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A large offshore observational dataset from stations across the North and Baltic Seas is
used to investigate the planetary boundary-layer wind characteristics and their coherence,
correlation and power spectra. The data from thirteen sites, with pairs of sites at horizontal
distances of 4 to 848 km, are analyzed for typical wind turbine nacelle heights. Mean wind
characteristics, correlation and coherence are also calculated for analogous wind data from
simulations with the Weather Research and Forecasting (WRF) model.

Results indicate a general good agreement for the coherence calculated based on
measurements and the WRF-derived time series. By normalizing the frequency axes
with the distance and mean wind speed, it can be demonstrated that, even for data with
a wide range of distances, the coherence is a function of the frequency, mean wind and
distance, which is consistent with earlier studies. However the correlation coefficient as a
function of distance calculated from WRF is higher than observed in the measurements.
For the power spectra, wind speed and wind speed step change distribution, the results for
all sites are quite similar. The land masses strongly influence the individual wind direction
distribution at each site. The ability of the WRF model to reproduce the coherence of
the measurements demonstrates that its output can be used to estimate the coherence of
fluctuations for the integration of offshore energy. The power spectra of WRF time series
underestimates the high-frequency fluctuations. Due to the large number of measurement
sites, the results can be used for further plausibility validation for mesoscale model runs
over the sea.
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1. Introduction

The efficient integration of wind energy into the electric trans-
mission grid requires knowledge of wind speed characteristics at
the wind farm sites and how their power outputs are correlated.
Many offshore wind farms are built over small geographical areas
and thus their clusters of wind farms are simultaneously affected
by mesoscale wind phenomena. The aggregated power of these
offshore wind farms is more fluctuating than for spatially dis-
persed wind turbines on land (Focken et al., 2002; Akhmatov
et al., 2005; Giebel, 2007).

A successful integration not only depends on the mean wind
statistics and their correlation, but also on its spectral and cross-
spectral properties. For example, the model of Sørensen et al.
(2002) calculates the power response for several wind farms and
is based on their spectral and co-spectral properties.

For the correlation and cross-spectral properties of two
measurement sites, different scenarios are possible, depending

on the wind direction and the angle of the line connecting the two
sites (separation line). If the wind direction is along the separation
line of two wind farms (longitudinal), there is a lag between the
time when the farms experience a wind speed change. If the
distance is large, the change may not be merely advected but may
be altered by some meteorological phenomenon which causes the
wind characteristics to change. If the flow is perpendicular to the
separation line (lateral), there is no time lag between variations
at the two sites. However, if the distance between the sites is
large, the two sites might not experience the same wind speed
change, because the scale of the phenomenon causing the change
is smaller than the separation distance.

Several studies have investigated the cross-spectral properties of
wind speed measurements with varying measurement distances.
Kristensen and Jensen (1979) analysed experimental data laterally
separated by a distance of less than 20 m. They presented the nor-
malization of the frequency axis with the distance and mean wind
speed, which will be used in this article. Schlez and Infield (1998)
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investigated longitudinal and lateral coherence for distances of
62–102 m and established an empirical expression for the coher-
ence as a function of mean wind speed, distance and the angle
of the separation line. Davenport (1961) examined the coherence
of vertically separated observations with a maximum distance of
141 m and expressed the coherence as an exponential function
of distance and a reference wind speed. Further analyses of the
coherence have been done by Sørensen et al. (2002) and Sørensen
et al. (2008) for a maximum distance of 1.2 km above water and
in coastal areas. For flat and complex terrain, the coherence was
analysed for distances up to 1.7 km by Nanahara et al. (2004).
Vigueras-Rodrı́acuteguez et al. (2012) used power measurements
at a wind farm with a maximum distance of 7.73 km to develop a
coherence model; in our study, this model is used for comparison.
The spectral and cross-spectral properties were investigated by
Vincent et al. (2013) and Larsén et al. (2013) for a maximum dis-
tance of 12.42 km. Vincent et al. (2013) also investigated the wind
direction dependency and derived the coherence as a function of
frequency, wind speed, distance and the angle of the separation
line to the wind direction. Their study showed that the wind simu-
lated by the WRF model reproduces the spatial wind speed coher-
ence for distances up to 12 km and thus can be used to estimate the
coherence for regions where no measurements are available. The
largest distances investigated by Woods et al. (2011) were 30 km.

