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Abstract 

A system capable of handling a large volumetric gas fraction while providing a high gas to 

liquid mass transfer is a necessity if the metanotrophic bacterium Methylococcus capsulatus is to be 

used in single cell protein (SCP) production. 

In this study mixing time and mass transfer coefficients were determined in a 0.15 m
3
 forced 

flow U-loop fermenter of a novel construction. The effect on the impeller drawn power when a gas 

was introduced into the system was also studied. 

Mixing time decreased and mass transfer increased with increasing volumetric liquid flow 

rate and specific power input. This happened also for a large volume fraction of the gas, which was 

shown to have only minor effect on the power drawn from the pump impeller.  

Very large mass transfer coefficients, considerably higher than those obtainable in an STR 

and previous tubular loop reactors, could be achieved in the U-loop fermenter equipped with static 

mixers at modest volumetric liquid and gas flow rates. This article is protected by copyright. All rights 

reserved 

 

Keywords: Mixing, Mass Transfer, Power input, U-loop, Loop bioreactors, SCP  
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Introduction 

The methanotrophic bacterium  Methylococcus capsulatus is capable of assimilating methane and 

oxygen at growth rates (μ) up to 0.37 h
-1

 into a protein rich biomass (up to 70% of the total dry 

weight content) through the following reaction (Villadsen et al., 2011). 

 

                         (1) 

 

To utilize Methylococcus capsulatus in commercial scale production of single cell protein (SCP) it 

is evident from (1) that a bioreactor capable of handling a large oxygen and methane gas fraction 

while providing a high gas to liquid mass transfer coefficient is required. 

The stirred tank reactor (STR) has been the dominant vessel of choice in the biotechnology 

industry since its inception (Nienow, 2014). It offers good liquid mixing as well as a decent gas-to-

liquid mixing in systems where the volumetric gas input is relatively modest (Nienow and Wisdom, 

1974). In processes where the volumetric gas fraction becomes  large compared to the total 

volumetric flow, it does, however, become a sub-optimal solution (Villadsen et al., 2011). As the 

volumetric gas fraction increases, cavities formed around the impeller reduce its ability to transfer 

energy into mixing and mass transfer (Nienow and Lilly, 1979). At gas volume fractions as low as 

0.05 (for Rushton turbines), the impeller is flooded and as a result loses its capability to provide 

adequate gas hold-up and liquid pumping (Westerterp et al., 1963). For these reasons the stirred 

tank reactor is not a suitable vessel for Methylococcus capsulatus based SCP production. 

Bubble columns and airlift fermenters are capable of handling a large volumetric flow of 

gas, but the absence of a device to supply an adequate mechanical energy input to the process leads 

to undesirably low mass transfer coefficients (Heijnen and Van’t Riet, 1984).  

A system capable of handling the same volumetric gas fractions as a bubble column while 

still being able to supply mechanical energy on par with a mechanically stirred tank, is evidently 

necessary to produce SCP in large scale. Early forced flow recirculation reactors used a pump to 
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transport the aqueous medium through a tubular reactor into which the gas was injected (Russell et 

al., 1974; Ziegler et al., 1977). In a separator exhaust gas is removed from the liquid using a 

hydrocyclone. The reactors were used for aerobic yeast fermentation (Russell et al., 1974; Ziegler et 

al., 1977). 

 The present paper experimentally investigates the power consumption, mixing efficiency 

and rate of mass transfer in a novel forced flow pilot plant fermenter (0.15 m
3
) into which static 

mixers are installed to provide further mass transfer than achieved in the earlier constructions. The 

mixing and mass transfer results will be compared to conventional bioreactor designs, and existing 

forced flow recirculation loop systems.  

 

Materials and methods 

The U-loop fermenter 

The novel U-loop fermenter concept (Larsen, 2000) depicted in fig. 1 is also fundamentally 

different from existing forced flow recirculation loop systems in which the recirculation loop is 

used to inject liquid or gas-liquid mixtures through one or more jets into one large tank where the 

bioreaction takes place (Nordkvist et al., 2003). In The U-loop fermenter gas and liquid are mixed 

by pumping gas and liquid through a vertical U-shaped pipe (A. on fig. 1) fitted with static mixers. 

