Integrating load-balancing into multi-dimensional bin-packing problems

Trivella, Alessio; Pisinger, David

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Trivella, A., \& Pisinger, D. (2016). Integrating load-balancing into multi-dimensional bin-packing problems [Sound/Visual production (digital)]. 28th European Conference on Operational Research, Poznan, Poland, 03/07/2016

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Integrating load-balancing into multi-dimensional bin-packing problems

Technical University of Denmark

Alessio Trivella

Contents

(1) Recall the bin-packing problem
(2) Integration of load-balancing: problem definition
(3) MIP model for balancing a single bin
(9) MIP model for joint packing and balancing
(9) A multi-level local-search heuristic
(c) Computational results

Multi-dimensional Bin-Packing problem (MBP)

Instance

- Set of D-dimensional rectangular-shaped boxes $V=\{1, \ldots, n\}$. Box i has width $=w_{i, d}$ in dimension d
- Identical bins with width $=W_{d}$ in dimension d

Problem

Orthogonally insert all boxes into the bins avoiding overlapping and using as few bins as possible. Rotations are not allowed

Applications

Shipping and transportation industry, filling up containers, loading trucks etc. Most real-world problems have $D \leq 3$, but all results hold for any dimension

MIP model for the MBP

$\min N$

$$
\begin{array}{lr}
\text { s.t. } \sum_{d \in D}\left(l_{i j d}+l_{j i d}\right)+p_{i j}+p_{j i} \geq 1 & \forall i<j \in V \\
x_{i d}-x_{j d}+W_{d} l_{i j d} \leq W_{d}-w_{i d} & \forall i \neq j \in V, d \in D \\
x_{i d} \leq W_{d}-w_{i d} & \forall i \in V, d \in D \\
a_{i}-a_{j}+n p_{i j} \leq n-1 & \forall i \neq j \in V \\
1 \leq a_{i} \leq N & \forall i \in V \\
\text { var : } a_{j}, N \in \mathbb{N}, \quad x_{i d} \in \mathbb{R}^{+}, \quad l_{i j d}, p_{i j} \in\{0,1\} & \forall i, j \in V, d \in D
\end{array}
$$

Difficult to solve in practice due to many:

- symmetries
- big-M constraints

Load-Balanced MBP (LB-MBP)

Instance
MBP instance + density of items ρ_{i} (or mass)

Problem

Arrange items into the miminum number of bins, in such a way that the barycenters of the loaded bins fall as close as possible to an ideal point (e.g. the center of the bin or center of its base)

Applications

Transport (ship, truck, aircraft's cargo): a good position of the center of mass increases the safety and effciency of the travel, minimizing the waste of fuel

Objective function

Minimize the total imbalance over:

- used bins
- dimensions

Balancing a single bin

Assume to have a set V of items which fit into a single bin:

$$
\begin{array}{lr}
\min & \sum_{d \in D} k_{d}\left(r_{d}+s_{d}\right) \\
\text { s.t. : } & r_{d}-s_{d}=B_{d}^{\text {opt }}-\frac{1}{M}\left(\sum_{i} m_{i}\left(x_{i d}+\frac{w_{i d}}{2}\right)\right) \\
& \forall d \in D \\
\sum_{d \in D}\left(l_{i j d}+l_{j i d}\right) \geq 1 & \forall i<j \in V \\
x_{i d}-x_{j d}+W_{d} l_{i j d} \leq W_{d}-w_{i d} & \forall i \neq j \in V, d \in D \\
x_{i d} \leq W_{d}-w_{i d} & \forall i \in V, d \in D \\
\operatorname{var}: x_{i d}, r_{d}, s_{d} \in \mathbb{R}^{+} \quad l_{i j d} \in\{0,1\} & \forall i, j \in V, d \in D
\end{array}
$$

To solve the LB-MBP we could:

1) Find the smallest number of bins
2) Balance each bin to optimality
...but the packing and balancing phases are not linked together!