The aim of our study is to show the main wind speed character-
istics for various offshore sites and the correlation and coherence
of wind speeds over water in the North and Baltic Seas with
larger distances than in existing studies (up to 848 km). Besides
the investigation of the coherence, the database will be used to
study the mean wind statistics over the North and Baltic Seas to
compare the power spectra of the wind speed time series with the
analytical model of Larsén et al. (2013) for mesoscale winds. The
spectral characteristics of wind speed on different scales have been
the focus of several studies; Larsén et al. (2013) give an overview.

This article focuses on mesoscale winds at a time-scale of several
tens of minutes up to several hours. We investigate the spatial
coherence of these winds over distances up to 848 km. This scale
is especially important for the integration of offshore wind power,
because of enhanced mesoscale variability during special weather
situations (Vincent et al., 2011), which may simultaneously affect
several wind farms. Section 2 presents the database in the North
and Baltic Seas. In section 3 the model set-up for the WRF
simulation is described, which is used for comparisons. The
methodology used is introduced in section 4 and the results are
shown and discussed in section 5. The last section 6 concludes
our results.

2. Observations

For the calculation of the correlation and coherence, pairs
of wind speed measurements with distances between 4 and
848 km are used. The locations of the met masts and lidars
are shown in Figure 1(a), together with the corresponding
distances in Figure 1(b). The measurement sites are located
offshore, near the shore and one is onshore, but very close
to the coastline. Depending on the site and wind direction,
the wind characteristics are influenced by different roughness
lengths, land–sea transitions and the existence of other wind
farms. For all sites one height is chosen which is close to a typical
offshore nacelle height, but free from wakes of the measuring
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Figure 1. (a) Measurement sites in the North and Baltic Seas and (b) a histogram
showing the distances between each pair of sites.

platform (Peña et al., 2012). If measurements at different heights
are available, a measurement height was used for which mean
wind speed and wind rose are consistent with measurements at
other heights. The measurement height, measurement type and
the amount of missing values at each site are shown in Table 1.
Most time series have around 10% of missing values, with lidar
measurements having the highest percentage. All time series are
checked for plausibility. For the met masts, where wind speed
measurements for more than one boom direction are available,
the wind speed is combined depending on the wind direction
measurements to exclude mast shadow measurements. Due to
confidentiality agreements, the measurement sites are not named,
but labelled with letters A to M in Table 1 and the following figures.

All time series consist of 10 min average data and are longer
than one year to represent all seasons. However, the individual
time series can represent different years and the overlapping
time is for some site combinations shorter than a year and thus
not representative for all seasons. The availability of data at the
different sites is shown in Figure 2.

Wake situations and flow from land are not excluded, since
most of the data would be discarded in these cases. According
to Sørensen et al. (2008), Troldborg et al. (2011), Vincent et al.
(2013) and Larsén et al. (2013) mesoscale frequencies are not
influenced by wind farm wakes in 10 min time series.

3. Mesoscale simulations

We use data from a numerical simulation for the North and
Baltic Seas (region shown in Figure 3) conducted with the

Table 1. Measurement heights, types for all the used measurement sites and the percentage of missing values (NaN).

Site A B C D E F G H I J K L M

Height (m) 82 90 116 92 90 90 70 70 126 97 100 100 92
Device* m l m m m m m m l m m l m
NaN (%) 22 17 11 3 5 10 10 5 18 8 7 44 24

* ‘l’ denotes a WindCUBE lidar measurement and ‘m’ a met mast measurement.

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 3. Area of the WRF simulations in the North and Baltic Seas; the marked
locations were used to calculate the correlation and coherence.

Advanced Research Weather Research and Forecasting Model
(WRF) version 3.5.1. The simulation follows the set-up in
Hahmann et al. (2015) but with the parametrizations shown
in Table 2.

