:Novelty
did not have a statistically significant effect [F(2,336)=2.9,
p=0.055]. Table IV summarizes the results (Model B).

Comparing the two Models A (the simpler model) and B
(which also includes slow performance) further reveals differ-
ences in the effect η2 caused by the independent variables. The
total explained variance, R2 of Model A is 0.133 (adjusted R2

0.123) whereas Model B has an explained variance of 0.211
(0.195). The AICs for the two models are 1635 and 1609,
indicating Model B may be the better fit even if it has less
degrees of freedom.

A quantile-quantile plot of the residuals after fitting Model
A is shown in table 9. The residuals resemble a normal
distribution, although with some outliers and a slightly higher
kurtosis. For this reason, the more conservative non-parametric
tests will be used for the Post-Hoc tests4.

Non-parametric Post-Hoc tests were performed between the
blocks where it was meaningful. The results are shown in
Fig. 10, where the predictions of Model A are also shown.

4The statistical significance levels are however very comparable if using
parametric t-tests.
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Fig. 9. Quantile-quantile plot of residuals after fitting Model A. The residuals
are close to a normal distribution, as can be seen, although with some outliers
and a slightly higher kurtosis than with the large amount of data points causes
a Shapiro-Wilk test to reject the (null) hypothesis that the distribution is
Gaussian. For that reason, we have not only relied on ANOVA and t-tests,
but we have also verified (with similar results and significance levels) with
Kruskal-Wallis and Wilcoxon signed-rank/Mann-Whitney rank test).

When the two blocks contain the same set of subjects, within-
group (Wilcoxon signed-rank) tests were used, otherwise
between-group (Mann-Whitney rank) tests were used.

Looking at the underlying regression model further illus-
trates the effects of Time, Novelty and Media on the mean
pupil size for Model A and B (divided into slow and not-slow
performers). See Table V.

For Model A, the mean pupil dilation is 1.71 percentage-
points lower in the second half of the experiment (the proba-
bility p(H0) of the effect being 0 is p<0.001) compared to the
first half. The last 5 minutes (Known) of using the Booklet has
a mean pupil dilation of 0.89 (p=0.025) less than the first 5
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Fig. 10. Post-Hoc between the means of the data from each of the blocks of the ANOVA regression, colour coded according to the two groups of participants
that had Booklet first (blue) and Tablet first (green), with corresponding significance levels marked as well as the predicted value (dashed line). The red lines
indicate one standard error of the means to each side. The lines above the bars indicate where there are statistically significant differences, with solid lines
indicating within-group and dotted lines between-groups. The markers α indicate uncorrected significance, h corrected with Holm-Bonferroni factor, and b
the most conservative with Bonferroni correction. The levels are at p<0.05 unless marked with a † or ‡, that indicates 0.01 and 0.001 respectively.

minutes (New); there is a smaller effect of 0.22 the other way
round for the Tablet, but this is not statistically significant.
Finally, comparing the use of a Booklet to the Tablet shows a
mean pupil dilation of 1.28 (p=0.001) less for the Tablet.

For Model B, that includes the effect of being a slow
performer, there are differences between how the mean pupil
dilation changes over conditions: For the slow performers,
there is a small and statistically insignificant difference be-
tween the first 10 minutes and the last 10 minutes of the
experiment, but for the rest (normal and fast performers)
there is a decrease in mean pupil dilation of 2.40 (p<0.001)
percentage-points. The Novelty effect is similar to the above
(-0.89 (p=0.019) and insignificantly 0.22 respectively), but
the differences between the use of a Booklet and Tablet
are different: For the slowest performers, the Tablet has a
3.03 (p<0.000) percentage-point smaller mean pupil dilation
compared to the Booklet, whereas the rest of the subjects have
a smaller (and insignificant) difference of only 0.71 (p=0.085).

Comparing the slowest performers to the rest of the group
can also be done by comparing the mean pupil size of the first
10 min to the last 10 min of the experiment, as illustrated in
Fig. 11. There are statistically significant differences for the
Tablet-first slowest performers compared to the normal group.

Fig. 12 further illustrates the overall trends of the mean
pupil size across subjects for the two groups Booklet-first and
Tablet-first. The graph has been created by fitting a 2nd order
polynomial to each subject’s pupil size and averaging across

subjects. The Booklet-first group starts around 3% higher than
the median value, and declines down to around 1% less than
the media. The Tablet-first group shows a more flat curve.

VI. DISCUSSION

We found statistically significant differences in pupil dila-
tion between the eight blocks of the experiment (Table IV)
and different trends depending on which media was used first
(Fig. 12). Post-hoc analysis (Fig. 10) and modelling (Table V)
showed modest but statistically significant effects caused by
the independent variables Time, Media and interaction be-
tween Media:Novelty. This was further modulated by being
a slow performer.

Separating the effects, we found that the pupil constricts
close to 2% from the first to the second half of the experiment,
although the slowest performers did not show such an effect.
We also saw a difference between the two media, Booklet and
Tablet, with the Tablet leading to an approximately 1% smaller
pupil size, although interestingly we found that the slowest
performers had a larger difference of close to 3% between the
two media.

With a careful balanced experimental design, this suggest
that even in "in-the-wild" conditions like here, where it is
not possible to control for variations in light levels, it may
be possible to use pupil size as a measurement of cognitive
effort: Even if it cannot be ruled out that different luminosity
levels impact the pupil size, the identification of novelty effects
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TABLE V
CORRECTION TERMS (GENERATED BY THE REGRESSION) FOR MODEL A AND MODEL B. THE NUMBERS ARE PERCENTAGE-POINTS THAT CAN BE

SUMMED WHEN ESTIMATING THE MODEL MEAN PUPIL SIZE FOR A GIVEN BLOCK OF THE EXPERIMENT. THE * INDICATES THAT THE TERM DIFFERS
FROM 0 AT A SIGNIFICANCE LEVEL OF P<0.05. THE ‡ INDICATES A P<0.001 SIGNIFICANCE LEVEL. NOTE THAT MODEL B, WHEN COMPARED TO MODEL

A, SHOULD ALSO INCLUDE AN ADDITIONAL FACTOR OF +0.21 TO BE ADDED TO THE BASELINE FOR THE SLOWEST PERFORMERS (NOT SHOWN IN THE
TABLE).

Legend Model A: All Model B / All but Slowest Model B / Slowest

Time Novelty Media Time Novelty Media Time Novelty Media Time Novelty Media

First 10 min
New Booklet

Tablet -1.28‡ -0.71 -3.03‡

Known Booklet -0.89* -0.89* -0.89*

Tablet 0.22 -1.28‡ 0.22 -0.71 0.22 -3.03‡

Last 10 min
New Booklet

-1.71‡ -2.40‡ 0.33Tablet -1.28‡ -0.71 -3.03‡

Known Booklet -0.89* -0.89* -0.89*

Tablet 0.22 -1.28‡ 0.22 -0.71 0.22 -3.03‡

(changes between first and second block of using the Booklet
but not significantly so for the Tablet) and the differences in
effect size of Time and Media between slow performers and
the rest of the group suggests that the simpler explanation is
that these differences are linked to levels of cognitive effort: 1)
Those that experience a slow progress keep investing a higher
level of effort and attention compared to the rest of the group,
and 2) they also appear to benefit more from using the Tablet
instead of the Booklet.

Our main motivation for conducting the analysis of the
children’s pupillary response during the experiment was to
investigate whether this could yield a deeper insight to the
experiences they had while building with the Booklet and the
Tablet. The majority of the children (i.e. 67%) preferred the
Tablet to the Booklet, and it was generally considered more
fun, easy and fast to use (cf. Table II). The verbal explanations
they gave for their preference for the Tablet were that they
liked the rotations and animations, that it was something new,
and that it was so easy to get to the next step with no need
to turn pages. Those who liked the Booklet explained that it
was a format familiar to them and the Tablet was annoying to
use because it required them to press buttons all the time.
Performance data gave no indications of this difference in
preferences, as productivity and the number of times the
children were assisted by an adult were not significantly
different for the two types of instructions.

Preferences for one of the two forms of instructions did not
reveal itself in different pupil patterns, c.f. section V-E4 on
page 8. However, the pupil trend curve Fig. 12 suggests that
children starting with the Booklet had to show more effort in
the beginning of the experiment than those who started with
the Tablet. This is further confirmed when comparing the first
5 minutes and last 5 minutes of each block Fig. 10. Across
the full session, when participants became more acquainted
with the building task, this difference diminished. The group
of children who had started with the Tablet did not show
any noteworthy increase in pupil dillation when they later
encountered the Booklet. Being deeply involved in the building

task at this time, they would just continue at the same level
of effort as with the Booklet. One group, however, did not
follow this general pattern, namely the slow builders starting
on a Tablet Fig. 11. They began the experiment with a
comparatively smaller relative pupil size (Fig. 11, top) , but
then, when the Booklet was encountered, they showed an
increase in pupil size that was significantly different from the
other groups. Slow builders starting with a Booklet and then
trying the Tablet, did not show this increase in pupil size. This
finding suggests that monitoring changes in pupil size may
be used in the evaluation of a learning proces, c.f. [29] and
may help identifying tools for learning that support challenged
students best.

The participants looked for a relatively longer time in total at
the Tablet instructions (i.e. 64%) than the Booklet (i.e. 52%).
This difference may have be explained by the fact that the
Tablet version showed slightly more individual building steps
(i.e. 99) than the Booklet (i.e. 84), but the difference was
also significant when analysing the relative attention time per
normalized step. Another explanation might have been that
children had to look for the forward button on the Tablet
whenever they wanted to go to the next step. Folding a page
every now and then in a Booklet, which showed 4 steps per
page-turn, would require less attention to doing this. However,
the analysis of visit time on the Tablet (c.f. Table III on page 9)
showed that only 3 % of time was spent looking at the forward
and backward buttons. Manual inspections of gaze recordings
revealed that most of the button clicks were performed when
the child was looking at the model area, i.e. in the fringe of the
vision. Presumably, the main reason for them to look more at
the Tablet was the time it took for it to play animations and the
time children spent rotating, zooming and sliding the model.
The time spent on doing this was not counter-productive, and it
may have contributed to the positive impression of the Tablet.

If future displays of digital instructions get eye tracking
capabilities, we imagine that this would make it possible for
designers at companies like LEGO R© or IKEA R© to have a test
panel of e.g. 100 people, who would try out various versions
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of instructions and various new models at home. Logging
their use of the instructions would allow for measurements
of time spent on each step of a task, regressions, visit time on
AOIs in the instructions, time-to-first-fixation on AOIs, dwell
time, saccade lengths and fixation patterns. In addition, the
experiment reported in this paper suggests, that pupil trend
curves may reveal patterns in mental effort across the task.
When recording pupil variations from a large population, a
normal model prediction could be built for every product, iden-
tifying e.g. those that were unusually demanding. LEGO R©,
for instance, could consolidate its recommendation of the age
group suitable for that particular model. Furthermore, if future
displays become able to record the single areas looked at
for every image shown, the pupil analysis may become even
more precise, taking into account the brightness of the fixated
area. Most importantly, this would allow for an analysis of
the within-task variation in task demands that single pieces of
information might cause.

VII. CONCLUSION

We compared digital and paper instructions for LEGO R© and
found significant differences in children’s preferences and gaze
behaviour for the two formats, but no difference in their task
performance between the two media. Pupil measurements were
in accordance with the participants’ impression of the digital
version being easy to use, indicated by a smaller dilation in
pupil size when encountering the Tablet as the first media,
compared to the dilation found for those encountering the
Booklet first. Children with low performance had a different
pupil pattern associated with the the Booklet than the rest,
while all children showed a decrease in pupil size across the
experiment.
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Fig. 11. Differences between the slowest and fastest performing groups vs all or all others, here shown over the two 10-minute periods of the experiment
(first 10 minutes at the top, last 10 minutes at the bottom). There are statistically significant differences during the last 10 minutes when continuing on the
Booklet (after 10 minutes of Tablet), as marked: The slowest performers have significantly larger pupil size compared to the normal performers and to the
overall mean (bottom). There is also a statistically significant difference between the slowest and the normal performers for the group that start with Tablets
during the first 10 minutes (top). An α denotes significance at the p<0.05 level; a b denotes significance at the same level after Bonferroni correction. Only
comparisons within each media (Booklet or Tablet) and time (first or last 10 min) between the 4 groups of performers have been tested and are shown.
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Fig. 12. Filtered trend of how the mean pupil size develops over time for the two experimental groups of participants that had Booklet first (blue) resp.
Tablet first (green). The graph is the result of filtering the data for each participant using a 2nd order polynomial (i.e. a heavy low-pass filtering) and then
calculating the means over all of these. The shaded area represents one standard error of the mean to each side.
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Abstract

We propose a Bayesian model for extracting sleep patterns from smartphone
events. Our method is able to identify individuals’ daily sleep periods and their
evolution over time, and provides an estimation of the probability of sleep and
wake transitions. The model is fitted to more than 400 participants from two
different datasets, and we verify the results against ground truth from dedicated
armband sleep trackers. We show that the model is able to produce reliable sleep
estimates with an accuracy of 0.89, both at the individual and at the collective
level. Moreover the Bayesian model is able to quantify uncertainty and encode
prior knowledge about sleep patterns. Compared with existing smartphone-
based systems, our method requires only screen on/off events, and is therefore
much less intrusive in terms of privacy and more battery-efficient.

