

Heterotrophs are key contributors to nitrous oxide production in mixed liquor under low C-to-N ratios during nitrification - batch experiments and modelling

Domingo Felez, Carlos; Pellicer i Nàcher, Carles; Petersen, Morten S.; Jensen, Marlene Mark; Plósz, Benedek G.; Smets, Barth F.

Published in: Biotechnology and Bioengineering

Link to article, DOI: 10.1002/bit.26062

Publication date: 2017

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Domingo Feléz, C., Pellicer i Nàcher, C., Petersen, M. S., Jensen, M. M., Plósz, B. G., & Smets, B. F. (2017). Heterotrophs are key contributors to nitrous oxide production in mixed liquor under low C-to-N ratios during nitrification - batch experiments and modelling. *Biotechnology and Bioengineering*, *114*(1), 132-140. https://doi.org/10.1002/bit.26062

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

```
Heterotrophs are key contributors to nitrous oxide production in
 1
     mixed liquor under low C-to-N ratios during nitrification – batch
 2
     experiments and modelling
 3
 4
 5
      Author list
 6
     Carlos Domingo-Félez<sup>1</sup>, Carles Pellicer-Nàcher<sup>1</sup>, Morten S. Petersen<sup>1</sup>, Marlene M.
 7
      Jensen<sup>1</sup>, Benedek G. Plósz<sup>1</sup>, Barth F. Smets<sup>1</sup>*
 8
 9
      <sup>1</sup>Department of Environmental Engineering, Technical University of Denmark, Miljøvej
10
11
      113, 2800 Kgs. Lyngby, Denmark
12
      * Corresponding author:
      Barth F. Smets, Phone: +45 4525 1600, Fax: +45 4593 2850, E-mail: bfsm@env.dtu.dk
13
14
15
16
      Running title: N<sub>2</sub>O production in nitrifying batch experiments: heterotrophic and autotrophic
17
18
      contributions.
19
```

20 Abstract

21 Nitrous oxide (N₂O), a by-product of biological nitrogen removal during wastewater treatment, is produced by ammonia-oxidizing bacteria (AOB) and heterotrophic 22 23 denitrifying bacteria (HB). Mathematical models are used to predict N₂O emissions, often including AOB as the main N₂O producer. Several model structures have been 24 25 proposed without consensus calibration procedures. Here, we present a new 26 experimental design that we used to calibrate AOB-driven N₂O dynamics of a mixed 27 culture. Even though AOB activity was favoured with respect to HB, oxygen uptake rates indicated HB activity. Hence, rigorous experimental design for calibration of 28 29 autotrophic N₂O production from mixed cultures is essential. The proposed N₂O production pathways were examined using five alternative process models confronted 30 with experimental data inferred. Individually, the autotrophic and heterotrophic 31 32 denitrification pathway could describe the observed data. In the best-fit model, which combined two denitrification pathways, the heterotrophic contribution to N_2O 33 34 production was stronger than the autotrophic. Importantly, the individual contribution of autotrophic and heterotrophic to the total N₂O pool could not be unambiguously 35 elucidated solely based on bulk N₂O measurements. NO data availability will increase 36 37 the practical identifiability of N₂O production pathways.

38

39 Keywords: Nitrous oxide, Batch, Nitrification, Denitrification, Model

1. Introduction

42 Nitrous oxide (N_2O) is known as both a stratospheric ozone depleter and a greenhouse gas with 300 times higher radiative forcing than carbon dioxide (Stocker et al., 2013). 43 44 N₂O is emitted during biological nitrogen removal and its emission factors are highly 45 variable between wastewater treatment plants (WWTPs) (0.01-3.3%) N₂O_{emitted}/TN_{removed}) (Ahn et al., 2010). Moreover, the carbon footprint of a WWTP is 46 47 highly sensitive to N₂O emissions (Gustavsson and Tumlin, 2013), as an N₂O emission factor of 1% can increase its carbon footprint by 50% (Monteith et al., 2005). 48

49 N₂O is biologically produced during wastewater treatment by ammonium oxidizing bacteria (AOB) and heterotrophic denitrifying bacteria (HB). AOB can produce N₂O as 50 a by-product of hydroxylamine oxidation (NH₂OH) or by nitrite (NO₂) reduction. As an 51 obligate intermediate during nitrate (NO_3) reduction, N₂O can also be produced by HB 52 (Law et al., 2012). The three pathways are commonly known as nitrifier nitrification 53 (NN), nitrifier denitrification (ND) and heterotrophic denitrification (HD), respectively. 54 Certain wastewater constituents such as dissolved oxygen (DO) and NO₂ have been 55 identified as key variables affecting N₂O dynamics (Kampschreur et al., 2009; Schreiber 56 57 et al., 2012). However, other variables such as inorganic carbon content, known to affect nitrification rates (Jiang et al., 2015; Torà et al., 2010), have shown contradictory 58 results with respect to N₂O (Khunjar et al., 2011; Peng et al., 2015a). Hence, the 59 metabolic regulation of N₂O production is still under study (Perez-Garcia et al., 2014). 60

Identifying the individual contribution of each pathway is critical for the design of N₂O
mitigation strategies.

One way to elaborate on the individual contributions of the pathways is through N_2O process models. Several N_2O models have been proposed for one or two of the aforementioned N_2O production pathways (Guo and Vanrolleghem, 2013; Ni et al.,

66 2013a) with the final goal of mitigating its emissions. Models vary based on the true 67 substrate considered for AOB (NH₃ vs. NH₄⁺), a reaction's electron donor, or whether 68 substrate inhibition is considered (Pan et al., 2013; Spérandio et al., 2016). How to 69 mathematically describe these effects will impact the structural identifiability of model 70 parameters (Dochain and Vanrolleghem, 2001).

71 Calibration of N₂O models typically rely on the same data series as N-removing models (DO, NH_4^+ , NO_2^- , NO_3^- , COD) and additionally N₂O (Guo and Vanrolleghem, 2013; Ni 72 73 et al., 2011). The type and quality of experimental data will affect the practical identifiability of model parameters (Dochain and Vanrolleghem, 2001). Literature for 74 N₂O-associated parameters shows large variability for similar processes. For example, 75 the AOB affinity for NO₂ during autotrophic denitrification in nitrifying biomass has 76 77 been reported from 0.14 to 8 mgN/L (Kampschreur et al., 2007; Schreiber, 2009). Similarly, for the same model, a wide range of autotrophic NO affinity constants has 78 been used, from 0.004 to 1 mgN/L (Mampaey et al., 2013; Spérandio et al., 2016). 79 80 Variations can arise from considering different microbial communities, model 81 assumptions, quality of data or the calibration procedure selected.

