

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Convergence analysis for column-action methods in image reconstruction

Elfving, Tommy; Hansen, Per Christian; Nikazad, Touraj

Published in:
Numerical Algorithms

Link to article, DOI:
10.1007/s11075-016-0176-x

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Elfving, T., Hansen, P. C., & Nikazad, T. (2016). Convergence analysis for column-action methods in image
reconstruction. Numerical Algorithms, 74(3), 905–924. DOI: 10.1007/s11075-016-0176-x

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/83999306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s11075-016-0176-x
http://orbit.dtu.dk/en/publications/convergence-analysis-for-columnaction-methods-in-image-reconstruction(b73334ca-9905-44a7-84bf-120b2e95f1fc).html

Numerical Algorithms manuscript No.
(will be inserted by the editor)

Convergence Analysis for Column-Action Methods in
Image Reconstruction

Tommy Elfving · Per Christian Hansen ·
Touraj Nikazad

Received: date / Accepted: date

Abstract Column-oriented versions of algebraic iterative methods are interesting al-

ternatives to their row-version counterparts: they converge to a least squares solution,

and they provide a basis for saving computational work by skipping small updates. In

this paper we consider the case of noise-free data. We present a convergence analysis

of the column algorithms, we discuss two techniques (loping and flagging) for reducing

the work, and we establish some convergence results for methods that utilize these

techniques. The performance of the algorithms is illustrated with numerical examples

from computed tomography.

Keywords Algebraic iterative reconstruction · Block-iteration · ART · Kaczmarz ·
Cimmino · Convergence

Mathematics Subject Classification (2000) 65F10 · 65R32

1 Introduction

Filtered back projection, FDK and similar “direct” reconstruction methods in com-

puted tomography give excellent results when we have plenty of data and when the

noise in the data is low. But for situations with high noise and/or limited data (which

This work is a part of the project HD-Tomo funded by Advanced Grant No. 291405 from the
European Research Council.

Tommy Elfving
Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
E-mail: toelf@mai.liu.se

Per Christian Hansen
Department of Applied Mathematics and Computer Science, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark
E-mail: pcha@dtu.dk

Touraj Nikazad
School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, 16846-
13114, Iran
E-mail: tnikazad@iust.ac.ir

2 Tommy Elfving et al.

arise, e.g., when one needs to limit the X-ray dose), or when it is desirable to incorpo-

rate constraints, an algebraic approach is often preferred.

Censor [6] coined the expression “row-action methods” for a specific class of alge-

braic iterative methods. This class includes Kaczmarz’s algorithm, which was indepen-

dently suggested under the name “ART” in [15] where it was used for the first time in

the open literature to solve tomographic reconstruction problems.

It is also known [4], [13] how to base an iterative reconstruction algorithm on

columns rather than on rows. The main advantage of the column version is that it

does not exhibit the cyclic convergence of the row version, but converges to a least

squares solution. Another advantage is the possibility for saving computational work

during the iterations, as explained in Section 4.

Column-oriented algorithms have not been explored much in the literature. An ex-

ception is Watt [23] who derives a column-based reconstruction method and compares

it with ART (also using nonnegativity constraints). A more recent paper is [3] where

a two-parameter algorithm based on a block-column partitioning is studied. For spe-

cific choices of the parameters the block-SOR method (to be defined in Section 3) is

obtained. Convergence results are given for the case where the coefficient matrix has

full column rank.

Here we will study column-based iterations both theoretically and experimentally.

Our starting point is a large linear system of equations,

Ax ≈ b, A ∈ Rm×n. (1)

We make no assumptions about the dimensions or rank of A, and the system is not

assumed to be consistent. The systems we have in mind typically arise from discretiza-

tion of ill-posed problems such as computed tomography, and our numerical examples

come from such applications. Since this paper deals with classic asymptotic convergence

analysis we assume that there is no noise in the data.

The row and column methods seek to solve different problems. The row methods

aim to compute a minimum-norm solution to a consistent system of equations, while

the column methods aim to compute a least squares solution. Hence, for inconsistent

problems the asymptotic behavior of the methods is different. The row-action methods

exhibit cyclic convergence [11] but not in general to a least squares solution. The column

methods, on the other hand, converge to a least squares solution but not in general to

the minimum norm solution.

We will here only consider cyclic control, i.e., the rows/columns are selected in a

cyclic order. For other controls see, e.g., [11, p.80], [22].

Our paper is organized as follows. In Section 2 we set the stage by briefly summariz-

ing the well-known row action methods. Section 3 discusses the column versions, and we

derive and discuss the associated convergence properties. In Section 4 we demonstrate

how computational work can be reduced by not performing small updates, typically

of solution elements that have converged. Section 5 summarizes our work. Numerical

examples are given in the relevant sections of the paper. The connection of the col-

umn methods to optimization algorithms is briefly discussed in Appendix A, and in

Appendix B we argue why ATA is a dense matrix in computed tomography.

We use the following notation: ρ(A) denotes spectral radius of a matrix A, R(A)

andN (A) denote the range (column space) and null space of A, respectively, A† denotes

the Moore-Penrose pseudoinverse of A, and PS denotes the orthogonal projector on

the subspace S. Moreover, if Fi are matrices and gii are the diagonal elements of a

Column-Action Methods 3

matrix G, then we define

blockdiag(Fi) =

F1

F2

. . .

 , diag(G) =

g11

g22

. . .