Introduction

Sleep is an important part of life, and quality of sleep has a significant impact on
individual well-being and performance. This calls for methods to analyze sleep
patterns in large populations, preferably without laborious or invasive conse-
quences, as people typically disapprove of the use of intrusive technologies [1].

Large scale studies of human sleep patterns are typically carried out using
questionnaires, a method that is known to be unreliable. It is possible to perform
more accurate studies, but these are currently carried out within small controlled
environments, such as sleep labs. In order to perform accurate measurements
of sleep in large populations—consisting of thousands of individuals—without
dramatically increasing costs, alternative methods are needed.

Smartphones have become excellent proxies for studies of human behav-
ior [2,3], as they are able to automatically log data from built-in sensors (GPS,

1
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Bluetooth, WiFi) and on usage patterns (phone calls, SMS and screen interac-
tion), from which underlying user behavioral patterns can be derived.

Smartphone data has been used to infer facets of human behavior such as
social interactions [4], communication [5], mobility [6], depression [7] and also
sleep patterns [8]. Either paired with additional sensors or on their own, mobile
app solutions are able – sometimes very ingeniously – to track individual sleep
patterns and visualize them. We cite as examples Smart Alarm Clock [9], Sleep
Cycle [10], SleepBot [11], and Sleep as Android [12].

Using mobile phone data to derive sleep patterns has thus already been
demonstrated and verified, and offers advantages (i.e. reduced cost) as an al-
ternative to dedicated sleep monitoring devices. In this paper we suggest ex-
tending previous approaches, using a Bayesian model to infer rest and wake
periods based on smartphone screen activity information. The advantages of
our proposed Bayesian approach SensibleSleep, as compared to previous work,
are that it:

• is less sensitive to “noisy” data, for instance infrequent phone usage during
sleep interruptions (such as checking the phone at night)

• is able to quantify not only specific rest and wake times but also charac-
terize their distributions and thus uncertainty

• can encode specific prior beliefs, for instance on expected rest periods
(when desirable)

• can capture complex dependencies between model variables, and possibly
even detect and relate patterns that are common to a group of people with
diverging individual patterns (when using one of the proposed hierarchical
models), such as detecting how available daylight may modulate sleep
patterns across an otherwise heterogeneous group of users

Our method, moreover, only needs screen on/off events and is thus non-intrusive,
privacy-preserving, and has lower battery cost than microphone or accelerometer
based ones.

We start by providing an overview of the related work. We then describe
the collected data, and introduce the Bayesian model. We compare the model
results with ground truth obtained by sleep trackers, and show how the model
is able to infer the sleep patterns with high accuracy. Finally we describe the
individual and collective sleep patterns inferred from the data.

Related Work

A key finding by Zhang et al. [13] shows a global prevalence of sleep deprivation
in a group of students, partly linked to heavy media usage. In this study sleep
patterns are largely deduced from the teachers’ perception or based on individual
self-reports, lacking more direct measurements.
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Corroborating this finding, Orzech et al. [14] report that digital media usage
before bedtime is common among university students, and negatively impacts
sleep. The findings are based on studies involving self-reports through (online)
sleep diaries and digital media surveys, and also lacks more direct measurements
of sleep patterns. Additionally, this would make it possible to increase the scale
of the experiment and enable the study of larger populations.

Abdullah et al. [8] have previously demonstrated using 9 subjects how a
simple rule-based algorithm is able to infer sleep onset, duration and midpoint
based on a (filtered) list of screen on-off patterns with the help of previously
learned individual corrective terms, and further analyzed behavioral traits of
the inferred circadian rhythm [15, 16]. The algorithm uses an initial two weeks
of data with journal self-reported sleep for learning key corrective terms in order
to improve the accuracy and compensate for differences between actual sleep
and inferred nightly rest period. The method has been verified against a daily
online sleep journal and results in differences less than 45 minutes of average
sleep duration over the entire analysed period. While our proposed Bayesian
model, which has been applied to more than 400 users, may be more complex,
it increases the robustness and allows us to better quantify the uncertainties
of the inferred resting periods as well as offer the possibility of building more
advanced models across heterogeneous groups of users. In particular, our model
may better be able to handle short midnight interruptions, which appear to be
not uncommon, without any additional filtering.

In contrast to Abdullah et al. using (only) screen on-off events, a fine-grained
sleep monitoring by “hearing” and analyzing breathing through the earphone of
a smartphone is suggested by Ren et al. [17]. Here six users tested the system
over a period of 6 months, demonstrating the feasibility of using smartphones for
the purpose of analysing breathing patterns, using a Respiration Monitor Logger
as ground truth. Sleep estimates are not directly inferred in this paper, however.
This technology is also non-invasive, although it does requires capturing and
analyzing large samples of audio data.

iSleep [18] proposes detecting sleep patterns by means of a decision tree
model, also based on audio features. The system was evaluated with 7 users for
a total of 51 days, and shows high accuracy in detecting snoring and coughing
as well as sleep periods, but report drops in performance due to ambient noise.

Increasing the number of features, the Best Effort Sleep model [19] is based
on a linear combination of phone usage, accelerometer, audio, light, and time
features using a self-reporting sleep journal, and subsequently achieved a 42
minutes mean error on 8 subjects in a test period of 7 days.

Other work also tries to estimate sleep quality, for example Intelligent Sleep
Stage Mining Service with Smartphones [20], which uses Conditional Random
Fields on a similar set of features trained on 45 subjects over 2 nights, and
reports over 65% accuracy of detection of sleep phases, compared to EEG ground
truth on 15 test subjects over 2 nights.

Candy Crushing Your Sleep [21] uses the longest period of phone usage
inactivity as heuristic for sleep, with some ad-hoc rules for merging multiple
periods, and proceeds to quantify the sleep quality and to identify aspects of
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daily life that may affect sleep. The inferred sleep period was however not
validated against any ground truth.

The Sleep Well framework [22] deploys a Bayesian probabilistic change-point
detection, in parallel with an unsupervised classification, of features extracted
from accelerometer data, in order to identify fine-grained sleep state transitions.
It then uses an active learning process to allow users to incrementally label
sleep states, improving accuracy over time. It was evaluated both on existing
datasets with clinical ground truth, and on 17 users for 8-10 days with user diary
data as ground truth, reaching an average sleep stage classification accuracy
approaching 79%.

In comparison, even though sleep quality is not estimated, our non-intrusive
model only needs screen on/off events and has been tested on a large user-base,
and can suitable for very large-scale deployment.

Methods

Data Collection

We have analyzed two datasets in this work.
The first dataset (A) was provided by Sony Mobile, and contains smartphone

app launches coupled with sleep tracking data from the SWR10 and SWR30
fitness tracking armbands [23]. For each user we have a set of records containing
an anonymized unique user identifier, a timestamp and the unique app package
name. Note that the model only uses the app launch timestamp and completely
ignores the app identifier, therefore no privacy risks related to app names are
present. The sleep tracking data indicates when each user is detected asleep or
awake with a granularity of one minute, serving as ground truth that we will
compare our results against. From this dataset we select 126 users that have
at least 3 hours of tracked sleep per day, and have between 2 and 4 weeks of
contiguously tracked sleep.

The second dataset (B) originates from the SensibleDTU project [24], which
collected smartphone sensor data for more than 800 students at the Technical
University of Denmark. In this dataset we focus on the screen interaction sensor
that records whenever the smartphone screen is turned on or off, either by user
interaction or by notifications. Each record contains a unique user identifier, a
timestamp, and the event type (on or off). From this dataset we select 324 users
in November 2013 that have at least 10 events per day, thus filtering out users
with gaps in the collected data or with very sparse data. There is on average
≈ 76 screen-on activations pr. day pr. user in this period.

Data collection for the SensibleDTU dataset was approved by the Danish
Data Protection Agency, and informed consent has been obtained for all study
all participants. Data collection for the Sony dataset has been approved by
the Sony Mobile Logging Board and informed consent has been obtained for all
study participants according to the Sony Mobile Application Terms of Service
and the Sony Mobile Privacy Policy.
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Model Assumptions

The underlying assumptions of the model are (1) that the user is in one of
two modes: being awake or sleeping, and (2) that mobile phone usage differs
between the two modes. In particular a user will have many screen interactions
when awake, and very few or even no interactions when sleeping.

Sleeping is here considered as an extended resting period that typically takes
place once every 24 hours at roughly similar times, as governed by the users cir-
cadian rhythm and influenced by socio-dynamic structures, during which the
owner physically rests and/or sleeps. Resting periods, however, might be in-
terrupted by short periods of activity, such as checking the time on the phone
or responding to urgent messages. This behavior leads to two different activity
levels, which we label λawake and λsleep, one for each mode.

If we can deduce when the switchpoint between the two distributions occur
during each 24 hour period, we can also infer the time during which the owner
is resting for the night, and thereby also the period within which sleeping takes
place.

Short of using the more invasive EEG or polysomnographic methods, prop-
erly differentiating the resting period and actual sleep is difficult; even sleep
diaries may easily contain reporting bias or be somewhat inaccurate. To re-
move self-reporting bias and to study a larger population we have therefore
decided on using a motion-based detector (Sony fitness tracking armbands) as
ground truth.

If higher accuracy would be required, applying individual corrective terms
(i.e. average sleep/rest time differences) learned from an initial period by more
accurate means (polysomnography, external observer or possibly a careful user
diary) might be possible, similar to what as demonstrated by Abdullah et al. [8].

Model Structure

Each user is considered independently. We divide time into 24−hour periods
starting at 16:00 and ending at 15:59 on the next calendar day, so that the
night period and the expected sleep midpoint is in the middle, for convenience.
Each day is divided into n = 24 ∗ 4 = 96 time bins of size 15 minutes. We
count the number of events that start within each time bin, where an event is
an app launch for dataset A and a screen-on for dataset B. Information about
the duration of the events is purposely discarded, as phone usage typically takes
place in short bursts. This is supported by the median duration of screen events
in dataset B, which is ≈ 26.5 seconds. It is reasonable to assume that the count
of events k in each time bin follows a Poisson distribution:

P (k) = Poisson(k,λ) =
λke−λ

k!

with λ = λawake or λ = λsleep, depending on the mode of the user. It is,
furthermore, assumed that the user mode, and consequently the value for λ, is
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determined by two switchpoint variables tsleep and tawake, both assuming values
from 0 to n:

λ =

{
λsleep if tsleep ≤ t < tawake

λawake if t < tsleep ∨ t ≥ tawake

For simplicity, all models assume that λsleep is identical for all days of a given
user. It can be expected that users have a very low number of screen events
during sleep mode, which is encoded in this prior belief:

λsleep ∼ Exponential(104)

Here Exponential represents the exponential distribution:

f(x;λ) =

{
λe−λx x ≥ 0

0 x < 0

The rate parameter is set to a very large value to encode our prior belief that
almost no events should happen during the sleep time.

Fig. 1 shows an illustration of the model idea.

Fig 1: Conceptual illustration of the model. We assume that for each day the
event counts follow two different Poisson distributions: one for sleep periods
(rate λsleep) and one for awake periods (rate λawake). Furthermore we assume
that two switchpoints tsleep and tawake determine the rate (i.e. the Poisson
distribution) that generates the events.