82 Depending on the system, AOB or HB have been considered to be the main contributor to the total N₂O production (Itokawa et al., 2001; Ni et al., 2013a). ND and HD occur 83 under similar DO and NO_2 concentrations, thus leading to possible interferences 84 between autotrophic and heterotrophic N₂O production (Shen et al., 2015; Wu et al., 85 86 2014). However, under certain operating conditions, the contribution of a pathway can be considered negligible, thus allowing for more accurate model calibrations. 87 Experiments can be therefore specifically designed to study the autotrophic contribution 88 89 to the total N₂O production pool from mixed liquor biomass. Nitric oxide (NO) is the 90 direct precursor of N₂O for the three pathways, and even though it is included in most

91	N_2O models (Ni et al., 2011; Ni et al., 2014) few studies have focused on quantifying
92	and describing NO emissions (Kampschreur et al., 2007; Schreiber et al., 2009), which
93	has been shown to be a useful tool to calibrate N_2O models (Pocquet et al., 2016).
94	In this study, we assess to what extent batch experiments – designed to assess N_2O
95	dynamics under nitrifying conditions from a mixed culture biomass from a typical BNR
96	plant - allow for calibration of N2O models. Specifically, without assuming prior

 $\,$ 87 knowledge of the main N_2O producing pathway, our objective was to:

Identify what model structures are capable of describing N₂O production of mixed
 liquor during batch tests at varying substrate concentrations.

Quantify the individual contribution of the main biological N₂O-producing
 pathways to the total modelled N₂O production.

Elucidate challenges encountered during calibration of N₂O models with combined
 pathways.

- 104 **2. Materials and Methods**
- 105

2.1. Batch reactor configuration.

106 Batch experiments were performed in a 3L PYREX glass vessel (Bellco Glass Inc., 107 USA), with 4 side ports used for pH, DO and N₂O microsensors, and inflow/outflow gas 108 (Supporting Information (SI), Figure S1). The inlet and outlet gas flow was set at 60 109 mL/min with gas flow meters. Oxic and anoxic conditions in the reactor were obtained by air and N₂ supplied through a bubble diffuser. Aeration and mixing were controlled 110 111 using a Labview (National Instruments, Austin, USA) routine. The DO and temperature data, (CellOx 325, WTW, Germany) and pH (SenTix41, WTW, Germany) was 112 113 continuously logged at 0.017 Hz. Liquid N₂O concentrations were measured with Clarktype microsensors (N2O-R, Unisense A/S, Aarhus, Denmark). Gaseous N₂O 114 concentrations were measured with an infrared gas analyzer (T320, Teledyne, USA). 115

....

Photometric test kits were used to analyse N-substrates (1.14752, 1.09713, 1.14776,
Merck KGaA, Darmstadt, Germany). Biomass content (MLSS, MLVSS) was measured
in triplicates according to APHA(APHA et al., 1999). Alkalinity was measured by
titration after addition of sulphuric acid (APHA et al., 1999).

120 **2.2.Batch tests.**

121 Mixed liquor from a full-scale wastewater treatment plant (Lynetten, Copenhagen, Denmark) was sampled over a period of three months (May-July 2012). Mixed liquor 122 was aerated overnight and the biomass concentration adjusted to 2-3 gVSS/L with 123 124 aerated clarified wastewater before experiments. After two days of experimentation the biomass was discarded to prevent significant changes in biomass composition (Torà et 125 126 al., 2010). The biomass composition was calculated thermodynamically (SI_1). 127 Biomass samples for DNA extraction were taken for every new experiment (n = 8). Details on the qPCR quantification procedure can be found elsewhere (Terada et al., 128 129 2010) (SI_2).

130 Two sets of experiments were performed while aeration was kept constant. 131 Instantaneous extant substrate loadings of 1-3 mgN/gVSS were designed to mimic 132 typical plant loading conditions, which produce a representative description of the parent system (Ellis et al., 1996). In the first set of experiments (i) solely NH_4^+ was 133 spiked at incremental concentrations (1-8mgN/L). NH₄⁺ removal was monitored off-line 134 135 via liquid analysis and online by observing DO drops (Table SII). In the second set of experiments (ii), again NH_4^+ spikes (3-5mgN/L) were made and when nearing NH_4^+ 136 depletion a NO₂⁻ or NO₃⁻ spike (2mgN/L) was made, monitoring responses in liquid and 137 138 gas phase. Experiments allowed for nitrogenous concentration changes at both high and low DO concentrations (DO = 6.5 - 0.2 mg/L), providing useful information regarding 139 140 substrate affinities and growth rates and covering a wide range of potential N₂O

producing scenarios. Experiments were conducted and repeated the day after onconsecutive weeks.

Heterotrophic activity was monitored during an anoxic experiment (iii) where N_2 was supplied instead of air under NO_3^- excess and no organic carbon addition. $NO_3^$ reduction was assumed to occur fed on hydrolysed products originated from biomass decay as no organic substrate was added. Simultaneously, NH_4^+ would be released and accumulate in the bulk phase.

To determine N_2O and O_2 mass transfer coefficients, stripping and reoxygenating experiments (iv) were performed separately at the same batch conditions in preaerated clarified wastewater (Eq. 1) (Garcia-Ochoa and Gomez, 2009). Liquid phase N_2O measurements were used to estimate net N_2O production rates as previously described (Domingo-Félez et al., 2014) (Eq. 2).

153
$$N_2 O_{\text{liq}(t)} = N_2 O_{\text{liq}(t=0)} \cdot e^{(-k_L a_{N20} \cdot t)} (\text{mgN/L})$$
 (Eq. 1)

154 N₂O Prod. Rate_i =
$$\frac{\Delta N_2 O_{\text{liq}_i}}{\Delta t} + k_L a_{N_2 O} \cdot N_2 O_{\text{liq}_i} (\text{mgN/L} \cdot \text{min})$$
 (Eq. 2)

155 **2.3.Model description and calibration:** NH_4^+ , NO_2^- , NO_3^- , DO_3^- ,

 NH_4^+ to NO_3^- conversion was described by a 2-step nitrification model (Table SIII). 156 First, AOB oxidize NH_4^+ to NH_2OH followed by its oxidation to NO_2^- . Subsequently 157 NOB oxidize NO_2 to NO_3 . Heterotrophic denitrification was included as a 4-step 158 process with NO₂, NO and N₂O as intermediates (Hiatt and Grady, 2008). Hydrolysis 159 160 of particulates and ammonification were simplified into one hydrolytic process following biomass decay as no particulate N or soluble organic N data was available at 161 162 the beginning of the experiments (Table SIV). Rates were not dependent on inorganic carbon as it was in excess during the experiments $(5.8-6.0 \text{ mM HCO}_3)$. 163

