

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jul 09, 2018

Gaussian elimination is not optimal, revisited

Macedo, Hugo Daniel dos Santos

Published in:
Journal of Logical and Algebraic Methods in Programming

Link to article, DOI:
10.1016/j.jlamp.2016.06.003

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Macedo, H. D. (2016). Gaussian elimination is not optimal, revisited. Journal of Logical and Algebraic Methods in
Programming, 85(5, Part 2), 999-1010. DOI: 10.1016/j.jlamp.2016.06.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/83999299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jlamp.2016.06.003
http://orbit.dtu.dk/en/publications/gaussian-elimination-is-not-optimal-revisited(76a220d7-ab0b-4b23-8150-d0316b61c4a9).html

Gaussian elimination is not optimal, revisited.

Hugo Daniel Macedoa,b,1,∗

aDTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
bDepartamento de Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro, Brazil

Abstract

We refactor the universal law for the tensor product to express matrix multipli-
cation as the product M ·N of two matrices M and N thus making possible to
use such matrix product to encode and transform algorithms performing matrix
multiplication using techniques from linear algebra. We explore such possibility
and show two stepwise refinements transforming the composition M ·N into the
Näıve and Strassen’s matrix multiplication algorithms.

The inspection of the stepwise transformation of the composition of matrices
M ·N into the Näıve matrix multiplication algorithm evidences that the steps of
the transformation correspond to apply Gaussian elimination to the columns of
M and to the lines of N therefore providing explicit evidence on why “Gaussian
elimination is not optimal”, the aphorism serving as the title to the succinct
paper introducing Strassen’s matrix multiplication algorithm.

Although the end results are equations involving matrix products, our expo-
sition builds upon previous works on the category of matrices (and the related
category of finite vector spaces) which we extend by showing: why the direct
sum (⊕, 0) monoid is not closed, a biproduct encoding of Gaussian elimination,
and how to further apply it in the derivation of linear algebra algorithms.

Keywords: Tensor product, Matrix multiplication, Category theory

1. Introduction

A universal law is a central concept within the framework of category theory
assuring the uniqueness and existence of certain mathematical constructs. In
particular, the tensor product ⊗ universal law [1, Theorem 22] states that every
bilinear map β : V ×W → X is factorizable as the composition β = dσe · ρ of a
linear map dσe : V ⊗W → X after the tensor embedding ρ : V ×W → V ⊗W
which combines a pair of inputs V ×W , two spaces V and W , into a unique
input, the tensor space V ⊗W .

∗Corresponding author.
1The present work was supported by a grant from the CNPq, Conselho Nacional de De-

senvolvimento Cient́ıfico e Tecnológico - Brasil

Preprint submitted to Elsevier June 1, 2016

Matrix-matrix multiplication (MMM), the linear algebra operation at the
heart of many other operations, which when applied to suitable matrices A and
B, that is MMM(A,B), results in the matrix C = A × B, is a bilinear map
and therefore is suitable for the application of the universal law for the tensor
product. In other words, it is possible to factorize the operation MMM : Km×q×
Kq×n → Km×n as the composition of a unique linear map dσe : Km×q⊗Kq×n →
Km×n after ρ : Km×q ×Kq×n → Km×q ⊗Kq×n, the tensor embedding.

As it is folklore, linear maps on finite dimensional vector spaces correspond
to matrices [2], thus one could question: What is the matrix involved in matrix
multiplication? In this paper we address such question by reformulating it as:
What is a concrete matrix representation of the linear map dσe? Furthermore,
given that in the context of functions between sets one can define a function
that composes functions: Could one define a matrix σ that multiplies matrices?

This paper shows how an answer may be given by refactoring the tensor
product universal law which is synthetically encoded as the categorical diagram
(21). The generic spaces V , W , and X, interpreted as types/objects of the
maps/morphisms β, dσe, and ρ are instantiated with the MMM spaces: Km×q,
Kq×n, and Km×n respectively. Furthermore, β is instantiated with MMM in
the diagram (21) and we solve the equation encoded in it to calculate a matrix
σ that represents the linear map dσe.