We now propose four different models, which differ in the assumptions made
on the relation of the rate and sleep/awake time parameters for different days.
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Pooled-Pooled Model: Pooled Times and Rates

The simplest model assumes that for a given user there is a single λawake; i.e.
the user has very similar phone interaction patterns each day. Also tsleep and
tawake are each identical for all days, that is: the user goes to sleep, and wakes
up, at the same times each day:

tsleep ∼ DiscreteUniform(0, n)

twake ∼ DiscreteUniform(0, n)

λawake ∼ Gamma(2.5, 1)

Here DiscreteUniform(0, n) represents a uniform probability to choose a timebin
between 0 and n = 96. No additional prior knowledge of tsleep and tawake is
assumed; there is equal probability of any bin value. In other words, sleep and
awake time are equally probable at any time of the day. The prior for λawake

is chosen to represent our prior belief of a reasonable rate of events, specifically
with both mean and variance = 2.5 (events/bin) and a longer tail than a normal
distribution.

Independent-Pooled Model: Independent Times

A somewhat more realistic model would assume that each day has independent
tsleep and tawake times, while still sharing λawake rates. Therefore in this model
there are tisleep and tiawake, with i = 1...m, one for the each of the considered
days:

tisleep ∼ DiscreteUniform(0, n) for i = 1...m

tiwake ∼ DiscreteUniform(0, n) for i = 1...m

λawake ∼ Gamma(2.5, 1)

The rest of the model remains as above.

Independent-Independent Model: Independent Times and
Rates

It may further be assumed that each day could have its own specific activity
rate. We modeled this as separate λi

awake for each of the m days, in addition to
tsleep and tawake for each of the m days:
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tisleep ∼ DiscreteUniform(0, n) for i = 1...m

tiwake ∼ DiscreteUniform(0, n) for i = 1...m

λi
awake ∼ Gamma(2.5, 1) for i = 1...m

Independent-Hyper Model: Hierarchical Rates

The assumption that each day’s interaction rate is completely independent may
not be correct. It may not be unreasonable to imagine that the daily rate(s)
arise from an underlying user-specific rate; i.e. the user may have certain habits
that varies from day to day but share some similarities specific to that user.
This is modeled by adding αλ and βλ hyperparameters to the Gamma priors
for λi

awake:

tisleep ∼ DiscreteUniform(0, n) for i = 1...m

tiwake ∼ DiscreteUniform(0, n) for i = 1...m

αλ ∼ Exponential(1)

βλ ∼ Exponential(1)

λi
awake ∼ Gamma(αλ,βλ) for i = 1...m

We do not have strong prior beliefs for α and β, so we set their prior distributions
to generic exponential distribution with rate parameter = 1, Exponential(1).

Hyper-Hyper Model: Hierarchical Times and Rates

Finally we could assume that each day’s sleep and awake times derive from an
underlying circadian rhythm that is specific to the user, but still modulated by
events that take place during the week. This can be modeled by changing the
tisleep and tiawake priors to a normal distribution, with hyperparameters αt, βt

and τt as follows:

αt ∼ Exponential(1)

βt ∼ Exponential(1)

τt ∼ Gamma(αt,βt)

tisleep ∼ Normal(8 ∗ (n/24), τt) for i = 1...m

tiwake ∼ Normal(15 ∗ (n/24), τt) for i = 1...m

αλ ∼ Exponential(1)

βλ ∼ Exponential(1)

λi
awake ∼ Gamma(αλ,βλ) for i = 1...m
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The tisleep are here chosen to be centered at the bin corresponding to 23:00, while

the tiawake are centered at the bin corresponding to 07:00. Also in this case we
have no strong prior knowledge of the τt, αt and βt parameters, so we set their
prior distribution to a non-informative Exponential and Gamma respectively.

Model Fitting and Selection

The models are fitted using Markov Chain Monte Carlo (MCMC) sampling [25],
where the parameter values are estimated by a random walk in the parameter
space guided by the log likelihood. We use the pymc3 python library [26,27] for
running the sampling, but any MCMC framework could be used to implement
our model. The result of the Bayesian inference is a trace that captures the
most probable values of the parameters, and also gives an indication of the
uncertainty of the estimation.

It is important to note that the models are unsupervised, which means that
they are fitted only to the number of events without having access to the ground
truth of the actual sleep patterns. This allows the model to be fit to other
datasets where we do not have ground truth of sleep patterns, which is desirable
if the sleep inference has to be deployed on a large scale. For dataset A we verify
the fit by comparing with the sleep patterns from sleep trackers, while for dataset
B we evaluate the fit by inspecting the inferred sleep patterns.

In order to find the model that provides the best overall fit for the intended
purpose without introducing too many degrees of freedom, we compare the log
posterior from the traces of the models, logp, and see how they converge.

One example of a plot of logp traces for the five models is shown in Fig. 2,
which shows that the hyper-hyper model (blue) has the highest (least negative)
logp, followed by the independent-hyper model for dataset B. The three other
models appear with lower logp. In 76% of the analyzed cases of dataset A (84%
for dataset B), the hyper-hyper model has the highest logp score, followed by
the independent-hyper model with the highest logp in 11% (13%) of the cases.

The logp estimation does not, however, take into account the added com-
plexity of the more advanced models. An attempt to do so is the Deviance
Information Criterion (DIC) [28], which penalizes the increased degrees of free-
dom (more model parameters) that usually result in a model that is easier to
fit to the data. Fig. 3 shows the Relative DIC score (vs. the simplest model,
pooled-pooled). The order is identical for both datasets.

Further, Table 1 compares the 5 models by ranking the calculated DIC for
all 126 and 324 users. The median rank shows that the hyper-hyper model is
the “best” model; it has a probability of being the best ranked model (p(Best))
in 62% of the cases for dataset A (69% for dataset B). The independent-hyper
model follows as a somewhat distant 2nd best, ranking highest in 17% (19%) of
the cases.

It should be noted that, in addition to their different abilities to reflect the
underlying assumptions and provide varying levels of fit to the actual data, the
models also differ in their runtime; the most complex model typically takes 15
times longer to execute than the simplest. In particular, the hyper-hyper model
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Fig 2: Typical logp traces (A top, B bottom)
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Fig 3: Relative DIC scores (A top, B bottom), sorted by their mean value (error
bars represent one standard deviation). For both datasets the order is the same,
with the hyper-hyper model having the lowest mean DIC.

on average had a runtime that is 60% longer than the independent-hyper model,
so there may be cases where the latter would be a better model to use despite
the slightly worse DIC ranking.

11

168 Paper F. SensibleSleep...



Model Ranks Median Mean p(Best) Mean Relative DIC
Value (StdDev) Value (StdDev)

A pooled-pooled 5 4.27 (1.37) 0.10 0.96 (0.16)
independent-pooled 4 3.82 (0.85) 0.03 0.95 (0.05)
independent-independent 3 2.86 (1.08) 0.08 0.91 (0.09)
independent-hyper 2 2.29 (0.83) 0.17 0.90 (0.14)
hyper-hyper 1 1.76 (1.11) 0.62 0.88 (0.20)

B pooled-pooled 5 4.70 (0.89) 0.02 0.99 (0.01)
independent-pooled 4 3.75 (0.66) 0.02 0.93 (0.05)
independent-independent 3 2.92 (1.02) 0.09 0.92 (0.06)
independent-hyper 2 2.06 (0.69) 0.19 0.91 (0.05)
hyper-hyper 1 1.56 (0.94) 0.69 0.91 (0.04)

Table 1: Model DIC comparisons

Results

All five models have been run on both datasets, producing an estimation of the
times of sleep and wake up for each day, as well as estimates for the other hyper-
parameters, for each user. Moreover, we calculated logp and DIC as discussed
in the previous section. We firstly verify the accuracy our method using the
ground truth from the sleep trackers. We then provide a qualitative analysis
of some key examples of individual sleep patterns, and a description of the ag-
gregated sleep patterns for both datasets. For the remainder of the paper we
restrict our analysis to the model with the best fit, the hyper-hyper model.

Comparison to Related Work and to Ground Truth

To assess the results, we compare the sleep periods inferred by our model and
those inferred by a previously suggested rule-based method to the ground truth
collected by the Sony sleep trackers.

For each day we calculate the time of sleep and time of awake inferred by
our model as the mean of the tisleep and tiwake respectively, and we consider the

user asleep (Z = 1) for all time bins between tisleep and tiwake, and awake (Z = 0)
for the remaining bins.

For a representative and comparable method, we chose to implement a rule-
based algorithm similar to what is proposed by Abdullah et. al. [8] to derive
sleep data for dataset A. This rule-based method essentially works by finding the
longest contiguous sleep period, with a prior assumption that sleep must start
after 10 PM and before 7 AM next morning. Note that the original algorithm is
based on screen on-off events and furthermore discards events of short duration
during the night; in our case we use app launches with no available duration,
and thus cannot discard events of short duration.

For the sleep trackers we can directly mark each time bin as sleep (Z = 1)
if the trackers have detected at least one sleep status in that bin, and awake
(Z = 0) otherwise.

We again consider one user at a time. For each user we now have three binary
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matrices: two inferred sleep status values per time bin from either model, and
one measured sleep status value per time bin (ground truth) . We evaluate this
as two binary classification problems, and calculate accuracy, precision, recall
and F1 for each model and for each user according to the definitions:

accuracy =
correct predictions

predictions

precision =
true positives

predicted positives

recall =
true positives

all positives

F1 = 2 ·
precision · recall

precision+ recall

Fig. 4 shows the resulting distribution of accuracy, precision, recall and F1 scores
for the proposed method. The SensibleSleep method achieves a mean accuracy
of 0.89, and a mean F1 score of 0.83. The below-average scores for some users
are expected, since it is likely that among the large population under study
there will be people having irregular sleep schedule or noisy sleep ground truth.

Fig 4: Histogram of the calculated accuracy, precision, recall and F1 score for
users in dataset A, comparing the proposed method to the sleep tracker ground
truth.

Fig. 5 shows the corresponding complementary cumulative distributions of
the accuracy, precision, recall and F1 scores of the proposed SensibleSleep model
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vs that of the rule-based model [8]. The results are generally comparable be-
tween the two models, on this particular dataset. Our model has slightly better
accuracy and precision whereas the previously suggested rule-based model has a
slightly better recall. The F1 scores, which weights precision and recall equally,
are comparable. This particular dataset has only very limited sleep interrup-
tions during the night. For populations with more interrupted sleep, we expect
our model to maintain a high score.

Fig 5: Complementary cumulative distribution of accuracy, precision, recall and
F1 scores for users in dataset A, comparing the proposed model (solid line) to
the rule-based model (dashed line), showing the proportion of users (y-axis)
having a score less than or equal to a specific value (x-axis).

Individual Sleep Patterns

We now analyze individual sleep patterns to show the results of the model in
details. For each user we create a visualization of sleep schedules. We call this
the sleep matrix. Each row represents one day, and each column represents one
time bin. The blue color shows the probability that sleep takes place within
the interval; the darker the color the higher the probability. The red dots show
activity count per bin; the larger the radius the more events are registered
within that particular bin. This compact representation is able to capture at
a glance the sleep patterns of individuals over time. We have created one such
sleep matrix for each of the users, which allows us to inspect hundreds of sleep
patterns quickly. Large individual variability both in sleep schedules (regular,
irregular) and in phone activity (low, high, during day or night) are noticeable.
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Still, in most cases it is evident that the model is able to capture a reasonable
sleep period, even if it may have been somewhat interrupted.

Let us consider the inferred sleep patterns for two example users in Fig. 6.
The top user has a pretty regular schedule, waking up around 5:30 except every
few days, when he/she wakes up later – presumably due to vacation or weekends.
Notice the light blue sections that indicate how the model is less confident about
the probability of sleep due to events that do not follow the usual patterns. The
bottom user instead has a much more unstable app usage, therefore the model
infers a correspondingly more unstable sleep schedule. The bottom user has
also some events in the middle of the night throughout many days (which is
presumably checking the phone at night) yet the model is still able to correctly
infer this being a sleep phase. Finally notice how the two users have significantly
different intensity of app usage (the bottom one uses the phone much more than
the top one), yet this is not a problem since the model learns individual activity
rates.

Fig 6: Sleep matrix of two sample users (21 days from dataset A top, 30 days
from dataset B bottom)
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Sleep Time Wake Time
Mean (Std) Mean (Std)

A 23:38 (2h 16m) 7:40 (2h 2m)
B 0:35 (2h 6m) 7:55 (2h 15m)

Table 2: Aggregated sleep and wake times

Aggregated Sleep Schedules

In this section we also quantify the aggregated sleep patterns. From the pos-
terior probability distribution functions (PDFs), Ptsleep(t) and Ptawake

(t), the
probability that the user is sleeping can be estimated as follows:

Psleep(t) = Ptsleep(t)− Ptawake
(t)

This is equivalent to stating that a user is currently sleeping if he has passed
the time of falling asleep but has not yet passed the time waking up.