MIP model for the LB-MBP

$$
\begin{aligned}
& \min N C+\sum_{d=1}^{D} \sum_{j=1}^{N} K_{d}\left(r_{j d}+s_{j d}\right) \\
& \text { s.t. : } \sum_{d=1}^{D}\left(l_{i j d}+l_{j i d}\right)+p_{i j}+p_{j i} \geq 1 \\
& x_{i d}-x_{j d}+W_{d} l_{i j d} \leq W_{d}-w_{i d} \\
& a_{i}-a_{j}+n p_{i j} \leq n-1 \\
& x_{i d} \leq W_{d}-w_{i d} \\
& \forall i<j \\
& 1 \leq a_{i} \leq N \\
& \forall i, j, \forall d \\
& \forall i, j \\
& \forall i \\
& n\left(c_{i j}-1\right) \leq a_{i}-j \leq n\left(1-c_{i j}\right) \\
& \forall i, j \\
& 1-(n+1)\left(1-\delta_{i j}\right) \leq a_{i}-j \leq-1+(n+1)\left(1-\gamma_{i j}\right) \\
& \forall i, j \\
& c_{i j}+\gamma_{i j}+\delta_{i j}=1 \\
& \forall i, j \\
& m_{i} W_{d}\left(c_{i j}-1\right) \leq e_{i j d}-m_{i}\left(x_{i d}+w_{i d} / 2\right) \leq m_{i} W_{d}\left(1-c_{i j}\right) \\
& \forall i, j, \forall d \\
& m_{i} W_{d}\left(c_{i j}-1\right) \leq \alpha^{i j d}-m_{i}\left(W_{d}^{o p t}-r_{j d}+s_{j d}\right) \leq m_{i} W_{d}\left(1-c_{i j}\right) \\
& \forall i, j, \forall d \\
& e_{i j d} \leq c_{i j} W_{d} m_{i} \\
& \forall i, j, \forall d \\
& \alpha_{i j d} \leq c_{i j} W_{d} m_{i} \quad \forall i, j, \forall d \\
& \sum_{i=1}^{N} e_{i j d}=\sum_{i=1}^{N} \alpha_{i j d} \\
& \forall j, \forall d
\end{aligned}
$$

var: $a_{j}, N \in \mathbb{N}, \quad x_{i d}, r_{j d}, s_{j d}, e_{i j d}, \alpha_{i j d} \in \mathbb{R}^{+}, \quad l_{i j d}, p_{i j}, c_{i j}, \gamma_{i j}, \delta_{i j} \in\{0,1\}$

Sequential vs. joint problem

3D instance with 18 items, $\rho_{i}=1, B^{o p t}=(5,5,0)$

Sequential problem

$\operatorname{bin} 1$	1	2	3	4	5	7	8	10
bin 2	6	11						
bin 3	9	12	14	17				
$\operatorname{bin} 4$	13	15	16	18				

Optimal 3DBPP: uses 4 bins

bin	B_{x}	B_{y}	B_{z}	$f_{\text {bin }}$
bin 1	5.00	5.00	4.18	4.18
bin 2	6.12	5.00	4.44	5.56
bin 3	5.00	5.00	4.38	4.38
bin 4	5.00	5.00	3.32	3.32
$f_{\text {coord }}$	1.12	0.00	16.32	17.44

Joint problem

bin 1	1	2	3	5		
bin 2	4	6	7	8	10	12
bin 3	9	11	14	17		
bin 4	13	15	16	18		

Different 3DBPP solution

bin	B_{x}	B_{y}	B_{z}	$f_{\text {bin }}$
bin 1	5.00	5.00	4.22	4.22
bin 2	5.00	5.00	3.64	3.64
bin 3	5.00	5.00	4.59	4.59
bin 4	5.00	5.00	3.32	3.32
$f_{\text {coord }}$	0.00	0.00	15.77	15.77

10\% improvement!