The U-shaped pipe leads to a cylindrical top tank (B on fig. 1) that works as a de-gassing unit. 

Metabolic heat is removed from the process by the installation of a pipe heat exchanger (C. on 

figure 1) in the loop. Essentially, the forced flow recirculation loop is turned into a near plug flow 

reactor for the gas phase which has a short holding time (less than one minute) versus several hours 

for the liquid phase. The liquid phase is radially mixed to achieve a high gas mass transfer, and its 

overall residence time in the U-loop reactor is determined by the desired productivity of SCP. 

 

Experimental setup 
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A centrifugal pump with a high head and capable of delivering a high flow rate was chosen 

as pumping device in the pilot setup used in this study (1 on fig. 2).  Gas was injected into the loop 

after the pump and the flow rate was controlled by a mass flow controller (B on fig. 2). Liquid feed 

is added to the system by positive displacement pumps either by injection directly into the loop or 

by injection into the degassing unit. Dispersion of gas and liquid was generated by static mixing 

elements of the SMV™ type from Sulzer (5 on fig. 2). Little data was available on the pressure drop 

generated by each static mixing unit and this led to the decision to use a high head pump. 

Temperature was kept steady at 25±0.2°C during all experiments by removing heat with a pipe heat 

exchanger (6 on fig. 2). The volumetric flow rate (Q) was measured by a flow-meter (I on fig. 2) 

placed in the loop. Gas was removed from the liquid in a de-gassing unit (7 on fig. 2) before 

(re)entering the pump. Pressure transmitters (A on fig. 2), temperature sensors (D on fig. 2), pH 

sensors (E on fig. 2) and oxygen sensors (C on fig. 2) were placed at strategic points in the loop and 

the exhaust pipe. The liquid volume (V) in all experiments was kept at 0.15 m
3
. 

 

Characterization of the U-loop fermenter 

The power input into the U-loop system is determined by the centrifugal pump transferring 

energy into torque. Energy transmission is consequently not fundamentally different from that 

transmitted into an STR, and as such power (P) and flow rate (Q) in both systems is described by 

the same equations (Paul et al., 2004): 

 

       
    (2) 

        (3) 

 

Equations (2) and (3) are standard equations used to calculate the power input to an impeller (e.g a 

Rushton turbine) and the resulting flow away from the impeller.  N is the rotation speed of the 

impeller (s
-1

), D is the impeller diameter (m) and ρl is the liquid density (kg⋅m
-3

). NP in Eq. (2) is 
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the so-called power number. It can be considered a dimensionless representation of the resistance 

the impeller encounters as it moves through the liquid. NQ in Eq. (3) is the dimensionless flow 

number and it is a measure of the impellers ability to displace liquid from one point of the U-loop 

fermenter to another (Paul et al., 2004). 

Figure 3 shows that the measured pumping power input (P) and volumetric flow (Q) are 

directly obtained from equations (2) and (3). The slopes on the two graphs equal the dimensionless 

power number (NP) and flow number (NQ) respectively. Both numbers reach a constant value when 

the volumetric flow in the system is fully turbulent at high Reynolds numbers (Re(s)), but as the 

flow pattern changes from laminar to turbulent NP decreases slightly with increasing Re while NQ 

increases. This phenomenon explains why neither of the two lines intersects at the origin. Only 

turbulent flows at impeller Reynolds numbers ranging from 8.94⋅10
5 

– 2.25⋅10
6
 were studied in 

this paper, which is why a more traditional plot showing the power number and flow number versus 

the Reynolds number is not included. 

When a gas is introduced into the system, the only change in power and flow originates 

from the pump’s ability to handle different density liquids or gas/liquid mixtures. Consequently, 

when aerating the system only the dimensionless power number (NP) and flow number (NQ) 

undergo a slight change to form (4) and (5). 