The derived values of sleep-length tsleeplength and mid-sleep time tmidsleep

can be calculated directly from the values of tsleep and tawake for each sample of
the trace, and the posterior density can be estimated for these derived values in
a similar way as for the model parameters. Fig. 7 shows the aggregate posterior
probability density functions for tsleep and tawake for the 126 users of dataset A
over 15−30 days, and for the 324 users of dataset B over a selected period of 30
days (just after semester start). It may not be entirely meaningful to average
the sleep patterns from all users, but it serves to illustrate the distribution of
tsleep and tawake for a larger population. Table 2 summarizes the sleep and wake
times.

Across the 30 (14-28) analyzed days for the 324 (126) users of the study,
the distribution of sleep durations are as shown in Fig 8. The model allows us
to easily compute such metrics. The mean value is around 8:02 (±2h 36m) for
dataset A and 7:20 (±2h 28m) for dataset B. Notice how the distributions are
not completely similar; this is likely due to the fact that the larger dataset B
captures the sleeping behavior of students as opposed to dataset A that may
have a more diverse demographic distribution.

Fig. 9 shows the probability density functions for the tsleep and tawake times
for all users of dataset B, grouped according to weekday. Mondays to Thursdays
appear quite similar, but Friday shows a much wider distribution; users typically
go to bed much later on Friday and sleep in on Saturday. The distributions
start to narrow down Saturday and Sunday but are more “week-like” only from
Tuesday morning again.
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Fig 7: Aggregate Posterior Probability Distributions of tsleep (blue) and tawake

(green) (A top, B bottom), showing what the probability is for the specific
population to go to sleep or wake up at the specified time.
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Fig 8: Aggregated Sleep Durations (A top, B bottom), based on the Posterior
Probability Functions. This illustrates the probability of the length of a nights
sleep within the population within the datasets.
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Fig 9: tsleep (blue) and tawake (green) over weekdays for dataset B
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Discussion

The main contribution of this work is to show how simple counts of smartphone
interactions can be used to infer sleep patterns with reasonably high accuracy.
We have demonstrated how the seemingly weak signal of screen events carry
significant information of the user status. Our method has several advantages:

• The method requires only a smartphone and can therefore be deployed
without the need for special equipment or methods, such as fitness or
sleep tracking bands, or sleep diaries.

• The data collection is completely automated, as no action is required from
the user in setting up the tracking or remembering to log his/her activity.

• Since the model requires only screen interactions, it is absolutely non-
intrusive and privacy-preserving. Although in this work we stored the
data on a central server for analysis purposes, the data could remain on
the phones and the sleep analysis could in principle be run directly on the
phones as well.

• Compared to accelerometer or microphone-based methods, using only
screen events is much more battery-efficient.

Although solutions using screen events have been proposed before [8,21], our
model provides a number of key improvements:

• It is more robust to noise such as screen events generated by checking the
phone at night.

• Using a Bayesian formulation allows us to provide confidence intervals for
the sleep and awake times, instead of point estimates only.

• It does not depend on ad-hoc rules, but it is based on a well-defined
statistical formulation.

• It is fitted and verified on a much larger userbase of over 400 users, and a
longer time duration (between 2 and 4 weeks).

Demonstrating the feasibility of inferring reasonable sleep patterns from sim-
ple event counts opens the way for new exciting research directions. In particular
we believe that similar methods can be applied to large datasets of user activity.
For example on social network (such as Twitter, Facebook, Meetup, Gowalla)
users leave a trace of their activity in the form of messages, posts, likes, etc.
Another great example is Call Detail Records, the logging information kept by
telecom providers about user calls and SMS. These events could be treated again
as a proxy for sleep and wake cycles.

The main drawback of the proposed method is that it requires that users
periodically interact with their phones during their wake time. In line with
other recent polls (see for example [29–31]), we show that in most cases this does
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happen, as the population of users analyzed here tend to check their phone from
the early morning to the late night when awake. Different populations, however,
such as elderly people less accustomed to smartphone usage, may not show
similar usage patterns. There is therefore a need for additional work in order
to understand how increased sparsity would affect sleep pattern reconstruction.

Conclusions

We have presented a Bayesian model to infer sleep patterns from smartphone
interactions, which we have applied to two datasets of more than 400 users
in total. We have compared the model output with ground truth from sleep
trackers, and we have shown how the model is able to recover the sleep state
with a mean accuracy of 0.89 and a mean F1 score of 0.83. Furthermore, we
have shown how the model is capable of producing very reasonable individual
and aggregated sleep patterns. Our method represents a cost-effective, non-
intrusive and automatic alternative for inferring sleep patterns, and can pave
the way for large-scale studies of sleep rhythms.
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Paper G

The Blank Stare
This paper was originally prepared as part of a course in Biometrics, and was later

reworked and submitted to a biometrics conference on request. It was, however, not

accepted due to the limited amount of participants but not due to problems with the

method or analysis. The scope of the paper is not to validate a new method across

many different subjects but focuses on the stability of the found signatures.
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The Blank Stare: Retrieving Unique Eye Tracking
Signatures Independent of Visual Stimuli

Per Bækgaard1Michael Kai Petersen2 Jakob Eg Larsen3

Abstract: USING LOW COST PORTABLE EYE TRACKING FOR BIOMETRIC IDENTIFICATION OR
VERIFICATION: Eye tracking technologies have in recent years become available outside of spe-
cialised labs, and are starting to become integrated in tablets and virtual reality headsets4. This
offers new opportunities for use in common office- and home environments, such as for biometric
recognition (identification or verification), alone or in combination with other technologies. This pa-
per exposes two fundamentally different approaches that have been suggested, based on spatial and
temporal signatures respectively. While deploying different stimulation paradigms for recording, it
also proposes an alternative way to analyze spatial domain signatures using Fourier transformation.
Empirical data recorded from two subjects over two weeks, three months apart, are found to support
previous results. Further, variations and stability of some of the proposed signatures are analyzed
over the extended timeframe and under slightly varying conditions.

Keywords: Biometric Systems, Eye Tracking

1 Introduction

Biometric identification and verification are applied and subject to active standardization
work [IS13]; in particular within the areas of fingerprints (minutiae) and face- and iris
images, and is extending to dynamic signature time series, vascular images, hand geometry
silhouette, voice data, DNA data and palm crease images. Less work has seemingly been
done on the inherently traceless, non-invasive and contactless eye tracking signatures like
fixations and saccades [Ho11] for behavioural biometric purposes.

Temporal Features – Oculomotor Plant Model Analysis of Saccades: [Ko10], [Ko12]
and [Ko14] however suggest methods for biometric identification and verification using
eye trace recordings. These are largely based on observing eye movement traces from
which individual saccades are used to estimate parameters of a proposed Oculomotor
Plant Model (OPM), thus serving as an extracted feature vector from the biometric probe,
comparable to previous feature vectors of one or more biometric references from a bio-
metric enrolment database. In the more recent work [Ko14], Equal Error Rates (EER) of
the best model was found at 20.3% and Receiver Operating Characteristics (ROC) Area
Under Curve (AUC) levels of up to around 80% were observed in a study of 32 users
performing a total of 122 unique recordings within a period of 2 weeks.

1 Cognitive Systems, DTU Compute; Technical University of Denmark, DK-2800 Kgs. Lyngby; pgba@dtu.dk
2 Cognitive Systems, DTU Compute; Technical University of Denmark, DK-2800 Kgs. Lyngby; mkai@dtu.dk
3 Cognitive Systems, DTU Compute; Technical University of Denmark, DK-2800 Kgs. Lyngby; jaeg@dtu.dk
4 E.g. at http://www.theeyetribe.com
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Some of the key advantages of using such a system5 are that it is difficult for a subversive
impersonator in a presentation attack to spoof dynamic patterns that would result in a
feature vector matching the intended reference; such a system will often include a liveness
detection as salient on-screen stimuli can be used to trigger saccades that would be difficult
for a non-human entity to mimic. Further, parameters of such a system could be estimated
on a continuous basis, to ensure that a user carrying out trusted tasks is not replaced after
verification. It could also be speculated that the collectability and acceptability might be
high, due to the unobtrusive and readily available nature of the technology.

Spatial Features – Fixation Density Map Analysis: The method(s) above work best
when a large number of saccades can be evoked and analysed. Where the OPM based
proposal(s) mainly rely on exciting, and estimating characteristics of, the dynamic eye-
brain system by presenting salient stimuli, the work of [RK14] proposes the use of fixation
density maps (FDM) for biometric identification or verification in a way that does not
rely on invoking specific eye movements. It rather explores characteristics of the spatial
domain, which [BPL15] also found surprisingly stable within two subjects during a week
of repeated experiments.

[RK14] analyses the FDM that result from observing stimuli in a free-viewing condition,
noting that the FDMs also embeds some temporal information as the density grows with
the amount of time the eye remains within an area. The FDMs of 15 subjects observing
faces, 100 subjects reading text and the same 100 subjects observing video-scenes were
collected and analysed, and a min-based metric as well as Euclidean Kullback-Leibler
divergence (KLD) dissimilarity scores were used to compare the FDMs and to compute
dissimilarity matrices. The effect of applying different size gaussian kernels on the FDM
were also evaluated. In the best possible configuration, EER rates of 18.3% were reported,
with variations up to 34.5%, but still above chance level.

2 Biometric Brain-Eye Feature Extraction

Extracted temporal- and spatial features complement each other well. Whereas the tempo-
ral features to a large degree reflect the dynamic responses of the brain-eye system with
its neuronal-nerve-muscle interactions, the spatial features are, to a much larger degree,
independent of many of the OPM parameters, and thus may reflect more of the processes
related to components of the attention networks in the brain.

The present work looks at both temporal- and spatial feature extraction and comparisons,
using low-cost eye tracking equipment in office conditions where subjects are free to move
around somewhat and/or be distracted temporarily by other events in the environment. In
addition to replicating selected aspects of previous works, it also hints at the longer-term
stability of the analysed features, and proposes applying a Discrete Fourier Transforma-
tion (DFT) to better highlight desired attention-driven qualities and find similarities in the
spatial domain.

5 Other, although apparently few, proposals that also explore biometric features extraction from eye movements
exists; see the introduction section of [RK14] for a summary of some of the key ideas.
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Temporal (Bottom-Up) Features – Saccades and Time-to-Target: For the temporal do-
main, a simple feature extraction and analysis is done: From the OPM model, it can be
expected that the effective time-to-target (TTT) or saccadic latency, measured from pre-
sentation of a salient stimuli until the first eye fixation has reached an area nearby, will
depend on the direction of the eye movement and will vary between individuals. The hy-
pothesis is that these TTT measures should remain relatively stable within subjects even
over varying conditions and over longer periods.

Spatial (Top-Down) Features – Fixation Density Map Metrics: For the spatial domain,
this present work proposes a novel approach to analysis by applying a DFT to the FDM,
which here appears to improve the comparison performance significantly.

Whereas [RK14] calculate spatial domain dissimilarity metrics directly from the resulting
FDM after a gaussian kernel convolution, it is here proposed to first apply a DFT transfor-
mation, discarding the phase information and then use a box-filter to extract only the lower
spatial-frequency components of the resulting spectrum before calculating feature vector
distances. The filtering is not unlike applying a gaussian filter to the FDM, but the process
as proposed discards translations of the FDM and focuses more on the spatial-frequency
distributions instead of the actual FDM areas themselves, and may thus emphasize eye
patterns, including some microsaccades, used when exploring areas of interest.

It is hypothesised that as the observed scene(s) present areas of interest in a given spatial
configuration, the brain may explore different temporal and spatial combinations of these.
The resulting FDM will likely not only differ between two users observing the same scene,
but also to some extent when one user observe the same scene multiple times. However,
if the top-down driven eye movements are more a result of individual preferences or char-
acteristics related to attention governing the way a particular scene or areas of interest are
explored, it might be possible to better extract and characterize some of these patterns in
the DFT’ed domain.

The DFT function Fa,b of a NxN square 2D image, fx,y, is:

Fa,b =
N

∑
x,y

fx,ye−i2π( ax
N + by

N )

and applying a box-filter simply means assigning Fa,b = 0 when |a|> l∨|b|> l for some
limit l, chosen suitably to the size of the FDM (values around 5% of the original image
size has been used in the present case).