164 The simulation model was implemented in AQUASIM 2.1(Reichert, 1998).

The objective of the following calibration procedure was to fit DO, NH_4^+ , NO_2^- and 165 NO_3 data. First, physico-chemical parameters (k_La) were estimated from experiments 166 (iv). Second, nitrification was evaluated by experiments (i) and (ii). The measured 167 OUR_{max} were used to estimate the NH_4^+ affinity (K_{NH4}^{AOB}), and the NH_4^+ oxidation rates at 168 varying DO to estimate the DO affinity (K^AOB (SI_3). Then, oxic hydrolysis was 169 evaluated against heterotrophic aerobic growth in experiments (i) and (ii) when reduced 170 171 nitrogenous species were absent. Anoxic hydrolysis was assessed under anoxic conditions in experiment (iii). Finally, maximum growth rates (μ_{AOB}^{AMO} , μ_{NOB}) were 172 estimated from NH_4^+ removal followed by NO_2^- removal and NO_3^- accumulation from 173 174 experiments (ii). The rest of parameter values describing nitrification and denitrification were taken from published literature (Table SV). The biomass composition was 175 176 modelled throughout the experiments to account for decay processes.

177 After good fits of DO and profiles of NH_4^+ , NO_2^- and NO_3^- were achieved, the N₂O 178 producing model structures (Tables S4) were calibrated.

179 **2.4.Model description and calibration:** N₂O.

The objective of implementing different N_2O model structures was to investigate what model structure, with accepted parameters, can describe the experimental data. Two model structures for AOB driven N_2O production were evaluated. The nitrifier denitrification (ND) pathway considers the consecutive reduction of NO_2^- to NO and N_2O as two processes. The model structure chosen in this study considers DO inhibition, and NH₂OH is modelled as the electron donor (Ni et al., 2011). The nitrifier nitrification (NN) pathway considers a 2-step NH₂OH oxidation over NO to NO_2^- . A

fraction of NO is reduced to N₂O with NH₂OH as the electron donor independent of DO 187 188 levels (Ni et al., 2013a). Finally, N₂O can also be produced as an intermediate of heterotrophic denitrification in the 4-step model (HD) (Hiatt and Grady, 2008). Every 189 190 step in the HD pathway considers independently easily biodegradable organic substrate as electron donor coupled with DO and NO inhibitions. Parameter values from two 191 192 different denitrifying activated sludge systems (SRT = 3 and 10 days) (Hiatt and Grady, 193 2008; Schulthess et al., 1994) have been used regularly to describe HD (Table SVI). 194 Because the aim of the experiments was to study the autotrophic N₂O production, both 195 parameter subsets were considered throughout the study to avoid biases from the 196 possible heterotrophic contribution: HD_a and HD_b.

197 Five different AOB-HB pathway combinations were tested to evaluate what model 198 structures best describe the experimental N₂O data (Table I). Three scenarios consider a 199 single N₂O production pathway: in scenarios NN and ND only nitrifier nitrification or 200 nitrifier denitrification produce N₂O, while HD is modelled as a 2-step denitrification directly reducing NO₂⁻ to N₂ (i.e. no chance of heterotrophic N₂O production). Scenario 201 HD considers only N₂O production through a 4-step denitrification process. Two 202 scenarios, NN-HD and ND-HD, consider the combination of an autotrophic (either 203 204 nitrifying nitrification or denitrification) with the heterotrophic pathway (Ni et al., 2011; Ni et al., 2013a). Differently from other comparative studies both autotrophic and 205 heterotrophic pathways are considered without any prior assumption of the main 206 207 producer (Spérandio et al., 2016). A multiple-pathway AOB model was not considered 208 as the assumptions for the ND pathway make it incompatible with the 4-step 209 denitrification model (Pocquet et al., 2016). The continuity for all the model structures 210 was numerically evaluated following Hauduc et al. (2010) (Hauduc et al., 2010).

For each pathway, only certain parameters are specific to describe N₂O production. For 211 212 the AOB-associated pathways (NN, ND), only parameters not affecting directly NO₂⁻ production were first considered: η_{AOB} and K_{NO}^{AOB} for NN and $\eta_{AOB}, K_{NO}^{AOB}, K_{NO2}^{AOB}$ and 213 $K_{i,O2}^{AOB}$ for ND (Table III). The high number of parameters describing each denitrification 214 step (5) does not allow individual parameter estimation. Consequently, a sensitivity 215 216 analysis based on the relative-relative function was used to avoid calibration of 217 insensitive parameters in the three pathways. During calibration, the lower and upper 218 limits were set to \pm 50% from their original literature values.

219 Parameter estimation was performed by minimizing the sum of the squared errors 220 weighted by their standard deviations. The likelihood measured of each fit was 221 evaluated following Mannina et al. (2011), where an overall model efficiency (E_i) value 222 of 1 corresponds to a perfect fit and tends zero for large errors (Eq. 3) (Mannina et al., 223 2011), where α_j corresponds to each data series and $M_{j,i}$ and $O_{j,i}$ to modelled and 224 observed points.

225
$$E_{i} = \sum_{j}^{n} \alpha_{j} L(\theta_{i}/Y_{j}) = \frac{1}{N} \sum_{j}^{n} \alpha_{j} \cdot \exp\left(-\frac{\left(\Sigma(M_{j,i}-O_{j,i})^{2}\right)^{2}}{\left(\Sigma(O_{j,i}-\overline{O}_{j,i})^{2}\right)^{2}}\right) (Eq. 3)$$

In addition, the RMSE was calculated. The contribution of each individual process to the N_2O and NO concentration at any time was calculated by multiplying each process rate (P_i) with its stoichiometric coefficient (v_{ij}). The sum of all terms corresponds to the net production/consumption of the state variable (S_i) (Eq. 4).

230
$$S_{net_prod_j} = \sum_{i} (P_i \cdot v_{ij})$$
(Eq. 4)

231 Uncertainty analysis was done following Sin et al. (2010) by randomly sampling K_{NO}^{AOB} 232 and K_{NO}^{HB} (0.02 ± 90% mgN/L).

3. Results

3.1.Oxygen uptake and hydrolysis during autotrophic batch experiments.

Experiments (i) and (ii) started with NH_4^+ and DO excess, reaching first DO followed by NH_4^+ limitation. DO reached limiting but never truly anoxic conditions (0.2-0.4 mg DO/L). NO_2^- accumulated shortly and was consumed simultaneously with NH_4^+ until depletion, upon which the DO concentration rapidly increased to pre-spike levels. $NO_3^$ accumulated to levels similar to the NH_4^+ added, indicating complete nitrification of NH_4^+ (Figure 1, left).