 

          
    (4) 

           (5) 

 

The dimensionless parameters NP,g and NQ,g in Eq. (4) and (5) represent the modified (gassed) 

power and flow number respectively, when a gas is introduced into the system.  

Considering that all data is gathered with industrial equipment, and that small forces such as 

friction in the smooth pipe are neglected, the agreement between experimental data and the 

fundamental equations (2-5) is remarkably good. 
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 In stirred tank reactor systems it is desired to compare the decrease in power input when a 

gas is introduced into the system and the resulting ability of the impeller to mix gas and liquid, i.e. 

to provide mass transfer. This is done by introducing the aeration number (6) (Calderbank, 1958; 

Nienow, 2014; Paul et al., 2004; Villadsen et al., 2011). 

 

            (6) 

 

Gas is injected after the pump impeller into the U-loop fermenter, and if complete degassing of the 

liquid in the degasser is assumed, then it is the liquid flow acting on the gas bubbles that creates 

aeration, not the rotations of the pump impeller itself. With this in mind, it is possible to describe 

aeration in the U-loop through a slight alteration of (6): 

 

         
         (7) 

 

Eq. (7)  also accounts for situations where the gravitational forces exerted on the gas bubbles 

exceed the torque exerted by the pump. In this case the aeration number would be zero despite a gas 

flow and rotation of the impeller, as all the gas escapes directly to the degassing unit. Eq. (7) makes 

it possible to compare the U-loop fermenters ability to handle gas with that of a stirred tank reactor. 

 

Model fluids 

Fermentation broths with Methylococcus capsulatus cell densities of up to 20 g⋅L
-1

 did not 

exhibit viscosities measurably different from that of water. To mimic the fermentation broth we 

used a non-coalescing solution with little to no buffer capacity (to avoid interference with the 

mixing time experiments) and oxygen solubility similar to that of water. A 0.05 M Potassium 

Chloride (KCl) solution (Marrucci and Nicodemo, 1967) was used in all experiments and found to 

satisfactorily meet the above-mentioned demands.  
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Mixing 

 Mixing time in bioreactors can be quantified by observing the shift in pH after injecting a 

tracer slug of concentrated acid or base, as long as the change in pH is modest, and any present 

buffer systems are inactive (Nordkvist et al., 2003; Villadsen et al., 2011).  pH was monitored with 

a frequency of 1 s
-1

 with two electrodes placed at strategic points in the loop (E on fig. 2). For each 

pH measurement a normalized pH was calculated according to (8). 

 

                                     
  

  (8) 

 

Two different mixing processes were investigated. 

 Mixing by leg-injection: The tracer slug was introduced to the system between the pump (1 

on fig. 2) and the static mixing device (5 on fig. 2). Here significant mixing is only achieved 

through recirculation over the static mixers. 

 Mixing by top tank injection: The tracer was introduced to the system in the degassing unit 

(7 on fig. 2). Mixing is already achieved by turbulence in the degassing unit, and further 

through recirculation over the static mixers. 

Several different acid/base concentrations were tested ranging from 1-10 M. A 5 ml addition of 2 M 

HNO3 or 2 M NaOH over a 4 second time period gave a satisfactory final pH step of 0.1-0.3 pH 

units, as well as a very smooth first order normalized pH profile (Marten et al., 1997) in agreement 

with (9) in the leg mixing experiments. 

 

          (9) 

 

The time required to reach a specific degree of mixing (m) follows from (10). 
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          (10) 

 

In the experiments where a tracer was added to the degassing unit, mixing depends on the level of 

turbulence in the degasser, as well as on distribution through the loop pipe. Consequently mixing 

cannot be described by a single rate constant as in (9) and (10). The time to achieve a specific 

degree of mixing was instead calculated as the time interval between the initial responses in the 

normalized pH profile and a mixing degree of m (Nordkvist et al., 2003). 

The mixing time was determined as the average value of at least four individual 

measurements with each tracer, performed for each set of operating conditions, as addition of an 

alkaline tracer gives a slight overestimation of the mixing time while addition of acid results in an 

underestimation (Nordkvist et al., 2003). Using data from either pH probe resulted in less than a 2% 

deviation in the mixing time. Consequently only one result (the average value) was reported.  