For comparison with [RK14], a similar gaussian kernel is applied to the FDMs, but this
is not strictly required for the DFT distance metrics to be calculated; only for the FDM
domain distance metrics they are essential.

To compare the extracted 2D NxM features, consider a P (probe) and a R (reference) –
both based on either a FDM directly or a DFT’ed FDM – for which the distance metrics
are calculated. This will be done similarly to [RK14], with the addition of a simple Mean
Square Error (MSE) metric.
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Before calculating any of the distance metrics, it is ensured that the feature vectors are
normed independently such that ∑x,y Px,y = 1 and ∑x,y Rx,y = 1. The distance metrics are
then as follows:

The Mean Square Error (MSE) distance calculates the sum of the square of the difference
at each 2D point in the feature space:

DMSE(P,R) = ∑
x,y

(Px,y−Rx,y)
2

The 1-MIN based Similarity Metric (1-Min) distance calculates the sum of the min value
of either P or R at each 2D point in the feature space:

D1-MIN(P,R) = ∑
x,y

min(Px,y,Rx,y)

It is in this case, where the FDMs could be thought of as representing a probability func-
tion, somewhat similar to a continuous version of the Hamming distance that is conven-
tionally deployed when only binary point-to-point comparisons are possible.

The Kullback-Leibler divergence [KL51] (KLD), or relative entropy, is a non-symmetric
measure defined as follows:

DKL1(P,R) = ∑
x,y

Px,yln
Px,y

Rx,y

but in this present case, disregarding any performance considerations, a symmetric dis-
tance is desirable, and hence a value proportional to the harmonic mean of DKL1(P,R) and
DKL1(R,P) is used, i.e.

DKLD(P,R) =
2

1
DKL1(P,R)

+ 1
DKL1(R,P)

Finally, the Euclidean (Eucl) distance is calculated, based on not only comparing two
feature sets from FDMs or DFT’ed FDMs but using the entire previously calculated KLD
dissimilarity matrix6 as follows: Since the DKLD in our case is symmetric, the dissimilarity
matrix will also be symmetrical. Each row (or equivalently column) can be considered as
a feature vector that holds the DKLD distance from the corresponding probe to all other
templates7. This can be compared to all other similar feature vectors by computing the

6 As the DEucl distance requires computing the entire dissimilarity matrix based on all participating feature vec-
tors, it may be less suited to large biometric databases. It may work best with neither too small nor too large
template databases against which a probe is to be compared. Also, the Euclidean distance between two fea-
ture vectors will change according to how many and which particular feature vectors are included in the total
comparison, so a cut-off threshold learned from a training set cannot directly be applied to another test set;
the classifications derived from the training set will have to be used to recalculate a new threshold value in the
combined training and test sets.

7 Fom this calculation, there is no difference as to whether compared samples are other probes or references.
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Euclidean distance between each vector pair. Hence, a new dissimilarity matrix can be
built by computing:

DEucl(DKLD) = Euclidean(DKLD,DT
KLD)

as proposed by [RK14]8 where it also is subsequently normed so that max(DEucl) = 1

3 Experimental Setup

Two male right-handed subjects, average 55 years old, participated in the trials, which
took place over several weeks9 10 3 months apart11. In each week, the experiment was
executed one or more times during most of the weekdays, at alternating hours and between
two different everyday offices. In total 34 trials were run; 16 with subject A and 18 with
subject B. The subjects were not instructed to follow any specific viewing patterns.

During the experiment 24 sequences were presented, where 8 colored squares (3 degrees
wide) were sequentially presented as salient stimuli on the screen, each sequence alter-
nating between the colors blue, yellow, green, yellow, white and black. Each presented
square appeared for 2 seconds against their complementary color as background. This was
followed by 4 seconds of solid complementary color12, in total 480 secs of visual stimuli
for each of 34 experiments performed, in aggregate 2h16m of stimuli for each participant.

The trial stimuli were presented on a conventional MacBook Pro 13â at 60 Hz screen
refresh rate, running the PsychoPy software [Pe07]. The Eye Tribe mobile eye tracking
device, connected via USB, was used to retrieve the eye traces through the associated API
[Th16], using PeyeTribe [Bæ15], and was running at 60 Hz. An initial calibration, using
the vendor provided interface, was performed at the beginning of each experiment.

The raw traces from the trials were first analysed to identify fixations by applying a DB-
SCAN [Es96] derived density-based clustering approach. They were then epoched accord-
ing to the presence or lack of the stimuli squares, and FDMs were built from the fixations
that occurred during the combined 4-second periods where only a solidly coloured back-
ground was present. This was used for the top-down FDM analysis.

For the bottom-up time-to-target analysis, the appearance or relocation of a stimuli square
was used as the basis for calculating the time to the first fixation hereafter nearby the
presented square. To remove outliers and be able to identify those occasions where the
reaction could be assumed to be the result of a bottom-up response to the stimuli, time-to-
target values of less than 0.1 sec or more than 0.4 secs were discarded as outliers13.

8 In this case, DKLD is symmetric and square, so the transposed matrix will be identical to the original matrix.
9 This footnote removed in order to keep the present work anonymous.

10 The first week of the experiment has been described and qualitatively analysed in [BPL15].
11 Although this does not prove much in terms of uniqueness or the overall permanence of the extracted features,

it is nevertheless based on a longer period compared to previously noted work.
12 Hence the title of this paper THE BLANK STARE.
13 [Ho11] cites typical saccadic latencies of 200ms and never shorter than 100ms; the latter only found when

attention is released before onset of a new stimuli (the gap effect), which is not the case in this present study.
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Apparent inaccurate calibrations, resulting in a shift of the fixation locations compared
to the presented stimuli, are further compensated: A simple affine transformation can be
calculated by minimizing the MSE from each measured vs target position, and can subse-
quently be applied to the fixations. These are the Recalibrated scenarios, tested to see if
they would result in better alignment and more comparable FDMs across trials.

4 Results

Temporal Features – Time-to-Target: Fig. 1 shows the resulting median time-to-target
values over all trials for both subjects. The distributions are different, but wide and with a
long tail towards higher values. An individual time-to-target value cannot be contributed
to either subject with confidence.

Table 1 show mean, median and standard deviation values for the time-to-target of all
trials. As can be seen, even between trials, the distribution is quite wide and the differences
between the mean or median values between subjects is of the same magnitude as the
standard deviation. Hence, when comparing two trials, the difference is not statistically
significant. The same data is also shown graphically in Fig. 2.

Fig. 3 shows time-to-target when only looking at saccades in the upwards, right, down-
wards and left direction, respectively. The distributions are different within-subject when
comparing the downward direction with the other three; for both subjects, downwards
time-to-target values are somewhat longer (around 50ms) although the distributions still
overlap. The other three time-to-target values are very similar within-subject.

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0

2
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10

12
A (median 0.255)

B (median 0.209)

Fig. 1: Time-to-target histogram (all trials) for subject A (red) and subject B (green). The median
value for subject A is 0.255s and for subject B 0.209s.

Spatial Features – Fixation Density Map Metrics: Examples of normal FDMs from
both subjects14 are shown in Fig. 4 with their corresponding DFT versions. They are gen-
erated from eye traces recorded during the solidly coloured screen epochs and appear very

14 A parallel study with multiple participants, not included in this experiment, indicate that the FDM patterns
across subjects are similarly characterized by the amount of central symmetric diffusion, spatial scattering, and
vertical/horizontal asymmetrical skewness in their distribution of fixations.
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Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A

N 151 152 112 119 131 147 139 143 154 148 153 75 60 152 93 119
Mean 0.255 0.255 0.261 0.256 0.260 0.270 0.264 0.263 0.258 0.256 0.265 0.256 0.269 0.270 0.298 0.276
Median 0.241 0.245 0.250 0.249 0.249 0.263 0.257 0.258 0.252 0.246 0.258 0.248 0.265 0.262 0.300 0.261
σ 0.054 0.048 0.055 0.056 0.053 0.055 0.054 0.059 0.048 0.059 0.056 0.050 0.059 0.056 0.056 0.055

B

N 167 165 174 180 177 170 175 170 166 171 169 170 169 177 166 173 162 171
Mean 0.224 0.213 0.215 0.206 0.209 0.209 0.230 0.207 0.209 0.219 0.209 0.225 0.257 0.220 0.222 0.227 0.226 0.247
Median 0.214 0.203 0.205 0.199 0.207 0.202 0.227 0.198 0.202 0.208 0.193 0.210 0.246 0.205 0.209 0.218 0.208 0.233
σ 0.045 0.046 0.042 0.036 0.032 0.037 0.045 0.042 0.040 0.043 0.049 0.049 0.053 0.059 0.052 0.046 0.058 0.051

Tab. 1: Time-to-target values (all trials). N is the number of correctly identified target fixations within
the 0.1s to 0.4s window. Mean, median and Standard Deviation are also listed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Fig. 2: Time-to-target for subjects A (red) and B (green). The bold line is the median, boxes outline
quartiles, whiskers 5% and 95% confidence intervals. Numbers on the x-axis are for convenience.

different. The maps shown are somewhat typical for each subject, and although there is
variation within-subject, they can generally be classified correctly by a human observer.

Dissimilarity matrices are calculated for the 4 metrics (MSE, 1-Min, KLD and Eucl), for
all trials in the first week, for all in the second week and for all in both weeks combined.
An example of the best comparison matrices can be seen in Fig. 7. From these, ROC and
Detection Error Trade-Off (DET) curves are plotted by varying the detection threshold lev-
els, and the accuracy (ACC, proportion of correctly classified outcomes) at the maximum
value of F1 (the harmonic mean of precision and recall) is calculated, as is the Area Under
Curve (AUC) for the ROC curve and the Equal Error Rate (EER)15. The ROC and DET
curves corresponding to the matrices in Fig. 7 can be seen in Fig. 6. All of the computed
performance metrics are listed Table 2.

As can be seen, the DFT based spatial-frequency approaches generally show a signifi-
cantly better performance than basing the comparison on the spatial domain of the original
FDMs only, and the 1-Min and Eucl metrics consistently16 show the best performance in
all four domains. The recalibration has a significantly positive effect on the comparison
performance in the spatial domain in week 2, but deteriorates the performance of week 1

15 F1, accuracy, area under curve and equal error rates are computed as conventionally.
16 This holds when looking at optimal threshold values based on, and used within, the same analysed set of of

feature vectors.
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Fig. 3: Time-to-target histogram over all trials for subjects A (TOP) and B (BOTTOM). Cyan, ma-
genta, blue and yellow bars correspond to upwards, right, downwards and left saccades, with medians
0.242s, 0.255, 0.303s and 0.235s for subject A and 0.190s, 0.196s, 0.236s and 0.195s for subject B.

spatial domain comparisons17. The effect of the re-calibration is also inconclusive in the
spatial-frequency domain, but has a much smaller effect here.

The best performing set of dissimilarity scores show an EER of 0.7% within week 1 and
0% (no errors in classification) within week 2; this variation is within the expected statisti-
cal variation for a system operating at this level. Between the two weeks, the best result is
at 2.4%. This does not however imply that a system trained on one week would automati-
cally give excellent results when tested on the other weeks data. As can be seen in Fig. 5,
the optimal threshold value resulting in lowest error levels for one week neither always
coincides with that of the other week nor that of the weeks combined.18

The relatively stable and similar performance between and over weeks might give hints on
the stability of the FDMs, although the very limited number of subjects makes it impossible
to draw any firm conclusions.

Other features extracted from the FDMs have also been tested, such as the spatial variance
and skewness of the distributions (for instance, subject A has a tendency to have more

17 This could point to the need for an improved re-calibration routine in case there are outliers in the data.
18 There are differences in the behaviour of the metrics: MSE shows inconsistent alignment of optimal threshold

values between weeks in the spatial domain but appear more consistent in the DFT domain, where all metrics
generally appear more consistent. This mandates further study before one metric can be recommended in favour
of the others.
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Fig. 4: (LEFT) Typical FDM recorded during presentation of solidly coloured screens for subjects A
(TOP) and subject B (BOTTOM). (RIGHT) DFT’ed FDM corresponding to the ones to the left.
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Fig. 5: Examples of total error levels (1−ACC) vs threshold value for (LEFT) ’misaligned’ MSE
based comparisons for original DFMs and (RIGHT) ’better aligned’ 1-Min based comparison in the
DFT domain. Blue, green and red denote week 1, week 2 and weeks 1+2 combined respectively.

fixations to the left side of the screen), but even though there is a clear clustering of data
values for each subject they apparently do not provide better comparison scores, and also
hold lower entropy, and hence will not be discussed further here.