The simulation uses the data from the European Centre for
Medium Range Forecast (ECMWF) ERA-Interim Reanalysis (Dee
et al., 2011) with 0.75◦grid spacing to initialize, update the
boundaries, and for the fields used in the grid nudging. Sea
surface temperature (SST) and sea-ice fractions come from the
dataset produced at NOAA/NCEP∗ at 0.25◦resolution (Reynolds
et al., 2007) and are updated daily. The outer domain has a grid
spacing of 18 km. Two other domains are nested within, with
grid spacings of 6 and 2 km on a polar stereographic projection.
The simulations use 41 vertical levels from the surface to a height
of approximately 20 km. The levels are closer together near the
Earth’s surface to better simulate the processes occurring in the
planetary boundary layer (PBL). The lowest ten of these levels
are within 1000 m of the surface and the first level is located at
approximately 14 m above mean sea level. The simulation ran in
a series of 11-day long overlapping simulations, with the output
from the first day being discarded to allow the model to spin
up. The simulation used spectral nudging which continuously
relaxes the model solution towards the gridded reanalysis, but
this is done only on the outer domain and above level 10 to allow
for the mesoscale processes near the surface to develop freely.
This method is based on the assumptions described in Hahmann
et al. (2010) and validated in Hahmann et al. (2015) for wind

∗(USA) National Oceanic and Atmospheric Administration/ National Centers
for Environmental Prediction.

Table 2. Parametrizations used in the WRF model simulations.

Parameter Setting

Short-wave radiation Dudhia (option 1)
Long-wave radiation RRTM (option 1)
Precipitation WRF single-moment 5-class (option 4) and Kain–Fritsch

(option 1), turned off on outer domain.
PBL and land surface Yonsei University (option 1),

MM5 similarity (option 1) and
Noah Land Surface Model (option 2)

energy applications offshore in the Baltic and North Seas. The
grid nudging and 10-day reinitialization keeps the model solution
from drifting from the observed large-scale atmospheric patterns,
while the relatively long simulations guarantee that the mesoscale
flow is fully in equilibrium with the mesoscale characteristics of
the terrain.

One major difference from the standard WRF modelling system
is the change in land use and its associated surface roughness
length. Detailed inspection of the standard land use maps in
WRF showed serious problems. For the simulation, an averaged
land use map for the period 2001–2010 derived from MODIS
Collection 5 (Friedl et al., 2010) is used, as opposed to the MODIS
C4-based data from a single year for 2001 used in the default WRF
v 3.5.1. Surface roughnesses were modified to better represent the
characteristics of the terrain in this region. In addition to the new
values, the annual variation in surface roughness used in WRF
was disabled because of the unrepresentative spatial and temporal
resolution of the driving fractional vegetation cover.

This study includes the data for the period 2000–2013 at a
height of around 100 m (level 4) with a temporal resolution of
10 min for the wind speed and 1 h for the wind direction. For the
analysis presented here, we use only a part of the inner domain
(the area we are interested in), with grid points which are at least
2 km away from land.

4. Methodology

The wind speed characteristics of each site are shown by the
frequency distribution of the wind speed and wind speed step
changes. For better comparison of the wind speed distribution,
the wind speed is normalized by the mean wind speed at each site.
The frequency distribution of wind speed step changes (δu) shows
the occurrence of wind speed changes within two consecutive time
steps (i and i + 1):

δu = ui+1 − ui . (1)

To interpret the wind direction distribution at different sites,
wind roses are compared.

The power spectra of each site have been calculated for the
whole wind speed time series, using the Fast Fourier Transform.
Missing values are filled by linear interpolation between the last
and first available value around the data gap.

For the comparison of the correlation of different measurement
site combinations for all overlapping time series, the Pearson
correlation coefficient is calculated without shifting the time
series (xlag = 0):

ρ(A, B) = cov(A, B)

σAσB
, (2)

with the covariance (cov) and the standard deviation (σ ) of the
sites A and B.

The correlation coefficient is calculated for different time
averages, representative not only of the mesoscale, but also
the synoptic scale. To compare the correlation coefficient of
different distances between measurements and WRF simulation

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
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grid points, four grid points in the model area are chosen
(Figure 3(a)–(d)). The correlation coefficient is calculated for
these individual four points with all other grid points. These four
points were chosen because of their varied distances to the coast
and proximity to the observational sites (section 3).

For the cross-spectral properties, the coherence (Coh) is
calculated:

Coh(f ) = Con(f ) + i Qun(f ), (3)

where f is the frequency.
It consists of the cospectrum (CoAB) and the quadrature

spectrum (QuAB) of the two sites A and B:

Con(f ) = CoAB(f )√
PA(f )PB(f )

, (4)

Qun(f ) = QuAB(f )√
PA(f )PB(f )

, (5)

normalized with the power spectra of the two time series (PA and
PB). The spectral energy P is obtained using the Welch’s power
spectral density estimate with a Hanning window. The cospectrum
represents the in-phase fluctuations and the quadrature spectrum
the out of phase fluctuations. Due to the normalization with the
power spectra, a perfect correlation for a certain frequency is
reached when the coherence is equal to 1.