Because of the low amount of substrate added a simplified model structure not including biomass growth was first considered. However, in the absence of NH_4^+ or NO_2^- and at constant aeration DO never reached saturation, indicating an additional oxygen uptake process (Figure 1, right). Thus the model had to include processes producing biodegradable carbon from biomass decay. As no other organic source was present, the heterotrophic aerobic growth was responsible for the continuous oxygen uptake. Hence, hydrolysis affects DO availability even during short batch tests.

Under anoxic conditions hydrolytic processes also release biodegradable carbon and NH₄⁺. Experimental and modelling results from the anoxic experiment (iii) showed agreement of ammonification and NO_3^- reduction (Figure S2).

3.2.N₂O production during autotrophic batch experiments.

During experiments (i), after NH_4^+ spikes N_2O increased slowly at high DO and sharply when reaching DO < 0.5 mg/L, and decreasing after NH_4^+ depletion and consequent DO increase (Figure S3). Experiments (ii) were used to investigate the effect of DO, followed by NO_2^- or NO_3^- addition, on N_2O production during NH_4^+ oxidation. After adding NH_4^+ , N_2O concentration gradually increased until DO became limiting, which

rapidly increased its production (Figure 2A, time < 20 min). A NO₃ spike added to 257 promote heterotrophic denitrification during DO limiting conditions did not increase the 258 net N₂O production compared to a sole NH_4^+ spike (Figure 2B). On the other hand, 259 NO_2^- addition at low oxygen concentrations and in the presence of NH_4^+ drastically 260 increased the N₂O production (Figure 2C). These results are in agreement with literature 261 where NO₂ showed a larger impact on N₂O production compared to NO₃ under 262 endogenous conditions (Wu et al., 2014). The net N_2O produced after an NH_4^+ (or NH_4^+ 263 followed by NO_3) spike was approximately 0.9% of the nitrogen oxidized, while 1.9% 264 of the nitrogen oxidized was converted to N₂O when NH_4^+ was spiked followed by NO_2^- 265 266

3.3.Model calibration for oxygen and nitrogenous substrates.

The objective of the calibration was to obtain a set of parameters that could describe the NH_4^+ , NO_2^- , NO_3^- and DO profiles before simulating the associated N₂O production.

The nitrifying fraction of the mixed liquor was calculated from thermodynamics to be 4.1% AOB and 1.8% NOB of the active biomass (SI_1). These results are in agreement with FISH results from other Danish wastewater treatment plants with the same configuration (AOB = 3-5%, NOB = 2.5-3%) (Mielczarek, 2012). Moreover, 16S rRNA-based qPCR quantification of dominant AOB and NOB taxa over 11 weeks showed no variation of the nitrifying community (78 \pm 5% AOB/(AOB+NOB), n = 8).

NOB affinity constants differ significantly between species (Nowka et al., 2014), thus NOB affinities were considered as those of *Nitrospira spp*. (Manser et al., 2005) (*Nitrospira spp*. 92 \pm 3% relative abundance in comparison to 8 \pm 3% of *Nitrobacter spp*.). Results from experiments (i) allowed for estimation of the DO affinity for the first nitrification step ($K_{O2,AMO}^{AOB} = 0.4 \text{ mg/L}$), and the NH₄⁺ affinity ($K_{NH4}^{AOB} 0.25 \text{ mgN/L}$) (Figure S4). The model could describe hydrolysis and ammonification with default parameter values (Figure S2). Finally, autotrophic maximum specific growth rates (μ_{AMO}^{AOB} , μ^{NOB}) were estimated with low uncertainty (Table II). After model calibration a good individual fitting of DO, NH₄⁺, NO₂⁻ and NO₃⁻ was obtained (R² > 0.97, n > 30) (Figure 1, left).

286 **3.4.Modelling N₂O production from mixed cultures in autotrophic batch tests.**

We analysed the capabilities of the model structures considered (NN, ND, HD, NN-HD, ND-HD) to describe experiments (ii). For each of the five models the best-fit residuals of the N₂O-associated parameter subsets are shown in Table III. Results for the models with the HD_a parameter subset are described below.

(NN): The nitrifying nitrification pathway (NN) describes N_2O production as a fraction of the oxidized NH_4^+ . The NN model does not consider an effect of NO_2^- on the N_2O produced, and it cannot predict the net N_2O production increase after NO_2^- addition (Figure 2C). The best-fit obtained clearly did not follow the observed N_2O data (Figure 3) ($E_{NN} = 0.83$).

(ND): The nitrifying denitrification pathway (ND) could describe the observed N₂O responses to substrate concentration changes ($E_{ND} = 0.98$). The best-fit parameter subset increased the NO₂⁻ and NO reduction processes with a higher anoxic reduction factor (Table III). The sensitivity of N₂O production to NO₂⁻ can be described with a low NO₂⁻ affinity (Figure 3).

301 **(HD):** Heterotrophic denitrification processes were limited by the organic substrate (S_s) 302 and DO inhibited. However, an adequate fit could be obtained ($E_{HD} = 0.98$). Compared 303 to the initial parameter values the NOR process increased its rate compared to NIR and

304 NOS, indicating a faster NO-to-N₂O turnover (higher μ_{NOR} , $K_{NOR,i,O2}^{HB}$, lower $K_{NOR,S}^{HB}$).

305 (NN – HD): The NN-HD model considered the simultaneous NN and HD associated 306 N_2O production. The best fit of the NN-HD model ($E_{NN-HD} = 0.97$) was obtained when 307 the NN contribution to the total N₂O pool was the lowest. This result is in agreement 308 with the fact that NN-associated N₂O production could not describe the data while HD-309 associated could ($E_{NN} = 0.83$ vs. $E_{HD} = 0.98$). Nonetheless, the best-fit was slightly 310 worse than the HD model and better than the NN (Figure 3).

311 (**ND** – **HD**): In the ND-HD model the autotrophic and heterotrophic denitrification 312 pathways were considered and yielded the best fit ($E_{ND-HD} = 0.99$). The observed 313 oxygen-inhibited and NO₂⁻-associated N₂O production could be best described by two 314 independent reductive processes.

The N₂O production rates associated to excess DO were much lower, and lasted shorter periods than N₂O production under DO-limiting conditions (Figure 2). For this reason, models containing one or two denitrification pathways (ND, HD, NN-HD, ND-HD) yielded a better fit than the one associated only with NH₄⁺ oxidation (NN). Hence, models containing at least one denitrification pathway obtained very similar fits but suggested different N₂O pathway contributions (N₂O_{ND}, N₂O_{HD} = 0-100%) (Figure 3, Figure S5).