Furthermore, the quest for such matricial representation of the linear map
dσe results in the factorization of MMM as the product of two matrices M ·N ,
where M = σ and N = (vecA ⊗ vecB). Such representation makes it pos-
sible to encode and transform matrix algorithms applying basic linear algebra
identities to the matrices σ and (vecA⊗ vecB). In section 5 we explore such
possibility and show matricial encodings and stepwise derivations of the algo-
rithms performing Näıve (28) and Strassen’s MMM (30).

The outcome of such derivations is beyond a pen and paper exercise on the
derivation of matrix multiplication algorithms because through an inspection of
the stepwise derivation of the Näıve algorithm performing MMM we explicitly
find that such algorithm is the result of applying Gaussian Elimination (GE) to
the columns of σ and to the lines of (vecA⊗vecB). Thus the derivation leads
us into a fruitful insight into a cornerstone paper [3] on matrix multiplication
algorithms.

Such paper was written by Volker Strassen, a famous German mathematician
known for his work on the analysis of algorithms and for introducing a MMM
algorithm on square matrices with n lines and columns performing better —
Strassen’s algorithm runs in O(n2.807) time — than its Näıve version — running
in O(n3) time. Although the title “Gaussian elimination is not optimal” one
does not find why, or an explicit connection between Gaussian elimination and
the Näıve MMM algorithm. The derivation in section 5 explicitly shows that
the Näıve algorithm for MMM is obtained by applying Gaussian elimination,
and as the Näıve MMM is not an optimal algorithm then the conclusion: GE
is not optimal.

Our full exposition expands and relies on previous research effort [4, 5, 6]
on the connection between the domain of category theory, linear algebra, and

2

computer science. Regardless, we encourage the reader to translate the sequence
denoted by ./ in equation (28) into a product of elementary matrices and to first
understand how such matrix product is performing GE on the (vecA⊗ vecB)
lines. Only afterwards and after exercising the matrix product formulation of
Strassen’s algorithm (30) using plain linear algebra we recommend delving into
the full exposition expanding the research connecting category theory, linear
algebra, and MMM algorithm derivation.

The full exposition is structured as follows: In section 2 we set up essential
background and identities that are needed to understand and justify in a cate-
gorical setting the stepwise justifications. The text is mainly an adaptation of
results from [4, 5] that we develop showing why when equipped with the direct
sum (⊕, 0) monoid the category defined lacks closing and thus not Cartesian
closed, thus not Turing complete. In section 3 we improve the translation of
the traditional specification of the GE in terms of elementary matrices into the
biproduct framework, derive new lemmas (18), and novel notation to specify
the column and line application of GE, equations (19) and (20), used in achiev-
ing the main results. In section 4 the tensor product universal law diagram is
translated into an equation (27) encoding matrix multiplication in terms of a
composition of two matrices. In section 5 we present a stepwise derivation of
matrix multiplication algorithms, and as a byproduct we show how GE is re-
lated to the Näıve MMM algorithm. Then in section 6 we finish the exposition
with some concluding remarks and possibilities for future work.

2. Background on the category of matrices

When dealing with matrices in a computational context we use a category
where matrices are the morphisms and the objects transformed are natural
numbers. We build upon the work in [5], but we chose not to depict matrices as
arrows with right to left orientation. Although it makes sense to draw arrows
backwards, due to the flow of matrix calculations, in a setting where we want
to mingle matrices (linear functions) with common (non-linear) functions we
opted to make morphism direction evolve.

The MatK category. The category of matrices has as objects natural numbers

and morphisms the linear maps, we write an arrow n
R // m to denote a

matrix which is traditionally denoted as an object in Km×n for a field K.

R =

 r11 . . . r1n
...

. . .
...

rm1 . . . rmn


m×n

n
R // m

MatK enables to define the type of a matrix at the correct abstract level when
dealing with the computational structure that does not depend on the rij ele-

3

ments 2.