Whether the two time series have a negative or positive
quadrature spectrum depends on the definition of the angle
of the separation line to the main wind direction. The separation
line is always defined for positive quadrature spectra.

For the investigated measurement site distances, the entire
time series can hardly be regarded as stationary to fulfill the
requirements for the Fast Fourier Transform. Thus, the coherence
is calculated for each day individually and the following criteria
have to be fulfilled by both time series to reach near-stationarity:
the difference between minimum and maximum wind speed
during one day is ≤ 12 m s−1 and in wind direction is ≤ 90◦.
Afterwards, each day time series is linearly detrended. Due to this
procedure, several days of the investigated data are rejected and
the time overlay of the site combinations gets smaller.

Because of the loss of energy due to missing value interpolation
(section 5.4), only days with less than seven missing values out
of the 144 are used. The missing values are filled by linear
interpolation. As in the correlation calculation, no time series lag
adjustment is done. This procedure is similar to the methodology
of Vincent et al. (2013). They additionally used wind speed and
wind direction criteria for the difference of the two masts to
ensure that the mean wind speed of both can be regarded as
the advection wind speed. Due to the large distances considered
in this study, it is questionable whether such an advection wind
speed exists. Thus, no criterion is used when comparing the two
time series. Nevertheless, the normalization of the frequency axis
is done as in Vincent et al. (2013) to test if all spectra still collapse
to one curve. Due to the requirements for near-stationarity and
the limit for missing values in the time series, many days have to be
rejected. For the further analysis, measurement site combinations
are used, resulting in more than 50 days to analyse. The total
available near-stationary days for all possible site combinations
are presented in Figure 4. In section 5.6 the mean coherence of all
available days is analysed.

No analyses of the influence of the angle between the separation
line and the wind direction on the coherence has been done.
Because of the large distances between measurement sites, the
Coriolis force is no longer negligible and a reference wind
direction or advection wind speed is hard to define without
requiring the same wind direction at both sites.

For the comparison of the coherence of the measurements with
the coherence at different distances in the WRF simulations, the
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Figure 5. Wind speed frequency distribution for all sites and for point b of the
WRF simulation. The x-axis is normalized with the mean wind speed of each
individual site.

grid point b in the model area is chosen (Figure 3). Similar results
are found at other points. Due to high computational costs, only
one point was chosen. Point b is used for this study because of its
free flow position.

5. Results and discussion

5.1. Wind speed distribution

The normalized wind speed distributions of all measurement
sites and the data of point b of the WRF simulation are shown
in Figure 5. Even though the measurement sites are spread over
a large area with varying distances to the coastline, the shapes of
the distributions are very similar. The distributions widths are
site dependent and thus the maximum relative frequency varies
within 4%. The results for the WRF simulation data show no
distinct deviation from the measurements.

5.2. Probability distribution of wind speed step changes

The probability distribution for the wind speed step changes are
shown in Figure 6. The comparison with the fitted Gaussian
distribution, which is manually fitted to the maximum values,
demonstrates that wind speed step changes do not follow a
Gaussian distribution. Wind speed step changes greater than
1 m s−1 have a higher probability than they would have if the
step changes were normally distributed. This result is comparable
to the results of Dowds et al. (2015) with the same temporal
resolution. Results of Anvari et al. (2016) for high-resolution wind
and solar power data show the same characteristics. Furthermore,
they conclude that the probability for large step changes is lower
in wind parks due to smoothing effects.

Figure 6 also compares the probability distribution of the wind
speed step changes at the measurement sites with the data at

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. 142: 3186–3194 (2016)



3190 A. R. Mehrens et al.

�u (m s−1)

–10 –5 0 5 10

re
la

tiv
e 

fr
eq

ue
nc

y 
(%

)
102

100

10–2

10–4

measurements

wrf

Figure 6. Probability distribution of wind speed changes (δu) within two
subsequent 10 min time steps for all measurement sites (crosses) and point b
of the WRF simulation (circles) in comparison with a Gaussian distribution
(dashed).

