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Multi-dimensional Bin-Packing problem (MBP)

Instance
Set of D-dimensional rectangular-shaped boxes
V = {1, . . . ,n}. Box i has width = wi,d in dimension d
Identical bins with width = Wd in dimension d

Problem
Orthogonally insert all boxes into the bins avoiding overlapping
and using as few bins as possible. Rotations are not allowed

Applications
Shipping and transportation industry, filling up containers,
loading trucks etc. Most real-world problems have D ≤ 3,
but all results hold for any dimension
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MIP model for the MBP

min N

s.t.
∑
d∈D

(
lijd + ljid

)
+ pij + pji ≥ 1 ∀ i < j ∈ V

xid − xjd + Wd lijd ≤Wd − wid ∀ i 6= j ∈ V , d ∈ D
xid ≤Wd − wid ∀ i ∈ V , d ∈ D
ai − aj + n pij ≤ n − 1 ∀ i 6= j ∈ V
1 ≤ ai ≤ N ∀ i ∈ V

var : aj , N ∈ N, xid ∈ R+, lijd , pij ∈ {0,1} ∀ i , j ∈ V , d ∈ D

Difficult to solve in practice due to many:
symmetries
big-M constraints
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Load-Balanced MBP (LB-MBP)

Instance
MBP instance + density of items ρi (or mass)

Problem
Arrange items into the miminum number of bins, in such a way
that the barycenters of the loaded bins fall as close as possible
to an ideal point (e.g. the center of the bin or center of its base)

Applications
Transport (ship, truck, aircraft’s cargo): a good position of the
center of mass increases the safety and effciency of the travel,
minimizing the waste of fuel
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Objective function

Minimize the total imbalance over:

used bins
dimensions

10 10 10

10 10 10

2
1

1.5

1

Optimal barycenter
Actual barycenter

imbalance = 3 imbalance = 0 imbalance = 2.5

total imbalance = 5.5
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Balancing a single bin

Assume to have a set V of items which fit into a single bin:

min
∑
d∈D

kd (rd + sd )

s.t. : rd − sd = Bopt
d − 1

M

(∑
i

mi

(
xid +

wid

2

))
∀d ∈ D∑

d∈D

(
lijd + ljid

)
≥ 1 ∀ i < j ∈ V

xid − xjd + Wd lijd ≤Wd − wid ∀ i 6= j ∈ V , d ∈ D
xid ≤Wd − wid ∀ i ∈ V , d ∈ D

var : xid , rd , sd ∈ R+ lijd ∈ {0,1} ∀ i , j ∈ V , d ∈ D

To solve the LB-MBP we could:

1) Find the smallest number of bins
2) Balance each bin to optimality

...but the packing and balancing phases are not linked together!
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MIP model for the LB-MBP

min N C +
D∑

d=1

N∑
j=1

Kd

(
rjd + sjd

)

s.t. :
D∑

d=1

(
lijd + ljid

)
+ pij + pji ≥ 1 ∀ i < j

xid − xjd + Wd lijd ≤ Wd − wid ∀ i, j, ∀ d

ai − aj + n pij ≤ n − 1 ∀ i, j

xid ≤ Wd − wid ∀ i

1 ≤ ai ≤ N ∀ i

n (cij − 1) ≤ ai − j ≤ n (1− cij ) ∀ i, j

1− (n + 1) (1− δij ) ≤ ai − j ≤ −1 + (n + 1) (1− γij ) ∀ i, j

cij + γij + δij = 1 ∀ i, j

mi Wd

(
cij − 1

)
≤ eijd − mi (xid + wid/2) ≤ mi Wd

(
1− cij

)
∀ i, j, ∀ d

mi Wd

(
cij − 1

)
≤ αijd − mi

(
W opt

d − rjd + sjd

)
≤ mi Wd

(
1− cij

)
∀ i, j, ∀ d

eijd ≤ cij Wd mi ∀ i, j, ∀ d

αijd ≤ cij Wd mi ∀ i, j, ∀ d

N∑
i=1

eijd =
N∑

i=1

αijd ∀ j, ∀ d

var : aj , N ∈ N, xid , rjd , sjd , eijd , αijd ∈ R+
, lijd , pij , cij , γij , δij ∈ {0, 1}
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Sequential vs. joint problem

3D instance with 18 items, ρi = 1, Bopt = (5,5,0)