Biproducts. The category MatK has biproducts, a biproduct diagram for the
objects m,n is a diagram of shape

m
i1
// r

π1oo π2 //
n

i2
oo

whose arrows π1, π2, i1, i2 satisfy the identities which follow:

π1 · i1 = idm (1)

π2 · i2 = idn (2)

i1 · π1 + i2 · π2 = idr (3)

Morphisms πe and ie for e ∈ 1, 2 are termed projections and injections, respec-
tively. And such morphisms satisfy the orthogonality property:

π1 · i2 = 0 (4)

π2 · i1 = 0 (5)

As there are as many biproduct diagrams, i.e. projections/injections pairs, as
basis of vector spaces of size r, we use coherent Einstein’s notation, e.g. πbe, i

b
e

to distinguish each biproduct family, therefore b is a label indicating to which
base the projections/injections belong.

MatK is self dual. The dual category of MatK, that is, the category with
the same objects but where every arrow is reversed, is itself, the category of
matrices MatK, intuitively the dual arrow is the transposition, which means

converting an arrow n
R // m into an arrow m

R> // n , that is, source and
target types (dimensions) switch over. By analogy with relation algebra, where
a similar operation is termed converse and denoted R◦, we use such notation
instead of R> and term “R converse” wherever reading R◦. Index-wise, we
have, for R :

R◦ =

r11 . . . rm1

...
. . .

...
r1n . . . rmn

 m
R◦ // n

Standard biproducts, the architecture behind blocked linear algebra. Below we

draw a diagram in which arrows of shape n
M // m represent matrices with n

(input) columns andm (output) rows. Given matricesR,S, U, V , other universal
matrices are brought to light explaining how the construction of a blocked matrix

2Assuming the elements are dealt with atomic machine operations, the programmer’s task
is to organize how to structure such operations.

4

(either by juxtaposition
[
R S

]
or stacking

[
U
V

]
) is made from the original

R and S by composition with biproduct (elementary) matrices π1 and π2 and
adding the results:

[
R S

]
= R · π1 + S · π2[

U
V

]
= i1 · U + i2 · V

p

m

R

==

i1
// m+ n

[
R S

]
OO

π1oo π2 //
n

i2
oo

S

aa

q

U

aa
[

U

V

]
OO

V

==

The computational content of projection matrices is indistinguishable from
no computation. Such matrices only select some values from the input and
transport it to the output unchanged, i.e. without any analysis/transformation
of the input values. We denote such matrices by π. An example well studied
in [5] are the π1 = [1|0] and π2 = [0|1] projections that appear naturally in the
case of matrix block operations.

For instance, the following equation captures the universal law of line stacked
matrix blocks.

X =
[
R S

]
≡

{
X · i1 = R
X · i2 = S

(6)

In it, it is expressed that for every matrix X that departs from a sum of objects
m + n to another object p, is (up to isomorphism) the juxtaposition/column
blocking of the matrices R and S, and also that such juxtaposition always exist.

As evidenced in this example, the computational result of i1 or i2 is just
a blind positioning of elements. Such operation can be easily discarded by
adjusting the operations consuming the juxtaposition.

Other universal laws may be derived as exercise, but we state the one asso-
ciated to the biproduct equations that is useful in the later.

X =

[
R11 R12

R21 R22

]
≡


π1 ·X · i1 = R11

π1 ·X · i2 = R12

π2 ·X · i1 = R21

π2 ·X · i2 = R22

(7)

From (7) we obtain a reflection property, we term it reflection because it is the

solution found for the equation id =

[
R11 R12

R21 R22

]
.

id =

[
π1 · i1 π1 · i2
π2 · i1 π2 · i2

]
(8)

Linear algebra calculation laws. The following equation is a core property of
categories of matrices over a field K. Whereas in categories with products and
coproducts without an additive group structure on morphisms the calculation of

5

a juxtaposition after a stacking is blocked, in MatK we develop the calculation
into a sum.

[
R S

]
·
[
T
V

]
= R · T + S · V (9)

The following “fusion”-laws which allows a matrix to be distributed into the
juxtaposition/stacking operators when in the left/right side respectively.