0° 3°E 6°E 9°E 12°E 15°E

56°N

54°N

52°N

58°N

60°N wind speed (m s–1)

20.0 < U ž max (U) 

10.0 < U ž 20.0 

0.0 < U ž 10.0 

L

K

H

E

C

A

M

Figure 7. Wind roses for some representative measurement sites. For better
visualisation, some roses are slightly shifted from their real measurement locations
(see Figure 1).

point b of the WRF simulation. The probability of very small step
changes is slightly higher for the WRF simulation data than for
the measurements.

5.3. Wind direction distribution

Figure 7 shows the wind roses for some representative
measurement sites. It can be concluded that the wind direction
is more site dependent than the wind speed distribution. The
relation to land has a strong impact on the prevailing wind
direction. The measurement site A shows a main wind direction
from southwest and a second maximum from the northeast. This
main wind direction is less pronounced and broader for site E.
Site L shows a strong influence of the Norwegian Mountains.
The only measurement site in the Baltic Sea (M) has prevailing
westerly winds with a second maximum for easterly winds, i.e.
different from the main directions in the North Sea.

5.4. Power spectra

Figure 8 shows the power spectra from all 13 sites, the analytical
model of Larsén et al. (2013) for the mesoscale, and one time
series derived from the WRF simulations at point b (Figure 3). All
spectra are slightly smoothed by calculating the mean value of the
energy using log-spaced bins. The model of Larsén et al. (2013):

S(f ) = a1f −5/3 + a2f −3, (6)

with a1 = 3×10−4 m2 s−8/3 and a2 = 3×10−11m2 s−4 is based
on measurements from two offshore sites, Horns Rev and Nysted,
which are included in this study. Figure 8 makes it evident that the
analytical model is valid for all investigated measurement sites.

Figure 8 demonstrates that all time series have a peak in the
spectral power at a cycle duration of one year. A broader local
maxima is located at around 3 days due to synoptic-scale fluctu-
ations in this region. No local maxima for a cycle duration of one
day is found, thus none of the offshore sites has a dominant daily
cycle at the investigated height. For frequencies higher than the
synoptic scale, power spectra for all sites are very similar and larger
than the analytical model. For a cycle duration of several hours,
the differences in the power spectra increase. Figure 8 also shows
the mean wind speed at the different sites. It can be concluded that
the mean wind speed at the site has no clear systematic influence
on the power spectra of the investigated sites. However, the range
of mean wind speeds at the investigated sites is rather limited.

Figure 9 shows the same as Figure 8, but the percentage of
missing values of the time series is colour coded. Because of
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Figure 10. Correlation coefficient for all 10 min mean measurement site
combinations (crosses) and the mean of all correlation coefficients for all possible
combinations of the four chosen grid points with all other grid points of the WRF
simulation. The whiskers show the standard deviation of the WRF-based results.
(b) is as (a), but for 24 h mean measurements.

the linear interpolation of the missing values, the time series
lose energy at the higher frequencies. The higher the percentage
of missing values, the higher the energy loss. This dependency
on the percentage of missing values is more pronounced than
the dependency on the mean wind speed at the site, colour
coded in Figure 8. The comparison of the spectra from the
measured data with the WRF data suggested that WRF misses
some high-frequency fluctuations, similar to measured time series
with a considerable amount of missing data. Larsén et al. (2013)
states that in the mesoscale range the spectra for the offshore
measurement site Horns Rev shows negligible height dependency
between 15 and 62 m, because the impact of surface fluxes is
already insignificant for this height. There is a chance that
the small deviations in the spectra shown are not due to the
different heights of the measurements, but more likely depend
on the amount and the distribution of missing values in the time
series.

5.5. Correlation

The dependency of the correlation coefficient on the distance
between all measurement sites is demonstrated in Figure 10(a).
The correlation coefficient decreases exponentially with distance.
For distances greater than 600 km, the lowest values for the
coefficient are reached and for longer distances, up to 840 km, the
coefficient approaches a constant value. However, the correlation
coefficient does not reach zero, probably because of the impact of
the annual cycle.

St. Martin et al. (2015) show an overview of publications
dealing with the correlation of wind speed and wind power
measurements as a function of the measurement site distance.
Most publications use an exponential function to describe the
decay of the correlation coefficient with distance and agree with
our results.