 . (2)

2 Sequential Block-Row Iteration

To set the stage for our analysis we first briefly summarize main results for the row-

oriented method. Let A be partitioned into p disjoint block rows and let b be partitioned

accordingly,

A =

B1

...

Bp

 , b =

b1...
bp

 , Bi ∈ Rmi×n, bi ∈ Rmi , i = 1, . . . , p.

Also, let {ωi}pi=1 be a set of positive relaxation parameters and let Mi ∈ Rmi×mi ,

i = 1, 2, . . . , p be a set of given symmetric positive definite (spd) matrices. The following

generic algorithm, which uses the blocks Bi in a sequential fashion, covers several

important special cases.

Algorithm BRI: Block-Row Iteration

Initialization: x0 ∈ Rn is arbitrary.

For k = 0, 1, 2, . . . (cycles or outer iterations)

z0 = xk

For i = 1, 2, . . . , p (inner iterations)

zi = zi−1 + ωiB
T
i Mi

(
bi −Bi zi−1

)
End

xk+1 = zp

End

This method was considered in [13] for a special choice of the weight matrix Mi,

and for general Mi in [12]. With p = 1 there is just one block and the method becomes

fully simultaneous. And when p = m each block consists of a single row so Mi ∈ R,

i = 1, 2, . . . ,m, and the iteration becomes fully sequential.

Let a cycle denote one pass through all blocks, i.e., one outer iteration. Since block-

row iteration uses a single block in every inner iteration it takes p inner iterations to

complete a cycle. One cycle of the above algorithm can then be written as (cf. [14],

[21, p. 155])

xk+1 = xk +ATMr(A) (b−Axk) = Wr(A)xk +ATMr(A) b, (3)

where

Wr(A) = I −ATMr(A)A, Mr(A) = (Dr + Lr)
−1, Dr = blockdiag(ωiMi)

−1 (4)

4 Tommy Elfving et al.

(the latter being block diagonal), and Lr is the block-lower triangular matrix

Lr =

0

B2B
T
1 0

...
. . .

. . .

BpB
T
1 . . . BpB

T
p−1 0

 . (5)

The following convergence result is from [12] and [14]. Assume that 0 < ε < 2. If

ωi ∈
(
ε, (2− ε)/ρ(BTi MiBi)

)
, i = 1, 2, . . . , p, (6)

then the iteration (3) converges towards a solution of

ATMr(A) (b−Ax) = 0. (7)

The convergence of Algorithm BRI was studied in [21] in an infinite dimensional Hilbert

space setting.

Several well known iterative methods arise as special cases. The “block-Kaczmarz”

method [13] uses Mi = (BiB
T
i)−1, so that BTi MiBi = PR(Bi), the orthogonal projec-

tor onto the range of Bi. It follows that ‖BTi MiBi‖2 = 1 and hence we find, by (6),

the well-known result that the method converges for ωi ∈ (0, 2).

A second example is obtained with the diagonal matrix Mi = diag(BTi Bi)
−1. For

p = 1 we obtain the (relaxed) Cimmino method with Mi = M = diag(BTB)−1. It

is easy to see that ‖BTi MiBi‖2 ≤ 1 so that again convergence occurs for ωi ∈ (0, 2).

However the upper bound 2 is quite restrictive ((6) is only a sufficient condition for

convergence) especially for large and sparse matrices, so that taking too small value

of ωi may result in poor rate of initial convergence. The methods BICAV [10] and

DROP [9] were constructed to improve the rate by explicitly allowing the relaxation

parameters to depend on sparsity. For a fully dense matrix the three methods coincide.

As a final example we mention SART [2]. The methods SART, BICAV and Cimmino

are also treated in [8, section 7] both for linear equations and linear inequalities.

3 Sequential Block-Column Iteration

We now consider the column version of the above algorithm and its convergence prop-

erties. Our discussion is formulated entirely in a linear algebra setting, but we wish

to emphasize that column iterations are closely connected to coordinate-descent opti-

mization algorithms, and we refer to Appendix A for the optimization perspective.

3.1 The Generic Column-Oriented Algorithm

Let A be partitioned into q disjoint block columns and let x be partitioned accordingly,

A =
(
A1 A2 · · · Aq

)
, x =

x1

...

xq

 , Ai ∈ Rm×ni , xi ∈ Rni , i = 1, 2, . . . , q.

Column-Action Methods 5

Moreover let {ωi}qi=1 be a set of positive relaxation parameters, and let Mi ∈ Rni×ni ,

i = 1, 2, . . . , q be a set of given spd matrices. The following generic algorithm, which

uses the blocks Ai in a sequential way, provides a generic framework for column-oriented

iterations.

Algorithm BCI: Block-Column Iteration

Initialization: x0 ∈ Rn is arbitrary; r0,1 = b−Ax0.

For k = 0, 1, 2, . . . (cycles or outer iterations)

For i = 1, 2, . . . , q (inner iterations)

xk+1
i = xki + ωiMiA

T
i r

k,i

rk,i+1 = rk,i −Ai(xk+1
i − xki)

End

rk+1,1 = rk,q+1

End

Note that the residual updating in the inner iteration of the above algorithm is an

efficient way to compute the residual given by

rk,i+1 = b−
i∑

j=1

Ajx
k+1
j −

q∑
j=i+1

Ajx
k
j . (8)

Hence for each cycle the method requires one application of Ai and ATi for i =

1, 2, . . . , q, and the total associated work corresponds to one multiplication with A

and one multiplication with AT . We will now derive an expression for one cycle of the

algorithm.