R ·
[
T V

]
=

[
R · T R · V

]
(10)[

R
S

]
· T =

[
R · S
T · S

]
(11)

And at last the exchange law, which interchanges the possible different ways to
construct blocked matrices.[[

R S
][

T V
]] =

[[
R
T

] [
S
V

]]
=

[
R S
T V

]
(12)

Although in [5] and the previous definition hint on how the dual object would
correspond to the traditional notion of transposition, in [5] one also proves the
following results for (standard) biproducts projections/injections pairs:

(πe)
◦ = ie
i◦e = πe

(13)

which capture that the converse of the projection e of a biproduct is its cor-
respondent injection e, in the previous biproduct e ∈ {0, 1}. Likewise for the
converse of injections. When exercising such proofs one discovers that the con-
verses of biproducts projections/injections are not plain matrix transposition,
but that happens in special cases.

Also needed in our calculations is the following property that relates converse
and stacking/juxtaposition operators:

[
R S

]◦
=

[
R◦

S◦

]
(14)

MatK is a Cartesian category. The biproducts and the 0-object, the natural
number 0, entail a Cartesian structure in the category. The usual direct sum
operator on vector spaces, ⊕, provides a bifunctor transforming objects m and

n into the object m + n, and matrices R, S into

[
R 0
0 S

]
. The direct sum

together with projections of the biproduct diagram allow to produce all bi-
nary products (m + n). Given that the 0 object exists and “empty” matrices
n // 0 exist, one forms the 0-ary product. By induction with base cases 0

and unary matrices, and inductive case the binary products we form a category
with all binary products, and thus the category is Cartesian.

6

In addition, a category with the structure (⊕, 0) is usually termed as a
Cartesian monoidal category. As it is well known by choosing the direct sum
as monoidal operator one does not obtain a Cartesian Closed Category (CCC),
a type of category that is known to model λ-calculus and therefore a Turing-
complete model, thus MatK with (⊕, 0) must be extended to obtain full com-
putation. As an aside, let us explain why the problem relies on the exponential
object that must exist to “close” the category.

MatK equipped with the (⊕, 0) monoid is not closed. The explanation starts
with an exercise on exponential diagrams. The universal law for exponentials
in Set entails an isomorphism:

B × C → A ∼= B → AC

A good exercise is to interpret matrices B and C as finite sets with size m and
n, and set A to be the field K of interest, but let us focus on its property that
is summarized in a diagram, where it is stated that a function with two inputs
can be specialized by passing the first input of type B, obtaining thus f , the
specialized function, which is an universal construct obeying:

B × C
f×id //

f
%%

AC × C

ev

��
A

What happens when porting such specialized arrow to the case of matrices?
One would speculate such diagram carries a rule for partial evaluation of matrix
multiplication. R would be the multiplication of R with the first part of the
input waiting to be fed with the second input to output the totality of the result:

n1 ⊕ n2
R×id //

R
&&

X ⊕ n2
ev

��
m

In fact the diagram should have the same shape and X would encode the space
of matrices n2 // m . By the shape of R and the universal law (6) we have

that R =
[
R1 R2

]
, thus R = R1 · π1 +R2 · π2. Moreover, the input matrix on

the right of R is of the shape

[
N1

N2

]
.

The obvious way to mimic functional specialization in MatK (meaning cal-
culating R) is to work it out at the Set level. Thus, assume in Set one has a
linear function R specializing matrix R, meaning:

R(N2) = (R1 ·N1) + (R2 ·N2)

7

As the shape of the function R is of the form b+ax it is an affine map, not a linear
one, which contradicts our assumption. Thus there is no matrix exponential in
the general case, at least if R1 is different from 0. And therefore, due to the
fact we have no exponential, the (⊕, 0) monoidal structure cannot be closed. To
obtain exponentials we need the tensor and its related vectorization operation.

Vectorization. The vectorization operation is well studied in [5], and the dia-
gram in (15) summarizes what we need to use in this paper.

Km×n
vec

))∼= Km·n

unvec

ii (15)

Such diagram expresses that the vec and unvec operations establish an
isomorphism between the type of matrices m × n this is the types n // m
and the type of vectors of size m · n, i.e. 1 // m · n . In this paper vec is
performed row by row.