322

2 **3.5.Influence of HD on N₂O modelling results.**

323 The best N_2O fit was obtained when two simultaneous denitrification processes were 324 considered (ND-HD) regardless of the HD parameter subset chosen (Table III, Table 325 SVII). Even though the total N_2O production was described equally well by ND-HD_a and ND-HD_b, other model outputs showed very different results (Table IV). Surprisingly, HD was suggested as the main contributor to the total N₂O pool: 96% $N_2O_{HD_a}/N_2O_{TOT}$ and 61% $N_2O_{HD_b}/N_2O_{TOT}$. The total NO emitted predicted by the ND-HD models also showed significant differences (0.2 and 10.5% NO/N₂O for ND-HD_a and ND-HD_b). Hence, the model could describe the total N₂O production but neither the individual N₂O pathway contribution nor NO emissions.

4. Discussion

4.1.Predicting capabilities of N₂O model structures.

The best-fit obtained for the N₂O profiles in experiments (ii) varied considerably among the models considered. However, because of the low N₂O emission factor, all the N₂O models in this study could describe NH_4^+ , NO_2^- , NO_3^- and DO profiles.

337 Single pathways

338 In the NN model, N₂O production is directly linked to NH₂OH oxidation. The initial N_2O production after an NH_4^+ spike can be described by a high concentration of 339 electron donors and electron acceptors (Figure 2, t < 20 min). Even though the NN 340 341 model could not predict the observed N₂O production at limiting DO and as a response to NO₂ changes (Figure 2C), it was suitable for non-limiting DO conditions (Ni et al., 342 2013b; Peng et al., 2015b). The ND model captured the observed N₂O data, suggesting 343 344 complete autotrophic N_2O production. The larger production of N_2O at low DO and high NO_2^- was captured by changes in oxygen inhibition ($K_{i,O2}^{AOB}$) and NO_2^- affinity 345 (K_{NO2}^{AOB}) from their literature values. 346

Interestingly, the HD model also captured the N_2O produced suggesting complete heterotrophic N_2O production. Even at conditions of minimum C/N and in the presence of inhibitory DO concentrations for heterotrophic denitrification the best-fit obtained for the ND and HD models were similar ($E_i = 0.98$). It should be highlighted that not considering hydrolysis, the only carbon source in these experiments, would have neglected the possible heterotrophic contribution.

353 Combined pathways

354 In the NN-HD model, the best-fit results suggest a high HD ($N_2O_{HD} = 90\%$) and small NN ($N_2O_{NN} = 10\%$) contribution to the total N_2O pool as the NN pathway is 355 356 independent of NO₂⁻ levels. Both autotrophic and heterotrophic pathways consider N₂O 357 production from NO reduction, thus allowing NN-associated N₂O production to occur even at low DO regardless of NO's producer. The predictions obtained using the ND-358 HD model yielded the best fit ($E_i > 0.99$) by combining two denitrification pathways 359 360 and suggested a very low autotrophic contribution ($N_2O_{ND} = 4\%$). Shen et al. (2014) 361 also suggested that N₂O production during nitrification could be significantly affected by the microbial competition with heterotrophic activity (Shen et al., 2015). As two 362 denitrification processes, ND and HD have similar affinities for N-substrate and DO. 363 Moreover, the organic carbon limitation of heterotrophs under low C/N is counteracted 364 365 by a larger fraction of the microbial community in mixed liquor. ND and HD can 366 therefore co-occur at similar conditions and rates, which difficult the identifiability of 367 individual pathways solely with bulk N₂O measurements.

Hence, one cannot ignore heterotrophic contribution to N_2O even during a short batch test where the only carbon source was released from hydrolysis of decay products. This is illustrated by two different combined ND-HD models that could best describe the observed data with parameter values within literature range.

372 Spérandio *et al.* (2016) compared five N_2O models (HD + NN or ND) to four long-term 373 dataseries (Spérandio et al., 2016). The relative contribution of autotrophs (ND) and

heterotrophs (HD) to the total N_2O production was calculated for a full-scale UCT process. For every 3 units of N_2O produced by the ND pathway 2 were consumed by HD, highlighting the importance of including the HD under AOB-driven N_2O production.

The better performance of multiple-pathway models suggests that new and more 378 379 complex models will be necessary to predict N₂O emissions from dynamic systems 380 (Spérandio et al., 2016). Considering additional pathways increases their fitting capabilities but, as highlighted in this study, our understanding of simple models is still 381 382 limited. Moreover, overparameterization might compromise the precision and 383 identifiability of complex models, which has not been critically addressed yet. This will 384 support the model discrimination procedure towards developing a new biologically 385 congruent N₂O model.

4.2.Limitations of modelling combined N₂O production pathways from bulk N₂O measurements.

The aim of modelling biological N2O production during wastewater treatment 388 389 operations is to mitigate its emissions by understanding how operating conditions relate 390 to N₂O production. The desired mitigation strategies of N₂O models are specific to the 391 main producing pathway. If the production of each pathway is accounted for 392 individually we can better understand the relevant N₂O producing processes (Ni et al., 393 2014). However, because no direct pathway measurements are possible, model 394 predictions are considered instead. N₂O models are usually calibrated with N₂O bulk 395 measurements (liquid or gas phase), from which the contribution of each pathway is 396 calculated (Guo and Vanrolleghem, 2013; Ni et al., 2014). The uncertainty associated to 397 model predictions can be calculated by mapping input uncertainty (error in parameter398 estimates) onto model outputs.

The high variability found in N₂O model parameters was studied in the ND-HD model 399 by varying one parameter commonly fixed (K_{NO}^{AOB} , K_{NO}^{HB}) within literature range (Hiatt 400 401 and Grady, 2008; Spérandio et al., 2016). Because the total N₂O production is not sensitive to these parameters (data not shown) no effect is seen in the model output for 402 403 experiments (ii) (Figure 4, Figure S6). However, variables such as the autotrophic N₂O contribution or the total NO production can vary significantly (Figure 4A,B). These 404 405 results indicate that fixing K_{NO} values from literature values can lower model predicting 406 capabilities for individual N₂O pathway contributions based on calibrations from N₂O 407 bulk measurements.

NO plays an important role in N₂O production as its precursor in every production 408 409 pathway (HD, ND, NN) and can, under certain conditions, contribute more than N₂O to 410 the nitrogen loss (Castro-Barros et al., 2016). In experiments (ii), measuring NO would help to elucidate the main NO and N₂O production pathways by not lumping NO₂⁻ and 411 412 NO reduction processes, an assumption made by new N₂O models (Ni et al., 2014; Pocquet et al., 2016). For a combination of K_{NO}^{AOB} and K_{NO}^{HB} values the model output for 413 NO and N₂O is shown in Figure 5. The total error of N₂O production, shown as RMSE, 414 does not vary regardless of the K_{NO}^{AOB} - K_{NO}^{HB} values (Figure 5A). On the other hand, both 415 the contribution of the autotrophic pathway (Figure 5B) and the total NO produced 416 (Figure 5C) vary significantly (1-56% N₂O_{AOB}/N₂O_{TOT}, 0.2-4.0% NO/N₂O). Thus, 417 because NO is more sensitive to K_{NO} than N₂O is, NO data availability will increase the 418 identifiability of K_{NO}^{AOB}-K_{NO}^{HB}. Consequently, the contribution of each N₂O production 419 420 pathway can be estimated more accurately. This is in agreement with the suggestion of 421 Spérandio et al. (2016) of using the ratio NO/N_2O as a parameter for model 422 discrimination (Spérandio et al., 2016).