Proposition 1 One cycle of Algorithm BCI can be written

xk+1 = xk +Mc(A)AT (b−Axk) = Wc(A)xk +Mc(A)AT b, (9)

where

Wc(A) = I−Mc(A)ATA, Mc(A) = (Dc +Lc)−1, Dc = blockdiag(ωiMi)
−1, (10)

and Lc is the block-lower triangular matrix

Lc =

0

AT2 A1 0

...
. . .

. . .

ATp A1 . . . ATq Aq−1 0

 . (11)

Proof For ease of notation we put ωi = ω, i = 1, 2, . . . , q and within this proof we also

define D̃c = blockdiag(M−1
i). Then (9) can be written

(D̃c + ωLc)xk+1 = (D̃c + ωLc)xk + ωAT (b−Axk). (12)

Using that ATA = Lc +D̄c +LTc with D̄c = blockdiag(ATi Ai), we can rewrite the right

hand side of Eq. (12) as(
D̃c − ωLTc − ωD̄c + ωATA

)
xk + ωAT (b−Axk) =

(
D̃c − ωLTc − ωD̄c

)
xk + ωAT b.

6 Tommy Elfving et al.

Hence the ith block-component of (12) becomes

M−1
i xk+1

i = M−1
i xki − ω

(
ATi Aix

k
i + (LTc x

k)i + (Lcx
k+1)i −ATi b

)
,

which can be rewritten as

xk+1
i = xki + ωMiA

T
i

(
b−

i−1∑
j=1

Ajx
k+1
j −

q∑
j=i

Ajx
k
j

)
,

which equals the ith step of the inner loop. The extension to the case of varying

relaxation parameters {ωi} is straight forward. ut

Corollary 1 Assume that the iterates of (9) converge to some limit x+. Then

ATAx+ = AT b, (13)

i.e., x+ is a least squares solution of (1).

Proof The result follows by taking limits in (9) and noting that Mc(A) is nonsingular.

ut

Remark 1 The iterates in (9) are not sensitive to the ordering of the equations since,

with a permutation matrix Π, we have (ΠA)T (ΠA) = ATA. The iterates do, however,

depend on the ordering of the unknowns. Since row-iteration (implicitly) works with

AAT the opposite is true for these methods.

3.2 Convergence Analysis

We have seen that there exist several convergent members of the row-iteration scheme

depending on the choice of weight matrices {Mi}. One may ask if corresponding mem-

bers also converge using column-iteration? The answer is in the affirmative as we will

show below. In our first analysis we assume that N (A) = ∅. We discuss this case ex-

plicitly since it reveals the close connection between the row and column methods (cf.

[13, lemma 3]).

It is instructive to compare the iterates produced by column-iteration and row-

iteration, respectively, on two similar linear systems. Assume that column-iteration,

using a specific set of relaxation parameters {ωi}, weight matrices {Mi}, and column-

partitioning, is applied to (1). The resulting iteration matrix (using Proposition 1)

becomes

Wc(A) = I −Mc(A)ATA, (14)

and we have that

xk − x+ = Wc(A)k(x0 − x+), (15)

where x+ is a least squares solution of (1).

Next assume that row-iteration is applied to a system of the form AT y = d using

the same set of relaxation parameters, weight matrices, and block partitioning (which

now are block rows of AT). Then by construction

Mc(A) = Mr(A
T).

Column-Action Methods 7

Further by (4) we have

Wr(A
T) = I −AMr(A

T)AT . (16)

We recall that the matrix products AB and BA have the same nonzero eigenvalues. It

follows with λe(·) the set of eigenvalues excluding +1,

λe
(
Wc(A)

)
= λe

(
I −AMc(A)AT

)
= λe

(
I −AMr(A

T)AT
)

= λe
(
Wr(A

T)
)
.

By choosing the relaxation parameters and weight matrices such that the row-iteration

defines a convergent method it holds that |λe(Wr(A
T))| < 1. Next we consider the case

λ(Wc(A)) = +1. Then by (14) and the fact that Mc(A) is nonsingular and that N (A)

and R(AT) are orthogonal subspaces it holds

Wc(A) v = v ⇔ v ∈ N (A). (17)

We thus arrive at the following result, with ε ∈ (0, 2):

Proposition 2 Assume that N (A) = ∅ and that ωi ∈
(
ε, (2 − ε)/ρ(AiMiA

T
i)
)
, i =

1, 2, . . . , q. Then the sequence generated by Algorithm BCI converges to a least squares

solution.

Proof By the above reasoning, and conditions (6), with Bi replaced by ATi it follows

that limk→∞Wc(A)k → 0. Using (15) the result follows. ut

In order to treat the rank-deficient case we will use the following classical result by

Keller [20, corollary 2.1] (adapted to our notation; recall that a matrix W is convergent

if limk→∞W k exists).

Theorem 1 The iteration matrix Wc(A) = I −Mc(A)ATA is convergent if and only

if the matrix 2Dc − blockdiag(ATi Ai) is positive definite.

Proposition 3 The iterates of Algorithm BCI converge to a solution of (13) if for any

0 < ε < 2 it holds

ωi ∈
(
ε, (2− ε)/ρ(AiMiA

T
i)
)
, i = 1, 2, . . . , q. (18)

Proof We will check when the matrix ∆ = 2Dc−blockdiag(ATi Ai) is positive definite.