Diagrams and combining categories. When dealing with mathematical concepts
that fit into several categories one needs to structure the ontology, and define
precisely what the dots and arrows of a diagram mean. For instance, the cate-
gory MatK just defined is the skeletal category of the FinVect category, where
morphisms are linear maps and objects are elements of a finite dimension vec-
tor space. And if we forget the linearity of such maps we start to reason in
terms of FinSet the category with finite sets as objects and functions between
such sets. In turn FinSet is a subcategory of Set where the finiteness is not a
requirement.

In our work for instance the matrices are both the tabular object, but as
well a linear map between finite dimension vector spaces, that are themselves
functions between finite sets. To make our diagrams meaningful we always
assume the objects and morphisms are in Set if not explicit mention is made
on the underlying category. Also, because we want to do matrix calculus with
some of the arrows we present in diagrams on Set we define a functor:

d e : MatK → Set

which enable us to promote matrices to the functions at set level, thus able to
lie in a Set diagram.

3. Encoding Gaussian elimination using biproducts

The algorithm that is run by a machine to compute the row echelon form
matrix corresponding to a given input matrix is termed Gaussian elimination.
Alternatively such algorithm can be expressed in terms of stepwise rewriting
transformations, that correspond to multiplication of the input with special
matrices, termed elementary. In this paper we rely on the second version keeping

8

in mind that it is possible to state GE procedurally without depending on matrix
multiplication.

Behind the GE algorithm there is an isomorphism between vector spaces.
The traditional algorithm transforms an input matrix into a row echelon form
matrix. Such isomorphism is visible in the application of GE to solve linear
equation systems Rx = b. Remember that to solve such equation one builds a
matrix

[
R b

]
, applies GE and later applies back substitution to obtain x. The

isomorphism is visible because the operations of the algorithm are performed
both in the matrix R and in the vector b, but its mathematical realization
depends on the already mentioned elementary transformations. Let us delve
into those.

Elementary matrices as biproducts. In the traditional curricula of linear algebra
there is a notion of elementary transformations. We focus on the ones we use
in this paper and are:

• Row switching - the transform Ei,j permutes the row i with row j.

• Row addition - the transform Ei,j(α) multiplies the elements of row i with
a non-zero scalar α and adds the result to row j.

Moreover, such transformations have a corresponding matrix representation,
and one is able to represent such operations using the biproduct structure. Let
us show projections/injections correspond to each transformations:

• Row switching - is a transform where the standard biproduct injections
are used, i1, and i2 as above, but their positioning is crucial. Analogous
to the swap mapping in functional programming, example:

E2,1 =
[
i2 i1

]
=

[[
0
1

] [
1
0

]]
=

[
0 1
1 0

]
• Row addition - is a transform where we use projections/injections which

were already dealt with in [5] (for example one can find the following ia1
and ia2 in Section 7 where a is replaced by ′). Such projections/injections
correspond to a different biproduct and to distinguish them we write an

a. The projections ia1 =

[
1
α

]
and ia2 =

[
0
1

]
perform the intended matricial

representation when juxtaposed:

E1,2(α) =
[
ia1 ia2

]
=

[[
1
α

] [
0
1

]]
=

[
1 0
α 1

]
Elementary properties. After encoding elementary matrices as biproducts one
is able to use the biproduct calculus in proving the properties of such matrices,
for instance we are able to build invertibility proofs for the elementary trans-
formations. Let us exemplify one of such invertibility proofs for a case of row
addition:

Ei,j(α)−1 · Ei,j(α) = id = Ei,j(α) · Ei,j(α)−1 (16)

9

In the following we give a sketch of the general proof, by exemplifying the
reasoning using matrices of type 2 // 2 . The proof evidences that the row
addition operation may be leveraged on the third biproduct equation, and the
biproduct calculus (note how the proof of (16) is just a rewrite of identities
starting on the left-hand side of such statement until the rewrite reaches the
right side).