Sequential problem

bin 1 1 2 3 4 5 7 8 10
bin 2 6 11
bin 3 9 12 14 17
bin 4 13 15 16 18

Optimal 3DBPP: uses 4 bins

bin Bx By Bz fbin

bin 1 5.00 5.00 4.18 4.18
bin 2 6.12 5.00 4.44 5.56
bin 3 5.00 5.00 4.38 4.38
bin 4 5.00 5.00 3.32 3.32

fcoord 1.12 0.00 16.32 17.44

Joint problem

bin 1 1 2 3 5
bin 2 4 6 7 8 10 12
bin 3 9 11 14 17
bin 4 13 15 16 18

Different 3DBPP solution

bin Bx By Bz fbin

bin 1 5.00 5.00 4.22 4.22
bin 2 5.00 5.00 3.64 3.64
bin 3 5.00 5.00 4.59 4.59
bin 4 5.00 5.00 3.32 3.32

fcoord 0.00 0.00 15.77 15.77

10% improvement!
But running time is 4 vs. 132 seconds. In general the joint
model cannot be solved for instances larger than 15-20 items
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Heuristic load balancing

We now develop a heuristic algorithm to solve large instances

It is possible to characterize feasible packings by means of a
set of Interval Graphs (Fekete-Schepers)

G
x

G
y

x

y

Integrating load-balancing into multi-dimensional bin-packing problems 9/20



Properties (1/2)

Theorem 1
If D graphs Gd , d ∈ D, are obtained from a packing, then the
following conditions are fulfilled:

P1 : Each Gd is an interval graph
P2 : ∩d Gd = ∅
P3 : The stable sets of Gd have total weight less than the

d-dimension of the bin

Definition
Let G be an undirected graph. An orientation Φ of G is called
transitive orientation (TRO) if:

(a,b) ∈ Φ ∧ (b, c) ∈ Φ =⇒ (a, c) ∈ Φ
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Properties (2/2)

Theorem 2

If G is an interval graph, then its complement G is transitively
orientable

Theorem 3
Let Gd , d ∈ D be D graphs satisfying P1, P2, P3, and call
Φ = (Φd )d∈D, where Φd is a transitive orientation of Gd .

The function pΦ : V −→ R+D
0 defined by:

pΦ
d (v) =

{
0 if @u ∈ V : (u, v) ∈ Φd

max{pΦ
d (u) + wd (u) | (u, v) ∈ Φd } otherwise

produces a packing
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How many transitive orientations?

varying  Φ
x

va
ry

in
g 

 Φ
y

Different transitive orientations produce different packings
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Local search among TROs

How many TROs?
From graph theory: number of TROs of a graph is

∏k
i=1 ri !

where ri is the number of vertices of particular substructures

Is it possible to find TROs?
From graph theory: we can characterize them all TROs of a
graph (it’s complicated though)

Local Search
We define a best-improvement local search exploring a
quadratic neighborhood of TROs. For each TRO:

go back to the corresponding packing
evaluate the load balancing
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Example for a 2D case

Items have different densities, bin= 5x5, Bopt = (2.5,2.5)

Φ
x

Φ
y

B = ( 2.32, 2.97 )

Ψ
x

Φ
y

B = ( 2.50, 2.97 )

Ψ
x

Ψ
y

B = ( 2.50, 2.50 )
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Local search at graph level

Purpose: improve cases where the number of TROs is limited

How: modifying the structure itself of the graphs:

Consider interval graphs Gd

Add or remove edges using specific rules (Crainic et al.)

0 2 4 6 8
0

2

4

6 Initial packing

1
2 3

4

0 2 4 6 8
0

2

4

6 New packing

Interval graph E
y

(3,4) is added to E
y

(1,4) and (2,4) are also added to E
y

1
2 3

4

x

y

x

y

If new graphs correspond to a packing, then start local
search on TROs
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Local search at bin-packing level (1/2)

Purpose
Exploit the balancing potential of having a large number of
bin-packings solutions with the same number of bins

How
Iteratively repack and rebalance n-tuples of weakly balanced
bins using variable-depth neighborhood search (VDNS)

Integrating load-balancing into multi-dimensional bin-packing problems 16/20



Local search at bin-packing level (2/2)

Define a k-neighborhood as the set of all bin-packing solutions
obtained by repacking at most k bins

VDNS algorithm

1 Assign imbalance scores to the bins

2 Select k bins using roulette wheel selection

3 Repack the bins using a heuristic for MBP

4 If k bins are still used, balance them

5 If balancing is improved: save solution and update scores

k is dynamically adjusted:
if no solutions are found after n iterations: k = k + 1
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Results for 3D Bin-Packing instances (1/2)

Optimal barycenter
(

W1
2 ,

W2
2 ,

W3
2

)
: center of the bin

ρi = 1 ρi ∼ U(1, 2) ρi ∼ U(1, 6)
cl. size LB bins Init. Bin VDNS Init. Bin VDNS Init. Bin VDNS