Since both Dc and blockdiag(ATi Ai) are block-diagonal with the same size of the blocks

it suffices to investigate the inequality (with vi ∈ Rni , vi 6= 0)

2

ωi
vi
TM−1

i vi − viTATi Ai vi > 0, i = 1, 2, . . . , q

or equivalently

0 < ωi < 2/ci, ci =
vi
TATi Aivi

viM
−1
i vi

.

Put vi = M
1/2
i ξi. Then

ci =
(
ξi
TM

1/2
i ATi AiM

1/2
i ξi

)
/‖ξi‖22 =

∥∥AiM1/2
i ξi

∥∥2

2
/‖ξi‖22 ≤

∥∥AiM1/2
i

∥∥2

2
.

Hence if ωi ∈
(
0, 2/‖AiM

1/2
i ‖22

)
then ∆ is positive definite. Now∥∥AiM1/2

i

∥∥2

2
=
∥∥M1/2

i ATi AiM
1/2
i

∥∥
2

= ρ
(
(M

1/2
i ATi)(AiM

1/2
i)

)
= ρ
(
AiMiA

T
i

)
,

8 Tommy Elfving et al.

which verifies (18). If ρ(Wc(A)) < 1 then the limit matrix is zero, and the result follows

using (15). When ρ(Wc(A)) = 1, and since Wc(A) is convergent, the limit of Wc(A)k is

the projector onto N (I −Wc(A)) along R(I −Wc(A)). (This is in fact the orthogonal

projector onto N (I − Wc(A); this follows easily since fix(Wc(A)) = fix(Wc(A)T) =

N (A), where fix(·) is the set of fixed points). Now N (I −Wc(A)) = N (Mc(A)ATA) =

N (A). It follows by (15) that xk → x+ + z with z ∈ N (A). Hence the limit vector

satisfies the normal equations (13). ut

We can now make the following conclusions regarding the convergence of the al-

gorithms. In the consistent case and assuming x0 ∈ R(AT), the iterates of algorithm

BRI converge towards the unique solution of minimum norm, whereas the iterates of

algorithm BCI converge to a solution of (1) but not necessarily the one of minimal

norm. In the inconsistent case there is also a difference: The iterates of algorithm BRI

exhibit cyclic convergence, see [11], while the iterates of algorithm BCI converge to

a least squares solution as shown in Proposition 3. In this section we only consider

stationary iterations, but we remark that using a special type of iteration-dependent

relaxation parameters {ωk} the iterates of Algorithm BCI do converge to a weighted

least squares solution. These parameters should fulfill ωk → 0 and
∑∞
k=0 ωk = 0, see

[7] and [19].

3.3 Some Special Cases

In this section we take a look at certain special cases of Algorithm BCI. Regarding the

choice of q:

q = 1. In this case ni = n and we have ωi = ω and Mi = M ∈ Rn×n. The iteration is

fully simultaneous and takes the following form with x0 given and r0 = b−Ax0:

xk+1 = xk + ωMAT rk

rk+1 = rk +A(xk+1 − xk)

}
k = 0, 1, 2, . . .

1 < q < n. In this case the method is a sequential block-column method.

q = n. In this case ni = 1 and Mi ∈ R (a scalar) for i = 1, 2, . . . , n. This is called a

fully sequential (or point) method.

We next discuss the SOR-case where we define

Mi = (ATi Ai)
† ∈ Rni×ni , i = 1, 2, . . . , q.

One way to implement this method is to solve a sequence of least squares problems:

yi = argminy‖Aiy − r
k,i‖2,

xk+1
i = xki + ωiyi,

rk,i+1 = rk,i +Ai(x
k+1
i − xki).

If ATi Ai is sparse or ni � n it may be more efficient to compute Mi or factorizations

of ATi Ai once and for all. We now investigate the condition (18):

ρ(AiMiA
T
i) =

∥∥AiMiA
T
i

∥∥
2

=
∥∥Ai(ATi Ai)†ATi ∥∥2

=
∥∥AiA†i∥∥2

= 1.

Column-Action Methods 9

So condition (18) becomes (as expected for SOR)

ωi ∈ (ε, 2− ε), i = 1, 2, . . . , q.

In some applications, such as computed tomography, it is very common that ATi Ai
is a full matrix; see Appendix B for an explanation of this. Hence it is relevant to

consider an alternative to the SOR-case, namely, the Cimmino-case. Let aji denote

the jth column of block Ai and define

Mi =
1

ni

(
diag

(
ATi Ai

))−1
=

1

ni
blockdiag

(
‖aji‖

−2
2

)
, j = 1, 2, . . . , ni. (19)

Note that the matrix can be considered as using a diagonal approximation of the matrix

from SOR. We again investigate condition (18). It holds

ρ
(
AiMiA

T
i

)
=
∥∥AiMiA

T
i

∥∥
2

=
1

ni

∥∥∥∥∥
ni∑
j=1

1

‖aji‖
2
2

aji (a
j
i)
T

∥∥∥∥∥
2

(20)

=
1

ni

∥∥∥∥∥
ni∑
j=1

PR(aji)

∥∥∥∥∥
2

≤ 1 ⇒ ωi ∈ (0, 2).