E1,2(α)−1 · E1,2(α) =

[
πa1
πa2

]
·
[
ia1 ia2

]
{ (11) and (10) and (12)}

=

[
πa1 · ia1 πa1 · ia2
πa2 · ia1 πa2 · ia2

]
{ (8) }

id =

{ (3) }
= ia1 · πa1 + ia2 · πa2
{ (9)}

E1,2(α) · E1,2(α)−1 =
[
ia1 ia2

]
·
[
πa1
πa2

]

In a similar reasoning let us show how the biproduct calculus brings insight
on elementary operations by showing that the inverse of row switching is just a
matter of converses:

E◦i,j · Ei,j = id = Ei,j · Ei,j(α)◦ (17)

From the proof we conclude in the case of row switching the inverse is just
a converse E−1i,j = E◦i,j and the proof follows, as above, for a particular case in
equational reasoning style.

E◦1,2 · E1,2 =
[
i1 i2

]◦ · [i1 i2
]

{ converse of juxtapos. (14) and injections (13) }

=

[
π1
π2

]
·
[
i1 i2

]
{ (11) and (10) and (12)}

=

[
π1 · i1 π1 · i2
π2 · i1 π2 · i2

]
{ (8) }

id =

10

{ (3) }
= i1 · π1 + i2 · π2
{ (9)}

=
[
i1 i2

]
·
[
π1
π2

]
{ converse of juxtapos. (14) and projection (13) }

E1,2 · E◦2,1 =
[
i1 i2

]
·
[
i1 i2

]◦
It immediately appears as an extension of the proof of (16) with the addition

of the converse unfoldings.

The isomorphism in GE. Now that we detailed how elementary matrices act
and how the action is reversed, let us unveil the isomorphism associated with
GE. The following identity encodes the isomorphism of vector spaces one can
build in terms of a sequence (we denote by ./) of elementary matrices Ei,j(α)3,
and the reversed sequence ./◦ (The notation x← S means take elements x from
sequence S in the respective order). ∏

Ei,j(α)←./◦
Ei,j(α)−1

 ·
 ∏
Ei,j(α)←./

Ei,j(α)

 = id (18)

Given a matrix R one is able to choose an adequate sequence (./◦) of ele-
mentary matrices Ei,j(α), which when composed in that order on the right of
R perform the Gaussian elimination algorithm on the columns of R. We denote
the matrix obtained by applying GE on the columns of a matrix R by R←,
therefore the equality:

R←./ = R ·

 ∏
Ei,j(α)←./◦

Ei,j(α)−1

 (19)

The reverse of the previous sequence (./) allows one to perform Gaussian elim-
ination in the lines of suitable (correct dimensions and the sequence of elemen-
tary transformations achieves the desired row echelon shape) matrix L by post
composition (multiplication on the left-hand side):

L↑./ =

 ∏
Ei,j(α)←./

Ei,j(α)

 · L (20)

and as in the row case we write L↑ to denote the application of GE to the lines
of L. We use the previous definitions to uncover the GE involved in MMM
in Section 5, but before one needs to get hold of the matricial form for the
multiplication.

3We abbreviate notation by writing row switching Ei,j matrices as Ei,j(0) in the sequence,
although in the paper text we omit the 0 parameter.

11

4. Refactoring the tensor product universal law

This section shows how to express matrix multiplication as a composition of
two matrices. It follows from reading the theorem related to the universal law
of bilinear maps and searching for the matrix related to the unique linear map
that such theorem assures to exist.

Bilinear maps universal property. Let V , W , and X be vector spaces. Every
bilinear map β : V ×W → X can be factorized into the composition of a unique
linear map dσe after the bilinear map ρ that builds the tensor product of V
and W . Such property is called the universal property of tensor products and
is captured in the following diagram:

V ×W

β
%%

ρ // V ⊗W

dσe
��
X

(21)

which in short depicts the tensor product V ⊗W as the object associated with
the most general bilinear map ρ that can be built from the spaces V and W . As
an aside, universal properties involve an object, in this case the tensor space,
and morphisms, in this case the morphism ρ.