423 **5.** Conclusions

424 In this work, N₂O production from nitrifying batch experiments with mixed liquor was 425 studied experimentally and compared to predictions by five model structures. Contrary 426 to our hypothesis even under very low C/N conditions heterotrophic activity was found comparable to autotrophic nitrification activity in terms of N₂O production. 427 428 Interestingly, process models accounting for heterotrophic and autotrophic 429 denitrification pathways could describe total N₂O profiles only slightly better than single-pathway denitrification models. In a conventional N-removing system, where 430 431 heterotrophs are more abundant than autotrophs, different combinations of 432 denitrification N₂O-producing pathways could describe the observed biological N₂O 433 production. Thus, based on N₂O bulk measurements from mixed liquor, models cannot unambiguously elucidate the contribution of each N₂O production pathway due to 434 parameter uncertainty. 435

436 Acknowledgements

This research was funded by the Danish Agency for Science, Technology and
Innovation through the Research Project LaGas (12-132633). The authors have no
conflict to declare.

441 **References**

442 Ahn JH, Kim S, Park H, Rahm B, Pagilla K, Chandran K. 2010. N2O emissions from 443 activated sludge processes, 2008-2009: results of a national monitoring survey in 444 the United States. Environ. Sci. Technol. 44:4505-11. 445 APHA, AWWA, WEF. 1999. Standard Methods for the Examination of Water and 446 Wastewater. Ed. American Public Health Association 20th ed. Washington DC. 447 Castro-Barros C, Rodríguez-Caballero A, Volcke EIP, Pijuan M. 2016. Effect of nitrite 448 on the N2O and NO production on the nitrification of low-strength ammonium wastewater. Chem. Eng. J. 287:269-276. 449 450 Dochain D, Vanrolleghem PA. 2001. Dynamic Modelling and Estimation in Wastewater Treatment Processes. London, UK: IWA Publishing. 451 452 Domingo-Félez C, Mutlu a G, Jensen MM, Smets BF. 2014. Aeration Strategies To Mitigate Nitrous Oxide Emissions from Single-Stage Nitritation/Anammox 453 454 Reactors. Environ. Sci. Technol. 48:8679-8687. 455 Ellis TG, Barbeau DS, Smets BF, Grady CPL. 1996. Respirometric technique for determination of extant kinetic parameters describing biodegradation. Water 456 Environ. Res. 68:917-926. 457 458 Garcia-Ochoa F, Gomez E. 2009. Bioreactor scale-up and oxygen transfer rate in 459 microbial processes: an overview. Biotechnol. Adv. 27:153-76. 460 Guo L, Vanrolleghem P a. 2013. Calibration and validation of an activated sludge 461 model for greenhouse gases no. 1 (ASMG1): prediction of temperature-dependent 462 N2O emission dynamics. Bioprocess Biosyst. Eng. 1. Gustavsson DJI, Tumlin S. 2013. Carbon footprints of Scandinavian wastewater 463 464 treatment plants. Water Sci. Technol. 68:887. 465 Hauduc H, Rieger L, Takács I, Héduit A, Vanrolleghem PA, Gillot S. 2010. A 466 systematic approach for model verification: application on seven published activated sludge models. Water Sci. Technol. 61:825-39. 467 Hiatt WC, Grady CPL. 2008. An updated process model for carbon oxidation, 468 nitrification, and denitrification. Water Environ. Res. 80:2145-2156. 469 470 Itokawa H, Hanaki K, Matsuo T. 2001. Nitrous oxide production in high-loading 471 biological nitrogen removal process under low COD/N ratio condition. Water Res. **35**:657–664. 472 473 Jiang D, Khunjar WO, Wett B, Murthy SN, Chandran K. 2015. Characterizing the Metabolic Trade-Off in Nitrosomonas europaea in Response to Changes in 474 475 Inorganic Carbon Supply. Environ. Sci. Technol. 49:2523-31. 476 Kampschreur MJ, Picioreanu C, Tan N, Kleerebezem R, Jetten MS., van Loosdrecht 477 MC. 2007. Unraveling the Source of Nitric Oxide Emission During Nitrification. Water Environ. Res. 79:2499-2509. 478 479 Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM. 480 2009. Nitrous oxide emission during wastewater treatment. Water Res. 43:4093-481 103. 482 Khunjar WO, Jiang D, Murthy S, Wett B, Chandran K. 2011. Linking the Nitrogen and One-Carbon Cycles - The Impact of Inorganic Carbon Limitation on Ammonia 483 Oxidation and Nitrogen Oxide Emission Rates in Ammonia Oxidizing 484