We remark however that now the upper bound 2 is only a sufficient condition (similarly

as for row-iteration) and it may lead to slow rate of convergence.

Now consider BICAV. Let sνi be the number of nonzero elements in row ν of Ai,

and let

Mi =

‖a
1
i ‖Si

‖a2
i ‖Si

. . .

−2

, ‖aji‖Si
= (aji)

TSi a
j
i , Si =

s
1
i

s2i
. . .

This defines the column version of the row-action method BICAV [10] mentioned in

the previous section. Similarly as for the row version [8, Corollary 7.1] one finds that

‖AiMiA
T
i ‖2 ≤ 1 so convergence holds for ωi ∈ (0, 2). In a similar way we can define

column versions of DROP and SART.

To implement Cimmino (or point-SOR) we need to compute the 2-norms of all

columns. This can be quite costly and inconvenient if the matrix A is not explicitly

stored but instead available via functions that implement multiplication with A and

its transpose. If we can assume that all matrix elements are nonnegative it is cheaper

to compute the 1-norm since this can be done by performing a single matrix-vector

product Ae with e = (1, . . . , 1)T . We then use for Cimmino

Mi =

‖a
1
i ‖1
‖a2
i ‖1

. . .

−2

.

Since ‖aji‖2 ≤ ‖a
j
i‖1 it follows using (20) that again ωi ∈ (0, 2) (without compromising

convergence).

For point-SOR we take the scalars Mi = 1/‖ai‖21, i = 1, 2, . . . n. As above we get

ρ
(
aiMia

T
i

)
= 1/‖ai‖21 ρ

(
aia

T
i

)
≤ 1/‖ai‖22ρ(aia

T
i) = 1.

So again convergence is ensured for ωi ∈ (0, 2). Normalization using the 1-norm is used,

e.g., in [2], [23].

10 Tommy Elfving et al.

Fig. 1 Error histories for Algorithm BCI for different block sizes. Block size nb = 5 gives the
fastest convergence.

3.4 A Numerical Example

We finish this section with a numerical example (in Matlab) that illustrates the con-

vergence of Algorithm BCI for the Cimmino-case, cf. (19). The test problem is from

parallel-beam computed tomography as implemented in the function parallelbeam

from the package AIR Tools [17], and there is no noise in the data. The image is a

50×50 Shepp-Logan phantom, the detector has 71 pixels, and the projection angles are

5◦, 10◦, . . . , 180◦; hence the matrix A is (36 · 71)× 502 = 2556× 2500. All blocks have

the same size ni = nb and relaxation parameter ωi = ω, and we used the following

combinations:

q = 2500, nb = 1, ω = 0.25,

q = 625, nb = 4, ω = 1.95,

q = 500, nb = 5, ω = 1.95,

where ω was chosen experimentally to give fast convergence in each case.

The error histories of ‖xk − x+‖2/‖x+‖2 versus k (where x+ is the least squares

solution) are shown in Fig. 1, and we see that for a well-chosen block size (which is

problem dependent, here nb = 5) we have faster convergence than for the point case

nb = 1. When implemented in a programming language that can efficiently utilize

block operations, a block cycle is faster than a point cycle and the advantage of the

block version becomes even more pronounced.

4 Implementation and Analysis of a Loping/Flagging Strategy

Haltmeier [16] discussed a “block-Kaczmarz” algorithm assuming that the system (1)

is consistent. An interesting feature of his algorithm is the use of a loping strategy

which – in terms of Algorithm BRI – omits the updating step associated with block

Column-Action Methods 11

i if the residual norm ‖M1/2
i (bi −Bizi−1)‖2 is below a certain threshold that reflects

the noise in the data. The key idea is to use this as a stopping rule: once all updating

steps of a cycle are omitted, the algorithm stops. While not discussed in [16], loping

saves some computational work for blocks that are not updated; but note that we still

need to compute the residual in order to decide whether to lope in block i.

4.1 Loping and Flagging in Algorithm BCI

A similar loping strategy can be introduced in Algorithm BCI, where we can choose not

to update the solution block xki if the associated vector dki = ωiMiA
T
i r

k,i has a small

norm. Again this will save computational work for blocks that are not updated. The

Loping version of the algorithm takes the following form, where τ is a user-specified

threshold:

Algorithm BCI-L: Block-Column Iteration – Loping Version

Initialization: x0 ∈ Rn is arbitrary; r0,1 = b−Ax0.

For k = 1, 2, 3, . . . (cycles or outer iterations)

For i = 1, 2, . . . , q (inner iterations)

dki = ωiMiA
T
i r

k,i

If ‖dki ‖2 > τ

xk+1
i = xki + dki
rk,i+1 = rk,i −Ai(xk+1

i − xki)

End

End

rk+1,1 = rk,q+1

End

We now propose an alternative strategy that can potentially save much more com-

putational work. Our key observation is that the situation ‖dki ‖2 < τ typically occurs

when the associated solution block xi has (almost) converged and very small updates

are performed – while, at the same time, other blocks still have larger updates. Hence,

we can choose to flag the ith block and not update it over the next Nflag cycles

– without computing and checking ‖dki ‖2 and thus saving more work. In situations

where large parts of the image converge fast, this can potentially save a lot of compu-

tational work without slowing down the convergence too much. The Flagging version

of the algorithm takes the following form, where again τ is a user-specified thereshold:

Algorithm BCI-F: Block-Column Iteration – Flagging Version

Initialization: x0 ∈ Rn is arbitrary; r0,1 = b−Ax0.