5 Conclusion

It has been demonstrated that using a DFT FDM spatial-frequency domain based approach
in some instances can give improved performance to biometric recognition systems based
on dissimilarity scores, compared to earlier proposed gaussian-filtered FDM spatial do-
main dissimilarity scores. Performance over the three month period achieved an EER of
2.4% overall and 0.7%/0.0% within each individual week in the best possible case, with
corresponding AUC scores of 99.6% and 100.0% within weeks.
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Week 1 Week 2 Week 1+2

ACC AUC EER ACC AUC EER ACC AUC EER

FDM

MSE 89.0 89.7 15.5 79.5 71.5 35.3 72.2 73.6 34.5
1-MIN 85.7 92.2 15.0 87.2 94.1 16.0 79.3 85.9 21.7
KLD 76.2 84.8 26.0 83.3 91.0 18.6 73.1 80.8 26.6
Eucl 79.0 88.0 21.2 87.2 94.0 18.6 77.7 81.7 25.6

FDM’

MSE 79.5 89.7 21.2 97.4 99.5 3.2 74.3 82.3 27.2
1-MIN 72.9 81.2 29.8 96.2 99.1 5.8 79.1 88.8 21.3
KLD 72.9 74.9 36.0 91.0 92.9 10.9 76.1 83.0 25.9
Eucl 76.2 84.0 29.3 94.9 97.2 9.6 85.6 92.0 15.8

DFT

MSE 94.3 98.6 6.4 100.0 100.0 0.0 91.8 96.0 8.5
1-MIN 90.5 96.8 10.7 100.0 100.0 0.0 93.0 98.2 7.6
KLD 89.5 96.4 11.2 100.0 100.0 0.0 93.0 98.0 8.3
Eucl 99.0 100.0 1.7 100.0 100.0 0.0 97.7 99.6 2.4

DFT’

MSE 97.1 99.1 5.0 100.0 100.0 0.0 91.4 94.9 11.1
1-MIN 95.2 98.6 6.9 100.0 100.0 0.0 95.5 99.0 4.5
KLD 92.9 97.8 9.7 100.0 100.0 0.0 94.8 98.8 5.6
Eucl 99.5 100.0 0.7 100.0 100.0 0.0 97.7 99.6 2.4

Tab. 2: Effects of using different dissimilarity scores and domains, showing how well the biometric
samples are correctly classified as a match or a non-match, compared to ground truth of mated vs
non-mated origins. The Accuracy (ACC) is given at the threshold value with the highest F1 score.
(AUC) is the Area Under Curve and (ERR) the Equal Error Rate. The metrics are based on com-
paring either original FDMs (FDM), recalibrated FDMs (FDM’), DFT’ed FDMs (DFT), or DFT’ed
recalibrated FDMs (DFT’), with each dissimilarity score: MSE, 1-Min , KLD , and Eucl. Trivially
identical comparisons are not included in the metrics.

No significant differences between weeks, time of day, office location or environmental
condition was noted, hinting at the stability of the signatures within each individual even
over extended periods.

Differences in simple time-to-target values between subjects were also demonstrated, as
were directionally dependent differences, and although they also appeared stable over time
and conditions, they did not allow statistically significant independent recognition of the
subjects. Hence, in a setup similar to the present, with low resolution eye tracking equip-
ment in varying environmental conditions, a temporal-spatial approach deploying the full
OPM might be required; simple time-to-target methods might initially be more useful as
part of liveness detection.

However, as the top-down and bottom-up modes complement each other, inherently re-
flecting different human behavioural systems, combining dissimilarity scores based on
both would suggest itself as an enhancement compared to treating the two domains in-
dependently and should receive continued research efforts. As a means to solicit suitable
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Fig. 6: Best performing ROC and DET curves, corresponding to Fig. 7, with dissimilarity scores:
MSE (RED), 1-Min (GREEN), KLD (BLUE), and Eucl (CYAN) over DFT’ed FDMs across all trials.
The ROC curve (LEFT) plots the True Positives (y-axis) vs the False Positives with resulting AUC of
94.9%, 99.9%, 98.8% and 99.6% respectively. The DET curve (RIGHT) plots the False Negatives (y
axis) vs the False Positives on logarithmic scales. The intersection with the line from origo to (1,1)
is the point of Equal Error Rate (EER), of 11.1%, 4.5%, 5.6% and 2.4% respectively. See Tab. 2.

eye trace responses, a combination of salient stimuli with a known timing and non-salient
stimuli, even solidly coloured screens, appears within reason and should also be explored
further.
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ABSTRACT

ESTIMATING EMOTIONAL RESPONSES TO PICTURES
BASED ON HEART RATE MEASUREMENTS: Variations in
Heart Rate serves as an important clinical health indicator,
but potentially also as a window into cognitive reactions to
presented stimuli, as a function of both stimuli, context and
previous cognitive state.

This study looks at single-trial time domain mean Heart
Rate (HR) and frequency domain Heart Rate Variability
(HRV) measured while subjects were passively viewing emo-
tionally charged images, comparing short random presenta-
tions with grouped sequences of either neutral, highly arous-
ing pleasant or highly arousing unpleasant pictures.

Based on only a few users we were not able to demon-
strate HRV variations that correlated with randomly presented
emotional content due to the inherent noise in the signal.
Nor could we reproduce results from earlier studies, which
based on averaged values over many subjects, revealed small
changes in the mean HR only seconds after presentation of
emotional images. However for longer sequences of pleas-
ant and unpleasant images, we found a trend in the mean HR
that could correlate with the emotional content of the images.
Suggesting a potential for using HR in single user Quantified
Self applications to assess fluctuations over longer periods in
emotional state, rather than dynamic responses to emotional
stimuli.

Index Terms— Heart Rate Variability, Emotion, Cogni-
tive State, Affective Computing

1. INTRODUCTION

With the increased availability of low cost biometric sen-
sors (for instance the Zephyr BioPatch1, Basis Band2 and
Fitbit3) comes a wish for determining a person’s cognitive

1Zephyr BioPatch: http://www.zephyranywhere.com/products/biopatch/
(Online; accessed 31-March-2014)

2Basis Band: http://www.mybasis.com/ (Online; accessed 01-April-
2014)

3Fitbit: http://www.fitbit.com/uk (Online; accessed 01-April-2014)

or emotional state based on simple, directly observable bio-
metric markers, such as Heart Rate (HR), Galvanic Skin
Response (GSR) or changes in Body Temperature. Many
commercial health-care oriented solutions already utilize and
combine these biometric data, collected by torso- or wrist-
mounted sensors, enabling anyone to monitor or track vari-
ous aspects of their everyday life. This aspect is a central part
of the Quantied Self 4 (QS) movement, which – in contrast
to scientific studies of a large number of subjects – provides
only a limited although often instantaneous analysis of ones
own biometric markers. However, most existing applications
which grasp the concept of QS do currently not make any at-
tempt at deducing the emotional or cognitive state/response
of the user. Additionally, on the basis of utilising the full
potential of HR components, only the mean HR is currently
considered in such applications.

Even if we no longer view the heart as the sole origin
of emotions, several studies have documented links between
emotional state and HR or Heart Rate Variability (HRV).
Emotions are often ranked in two different dimensions, va-
lence and arousal. Valence orders emotions from highly neg-
ative and unpleasant through neutral to highly positive and
pleasant, whereas arousal orders emotions from boring and
non-engaging to highly exciting.

HR is measured in beats pr. minute (bpm), and is for
healthy adults at rest typically between 60 and 100 bpm. It is
conventionally measured by counting the beats over a period
of, say 30 seconds, then calculating the corresponding num-
ber of beats to a full minute. However, an instantaneous HR
can at any time be calculated, and is inversely proportional to
the current beat-to-beat period, which is often determined as
the time interval between two subsequent specifically named
peak points, ”R”, in the electrocardiogram (the ”RR” time).

In addition to looking at the HR as bpm in the time do-
main, the frequency domain power spectrum, here referred
to as HR(V), contains a lot of information about the subject:
The HR is modulated both by the sympathetic and the bidirec-
tional cardiac vagal (parasympathetic) nervous systems [1].

4Quantified Self : http://quantifiedself.com/ (Online; accessed 01-April-
2014)
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Connected brain networks that deal with emotions can there-
fore impact HR through increased activity of the sympathetic
nervous system, which leads to an increased HR, whereas in-
creased activity of the parasympathetic nervous system leads
to a decreased HR [2]. Further, the impact of the sympathetic
nervous system is primarily seen in the HR(V) power spec-
trum below 0.15 Hz whereas the parasympathetic regulations
are present in the entire spectrum and are thus the major con-
tributor to the HF component above 0.15 Hz [1]. A person
that is able to adapt well to presented stimuli will generally
show modulations in this HF area, whereas absence or a low
level of HF variation is indicative of an abnormal or stressed
state that eventually might have health implications.

Even though LF variations in the power spectrum may
not be directly linked to modulations caused by emotional
responses, changes in the distribution and in the LF/HF ra-
tio can vary over a longer timescale, reflecting changes to the
subjects emotional and cognitive state.

The studies that have served as inspiration here are gen-
erally based on average values observed over multiple trials
with up to 100 participants. Some focus mainly on trends
of the mean HR whereas others look at variations in the fre-
quency domain power spectrum of the HR(V); both do so as
a function of the presented stimuli and over time.

Presenting unpleasant arousing pictures from a select set
of 96 IAPS pictures to 27 students resulted [3] in an average
HR deceleration of −1.76 bpm 3 s after onset, more that twice
the impact observed when presenting neutral or pleasant pic-
tures. In another study [4] [5] involving a more complex sce-
nario (anticipatory imagined predator-prey survival), a some-
what longer 15 s HR deceleration for threatening (”gun”) and
neutral scenarios followed an anticipatory HR acceleration for
rewarding (”money”) and threatening scenarios. The deceler-
ation was peaking at −3.5 bpm on average over the 29 partic-
ipants analysed.

Both of these studies support findings of earlier stud-
ies [6], reporting even significant progressively decreasing
HR for non-phobic subjects in response to a sequence of un-
pleasant pictures vs neutral or pleasant pictures, not unlike the
”fear bradycardia” found in animals [7].

Showing film clips or recalling memories to induce emo-
tions were demonstrated [8] to cause a subduction of HF HRV
power spectrum components compared to emotionally neutral
activities; the biggest response was observed in films con-
veying a happy emotion. The observed response was further
found to co-vary with activity in 4 specific brain networks, in-
cluding the Medial Prefrontal Cortex (mPFC) BA10, which is
linked to representing own emotions/mental state and relating
that to those of others.

Even participants in a study listening to the H.C. Ander-
sen ”The Ugly Duckling” fairy tale [9] demonstrated a sig-
nificant positive correlation between the HR(V) LF/HF ratio
and the perceived story intensity across the population of 21
participants of the study, but only hinted at trends related to

the valence.
Other studies [2] are proposing HRV as an index into how

the ”top-down” cortical-subcortical appraisal modulates the
autonomic responses, and thus could serve as an important
window into understanding stress and health.

It is therefore a justified expectation that presenting stim-
uli with varying emotional engagement will lead to emotion-
ally co-varying responses. This could be observed as a de-
creasing HR or as a change in the LF/HF ratio of the HR(V)
frequency domain power spectrum. Viewing arousing un-
pleasant pictures can be expected to cause a decelerating HR,
while engaging in higher intensity/arousing emotional activ-
ities might show a lowered HF content, and consequently
a higher LF/HF ratio (under comparable conditions), in the
HR(V) frequency domain.

We have tried to reproduce these results of emotionally
dependent HR and HR(V) responses to sequences of images
in single run trials with only a few participants. In order to
assess how reliable and stable such responses are, and how
applicable they might be for not only predicting emotional re-
sponses, but more generally serve as a window into assessing
fluctuating mental states, while taking into account the noise
inherent to the HR signal.

2. METHOD

2.1. Chosen pictures

To do so, several sequences of previously user rated pictures
are displayed to the participants. These pictures are part of
a larger set from the International Affective Picture System
(IAPS) [10], where the valence and arousal have been rated
systematically and are provided as part of the set.