 

Mass Transfer  

Gas-liquid mass transfer coefficients were obtained using the hydrogen peroxide steady state 

technique (Hickman, 1988). Initially catalase (Catazyme
®
 from Novozymes A/S) was added to the 

0.05 M KCl solution in the U-loop. After testing several catalase concentrations ranging from 10-

100 g⋅m
-3

, a concentration of ≥70 g⋅m
-3

 was found to be non-rate limiting, and deemed 

satisfactory. Additional catalase was supplied every hour and during each steady state. This was 

done to compensate for loss of catalytic activity, and to ensure that the enzymatic reaction was not 

limiting. 

Figure 4 shows a typical experiment. A steady state oxygen tension (measured with two 

Mettler Toledo InPro
®
 6860i sensors positioned at C in fig. 2) was obtained at a specific volumetric 

gas flow rate and specific power input. A constant flow rate (measured with a flow-meter) of a 

H2O2 mixture was then injected into the leg of the U-loop fermenter by a positive displacement 
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pump (3 on fig. 2). Based on the mixing time experiments a 2.65 M H2O2 solution (determined by 

titration with KMnO4) was chosen.  

A new steady state in the oxygen tension was reached, and kept for approximately 30 min. 

Addition of H2O2 was then stopped, and it was ensured that the oxygen tension returned to the 

initial value. Assuming that the liquid phase is perfectly mixed one determines the gas/liquid mass 

transfer coefficient (kLa) from (11). 

 

    
           

    
        

       
 (11) 

 

cl
*
 is the saturation concentration of the oxygen in the liquid. Under the assumption that complete 

back mixing of the gas phase occurs, this can be determined by (12) 

 

  
  

   

    

  
  (12) 

 

In Eq. 12, pO2
exit

 is the volume fraction of oxygen in the gas leaving the system during each steady 

state, HO is henry’s constant for oxygen in water at T=25°C (7.69⋅10
4
 m

3⋅Pa⋅mol
-1

 (Sander, 2015)) 

and p is the pressure measured at the oxygen sensor (to account for hydrostatic pressure changes). 

Aeration did not affect the gauge pressure at the oxygen sensor. Eq. 12 assumes that the gas phase is 

well mixed. This assumption was found to be sufficient in this study, as using data from either 

oxygen sensor resulted in less than a 3% deviation in the mass transfer coefficient calculated using 

Eq. 11 and Eq. 12. Consequently only one result (the average value) was reported. Steady state 

oxygen tension was unaffected by the supply of additional catalase, ruling out the enzymatic 

reaction being rate limiting. In larger U-loop fermenters, a different model for the gas phase (i.e. a 

plug flow model) might be necessary. 
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The specific power input (P/V) was varied from 7500-29000 W⋅m
-3

 and the volumetric gas 

flow rate (Qg) ranged from 2.83⋅10
-4

 to 1.43⋅10
-3

 N⋅m
3⋅s

-1
.  

 

Results and discussion 

Power and flow 

Table I shows a selection of power numbers (NP and NP,g) and flow numbers (NQ and NQ,g) 

at given aeration numbers (NA) found using Eq. (2)-(7). Notable from Table I is that although the 

power numbers for the impeller in the centrifugal pump are relatively small compared to traditional 

impellers (Nienow and EKATO, 2000) so are the flow numbers. The centrifugal pump used in this 

study was for other reasons over designed to overcome a pressure loss (Δp) over the U-shaped pipe 

of up to 4⋅10
5
Pa. The ability to overcome a drop in gauge pressure by a centrifugal pump is 

accomplished through the conversion of kinetic flow energy into localized turbulence in and around 

the pump casing by the insertion of resistance generating devices (Grundfos, 2014). As such the 

high lifting capabilities of the pump form a direct explanation of the low flow numbers. 