For k = 1, 2, 3, . . . (cycles or outer iterations)

For i = 1, 2, . . . , q (inner iterations)

If block-i is not flagged

dki = ωiMiA
T
i r

k,i

If ‖dki ‖2 > τ

xk+1
i = xki + dki
rk,i+1 = rk,i −Ai(xk+1

i − xki)

Else

Flag block-i

12 Tommy Elfving et al.

End

Else

If block-i has been flagged for Nflag outer iterations

Unflag block-i

End

End

End

rk+1,1 = rk,q+1

End

4.2 Convergence Analysis of Loping/Flagging

Note that loping/flagging can be seen as using non-stationary relaxation parameters,

ωi = ωi(k), i = 1, . . . , q,

and also allowing some of these to be zero. The preceding convergence results are there-

fore not applicable. We will now analyze the convergence properties of loping/flagging

for the SOR-case. The idea is to use the fact that the residual updates can be seen

as coming from a projection method (as observed in [13, (2.5)]). In fact it follows

from (8) that rk,i+1 = (I − ωiAiMiA
T
i)rk,i. Hence with Mi = (ATi Ai)

†, and using

(ATi Ai)
†ATi = A†i we get

rk,i+1 =
(
I − ωiAiA†i

)
rk,i =

(
I − ωiPR(Ai)

)
rk,i.

It follows that

rk,i+1 = (1− ωi)rk,i + ωi
(
I − PR(Ai)

)
rk,i

= (1− ωi)rk,i + ωiPN (AT
i)r

k,i = rk,i + ωi
(
PN (AT

i)r
k,i − rk,i

)
.

We now allow non-stationary relaxation parameters and write the iteration as

rk,i+1 = rk,i + ωi(k)
(
PN (AT

i)r
k,i − rk,i

)
. (21)

We next briefly describe the block-iterative projection (BIP) algorithm of Aharoni

and Censor [1] for finding a point in the intersection Q = ∩qi=1Qi, where Qi ⊂ Rn,

i = 1, 2, . . . , q is a collection of closed convex sets. Let

ωk = (ω1(k), ω2(k), . . . , ωq(k)),

and let

P (ωk) =

q∑
i=1

ωi(k)PQi
, ωi(k) ≥ 0,

q∑
i=1

ωi(k) = 1.

Then BIP takes the form (where uk is an iteration vector)

uk+1 = uk + λk
(
P (ωk)uk − uk

)
, λk ∈ (0, 2). (22)

A sequence of weight vectors is called fair if for every i ∈ {1, 2, . . . , q} there exist

infinitely many values of k such that ωi(k) > 0. It is shown in [1] that the iterates {uk}
of (22) converge to a point in ∩qi=1Qi 6= ∅ provided {ωk} is a fair sequence. Letting

Column-Action Methods 13

Qi = N (ATi) (so that Q = N (AT)) it is easy to see that given any sequence {ωk} in

(21) the generated iterates could also been generated by (22).

We illustrate with a small example. Let q = 3 and ω1(k) > 0, ω2(k) = 0, ω3(k) > 0.

This would produce the following iterates in (21): (rk,2, rk,2, rk,4). By taking λk =

ω1(k), λk+1 = ω3(k), ωk = (1, 0, 0), ωk+1 = (0, 0, 1), and using the same starting

value rk,1 we get uk+1 = rk,2, uk+2 = rk,4.

Proposition 4 Assume that {ωk} is fair. Then for the SOR-version of Algorithms

BCI-F and BCI-L the following results hold: (i) limAT (b−Axk) = 0. (ii) If N (A) = ∅
then xk → x+, where x+ is defined in (13).

Proof Define

xk+1 =

x
k+1
1
...

xk+1
q

 .

Then by construction rk,q+1 = b−Axk+1, and by comparing (21) and (22) we have

rk,q+1 → r∗ ∈ N (AT)

which implies (i), and assuming an empty null space of A (ii) follows.

Remark 2 If only (i) holds then the sequence {xk} is said to be quotient convergent.

For a stationary iteration, quotient convergence and convergence are equivalent [5].

However, since loping/flagging constitutes a non-stationary iteration we cannot draw

this conclusion here.

4.3 Numerical Examples

We now compare the loping and flagging versions of Algorithm BCI with the standard

version using the same parallel-beam test problem as before. Here, the image is 75×75,

the detector has 106 pixels, and the projection angles are 1◦, 2◦, . . . , 180◦, so the matrix

A has size m × n = (180 · 106)× 752 =19080 × 5625. Again there is no noise in the

data.

All algorithms are run with block size 1 (the point versions) and with Mi = ‖ai‖−2
2 .

In Algorithm BCI-F we use the parameter Nflag = 50 that controls how long a pixel

stays flagged.

To illustrate the advantage of the flagging idea, we first use a simple phantom with

a small white disk of radius 5 pixels, centered in an otherwise black image. We expect

that the pixels of the large homogeneous background will be flagged after some cycles,

while the pixels inside and close to the disk need to be updated in each cycles.

The results are shown in Fig. 2 for three values of the threshold τ = 10−4, 10−5,

and 10−6. The left plots show the error histories, and we see that if the threshold τ is

too large the then convergence of BCI-L and BCI-F is severely slowed down compared

to BCI. The middle plots give more insight, as they show the accumulated amount of

work in each algorithm as a function of the number of cycles. Here, a “work unit” is

the number of flops involved in the basic operations, namely, either an inner product

(“dot”) or a vector update (“saxpy”), both involving 2n flops. We see that BCI-L and,

in particular, BCI-F save a lot of work compared to BCI.