The dashed lines in Figure 10 demonstrate the mean correlation
coefficient for the four WRF grid points shown in Figure 3
with all other WRF grid points. The slope of the curve is very
similar to the one of the measurements, but is in general shifted
to higher values. Figure 10(b) shows the same WRF results as
Figure 10(a), but now the measurement correlations are calculated
with the daily mean value of the 13 measurement sites. Due to
the reduced temporal resolution, the correlation coefficients of
the daily averaged measurements are more comparable with the
correlations in the WRF data. Even though the results for the WRF
simulation data are based on other sites than the measurements
including other distances to the coast, the results indicate that
WRF is not capable of resolving wind variabilities sufficiently
at higher frequencies due to the numerical smoothing. In the
measurements these frequencies are included and probably lower
the correlation of the measurement points. By removing the high-
frequency fluctuations in these measurements by using the daily
mean values, measurements and the WRF modelled data achieve
better agreement, as shown in Figure 10(b).

This behaviour of WRF, i.e. lack of ability to resolve high-
frequency fluctuations, is already visible in Figure 9. The power
spectral density of the simulation is lower than the measurements
in the mesoscale range. Only the sites with high missing value rates
show a similar level of energy. This issue of mesoscale simulations
was examined systematically by Skamarock (2004) and Vincent
and Hahmann (2015).

5.6. Coherence

Figure 11 shows the normalized amplitude of the coherence for all
site combinations which have more than 50 near-stationary days
available. All frequencies (f ) on the x-axis are normalized with the
long-term mean wind speed of both sites (Vo) and the distance (d),
as discussed in section 4. The plot suggests that the normalization
of the x-axis, which was proved for smaller distances, is still valid.
The coherence is still a function of the distance and the wind
speed. The results for all possible combinations of measurement
sites collapse to a small range (Figure 11), consequently it is
reasonable to show only the mean values in Figure 12. A possible
explanation for why this normalization is valid for great distances
is that these distances are no longer coherent, and so the error
introduced by using the mean wind speed as an advection wind
speed is negligible.

The coherence is the sum of the cospectrum and the quadrature
spectrum (Eq. (3)). The contribution of the quadrature spectrum
to the coherence, the out-of-phase fluctuations, is rather small.
This is because different angles between the separation line and
the wind direction are not investigated separately. This study
concentrates on the mean of all near-stationary days. If there is a
contribution from the coherence of the out-of-phase fluctuations,
the main wind direction of the sites is more often along the
separation line than perpendicular to it.
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Figure 12. Mean normalized amplitude of the coherence of all measurement
sites, WRF simulations and the analytical model of Vigueras-Rodrı́acuteguez et al.
(2012).

Figure 12 also compares the mean coherence of all site
combinations with the coherence of the wind speed for the point b
(Figure 3) in the WRF simulation with all other grid points and the
analytical model of Vigueras-Rodrı́acuteguez et al. (2012), based
on wind power measurements in a wind farm. In general all three
lines show a similar behaviour. The coherence of the data from
the WRF simulation has the highest values for low normalized
frequencies. This corresponds to the results of section 5.5, where
the correlation is larger in the WRF-derived data. The analytical
model shows higher values than the measurements in the range of
low normalized frequencies. Thus it is closer to the WRF model
than to the measurements. However, it must be noted that the low
normalized frequency results of the measurements are only based
on one measurement (Figure 11), because only one considered
measurement site pair has a very small distance.

Due to the normalization of the axis, an understanding of
which frequencies f are correlated with which distances d is
no longer possible. For the following example in Figure 13, the
normalized frequency at which the coherence is 0.1 is used, and
thus very little correlation between two time series is left. This
point is at a normalized frequency of :

f d

V0
≈ 0.36 (7)

Based on Eq. (7), it is possible to calculate, for each frequency
the distance when the coherence is close to zero, depending
on the wind speed. Figure 13 shows this dependency for two

distance (km)
0 100 200

fr
eq

ue
nc

y 
(H

z)

10–4

10–3

1

3

7

cy
cl

e 
du

ra
tio

n 
(h

)

V0 = 5 m s−1

V0 = 10 m s−1

Figure 13. Example for two different wind speeds to illustrate the relation of
wind speed, distance and frequency for a coherence of 0.1.

different wind speeds. For lower frequencies the distances for
which the coherence is close to zero is greater than that for higher
frequencies. With an increase in the wind speed, the distances
are greater, up to the frequencies for which different sites are
coherent. Because only time series with a maximum length of a
day are selected, this is only valid for frequencies in the mesoscale
and near-stationary flow.