Another interesting observation from Table I is that only minor changes in power and flow 

number take place as the aeration number increases. Conducting a more in-depth study of the power 

number as a function of the aeration number for the U-loop fermenter and a STR (shown in figure 

5.) reveals that a unique relationship between power transferred into mixing and volumetric gas 

flow exists in the U-loop fermenter. In the STR, power drawn from the impeller seems to decease 

drastically with increased volumetric gas flow, while it appears that this drop is almost non-existing 

in the U-loop.  

Dependent on the number of impellers, the traditional STR is flooded when the volumetric 

gas fraction reaches 0.055 and 0.11 respectively (Nienow and Lilly, 1979). In the U-loop gas-to-

liquid mixing occurs at volumetric gas fractions up to 0.27 without flooding.  Depending on the 

number of impellers this is potentially a fivefold increase in how much gas can be mixed into the 

liquid. 
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Furthermore at aeration numbers between 0.055 and 0.11; the decrease in power drawn from 

the pump impeller in the U-loop fermenter was barely measurable, compared to a drop to 0.49 (in 

the one Rushton turbine STR at NA=0.055) and 0.62 (in the 2 Rushton turbine STR at NA=0.11. 

This means that the reduction in power drawn from the pump impeller is 0.1% in the U-loop 

fermenter when a gas is introduced into the system. This number is about 500 times higher in a 

traditional STR equipped with one Rushton turbine, and about 380 times higher in a traditional STR 

equipped with two Rushton impellers. Even at aeration numbers as high as 0.27, the power number 

in the U-loop fermenter only decreases from 1 to about 0.97, which is about 13 times less power 

lost compared to a 2 Rushton turbine STR at less than half the level of aeration. 

Gas enters the U-loop fermenter after the pump, and exits the reactor in the degassing unit 

before the liquid reenters the pump casing. This ingenious design evidently leads to a constant 

drawn power from the impeller, as gas, apart for the small fraction soluble in the liquid medium is 

never present around the impeller blade. 

 

Mixing 

Mixing times (tmix,95%) ranged from around 600-160 seconds when injecting a tracer into the 

leg, and from around 140-35 seconds when the tracer slug was introduced through the degassing 

unit. Mixing time could be correlated to volumetric flow and specific power input through (13) and 

(14) respectively for mixing by leg injection. 

 

                       (13) 

                           (14) 

 

And through (15) and (16) for mixing by top tank injection (=injection in the degasser) 

 

                       (15) 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t

This article is protected by copyright. All rights reserved 

                           (16) 

 

A detailed presentation of the mixing time data is shown in figure 6. The mixing time is evidently 

much shorter if the tracer is introduced into the degasser instead of directly into the U-shaped pipe. 

This is not surprising when the magnitude of turbulence in the degassing unit is taken into 

consideration. 

 The rather long mixing time when introducing the tracer in the leg, indicates a low extent of 

mixing, which is consistent with the nearly ideal plug flow conditions one would expect locally in 

the U-shaped part of the fermentor.  

For the purpose of single cell protein production, where the primary nutrients (CH4 and O2) 

have to be transferred from the gas phase to the liquid phase, and only trace concentrations of 

minerals need to be blended from a continuous liquid feed, the mixing times measured in this study 

are entirely satisfactory for both types of mixing. 

While equation (13) and (15) show that an adequate degree of mixing is achieved at modest 

volumetric flows, equation (14) and (16) indicate that a large power input is required. During 

experiments the pressure drop recorded at point A on fig. 2 was less than 1⋅10
5
 Pa. Localized 

turbulence would logically not provide any beneficial effect on the mixing time (or mass transfer) in 

the U-loop system as a whole, which means that an unnecessarily large power input is wasted in the 

pump casing. A selection of a pump with a more suitable head will be beneficial for future designs, 

and lead to a significant decrease in energy expenditure to achieve desired mixing times. 