1 100 24.12 25.64 16.48 0.91 0.011 17.03 0.68 0.054 19.22 2.26 0.201
2 100 24.64 26.12 16.19 0.85 0.011 16.69 0.68 0.042 19.01 2.28 0.198
3 100 24.48 26.08 16.34 0.87 0.006 16.78 0.66 0.030 19.16 2.21 0.245
4 100 57.44 60.60 31.74 0.58 0.011 30.64 0.29 0.030 30.91 0.93 0.090
5 100 13.60 14.60 15.83 0.92 0.003 15.87 0.71 0.068 17.65 2.70 0.425
6 100 18.20 20.08 9.83 1.45 0.190 10.30 1.70 0.396 13.49 4.54 1.210
7 100 11.12 12.36 16.89 1.19 0.012 16.53 0.79 0.050 18.37 3.11 0.559
8 100 15.52 17.08 15.66 0.78 0.008 15.34 0.64 0.056 17.35 2.63 0.501
1 200 48.84 51.16 15.05 0.79 0.007 15.74 0.82 0.032 18.36 2.57 0.208
2 200 48.48 50.80 14.81 0.77 0.006 15.57 0.85 0.044 18.24 2.58 0.217
3 200 49.24 51.24 14.91 0.77 0.005 15.68 0.83 0.036 18.29 2.65 0.262
4 200 117.8 122.2 31.91 0.53 0.004 30.66 0.29 0.012 30.91 0.96 0.034
5 200 25.60 27.36 12.47 0.75 0.011 13.06 0.89 0.147 14.90 3.23 0.801
6 200 35.84 38.24 6.74 1.30 0.241 8.17 2.19 0.523 12.09 5.44 1.505
7 200 20.36 22.40 12.72 1.26 0.057 12.95 1.15 0.329 14.89 3.99 1.567
8 200 29.40 32.04 12.75 0.70 0.016 12.79 0.98 0.183 14.66 3.33 0.921

Results are average over 25 instances, running time is < 5-10s
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Results for 3D Bin-Packing instances (2/2)

Optimal barycenter
(

W1
2 ,

W2
2 ,0

)
: center of the base

ρi = 1 ρi ∼ U(1, 2) ρi ∼ U(1, 6)
cl. size LB bins Init. Bin VDNS LLB Init. Bin VDNS LLB Init. Bin VDNS LLB

1 100 24.12 25.64 52.30 43.75 41.98 36.06 51.57 42.53 41.64 31.87 54.78 41.93 40.84 26.82
2 100 24.64 26.12 61.88 46.52 44.49 35.90 58.89 43.95 43.01 31.72 59.32 40.21 39.35 26.68
3 100 24.48 26.08 52.64 43.58 41.92 35.56 52.00 42.49 41.46 31.42 53.08 41.56 40.45 26.41
4 100 57.44 60.60 60.92 39.72 38.42 25.59 58.72 38.57 38.23 22.61 58.82 38.08 37.58 19.06
5 100 13.60 14.60 54.65 44.83 42.35 36.77 51.78 42.70 41.70 32.44 51.97 41.48 40.27 27.16
6 100 18.20 20.08 53.07 47.26 44.91 41.98 51.33 45.63 44.24 37.07 51.92 44.49 43.13 31.13
7 100 11.12 12.36 55.24 44.94 42.36 36.59 51.87 42.58 41.59 32.30 51.96 41.80 39.80 27.12
8 100 15.52 17.08 54.77 44.83 42.08 37.08 51.97 43.03 41.99 32.72 52.37 42.05 40.45 27.44
1 200 48.84 51.16 51.98 44.00 42.56 36.87 51.77 43.18 42.14 32.58 52.90 42.31 41.09 27.43
2 200 48.48 50.80 61.86 47.10 45.20 36.79 59.34 44.72 43.65 32.51 59.96 40.72 39.93 27.36
3 200 49.24 51.24 52.38 44.11 42.67 36.68 52.18 43.26 42.22 32.14 53.45 42.35 41.16 27.28
4 200 117.8 122.2 60.31 39.50 38.19 25.74 58.29 38.40 38.05 22.76 58.55 37.92 37.36 19.18
5 200 25.60 27.36 53.89 45.90 44.14 39.29 52.23 44.57 43.48 34.71 52.93 43.54 42.16 29.21
6 200 35.84 38.24 52.24 48.28 45.77 44.36 51.06 46.74 45.12 39.19 51.83 45.34 43.64 32.97
7 200 20.36 22.40 53.96 46.47 44.51 39.88 52.31 44.87 43.90 35.23 53.43 44.04 42.72 29.64
8 200 29.40 32.04 53.68 45.84 44.37 39.61 52.14 44.73 43.72 34.98 53.09 45.84 42.40 29.42

Results are average over 25 instances, running time is < 5-10s

LLB is a lower bound obtained from “liquifying” the items
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Background paper

Alessio Trivella and David Pisinger. “The load-balanced
multi-dimensional bin-packing problem”. Computers &
Operations Research 74 (2016)152–164
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Thank you.