But running time is 4 vs. 132 seconds. In general the joint model cannot be solved for instances larger than 15-20 items

Heuristic load balancing

We now develop a heuristic algorithm to solve large instances
It is possible to characterize feasible packings by means of a set of Interval Graphs (Fekete-Schepers)

Properties (1/2)

Theorem 1

If D graphs $G_{d}, d \in D$, are obtained from a packing, then the following conditions are fulfilled:
P_{1} : Each G_{d} is an interval graph
$P_{2}: \cap_{d} G_{d}=\varnothing$
P_{3} : The stable sets of G_{d} have total weight less than the d-dimension of the bin

Definition

Let G be an undirected graph. An orientation Φ of G is called transitive orientation (TRO) if:

$$
(a, b) \in \Phi \wedge(b, c) \in \Phi \Longrightarrow(a, c) \in \Phi
$$

Properties (2/2)

Theorem 2

If G is an interval graph, then its complement \bar{G} is transitively orientable

Theorem 3

Let $G_{d}, d \in D$ be D graphs satisfying P_{1}, P_{2}, P_{3}, and call $\Phi=\left(\Phi_{d}\right)_{d \in D}$, where Φ_{d} is a transitive orientation of \bar{G}_{d}.
The function $p^{\Phi}: V \longrightarrow \mathbb{R}_{0}^{+D}$ defined by:

$$
p_{d}^{\Phi}(v)= \begin{cases}0 & \text { if } \nexists u \in V:(u, v) \in \Phi_{d} \\ \max \left\{p_{d}^{\Phi}(u)+w_{d}(u) \mid(u, v) \in \Phi_{d}\right\} & \text { otherwise }\end{cases}
$$

produces a packing

How many transitive orientations?

Different transitive orientations produce different packings

Local search among TROs

How many TROs?

From graph theory: number of TROs of a graph is $\prod_{i=1}^{k} r_{i}$! where r_{i} is the number of vertices of particular substructures

Is it possible to find TROs?
From graph theory: we can characterize them all TROs of a graph (it's complicated though)

Local Search
We define a best-improvement local search exploring a quadratic neighborhood of TROs. For each TRO:

- go back to the corresponding packing
- evaluate the load balancing

Example for a 2D case

Items have different densities, $\mathrm{bin}=5 x 5, B_{\text {opt }}=(2.5,2.5)$

$$
B=(2.50,2.50)
$$

Local search at graph level

Purpose: improve cases where the number of TROs is limited How: modifying the structure itself of the graphs:

- Consider interval graphs G_{d}
- Add or remove edges using specific rules (Crainic et al.)

- If new graphs correspond to a packing, then start local search on TROs

Local search at bin-packing level (1/2)

Purpose

Exploit the balancing potential of having a large number of bin-packings solutions with the same number of bins

How

Iteratively repack and rebalance n-tuples of weakly balanced bins using variable-depth neighborhood search (VDNS)

Local search at bin-packing level (2/2)

Define a k-neighborhood as the set of all bin-packing solutions obtained by repacking at most k bins

VDNS algorithm
(1) Assign imbalance scores to the bins
(2) Select k bins using roulette wheel selection
(3) Repack the bins using a heuristic for MBP
(4) If k bins are still used, balance them
(5) If balancing is improved: save solution and update scores
k is dynamically adjusted:
if no solutions are found after n iterations: $k=k+1$

Results for 3D Bin-Packing instances (1/2)

Optimal barycenter $\left(\frac{W_{1}}{2}, \frac{W_{2}}{2}, \frac{W_{3}}{2}\right)$: center of the bin

cl.	size	LB	bins	$\rho_{i}=1$			$\rho_{i} \sim \boldsymbol{U}(1,2)$			$\rho_{i} \sim U(1,6)$		
				Init.	Bin	VDNS	Init.	Bin	VDNS	Init.	Bin	VDNS
1	100	24.12	25.64	16.48	0.91	0.011	17.03	0.68	0.054	19.22	2.26	0.201
2	100	24.64	26.12	16.19	0.85	0.011	16.69	0.68	0.042	19.01	2.28	0.198
3	100	24.48	26.08	16.34	0.87	0.006	16.78	0.66	0.030	19.16	2.21	0.245
4	100	57.44	60.60	31.74	0.58	0.011	30.64	0.29	0.030	30.91	0.93	0.090
5	100	13.60	14.60	15.83	0.92	0.003	15.87	0.71	0.068	17.65	2.70	0.425
6	100	18.20	20.08	9.83	1.45	0.190	10.30	1.70	0.396	13.49	4.54	1.210
7	100	11.12	12.36	16.89	1.19	0.012	16.53	0.79	0.050	18.37	3.11	0.559
8	100	15.52	17.08	15.66	0.78	0.008	15.34	0.64	0.056	17.35	2.63	0.501
1	200	48.84	51.16	15.05	0.79	0.007	15.74	0.82	0.032	18.36	2.57	0.208
2	200	48.48	50.80	14.81	0.77	0.006	15.57	0.85	0.044	18.24	2.58	0.217
3	200	49.24	51.24	14.91	0.77	0.005	15.68	0.83	0.036	18.29	2.65	0.262
4	200	117.8	122.2	31.91	0.53	0.004	30.66	0.29	0.012	30.91	0.96	0.034
5	200	25.60	27.36	12.47	0.75	0.011	13.06	0.89	0.147	14.90	3.23	0.801
6	200	35.84	38.24	6.74	1.30	0.241	8.17	2.19	0.523	12.09	5.44	1.505
7	200	20.36	22.40	12.72	1.26	0.057	12.95	1.15	0.329	14.89	3.99	1.567
8	200	29.40	32.04	12.75	0.70	0.016	12.79	0.98	0.183	14.66	3.33	0.921