 

Mass Transfer 

 Gas-to-liquid mass transfer coefficient (kLa) values ranged from 400-3000 h
-1

 and could 

through a least square regression be correlated to the superficial gas velocity (ug), the volumetric 

flow and specific power input through (17) and (18) respectively.  
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      (17) 

             
     

  
      (18) 

 

In Eq. (17) and (18) kLa is in h
-1

, and QG is in m
3
h

-1
 while all other parameters are in SI units. A 

detailed presentation of the mass transfer data is shown in figure 7.  The mass transfer values are 

extraordinarily high for a vessel of the size used in this study. While equation (17) shows that a 

large mass transfer coefficient can be achieved at modest volumetric flows and superficial gas 

velocities, equation (18) indicates that a very large power input is required. This result is similar to 

the observations made in the previous section. If another centrifugal pump was used with the same 

impeller, capable of delivering the same volumetric flow, but with a different casing enabling it to 

overcome a gauge pressure loss of 1.5⋅10
5
 Pa (50% more than the highest value measured in this 

study) instead of 4⋅10
5
 Pa, a threefold reduction in power input could be expected (SANWA, 

private communication). 

 For an STR where the height (H) equals the diameter (Dv), the gas to liquid mass transfer 

coefficient can be expressed by (19)  (Van’t Riet, 1979). 

 

                  
    (19) 

 

If the height (H) is twice the diameter (Dv), the gas to liquid mass transfer in an STR follows (20) 

(Vasconcelos et al., 2000). 

 

                   
     (20) 

 

A comparison between Eq. (18), (19) and (20) is shown in figure 8 (A-D). Figures A and B show 

that with the high head centrifugal pump, the performance of the U-loop fermenter is similar to an 

STR with H=Dv and the mass transfer is in fact better in an STR with H=2Dv if all vessels are 
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aerated with the same superficial gas velocity. However if a more suitable centrifugal pump capable 

of overcoming a smaller pressure loss (1.5⋅10
5
 Pa instead of 4⋅10

5
 Pa) is used, the U-loop 

fermenter with ug ≥ 0.15ms
-1

 starts outperforming conventional systems, even at modest power 

inputs.  

 When looking at the data one must not forget that the design of the U-loop fermenter allows 

very high superficial gas velocities to be achieved at very modest volumetric gas flow rates; for 

example aerating a 0.15 m
3
 U-loop fermenter with 1 vvm achieves the same superficial gas velocity 

as an 0.15 m
3
 STR with H=2Dv aerated with ~17.3 vvm and an 0.15 m

3
 STR with H=Dv aerated 

with ~27.4vvm. Aerating a 0.15 m
3
 STR with such high volumetric gas flow would lead to flooding 

unless a massive energy input is transmitted to the mixing aggregate. Figure 8 (C and D) shows that 

much higher kLa values than those of STRs can be achieved in the U-loop fermenter at similar 

volumetric gas flow rates and even with the pump used in this study. In an STR the liquid phase is 

more or less considered to be well mixed, but the gas phase is neither well mixed nor in plug flow 

through the liquid (unless the gas hold up is very small). In the U-loop reactor the gas and liquid 

follow each other in plug flow, Due to the long hold up time of the liquid the concentrations in the 

liquid phase are almost constant throughout the loop, but the gas phase loses reactants O2 and CH4 

as in a plug flow reactor (i.e. by first order reaction kinetics) as soon as the process becomes limited 

by mass transfer by the continuously decreasing cl*. 

 The mass transfer values found in this study are much higher than the ones found in 

previous studies of similar systems (Ziegler et al., 1977). Earlier tubular loop reactors were not 

equipped with static mixing devices and relied solely on gas holdup and turbulence to generate 

mass transfer. Evidently the static mixing devices used in this study facilitate an exceptionally high 

interfacial area “a” as kL is not expected to change. 

For an STR where the impeller is replaced with a forced flow recirculation loop, and 

mixing/mass transfer is facilitated by allowing gas/liquid from the loop to pass through a rotary jet 

head, the gas-liquid mass transfer coefficient can be expressed by (21) (Nordkvist et al., 2003). 
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      (21) 

 

The system is very similar to the one investigated in this study, and Eq. (17) is strikingly similar to 

(21). The U-loop fermenter does however outperform the rotary jet heads as is evident in figure 9. 

This can probably be attributed to a larger gas-volume fraction in the loop part of the U-loop 

fermenter, and the good performance generally noted for static mixing devices.  