The pictures chosen for the trial were mainly portraying
people in different situations. The selected pictures were cat-
egorized as either neutral or highly arousing unpleasant or
pleasant, based on their valence and arousal rating. Unpleas-
ant picture were all high arousal, with a content that ranged
from severe burns, mutilated bodies and babies with tumors to
model pictures with a perceived threatening content. No pho-
bia inducing pictures (spiders, snakes, etc.) were chosen, to
exclude potentially person-dependent effects hereof. Neutral
pictures typically contained people with neutral facial expres-
sion, in common, everyday situations or non-engaging every-
day objects. Pleasant pictures were likewise ranging from
highly arousing erotic content to portraits of people getting
married.

2.2. Experimental design

The experiment is divided into three continuous trials. The
first displays 48 pictures in a random order, in regards to the
valence category hereof. The two subsequent trials displays
18 respectively 30 pictures, in sequences of 3 respectively 5 of
equal valence category. In doing so allows to both 1) inspect
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the contrast between showing pictures in a random order and
in a sequence, and 2) whether or not the signal stabilises when
increasing the amount of pictures shown in a sequence.

Prior to each presented picture, a grey-scale picture is first
shown, then followed by a scrambled picture of identical lu-
minance and finally the real IAPS picture; each phase lasts 6
seconds and thus in total 18 seconds. The 6 seconds were
originally chosen based on the length of the response ob-
served by [3]. No identical pictures were shown to the same
subject during the three continuous trials.

2.3. Pictures displayed during the experiment

2.3.1. Trial one

In the first part of the experiment, 48 random pictures were
presented for each participant where the stimuli consisted
of 83 unique pictures. Their IAPS picture id is listed in
the footnotes5. The collection of pictures consisted of 28
pleasant (mean valence/arousal = 7.1, 5.6), 25 neutral (mean
valence/arousal = 5.0, 3.9) and 30 unpleasant (mean va-
lence/arousal = 2.2, 5.9) pictures.

2.3.2. Trial two

In the second part of the experiment, 18 pictures were shown
for each participant as a series of 3 pictures of 3 equal stim-
uli. The stimuli itself consisted of 48 unique pictures6. The
collection consisted of 18 pleasant (mean valence/arousal =
7.1, 5.0), 12 neutral (mean valence/arousal = 4.9, 3.6) and 18
unpleasant pictures (mean valence/arousal = 2.2, 6.2).

2.3.3. Trial three

In the last part of the experiment, 30 pictures in total was
shown for every participant as a series of 5 pictures with 5
equal stimuli. In total, the stimuli consisted of 63 unique pic-
tures7. The collection of pictures in this trial consisted of 21

5’9341’, ’2730’, ’8420’, ’8041’, ’3030’, ’6838’, ’8380’, ’3530’, ’2870’,
’2220’, ’4653’, ’8465’, ’4611’, ’2590’, ’2800’, ’3015’, ’8116’, ’8320’,
’4617’, ’2810’, ’2200’, ’4666’, ’2205’, ’8090’, ’2208’, ’4659’, ’6834’,
’3100’, ’3500’, ’5621’, ’3053’, ’2383’, ’3180’, ’3181’, ’9405’, ’2890’,
’8300’, ’2752’, ’2260’, ’7550’, ’2240’, ’2520’, ’2501’, ’6821’, ’8161’,
’2650’, ’6211’, ’8370’, ’4687’, ’2850’, ’9254’, ’8200’, ’2441’, ’3400’,
’2221’, ’8280’, ’2278’, ’5455’, ’9041’, ’3210’, ’4694’, ’2120’, ’2210’,
’8080’, ’2270’, ’2215’, ’2214’, ’2491’, ’4640’, ’2579’, ’2235’, ’8180’,
’9800’, ’2410’, ’2020’, ’2393’, ’2750’, ’6210’, ’2514’, ’9921’, ’2749’,
’2493’, ’2691’

6’2590’, ’6834’, ’2750’, ’2235’, ’2745.1’, ’4611’, ’8465’, ’8400’, ’4659’,
’8320’, ’2208’, ’2560’, ’2221’, ’2749’, ’2260’, ’2240’, ’2501’, ’2393’,
’8041’, ’2441’, ’2810’, ’8370’, ’9254’, ’9250’, ’3400’, ’8330’, ’8280’,
’3170’, ’9210’, ’3053’, ’8120’, ’8080’, ’2270’, ’2215’, ’2579’, ’3500’,
’2493’, ’2214’, ’3030’, ’2278’, ’3015’, ’2752’, ’6212’, ’6211’, ’6210’,
’9921’, ’2691’, ’2250’

7’2590’, ’2205’, ’8420’, ’3030’, ’2650’, ’2745.1’, ’2890’, ’2190’, ’3530’,
’2870’, ’8300’, ’8400’, ’2730’, ’2800’, ’2221’, ’4659’, ’8320’, ’4617’,
’2200’, ’3210’, ’2520’, ’8116’, ’3550’, ’2560’, ’3100’, ’2220’, ’2579’,
’2383’, ’3181’, ’9405’, ’2749’, ’8090’, ’8120’, ’2501’, ’8041’, ’8161’,
’2441’, ’2120’, ’6838’, ’2850’, ’9250’, ’8330’, ’8200’, ’3170’, ’9041’,

pleasant (mean valence/arousal = 7.0, 5.3), 17 neutral (mean
valence/arousal = 4.9, 3.7) and 25 unpleasant pictures (mean
valence/arousal = 2.2, 6.0).

2.4. Hardware

The pictures were presented to subjects sitting at rest upright
in a chair, using a computer that ran a custom script from
within Matlab. Data collection was done with BioSemi Soft-
ware8, using a BioSemi finger pletysmography sensor to de-
termine RR-intervals and R-Onsets. Plethysmography should
provide sufficient similarities to conventional Electrocardio-
grams in this (resting) context [11].

The pictures were displayed on a Viewsonic G90fB9

which was placed approximately 50cm (19.69 in.) from
where the subject sat. An oscilloscope was utilised to measure
the delay of the picture onset, which proved to be insignifi-
cant. This procedure was performed both prior and after the
trial was completed, no drift (i.e. increased delay) was found.

2.5. Data collection and reduction

During the experiment, biometric data as well as the onset
timing for each picture were recorded. The data collection
rate during the experiment, for collecting biometric data, was
set to 1024 Hz to ensure a high resolution and thereby min-
imize the risk of losing data. After collecting the data, it
was first imported to EDFbrowser10 from where all R-Onsets
(i.e. a detection of a peak in the electriocardiogram) were ex-
ported. Afterwards, the R-Onsets were imported to gHRV11

for further analysis.
Data reduction and normalisation was performed as re-

quired, enabling analysis of the Mean HR and the HRV
LF/HF ratio [1]: Outliers were first removed whereafter the
data was interpolated in gHRV, to a sampling frequency of 4
Hz. The window size was set to 36 seconds, equalling the
time it takes to present two sequences of pictures (scrambled
and grey-scale pictures included) to reduce the inherent noise.
The window shift was set to 3 seconds, to provide a high res-
olution. The power spectrum was calculated using the stan-
dard, built-in FFT method of gHRV.

Next, the episodes were imported, making it possible to
view and analyse the data as a response to specific events; in
this case, the valence category (pleasant, neutral or unpleas-
ant).

’3053’, ’4694’, ’4687’, ’8080’, ’2270’, ’2214’, ’2491’, ’2272’, ’2235’,
’2278’, ’9800’, ’3500’, ’2752’, ’6212’, ’6211’, ’6210’, ’9921’, ’2250’

8Biosemi software: http://www.biosemi.com/ (Online; accessed 10-
February-2014)

9Viewsonic G90fB: http://www1.viewsonic.com/products/archive/g90fb.htm
(Online; accessed 10-February-2014)

10EDFBrowser: http://www.teuniz.net/edfbrowser/ (Online; accessed 10-
February-2014)

11gHRV: http://milegroup.github.io/ghrv/ (Online; accessed 29-March-
2014)
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2.6. Participants

Upon arrival, the subjects were told about the procedure of
the experimental design, as explained in Section 2.2. Next,
they were placed in a chair in a soundproof, dimly lit room,
and the biometric sensor was attached to the subject.

The subjects were three physically and mentally healthy
men who were (at the time of experiment) not medicated. The
average age of the three men was 44 years with a standard
deviation of +/- 13.9 years.

3. RESULTS

For results, please refer to figures 1 and 2 and their captions.

Fig. 1. The plot illustrates the mean heart rate divided into
categories of valence and subject. Pleasant and neutral stim-
uli possibly displays a heart rate acceleration trend, whereas
unpleasant stimuli results in decelerations.

4. DISCUSSION

Although no clear trend was observed in the LF/HF ratio
of the HRV power spectrum, possible trends in the Mean
HR were seen in longer sequences of unpleasant and pleas-
ant/neutral stimuli, respectively, for 2 of 3 participants. When
the subjects were shown a series of unpleasant pictures, as
seen in Figure 1, a heart rate deceleration occurred, whereas
an acceleration was found during pleasant/neutral stimuli.
The somewhat unexpected heart rate acceleration may simply
be a result of returning to a certain ”base level” after previ-
ous stimuli of e.g. unpleasant stimuli. In cell d it is further-

more seen, that the heart rate continues to de-accelerate over
a longer period of time until it stabilises. This indicates that
the signal seemingly can retain its properties throughout an
extended period of time. The 3rd participant did not respond
in any pattern that could be related to the stimuli.

The HR deceleration as a response to unpleasant stimuli
is in line with previous studies [3] [4], as described in Section
1.

The first part of the trials, in which pictures were shown
in random order in regards to the valence categories hereof,
did not suggest any significant trends for any of the subjects.
A high amount of variation of the mean heart rate was found
throughout the entire trial, even over the 36 s period used to
even out the inherent noise when calculating the mean HR:
Standard Deviations in the raw data were seldomly below 3−
4 bpm, which is larger than the earlier documented Mean HR
variations observed as a response to presented stimuli.

This might indicate that the reaction seen in the mean HR
is better suited to observe slower reactions and changes of
over emotional/cognitive state, on the order of 10 s of sec-
onds, consistent with the fact that longer sequences of equally
rated stimuli provide better observable trends.

A trend was seemingly observable for 2 out of 3 test per-
sons presented to longer sequences of similarly rated unpleas-
ant vs. neutral/unpleasant pictures. This might indicate that
mean HR changes are not just a simple and predictable func-
tion of the presented stimuli, but rather should be viewed as
a representation of top-down emotional and cognitive states
in response to a history of previous and current stimuli, when
analysed in single-trial single-subject cases.

This is consistent with one person seemingly not showing
any stimuli related changes, possibly here reflecting a per-
sonal preference in regards to the content being displayed.

Some of these responses could be derived with higher
temporal resolution using brain imaging, based on Event Re-
lated Potential (ERP) responses in Electroencephalography
(EEG) recordings. However, whereas an ERP represents a
fast response, typically on the timescale of 100 ms for au-
tonomous responses, 300 ms for attention priority related re-
sponses and up to 500 ms for contextual dependent responses,
a HR derived signal varies on a much longer timescale, of up
to 10s of seconds. It may therefore be better suited to as-
sess cognitive state and responses that depends on the overall
health, alertness, stress and ability to cope with complex dy-
namically changing situations [2] [1].

We therefore suggest that Mean HR variations and LF/HF
HRV ratios are to be further analysed as a potential window
into top-down complex and context dependent cognitive and
emotional states.

One could argue that the findings in this study might
be gender specific since only male subjects into account.
Michela Sarlo et al. [12] previously investigated the gender
differences and found that the patterns of HR and skin con-
ductance reactivity across all emotional categories were sim-
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Fig. 2. This plot illustrates the three continuous trials for subject a) also seen in Figure 1. The first trial displays pictures in
random order in regards to the valence category. The second and third trials shows sequences of pictures of 3 respectively 5
pictures with equal valence category. Note that the time scale is not aligned, as different amounts of pictures are shown in each
trial: 48 for trial 1, 18 for trial 2 and 30 for trial 3. The distance between each vertical line is approximately 18 seconds. As
seen, a high amount of variation during trial 1 occurs, which indicates that it can be difficult to deduct a pattern from the signal.
In comparison, a more clear indication of a pattern can be derived from trial 2 and 3 on the basis of the mean HR, where the
noise of the signal is also seemingly reduced. No clear signal is however found when looking at the LF/HF ratio.

ilar for both female and male subjects. Blood pressure on the
other hand for stimuli related to sexual content showed an in-
creased reactivity for men in comparison to women. Taken
together, these findings indicate that the patterns of emotional
reaction as seen in HR might be independent of gender.

