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AlGaAs is a promising material for integrated nonlinear 
photonics due to its intrinsic high nonlinearity. However, 
the challenging fabrication of deep etched AlGaAs devices 
makes it difficult to realize high performance devices 
such as low-loss dispersion engineered waveguides and 
high quality microring-resonators. Here, we reported a 
process to make high quality AlGaAs-on-insulator wafers 
where high confinement waveguides can be realized. 
Using optimized patterning processes, we fabricated 
AlGaAs-on-insulator waveguides with propagation losses 
as low as 1 dB/cm and microring resonators with quality 
factors up to 350,000 at telecom wavelengths. Our 
demonstration opens new prospects for AlGaAs devices 
in integrated nonlinear photonics. © 2016 Optical Society 
of America 

OCIS codes: (130.0130) Integrated optics; (230.7390) Waveguides, 
planar; (140.4780) Optical resonators.  
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Integrated nonlinear photonics has recently drawn increasing research interests as it provides compact solutions compared with conventional fiber devices. Silicon-on-insulator (SOI) has been proposed as a promising platform due to its high material nonlinearity and its compatibility with the CMOS industry [1]. The enhanced device effective nonlinearity induced by the strong optical field confinement and the low linear losses ensured by the mature silicon fabrication enable various nonlinear applications such as optical signal processing [2], parametric amplification [3], supercontinuum generation [4] and frequency comb generation [5]. However, silicon suffers from two-photon absorption (TPA) when operated below 2.2 μm, which hampers its applications at e.g. telecom wavelengths (around 1.55 μm). Aluminum gallium arsenide (AlxGa1-xAs) is also believed to be a promising nonlinear material [6,7]. It has a large transparency window and its intrinsic material Kerr (χ(3) ) nonlinearity (on the order of 10-17 m2W-1) [8-10] is larger than that of silicon. Due to its non-centrosymmetric crystal structure, AlGaAs also exhibit strong 
χ(2) effects [11,12]. Moreover, the bandgap of the AlGaAs material can be engineered by altering the aluminum composition (x) to 

avoid TPA at telecom wavelengths. In addition, the linear refractive index of AlGaAs (around 3.3) is also similar to silicon, which makes it potentially suitable for high-index contrast waveguides. Conventional AlGaAs waveguides are realized by deep-etching a thick layer stack epitaxial grown on a GaAs substrate. The layer stack typically consists of AlxGa1-xAs layers with different aluminum composition (x) where the index of the waveguiding layer is slightly larger than that of its adjacent top and bottom layers [8-10]. The fabrication of such waveguides with very high and narrow mesa structures is challenging, and increased sidewall roughness as the etch depth is increased is typically seen which severely affects the linear loss and thus the nonlinear efficiency. Significant efforts have been taken to improve the fabrication process over past years [6-12]. Recently, Porkolab et al. demonstrated low loss deep-etched AlGaAs waveguide by using a resist reflow technique [13]. However, more advanced designs than simple waveguide such as microring resonators with integrated waveguides are still difficult to realize with high performances. For instance, the achieved quality factors (Q) of AlGaAs microring resonators [15-17] are much lower than those of silicon devices [5]. Therefore, most of the nonlinear processes such as second harmonic generation (SHG) [11,12] and four-wave mixing (FWM) [8-10] are demonstrated in straight AlGaAs waveguides. In addition, the low vertical index-contrast of such AlGaAs waveguides limits its effective nonlinearity in spite of high intrinsic nonlinearity. We propose an AlGaAs-on-insulator (AlGaAsOI) platform [18,19] where a thin AlGaAs layer on top of an insulator layer resides on a semiconductor substrate allowing device patterning using an easy shallow etching process. In addition, thanks to the high index contrast in AlGaAsOI, strong light confinement waveguides can be realized to enhance device effective nonlinearities. However, compared with the conventional low-index contrast waveguides, the surface roughness control become more critical for high index contrast waveguides due to the stronger light fields at the waveguide-cladding interfaces. In this letter, we report a newly developed wafer bonding and substrate removal process to fabricate AlGaAsOI wafers with high quality surfaces. We also optimize patterning processes such as electron-beam lithography (EBL) and dry etching to get smooth device sidewalls. We fabricated sub-micron cross-sectional dimension waveguides with a linear loss as low as 1 dB/cm. We 
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including propagation and reflection losses) for adjacent harmonics. For the waveguides with different widths, the propagation loss difference with respect to the 600 nm-wide waveguide is then extracted by comparing the HARs for different waveguides as they all have the same chip facet reflections. As shown in Fig. 5(d), the propagation loss decreased from 2.3 dB/cm to 1 dB/cm when the width for 300 nm-thick waveguides is increased from 400 nm to 1 μm. The limit at 1 dB/cm may be attributed to top and bottom roughness or surface absorption [30]. 
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Wavelength (nm)  Fig. 6. (a) Top-view SEM image of the AlGaAsOI microring-resonator with an integrated bus waveguide. (b) Zoomed SEM image of the coupling region of this microring resonator. Measured (normalized) transmission spectrum of the microring resonator over a 20 nm wavelength range (c) and around the resonance at 1590 nm (d) with a loaded quality-factor (Q) of ~269,500. Fig. 6(a) shows the SEM image of a fabricated 17-μm radius microring resonator. The waveguide widths for the bus and microring are 430 nm and 700 nm, respectively. The bus-to-ring coupling gap is 240 nm as shown in Fig. 6(b). Fig. 6(c) shows the transmission spectrum of this device for the TE polarization where two mode families were observed. Fig. 6(d) shows the resonance for fundamental TE mode at 1562.8 nm, which has a line-width about 5.7 pm corresponding to a loaded Q of ~269,500. In the characterization, the power coupled onto chip is kept at microwatt level to avoid thermal effects. The microring resonator is operated in the under-coupling condition and the intrinsic Q can be calculated by = /(1 − )  [31], where T0 is the fraction of transmitted optical power measured at the resonance. The intrinsic Q for the fundamental TE mode of our device is then estimated to be ~3.5×105, which is the highest reported Q for microring resonators fabricated using III-V materials. In summary, we realized an integrated AlGaAsOI platform by using a newly developed process. We fabricated low-loss sub-micron waveguides and high quality factor microring resonators in this platform. The high confinement induced by the high-index contrast makes the AlGaAsOI platform very promising in various nonlinear applications such as optical signal processing [18] and frequency comb generation [19]. 
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