14 Tommy Elfving et al.

Fig. 2 Performance of Algorithms BCI, BCI-L and BCI-F for three values of the threshold
τ used in loping and flagging. The left plots show the relative error ‖xk − x+‖2/‖x+‖2 versus
the number of cycles k. The middle plots shows the accumulated amount of work as a function
of the number of cycles. The right plots show the relative error versus the amount of work. A
“work unit” is the number of flops involved in a inner product or a vector update.

The right plots, where we show the relative error versus the accumulated amount

of work, provide an interesting perspective. We see that with a suitable size of the

threshold (here, τ = 10−6), BCI-L and BCI-F reach the same accuracy as BCI with

less work. In particular, BCI-F requires about 3 times less work than BCI to reach a

relative error of about 0.1. We observe essentially the same behavior (not shown here)

for experiments with the negative image where most pixels are white, suggesting that

the behavior is essentially determined by the edges in the image.

To further illustrate the advantage of flagging, Fig. 3 shows the performance of

BCI, BCI-L and BCI-F with τ = 10−6 applied to three random test images generated

by means of the function phantomgallery(’ppower’,75) from AIR Tools [17]. This

call generates the test images defined in [18] with large random regions of zeros and

non-zeros. The behavior of the three algorithms is similar to the above and quite

independent of the complexity of the image, and again BCI-F is the fastest algorithm.

All our examples thus illustrate the potential advantage of incorporating flagging in

the BCI algorithm.

Column-Action Methods 15

Fig. 3 Performance of Algorithms BCI, BCI-L and BCI-F with τ = 10−6. The top plots show
three random test images generated with phantomgallery(’ppower’,75), and the bottom plots
show the corresponding relative error versus the amount of work. The overall behavior is quite
independent of the complexity of the image.

5 Conclusion

We formulated algebraic (block) column-action methods in a common framework and

proved that these methods – with different choices of weight matrices – converge to

a least squares solution. We also introduced a “flagging” mechanism to save compu-

tational work by skipping small solution updates, and we proved some convergence

results of the corresponding algorithm. We illustrated the numerical performance with

examples from computed tomography showing the potential advantage of using blocks

and flagging.

Conclusion

We thank the referee for reading the original manuscript carefully and for making

several suggestions that improved the presentation.

Appendix A: Algorithm BCI as an Optimization Method

While we have treated Algorithm BCI as an algebraic method we want to emphasize

that it can also be considered as a block coordinate descent optimization method for

the unconstrained least squares problem

min
x

f(x), f(x) = 1/2‖Ax− b‖22 = 1/2(Ax− b)T (Ax− b). (23)

16 Tommy Elfving et al.

With ai denoting the ith column of A, the partial derivatives are

∂f

∂xi
= aTi (Ax− b), i = 1, . . . , n. (24)

Setting ∂f/∂xi = 0 leads to the expression

aTi ai xi = aTi

(
b−

∑
j 6=i

aj xj

)

and hence (with a bit of manipulation), from a given x we obtain the update of the

ith component of x:

xnew
i = xi +

aTi
‖ai‖22

(b−Ax) (25)

which is identical to the Cimmino and SOR point-versions of Algorithm BCI.

Along the same line, if we wish to minimize the objective function f with respect

to all the variables associated with block column Ai then we set the corresponding

partial derivatives to zero, which leads to the expression

ATi (Ax− b) = 0 ⇔ ATi Ai xi = ATi

(
b−

∑
j 6=i

Aj xj

)

and we obtain the block updating

xnew
i = xi + (ATi Ai)

−1ATi (b−Ax) (26)

which is identical to the SOR block-version of Algorithm BCI.

There is an alternative way to update the sub-vector xi. Note that (25) can also be

written as xnew = x+ αi ei where αi = aTi /‖ai‖
2
2 (b−Ax) and ei is the ith canonical

unit vector. Then we can choose to compute a block update which is the mean of the

updates for each component of x associated with block i:

xnew = x+
1

ni

∑
j∈Ji

αjej , Ji = column indices for block i.

If aji denotes the jth column of block Ai then such a block update takes the form

xnew
i = xi +

1

ni
blockdiag

(
1

‖aij‖
2
2

)
ATi (b−Ax). (27)

This is identical to the Cimmino block-version of Algorithm BCI.

Column-Action Methods 17

Appendix B: The Columns of the CT System Matrix

Recall that in computed tomography (CT) the columns of the matrix A (called the

system matrix) are the forward projections of single pixels in the image. To understand

these columns, we will briefly study the underlying Radon transform, associated with

2D parallel-beam problems, of delta functions in the image domain.

Recall that any line in a x, y-coordinate system can characterized by the relation

x cos θ+ y sin θ = s, where θ ∈ [0, π) is an angle and s is a translation parameter. Also

recall that the Radon transform of a function f(x, y) produces another function g(s, θ),

called the sinogram, given by

g(s, θ) =

∫
image

δ(s− x cos θ − y sin θ) f(x, y) dx dy.