We also suggest that other types of stimuli should be an-
alyzed. The pictures, in the way presented here, do not con-
tain any context nor a storyline, as would e.g. a movie trailer
or a film clip. We suspect that stimuli designed to engage
and tell a story might have a stronger affect on the subjects
and might induce a stronger measurable response. Setting
up experiments that are not simply based on passing view-
ing/listening but contains elements of risk, punishment and
rewards, like [4], might even further increase the subjects’
engagement and lead to increased measurable responses.

Other studies, such as [3], have found small HR changes
on a timescale of few seconds. Given the observed noise and
seemingly random variations in the HR signal, this proved
difficult to reproduce in a single-trial single-subject study like
the present one.

Seen from a commercial point of view, these findings
might prove to be highly valuable within industries which
provide a context over a longer period of time where emo-
tional state is of the essence. Examples hereof are the gaming-
, movie- and music industries, which might thus be able to
adapt content to the emotional responses of users.

Consumers have only recently gained access to low cost
wearable computing devices that are normally equipped with
multiple sensors to measure different biometric makers. The
LF/HF ratio of HRV is however not normally accounted
for, which may be a potential limitation. Even though this
study found no direct link between the cognitive state and the

LF/HF ratio of HRV, [8] previously found a subduction in the
HF HRV component in which the biggest response was emo-
tionally pleasant movies. This indicates, that HRV, like the
mean heart rate, could be of potential interest for future stud-
ies as well as for commercial purposes.

When utilising biometric sensors, the analysis of the data
is often instantaneous or given as simple mean values. As
this study indicates, the emotional function is not simply a
function of the presented stimuli, but rather a top-down rep-
resentation in response to a history of the presented stimuli
and context, also when analysing data from single subjects.
Thus, more suitable solutions, such as online storage and bet-
ter analysis tools, might be required to better utilize biometric
sensors to their full potential.

In conclusion, we support the point of view that simple
biometric markers has the potential to serve as a window into
a more complex emotional and cognitive state, but more re-
search will be required and low cost biometric sensors and re-
lated tools needs improvements in order to better utilize these
commercially.
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Paper I

Key Terms in Eye Movement
Research
The following is a working paper (by the author) that summarize some of the key

terminologies in eye movement research, prepared as input to Project Principia and

also intended as a brief introduction for students that work with eye tracking.

In the present thesis, similar topics are explained in chapters 1 and 2, and the

present paper has been used as the (initial) basis for some of the explanations.



Key Terms in Eye Movement Research

Per Baekgaard pgba@dtu.dk

Nov 2015

Eye Movements

Eye movements to a large degree reflects attention.

The Visual System

The visual process starts at the eye where light is converted to electrical signals
passed on to the visual cortex at the rear of the brain.

The Eye

At the center of the field of view is an area of high resolution called the fovea; it
occupies less than 2 degrees [Holmqvist 2011] of visual angle – roughly the size
of your thumb when held at arms distance [O’Shea 1991].

Where you look, i.e. the center of what is projected inside the fovea, is called the
gaze point. When looking at a screen, the pixel coordinates of the gaze point are
often referred to as the gaze coordinates.

Classification of Eye Movements

Fixations and Saccades, Microsaccades and Glissades

The eyes tend to remain within the same small area only for a short period of
time, typically 200-300 milliseconds but occasionally as short as some tens of
milliseconds or as long as a few seconds [Holmqvist 2011]. These periods are
referred to as fixations, although they are not completely absent of eye move-
ments; very small movements take place all the time, often called microsaccades.
Microsaccades are also an important part of the visual processing [Rucci 2015].

1
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Figure 1: The Visual Processing System
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Figure 2: The Eye

3

208 Paper I. Key Terms in Eye Movement Research



Figure 3: Gaze Coordinates NOTE: Image not under CC and needs to be replaced

Fixations are the element of eye movements that are conventionally most directly
linked to attention to a specific visual area. 1.

Fixations can be characterised by for instance their duration, frequency, coordi-
nates and spread.

Between fixations, the eyes move rapidly in a near-ballistic mode; these are the
fastest movement the body is capable of [Holmqvist 2011] and last only for 30-80
milliseconds. Such eye movements are called saccades, during which the visual
system appear blinded; no conscious visual processes takes place during saccades
[Holmqvist 2011], [Burr 1994]. Sometimes a saccade does not hit its target as
intended; in this case corrective glissades [Bahill 1975a] will take place at the
end of the saccade to place the following fixation at the desired gaze point.

Saccades can be quantified by for instance their speed (visual angle/time),
duration, length, frequency, latency vs. visual stimuli or accuracy [Holmqvist
2011] as well as their direction.

Saccades are affected by task difficulties, workload, whether one is trying to
get an overview or is carefully inspecting, high-frequency content of the scene,
reading abilities, and many other factors [Holmqvist 2011].

1Sometimes, two different “modes” are suggested: 1) Cognitive controlled top-down or
goal-oriented processing where e.g. specific objects are being searched for, and 2) saliency or
stimulus driven processing, where the attention of the eye is (often unconsciously) directed
toward changes in the present visual scene [Corbetta 2002]
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Smooth Pursuit

The eyes can also move in another mode during which conscious visual processing
takes place. This can only happen when the eyes follow an object in relative
motion to the head, such as when tracking a car passing by 2. These smooth
movements are called smooth pursuit.

Blinks

Blinks also need to be considered when inspecting eye movements or the visual
processing system. Blinks happen spontaneously without a conscious effort:
The majority of Endogenous Eyeblinks [Stern 1984] last between 100 and 300
milliseconds [Holmqvist 2011], with visual intake being reduced during as well as
immediately before and after each blink. Also reflex blinks and voluntary blinks
may take place [Stern 1984].

Blinks are often characterised by their frequency 3 or by either their total
duration or the duration of specific phases (closing, closed, opening).

Blinks are modulated by drowsiness, loss of vigilance or mental workload
[Holmqvist 2011], [Caffier 2003] and can often be linked to the completion
of specific tasks. During (visually or attentionally) demanding tasks, blinks are
often inhibited, and then blinks and saccadic eye movements sometimes takes
place “in the same gap”, apparently minimising the time the visual intake is
inhibited [Coltheart 2010, p. 129: “Thinking Affects Blinking”].

Pupil Reactions

The pupil primarily controls the amount of light that hits the photosensitive
areas of the eyes; the higher the luminosity, the smaller the pupil becomes
[Bouma 1962].

It is, however, also impacted by processing [Hyona 1995] or cognitive workload
[Pomplun 2003] as well as emotional arousal [Bradley 2008]. For task specific
workloads, the pupil dilation – small and short dilations of the pupil size that
co-occur with specific conditions – can be used as a marker of this processing.
Drowsiness or fatigue may conversely decrease the pupil diameter [Holmqvist
2011]. Further, recent studies [Laeng 2012] hint at pupilometry being a “window”
into the preconscious.

2When keeping an eye on an object while turning your head another effect also come into
play: the vestibulo-ocular reflex

3Some studies have reported average blink-rates of 7 to 11 pr. minute when reading, and
13 increasing to 40 pr. minute during extended driving tasks [Stern 1984]
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Use of Eye Tracking

Eye Tracking (the process of capturing Eye Movements) can be used for 1)
passive, sometimes “after-the-fact” analysis, for 2) active control or as part of
3) an adaptive system that observes the user and adjusts its behaviour to the
inferred state of user.

Passive

In passive mode, fixation density maps or heatmaps are often used as a tool,
although they simplify the information by removing parts of the temporal domain.

Specific parts of an observed scene that receive fixations are called areas of
interest, and heatmaps may show their received intention as a proportion of time
one or multiple observes has fixated at or near the area. [Engelke 2013]

It is, however, no simple task to identify fixations. The most efficient methods
needs high resolution (>200 Hz) gaze points in order to correctly identify saccades
[Nystrom 2010]. For lower resolution data, simpler clustering algorithms, such
as a modified version of DBSCAN that breaks fixations after 70-90 milliseconds
of gaze points outside the current cluster, can be useful.

Passive eye tracking can be seen in use in e.g. marketing research or when
comparing different designs of layouts of packaging, web pages, grocery stores,
etc.

Active

In active mode, eye movements are used to directly control a device. This could
be used in games for controlling direction of movement or intent, or for hands
free typing, or in other applications.

As eye movements are normally just an implicit part of the visual and cognitive
processing, active eye tracking paradigms needs to be designed carefully in
order achieve ease of use and efficiency while avoiding eye fatigue and increased
cognitive workload/mental stress. See [Hansen 2012] or [MacKenzie 2012] (also
available online) for examples of how to evaluate such systems.

Adaptive

Adaptive eye tracking can be viewed as a hybrid between the two: a system may
analyse passive eye movement to infer the users state, and adapts its present
behaviour to this inferred state.

Examples could be to adjust the current level of difficulty to the inferred cognitive
or emotional load of the user, or simply to suggest breaks to users that appear
with increased fatigue in front of their screens.
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How Eye Trackers Work

Modern Eye Trackers usually work by means of a set of infrared (IR) LEDs and
an IR camera that captures the glints of the LEDs in the eye as well as the the
pupil4 itself.

By keeping the IR LED’s steady vs the object being looked at (i.e. the screen), the
position of the pupil relative to the glints can be projected into gaze coordinates
by means of a calibration to known targets.

Demo/experiment

The Eye Tribe Tracker

Eye Tracking Demo

Links/references

[Holmqvist 2011]: Holmqvist, Kenneth, et al (2011). Eye tracking: A compre-
hensive guide to methods and measures. Oxford University Press.

[O’Shea 1991]: O’Shea, R. P. (1991). Thumb’s rule tested: visual angle of
thumb’s width is about 2 deg. Perception, 20(3), 415–418. doi:10.1068/p200415

[Burr 1994]: Burr, D. C., Morrone, M. C., & Ross, J. (1994). Selective suppression
of the magnocellular visual pathway during saccadic eye movements. Nature,
371(6497), 511–513. doi:10.1038/371511a0

[Bahill 1975a]: Bahill, A. T., Clark, M. R., & Stark, L. (1975). Glissades—eye
movements generated by mismatched components of the saccadic motoneuronal
control signal. Mathematical Biosciences, 26(3-4), 303–318. doi:10.1016/0025-
5564(75)90018-8

[Stern 1984]: Stern, J. A., Walrath, L. C., & Goldstein, R. (1984). The
endogenous eyeblink. Psychophysiology, 21(1), 22–33. doi:10.1111/j.1469-
8986.1984.tb02312.x

[Bouma 1962]: Bouma, H. (1962). Size of the static pupil as a function of
wavelength and luminosity of the light incident on the human eye. Nature, 193,
690–691. doi:10.1038/193690a0

[Hyona 1995]: Hyönä, J., Tommola, J., & Alaja, A.-M. (1995). Pupil Dilation
as a Measure of Processing Load in Simultaneous Interpretation and Other
Language Tasks. The Quarterly Journal of Experimental Psychology Section A,
48(3), 598–612. doi:10.1080/14640749508401407

4which will appear very bright in IR light
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[Pomplun 2003]: Pomplun, M., & Sunkara, S. (2003). Pupil Dilation as an
Indicator of Cognitive Workload in Human-Computer Interaction. Human-
Centered Computing: Cognitive, Social and Ergonomic Aspects, 542–546.

[Bradley 2008]: Bradley, M. M., Miccoli, L., Escrig, M. a., & Lang, P. J.
(2008). The pupil as a measure of emotional arousal and autonomic activation.
Psychophysiology, 45(4), 602–607. doi:10.1111/j.1469-8986.2008.00654.x

[Caffier 2003]: Caffier, P. P., Erdmann, U., & Ullsperger, P. (2003). Experimental
evaluation of eye-blink parameters as a drowsiness measure. European Journal
of Applied Physiology, 89(3-4), 319–325. doi:10.1007/s00421-003-0807-5

[Laeng 2012]: Laeng, B., Sirois, S., & Gredeback, G. (2012). Pupillometry: A
Window to the Preconscious? Perspectives on Psychological Science, 7(1), 18–27.
doi:10.1177/1745691611427305

[Corbetta 2002]: Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed
and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3(3),
201–15. doi:10.1038/nrn755
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for fixation, saccade, and glissade detection in eye tracking data. Behavior
Research Methods, 42(1), 188–204. doi:10.3758/BRM.42.1.188
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