- Results are average over 25 instances, running time is $<5-10$ s

Results for 3D Bin-Packing instances (2/2)

Optimal barycenter $\left(\frac{W_{1}}{2}, \frac{W_{2}}{2}, 0\right)$: center of the base

cl.	size	LB	bins	$\rho_{i}=1$				$\rho_{i} \sim U(1,2)$				$\rho_{i} \sim U(1,6)$			
				Init.	Bin	VDNS	LLB	Init.	Bin	VDNS	LLB	Init.	Bin	VDNS	LLB
1	100	24.12	25.64	52.30	43.75	41.98	36.06	51.57	42.53	41.64	31.87	54.78	41.93	40.84	26.82
2	100	24.64	26.12	61.88	46.52	44.49	35.90	58.89	43.95	43.01	31.72	59.32	40.21	39.35	26.68
3	100	24.48	26.08	52.64	43.58	41.92	35.56	52.00	42.49	41.46	31.42	53.08	41.56	40.45	26.41
4	100	57.44	60.60	60.92	39.72	38.42	25.59	58.72	38.57	38.23	22.61	58.82	38.08	37.58	19.06
5	100	13.60	14.60	54.65	44.83	42.35	36.77	51.78	42.70	41.70	32.44	51.97	41.48	40.27	27.16
6	100	18.20	20.08	53.07	47.26	44.91	41.98	51.33	45.63	44.24	37.07	51.92	44.49	43.13	31.13
7	100	11.12	12.36	55.24	44.94	42.36	36.59	51.87	42.58	41.59	32.30	51.96	41.80	39.80	27.12
8	100	15.52	17.08	54.77	44.83	42.08	37.08	51.97	43.03	41.99	32.72	52.37	42.05	40.45	27.44
1	200	48.84	51.16	51.98	44.00	42.56	36.87	51.77	43.18	42.14	32.58	52.90	42.31	41.09	27.43
2	200	48.48	50.80	61.86	47.10	45.20	36.79	59.34	44.72	43.65	32.51	59.96	40.72	39.93	27.36
3	200	49.24	51.24	52.38	44.11	42.67	36.68	52.18	43.26	42.22	32.14	53.45	42.35	41.16	27.28
4	200	117.8	122.2	60.31	39.50	38.19	25.74	58.29	38.40	38.05	22.76	58.55	37.92	37.36	19.18
5	200	25.60	27.36	53.89	45.90	44.14	39.29	52.23	44.57	43.48	34.71	52.93	43.54	42.16	29.21
6	200	35.84	38.24	52.24	48.28	45.77	44.36	51.06	46.74	45.12	39.19	51.83	45.34	43.64	32.97
7	200	20.36	22.40	53.96	46.47	44.51	39.88	52.31	44.87	43.90	35.23	53.43	44.04	42.72	29.64
8	200	29.40	32.04	53.68	45.84	44.37	39.61	52.14	44.73	43.72	34.98	53.09	45.84	42.40	29.42

- Results are average over 25 instances, running time is $<5-10$ s
- LLB is a lower bound obtained from "liquifying" the items

Background paper

Alessio Trivella and David Pisinger. "The load-balanced multi-dimensional bin-packing problem". Computers \& Operations Research 74 (2016)152-164