Hence the image of a delta function δ(x−x`, y−y`) located at (x`, y`) is characterized

by the points in the sinogram that satisfy

s = x` cos θ + y` sin θ

which clearly describes a sine function (hence the name “sinogram”). Let us now con-

sider two distinct points (x1, y1) and (x2, y2) and determine when/if the corresponding

sine functions intersect, i.e., when/if x1 cos θ + y1 sin θ = x2 cos θ + y2 sin θ.

– If x1 = x2 we require (y1 − y2) sin θ = 0; since y1 6= y2 this happens when θ = 0.

– If y1 = y2 we require (x1−x2) cos θ = 0; since x1 6= x2 this happens when θ = π/2.

– If both x1 6= x2 and y1 6= y2 then we arrive at the relation

(y1 − y2) tan θ = x1 − x2 ⇔ tan θ =
x1 − x2

y1 − y2

which always has a solution θ ∈ [0, π).

Hence we have shown that the two sine functions in the sinogram associated with

two distinct points always intersect. For this reason, it is very likely that two distinct

columns of A have at least one nonzero with the same row index.

Another way to see this is to note that each row of A is associated with a single

X-ray passing through the image. A row of A has nonzero elements for those column

indices for which the corresponding pixels are penetrated by the X-ray. With a large

number of X-rays it is very likely that any given pair of columns of A will have at least

one nonzero element for the same row index.

References

1. Aharoni, R., Censor, Y.: Block-iterative projection methods for parallel computation of
solutions to convex feasibility problems. Lin. Alg. Appl., 120, 165–175 (1989).

2. Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): A
superior implementation of the art algorithm. Ultrasonic Imaging, 76, 81–94 (1984).

3. Bai, Z.-Z., Jin C.-H.: Column-decomposed relaxation methods for the overdetermined
systems of linear equations. Int. J. Appl. Math., 13(1), 71–82 (2003).

4. Björck, Å., Elfving, T.: Accelerated projection methods for computing pseudoinverse so-
lutions of systems of linear equations. BIT, 19(2), 145–163 (1979).

5. Cao, Z.H.: On the convergence of iterative methods for solving singular linear systems. J.
Comp. Appl. Math., 145(1), 1–9 (2002).

18 Tommy Elfving et al.

6. Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM
Review, 23, 444–466 (1981).

7. Censor, Y., Eggermont, P.P.B., Gordon, D.: Strong underregularization in Kaczmarz’s
method for inconsistent systems. Numer. Math., 41(1), 83–92 (1983).

8. Censor, Y., Elfving, T.: Block-iterative algorithms with diagonally scaled oblique projec-
tions for the linear feasibility problem. SIAM J. Matrix Anal. Appl., 24(1), 40–58 (2002).

9. Censor, Y., Elfving, T., Herman, G.T., Nikazad, T.: On diagonally relaxed orthogonal
projection methods. SIAM J. Sci. Comput., 30(1), 473–504 (2008).

10. Censor, Y., Gordon, D., Gordon, R.: BICAV: An inherently parallel algorithm for sparse
systems with pixel-dependent weighting. IEEE Trans. Medical Imaging, 20, 1050–1060
(2001).

11. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications.
Oxford University Press, New York (1997).

12. Eggermont, P.P.B., Herman, G.T., Lent, A.: Iterative algorithms for large partitioned lin-
ear systems, with applications to image reconstruction. Lin. Alg. Appl., 40, 37–67 (1981).

13. Elfving, T.: Block-iterative methods for consistent and inconsistent linear equations. Nu-
mer. Math., 35(1), 1–12 (1980).

14. Elfving T., Nikazad, T.: Properties of a class of block-iterative methods. Inverse Problems,
25(11), 115011 (2009).

15. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for
three-dimensional electron microscopy and X-ray photography. J. Theoretical Biology
29(3), 471-81 (1970).

16. Haltmeier, M.: Convergence analysis of a block iterative version of the loping Landweber-
Kaczmarz iteration. Nonlinear analysis, 71, e2912–e2919 (2009).

17. Hansen, P.C., Saxild-Hansen, M.: AIR Tools – A MATLAB package of algebraic iterative
reconstruction methods. J. Comp. Appl. Math., 236(8), 2167–2178 (2012).

18. Jørgensen, J. S., Sidky, E. Y., Hansen, P. C., Pan, X.: Empirical average-case relation
between undersampling and sparsity in X-ray CT. Inverse Problems and Imaging 9(2),
pp. 431–446 (2015).

19. Jiang, M., Wang, G.: Convergence studies on iterative algorthms for image reconstruction.
IEEE Trans. Med. Imag., 22(5), 569–579 (2003).

20. Keller, H.B.: On the solution of singular and semidefinite linear systems by iteration. J.
Soc. Indus. Appl. Math. Ser. B, 2, 281–290 (1965).

21. Kindermann, S., Leitão, A.: Convergence rates for Kaczmarz-type regularization methods.
Inverse Probl. Imaging, 8(1), 149–172 (2014).

22. Needell, D., Tropp, J.O.: Paved with good intentions: analysis of a randomized Kaczmarz
method. Lin. Alg. Appl., 441, 199–221 (2014).

23. Watt, D. W.: Column-relaxed algebraic reconstruction algorithm for tomography with
noisy data. Applied Optics, 33(20), 4420–4427 (1994).

	Introduction
	Sequential Block-Row Iteration
	Sequential Block-Column Iteration
	Implementation and Analysis of a Loping/Flagging Strategy
	Conclusion