- 485 Bacteria:3199–3207.
- Law Y, Ye L, Pan Y, Yuan Z. 2012. Nitrous oxide emissions from wastewater treatment
 processes. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* 367:1265–77.
- Mampaey KE, Beuckels B, Kampschreur MJ, Kleerebezem R, van Loosdrecht MCM,
 Volcke EIP. 2013. Modelling nitrous and nitric oxide emissions by autotrophic
 ammonia-oxidizing bacteria. *Environ. Technol.* 34:1555–1566.
- 491 Mannina G, Cosenza A, Vanrolleghem PA, Viviani G. 2011. A practical protocol for
 492 calibration of nutrient removal wastewater treatment models. *J. Hydroinformatics*493 13:575.
- Manser R, Gujer W, Siegrist H. 2005. Consequences of mass transfer effects on the
 inetics of nitrifiers. *Water Res.* 39:4633–42.
- 496 Mielczarek AT. 2012. Microbial Communities in Danish Wastewater Treatment Plants
 497 with Nutrient Removal; Aalborg University, Denmark.
- Monteith HD, Sahely HR, MacLean HL, Bagley DM. 2005. A Rational Procedure for
 Estimation of Greenhouse-Gas Emissions from Municipal Wastewater Treatment
 Plants. *Water Environ. Res.* 77:390–403.
- Ni B-J, Peng L, Law Y, Guo J, Yuan Z. 2014. Modeling of Nitrous Oxide Production
 by Autotrophic Ammonia-Oxidizing Bacteria with Multiple Production Pathways.
 Environ. Sci. Technol. 48:3916–24.
- Ni B-J, Ruscalleda M, Pellicer-Nàcher C, Smets BF. 2011. Modeling nitrous oxide
 production during biological nitrogen removal via nitrification and denitrification:
 extensions to the general ASM models. *Environ. Sci. Technol.* 45:7768–76.
- Ni B-J, Ye L, Law Y, Byers C, Yuan Z. 2013a. Mathematical modeling of nitrous oxide
 (N2O) emissions from full-scale wastewater treatment plants. *Environ. Sci. Technol.* 47:7795–803.
- Ni B-J, Yuan Z, Chandran K, Vanrolleghem P a., Murthy S. 2013b. Evaluating four
 mathematical models for nitrous oxide production by autotrophic ammoniaoxidizing bacteria. *Biotechnol. Bioeng.* 110:153–63.
- Nowka B, Daims H, Spieck E. 2014. Comparative oxidation kinetics of nitrite-oxidizing
 bacteria: nitrite availability as key factor for niche differentiation. *Appl. Environ. Microbiol.* 81:745–753.
- Pan Y, Ni B, Yuan Z. 2013. Modeling electron competition among nitrogen oxides
 reduction and N2O accumulation in denitrification. *Environ. Sci. Technol.*47:11083–91.
- Peng L, Ni B-J, Ye L, Yuan Z. 2015a. N2O production by ammonia oxidizing bacteria
 in an enriched nitrifying sludge linearly depends on inorganic carbon
 concentration. *Water Res.* 74:58–66.
- Peng L, Ni B-J, Ye L, Yuan Z. 2015b. Selection of mathematical models for N2O
 production by ammonia oxidizing bacteria under varying dissolved oxygen and
 nitrite concentrations. *Chem. Eng. J.* 281:661–668.
- Perez-Garcia O, Villas-Boas SG, Swift S, Chandran K, Singhal N. 2014. Clarifying the
 regulation of NO/N2O production in Nitrosomonas europaea during anoxic-oxic
 transition via flux balance analysis of a metabolic network model. *Water Res.* 60C:267–277.

- Pocquet M, Wu Z, Queinnec I, Spérandio M. 2016. A two pathway model for N2O 529 emissions by ammonium oxidizing bacteria supported by the NO/N2O variation. 530 531 Water Res. 88:948-959. Reichert P. 1998. AQUASIM 2.0 - User Manual. Computer Program for the 532 533 Identification and Simulation of Aquatic Systems. Swiss Federal Institute for Environmental Science and Technology (EAWAG). 534 535 Schreiber F. 2009. Mechanisms of Transient Nitric Oxide and Nitrous Oxide Production in a Complex Biofilm_SI. ISME J.:1-8. 536 537 Schreiber F, Wunderlin P, Udert KM, Wells GF. 2012. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, 538 chemical reactions, and novel technologies. Front. Microbiol. 3:372. 539 Schulthess R Von, Wild D, Gujer W. 1994. Nitric and nitrous oxides from denitrifying 540 541 activated sludge at low oxygen concentration. Water Sci. Technol. 30:123–132. 542 Shen L, Guan Y, Wu G. 2015. Effect of heterotrophic activities on nitrous oxide 543 emission during nitrification under different aeration rates. Desalin. Water Treat. 544 **55**:821–827. 545 Spérandio M, Pocquet M, Guo L, Ni BJ, Vanrolleghem PA, Yuan Z. 2016. Evaluation of different nitrous oxide production models with four continuous long-term 546 547 wastewater treatment process data series. *Bioprocess Biosyst. Eng.* 548 Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, 549 Bex V, Midgley PM. 2013. IPCC Fifth Assessment Report - The physical science 550 basis. IPCC. Cambridge, United Kingdom and New York, NY, USA: Cambridge 551 University Press 1535 p. 552 Terada A, Lackner S, Kristensen K, Smets BF. 2010. Inoculum effects on community composition and nitritation performance of autotrophic nitrifying biofilm reactors 553 with counter-diffusion geometry. Environ. Microbiol. 12:2858-2872. 554 555 Torà J a, Lafuente J, Baeza J a, Carrera J. 2010. Combined effect of inorganic carbon limitation and inhibition by free ammonia and free nitrous acid on ammonia 556 oxidizing bacteria. Bioresour. Technol. 101:6051-8. 557 558 Wu G, Zhai X, Li B, Jiang C, Guan Y. 2014. Endogenous Nitrous Oxide Emission for Denitrifiers Acclimated with Different Organic Carbons. Procedia Environ. Sci. 559
- 560

21:26–32.

```
Heterotrophs are key contributors to nitrous oxide production in
 1
      mixed liquor under low C-to-N ratios during nitrification – batch
 2
      experiments and modelling
 3
 4
 5
      Author list
 6
      Carlos Domingo-Félez<sup>1</sup>, Carles Pellicer-Nàcher<sup>1</sup>, Morten S. Petersen<sup>1</sup>, Marlene M.
 7
      Jensen<sup>1</sup>, Benedek G. Plósz<sup>1</sup>, Barth F. Smets<sup>1</sup>*
 8
 9
      <sup>1</sup>Department of Environmental Engineering, Technical University of Denmark, Miljøvej
10
11
      113, 2800 Kgs. Lyngby, Denmark
12
      * Corresponding author:
      Barth F. Smets, Phone: +45 4525 1600, Fax: +45 4593 2850, E-mail: bfsm@env.dtu.dk
13
14
15
16
17
      Running title: N<sub>2</sub>O production in nitrifying batch experiments: heterotrophic and autotrophic
18
      contributions.
19
```

20 List of Figures

21 22 23 24 25	Figure 1 – Left: Concentration profile in a batch experiment after an NH ₄ ⁺ spike (experimental data: markers, model: lines). Right: Comparison between measured DO concentrations (diamonds) and model-predicted results when decay and hydrolysis are considered (black line) or neglected (red line).
26 27 28	Figure 2 – N ₂ O production during batch tests (ii): NH_4^+ spike (A), NH_4^+ spike followed by NO_3^- spike (B), NH_4^+ spike followed by NO_2^- spike (C).
29	Figure 3 – Experimental and best-fit simulations of N ₂ O concentrations during
30	experiments (i). Individual pathways: HD, ND, NN (left); and combined pathways: ND-
31	HD, NN-HD (right). Parameter subset HD_a.
32	
33	Figure 4 – Modelling results for ND-HD_a best-fit parameters in experiment (ii) (Table
34	III). 250 $K_{NO(AOB,HB)}$ pairs of values sampled randomly in the range 0.02 \pm 90% mgN/L.
35	Total contribution (black) and decomposed HD (red) and ND (blue) individual
36	contributions and to the N_2O pool (left). Total NO production (right). Dashed lines
37	correspond to the 95% percentiles.
38	
39	Figure 5 – Results of model simulations. Left panels: varying K_{NO} values (0.002 – 0.05
40	mgN/L) for the ND-HD model (K_{HB_NO} , K_{AOB_NO}), HD model (K_{HB_NO}) and ND model
41	(K_{AOB_NO}) . Right panels: Best-fit results for NN, ND, HD, NN-HD and ND-HD models.
42	Parameter subset HD_a.
43	(A) N ₂ O fit (RMSE), (B) autotrophic contribution to the total N ₂ O pool, (C) NO/N ₂ O
44	produced.
45	

Figure 1 – Left: Concentration profile in a batch experiment after an NH₄⁺ spike
 (experimental data: markers, model: lines). Right: Comparison between measured DO
 concentrations (diamonds) and model-predicted results when decay and hydrolysis are
 considered (black line) or neglected (red line).