Due to the high spatial resolution of WRF simulation, the
spatial coherence can be analysed and thus the influence of
the land masses on the coherence can be examined. Figure 14
shows the coherence of all WRF points with the point b for two
frequencies. Figure 14(a) and (b) demonstrate that in general the
coherence is lower for greater distances, similar to the results
shown earlier. For shorter cycle durations, the decrease is higher.
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Figure 14. Normalized amplitude of the Coherence for all WRF grid points with
the point b for a cycle duration of (a) 1 h and (b) 6 h. Due to the different decrease
of the coherence, the contour lines in (a) and (b) do not have the same spacing.
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In Figure 14(a) the decrease of the coherence above the North
Sea is not completely radial. The distance to the coast has a small
influence on the decrease of the coherence with distance. Thus,
for small cycle durations, the coherence is also a function of the
distance to the coast. The reason might be the existence of local
wind systems at this time-scale.

6. Summary and conclusions

Coherence, correlation, power spectra and the relative frequency
of wind speed, wind speed step change and wind directions
were examined for 13 sites over a large water area. Ten-
minute data from met mast and lidar measurements in the
North and Baltic Seas were used with distances between sites
of between 4 and 848 km. Most of the measurement sites are
close to the coast. The mean wind characteristics, correlation and
coherence were also calculated based on the output from a WRF
simulation.

The distribution of wind speeds, wind speed step changes
and the power spectra is similar for all sites and the WRF
simulation data. Difference in power spectra are likely to appear
due to different percentages of missing values which have been
interpolated. The dependency on the mean wind speed at the site
is less pronounced. The linear interpolation reduces the energy
in the time series. It was found that the model of Larsén et al.
(2013) for the mesoscale power spectra is valid for all sites in this
study. The wind roses of the measurements and the spatial plot
of the coherence of the WRF simulation indicates that the land
masses, and thus distances to the coast, have an influence on the
wind speed and wind direction. The correlation as a function of
distance can be regarded as an exponential function. For distances
greater than 600 km, the correlation stays constant. Even at the
maximum distance of 848 km, the correlation coefficient does not
reach zero. The correlation coefficient of the WRF data shows the
same behaviour, but with higher values. When computing the
correlation coefficient with daily mean values of measurements,
the correlation is very similar to that of the WRF data. Based on
the assumption that the measurements are representative for the
WRF domain, this indicates that WRF is not capable of accurately
resolving high-frequency or mesoscale wind fluctuations.

The calculation of coherence is extended to distances much
larger than shown in previous studies. However, the results
are comparable to the older studies like Vincent et al. (2013),
Vigueras-Rodrı́acuteguez et al. (2012) and Larsén et al. (2013).
The influence of the angle of the wind direction to the separation
line is not investigated here, due to the difficulties in defining one
constant wind direction over such a long distance. However, the
results confirm that the coherence is a function of the frequency,
distance and advection wind speed. Also the model of Vigueras-
Rodrı́acuteguez et al. (2012), which was based on measurements
within one wind farm, is consistent with our measurements
with greater distances. The coherence values of the Vigueras-
Rodrı́acuteguez et al. (2012) model are slightly higher than those
of the measurements. The coherence in the WRF simulation is
even higher than that of the Vigueras-Rodrı́acuteguez et al. (2012)
model for small frequencies.

The large number of measurement sites extending over more
than 800 km over water is valuable for validating mean wind
statistics and spectral properties of mesoscale models.
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Anvari M, Lohmann G, Wächter M, Milan P, Lorenz E, Heinemann D, Rahimi
Tabar MR, Peinke J. 2016. Short-term fluctuations of wind and solar power
systems. New J. Phys. 18: 063027, doi: 10.1088/1367-2630/18/6/063027.

Akhmatov V, Abildgaard H, Pedersen J, Eriksen PB. 2005. ‘Integration of
offshore wind power into the western Danish power system’. In Proceedings
of the Offshore Wind. Copenhagen.

Davenport AG. 1961. The spectrum of horizontal gustiness near the ground in
high winds. Q. J. R. Meteorol. Soc. 87: 194–211, doi: 10.1002/qj.49708837618.

Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae
U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van
de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer
AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg
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