 

Conclusion 

The U-loop fermenter evidently handles the process requirement for a large volumetric gas 

fraction quite well. The ingenious design of introducing gas into the system after the pump and 

stripping it before the liquid re-enters the pump casing, results in little or no difference between the 

gassed and un-gassed power numbers, even at high volumetric gas fractions and aeration numbers. 

Mixing times of 600-35 seconds which satisfied the process demands and very high mass 

transfer coefficients of 400-3000 h
-1

 could be achieved at modest volumetric flow rates within the 

experimental range of 6.95⋅10
-3

-1.41⋅10
-2

 m
3⋅s

-1
 studied. The design of the U-loop allowed for 

high superficial gas velocities to be achieved at modest volumetric gas flow rates, which meant that 

the system still outperformed a traditional stirred tank even with the over-dimensioned pump used 

in this study. 

Proper dimensioning of the pump proved to be of utmost importance as a pump with a larger 

head than needed leads to an unnecessarily large power input requirement (7500-29000 W⋅m
-3

) to 

achieve mixing and mass transfer. 

As mixing time and mass transfer were correlated to the drawn power input at a constant 

volume (V=0.15 m
3
) it would be highly interesting to investigate whether these equations apply to 

other reactor volumes outside the experimental range used in this study.  

 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t

This article is protected by copyright. All rights reserved 

Nomenclature 

Notation 

Symbol  name       unit 

cl
*
  Oxygen saturation     mol⋅m

-3
 

D  Impeller diameter     m 

Dv  Tank Diameter     m 

E  Normalized pH   

H  Liquid height      m 

HO  Henrys constant for oxygen in water at 25°C  m
3⋅Pa⋅mol

-1
 

[H2O2]  Feed concentration of hydrogen peroxide  mol⋅m
-3

 

kLa  Oxygen mass transfer coefficient   h
-1

 

kmix  Mixing constant     s
-1 

m  Degree of mixing   

N  Rotations of the impeller    rps (s
-1

) 

NA  Aeration number   

NP  Power number   

NP,g  Gassed power number   

NQ  Flow number   

NQ,g  Gassed flow number   

P  Drawn power      W 

Pg  Gassed drawn power     W 

p  Gauge pressure     Pa 

pO2  Dissolved oxygen tension    % 

pO2
exit

  Oxygen volume fraction in exhaust gas  % 

pO2
sat

  Dissolved oxygen tension at saturation  % 

Q  Volumetric liquid flow rate    m
3⋅s

-1
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QH2O2  Volumetric feed flow rate of H2O2   m
3⋅h

-1
 

Qg  Volumetric gas flow rate    m
3⋅s

-1
 

QG  Gassed Volumetric liquid flow rate   m
3⋅s

-1
 

Re  Reynolds number 

STR  Stirred tank reactor 

T  Temperature      °C   

t  Time       s 

tmix  Mixing time (95%)     s 

ug  Superficial gas velocity    m⋅s
-1

 

V  Volume      m
3
 

vvm  Volume gas pr. volume liquid pr. minute  m
3⋅min

-1⋅m
-3

 

X  stoichiometric symbol for biomass  

      

Greek letters 

Δp  Gauge pressure difference    Pa 

μ  Specific growth rate     h
-1

 

ρl  Liquid density      kg⋅m
-3
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Table I: A selection of power numbers (Np), gassed power numbers (Np,g), flow numbers (NQ), 

gassed flow numbers (NQ,g) found during experiments in the 0.15 m
3
 U-loop fermenter at increasing 

aeration numbers (NA). 

NP / NPg NA NQ / NQ,g 

0.2009 0.0000 0.0043 

0.2009 0.0200 0.0042 

0.2004 0.0410 0.0041 

0.1994 0.0605 0.0043 

0.1981 0.0938 0.0042 

0.1975 0.1012 0.0044 

0.1989 0.1207 0.0043 

0.1967 0.1661 0.0044 

0.1946 0.1988 0.0045 

0.1939 0.2438 0.0046 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 

 

 