Figure 2 – N₂O production during batch tests (ii): NH_4^+ spike (A), NH_4^+ spike followed by NO_3^- spike (B), NH_4^+ spike followed by NO_2^- spike (C).

61 experiments (i). Individual pathways: HD, ND, NN (left); and combined pathways: ND 62 HD, NN-HD (right). Parameter subset HD_a.


```
Heterotrophs are key contributors to nitrous oxide production in
 1
     mixed liquor under low C-to-N ratios during nitrification – batch
 2
     experiments and modelling
 3
 4
 5
      Author list
 6
     Carlos Domingo-Félez<sup>1</sup>, Carles Pellicer-Nàcher<sup>1</sup>, Morten S. Petersen<sup>1</sup>, Marlene M.
 7
     Jensen<sup>1</sup>, Benedek G. Plósz<sup>1</sup>, Barth F. Smets<sup>1</sup>*
 8
 9
      <sup>1</sup>Department of Environmental Engineering, Technical University of Denmark, Miljøvej
10
11
      113, 2800 Kgs. Lyngby, Denmark
12
      * Corresponding author:
      Barth F. Smets, Phone: +45 4525 1600, Fax: +45 4593 2850, E-mail: bfsm@env.dtu.dk
13
14
15
16
      Running title: N<sub>2</sub>O production in nitrifying batch experiments: heterotrophic and autotrophic
17
18
      contributions.
19
```

20 Tables

21

Scenario	Nitrif. Nitrification	Nitrif. Denitrification	Heter. Denitrification
NN	\checkmark		2 step (no N ₂ O)
ND		\checkmark	2 step (no N ₂ O)
HD			✓ 4 step (a / b)
NN-HD	\checkmark		✓ 4 step (a / b)
ND-HD		\checkmark	✓ 4 step (a / b)

 Table I – Combination of N2O-producing model structures considered.

Heterotrophic denitrification (HD) is modelled with two different parameter subsets (a) and (b).

22

Table II – Best-fit parameter estimates during NH_4^+ , NO_2^- , NO_3^- and DO calibration.

	Initial	Best-fit_a	Best-fit_b
$\mathbf{u}_{\mathrm{AMO}}$ (\mathbf{h}^{-1})	0.205	0.182 ± 0.0019	0.187 ± 0.0023
$\mathbf{u}_{\mathrm{NOB}}$ (h ⁻¹)	0.060	0.015 ± 0.0001	0.015 ± 0.0001
Correlation		0.51	0.55

						NN-	ND-		
			NN	ND	HD	HD	HD	Lit. Range	Ref.
η_{AOB}	Anoxic reduction factor	(-)	0.28	0.56		0.06	0.56	0.053 - 0.5	(1) (2) (3) (4)
K _{AOB NO2}	NO ₂ ⁻ affinity coefficient for denitrification	(mgN/L)		0.61			0.8*	0.14 - 8 0.078 -	(5) (6) (7) (8)
KAOB i O2	O2 inhibition coefficient for denitrification	(mgCOD/L)		0.15			0.15	0.112	(1) (2) (3) (4)
u _{NIR}	Max. NO ₂ ⁻ reduction rate	(h ⁻¹)			0.055	0.098	0.059	0.017 - 0.078	(3) (9) (10) (11)
u _{NOR}	Max. NO reduction rate	(h ⁻¹)			0.213	0.213	0.137	0.038 - 0.345 0.065 -	(1) (3) (10) (11) (3) (9) (10)
u _{NOS}	Max. N ₂ O reduction rate	(h^{-1})			0.077	0.079	0.125	0.182	(11)
K _{HB i O2 NIR}	O_2 inhibition coefficient for NO_2^{-} denitrification	(mgCOD/L)			0.05	0.13	0.05	0.1 - 1	(9)(10)(11) (1)(2)(10)
K _{HB i O2 NOR}	O2 inhibition coefficient for NO denitrification	(mgCOD/L)			0.10	0.03	0.10	0.067 - 1	(1)(3)(10) (11)
K _{HB i O2 NOS}	O_2 inhibition coefficient for N_2O denitrification	(mgCOD/L)			0.03	0.05	0.02	0.031 - 1	(9) (10) (11)
K _{HB S NIR}	$S_{\rm S}$ affinity coefficient for NO_2^{-} denitrification	(mgCOD/L)			0.8	0.8	1.8	1.5 - 20	(9)(10)(11) (1)(2)(10)
K _{hb} s nor	S _s affinity coefficientfor NO denitrification	(mgCOD/L)			1.2	1.2	1.2	0.56 - 20	(1)(3)(10) (11)
K _{HB S NOS}	S_S affinity coefficient for N_2O denitrification	(mgCOD/L)			3.0	3.0	3.0	2 - 40	(9) (10) (11)
Best-fit	E _{N2O}		0.83	0.98	0.98	0.97	0.99		
	RMSE		0.022	0.012	0.013	0.014	0.010		

(1) - Ni et al. 2011, (2) - Ni et al. 2013a, (3) Ni et al. 2013b, (4) Spérandio et al. 2016, (5) Schreiber et al. 2009, (6) Kampschreur et al. 2008, (7) Mampaey et al. 2013, (8) Garnier et al. 2007,

(9) von Schulthess et al. 1994, (10) Guo et al. 2013, (11) Hiatt and Grady 2008. * Fixed value

Table IV – Modelling results for the ND-HD model.

		ND-HD_a	ND-HD_b
$\mathbf{E}_{\mathbf{i}}$	(-)	0.993	0.995
N_2O_{AOB}/TOT	(%)	4	39
NO/N ₂ O	(%)	0.2	10.5
NO _{AOB} /TOT	(%)	67	37
N ₂	(mgN/L)	0.19	0.39