With a little reflection on the universal property (21) applied in the setting
of finite vector spaces one may imagine if there exists a unique linear mapping
then there exists a unique matrix involved in computing the product of two
matrices. Following that question we instantiate (21) with the spaces of the
right dimension obtaining:

Km×n ×Kn×p

MMM ((

ρ // Km×n ⊗Kn×p

dσe
��

Km×p

(22)

where it is not straightforward how to extract σ as a matrix. Notice how
such matrix would be multiplied on the left of a matrix with (m · n) lines
and (n · p) columns, thus although dσe could transform the (m · n) lines into
the number of lines m of the desired resulting matrix, σ cannot control or
change the number of columns of the resulting matrix given it is multiplied on
the left side. The types explicit that, for suitable R and S the composition

of (n× p)
ρ(R,S)// (m× n) and (m× n)

dσe // m , is an arrow n× p // m ,

but could never be p
R·S // m as desired. In summary, a matrix on the left

does not interfere with the resulting number of columns.
Before showing how to proceed to obtain dσe, let us detour and reflect on

the analogy with Set, where there is a function (·) composing functions. In
the following diagram we observe its type as the downwards diagonal arrow

12

and it is also depicted the possible universal decomposition of it into the space

S = (CA)
(BA)×(CB)

of the different ways to compose two functions.

BA × CB //

(·) $$

S

��
CA

The difference between Set and MatK which makes σ difficult to extract is the
fact that in Set the Cartesian product ×CB is a left adjoint of ˆC

B

, thus in
Set we have an exponential object, as we saw in Section 2 that is not the case
in MatK.

To overcome such problem, one could change the traditional tensor product
definition to be already in the expected shape p // m · n · n . In that case
we obtain the matrix involved in the matrix product after another bilinear map.
But in this paper we go further and derive a matrix computing matrix products,
after tensoring not the input matrices, but their isomorphic linearized versions.
For that we resort to (15), the un/vectorization operations:

Km×n ×Kn×p

(vec×vec)

��
Km·n ×Kn·p

dvecMMMe
**

ρ // Km·n ⊗Kn·p

dσe
��

Km·p

unvec
��

Km×p

(23)

where besides the un/vectorizations and ρ mapping every arrow is a matrix. To
reach further we can force ρ to be a matrix if we use the Cartesian product ⊕
of the MatK category:

Km×n ×Kn×p

⊕·(vec×vec)

��
Km·n ⊕Kn·p

dvecMMMe
**

ρ // Km·n ⊗Kn·p

dσe
��

Km·p

unvec
��

Km×p

(24)

13

From the diagram we obtain a characterization of matrix multiplication as a
composition of a matrix and the bilinear operator generating the tensor product:

dvecMMMe · d(vecR⊕ vecS)e = dσe · ρ · d(vecR⊕ vecS)e (25)

where dσe is linear, thus may be represented by a matrix. In summary, because
of its type ρ admits a matricial formulation, although not unique.

Equation (25) does not look useful, in fact one defines matrix multiplication
using matrix multiplication but not the R and S matrices to be multiplied.
Nevertheless, it is easy to note the rightmost composition of matrices is defining
the tensor of R and S:

ρ · d(vecR⊕ vecS)e = dvecR⊗ vecSe (26)

which can be defined using only element-wise multiplication of elements and no
matrix multiplication. Thus equation (25) rewrites into:

dvecMMMe · d(vecR⊕ vecS)e = dσe · d(vecR⊗ vecS)e (27)

Therefore we factorize matrix multiplication as a matrix σ multiplied by the
tensor product matrix of the vectorizations of the input matrices, which elim-
inates one of the matrix multiplications and when the right side is interpreted
as matrices (the d e is removed) we express MMM as a product of two matrices
σ · (vecR⊗ vecS).

5. Stepwise derivation of MMM algorithms

In this section we explore the formulation of MMM as a product of two
matrices obtained in (27) and refine it into the Näıve and Strassen’s algorithm,
keeping in mind the search for the non-optimality of GE.

5.1. Näıve MMM algorithm

For the sake of exposition completeness let us remember that to compute
the matrix product C of matrix A and B using the Näıve algorithm, that is:

C =

[
A11 A12

A21 A22

]
·
[
B11 B12

B21 B22

]
One relies on arithmetic and the algorithm prescribes the following four sums
and eight multiplications:

C =

[
A11 ×B11 +A12 ×B21 A11 ×B12 +A12 ×B22

A21 ×B11 +A22 ×B21 A21 ×B12 +A22 ×B22

]
Given there are algorithms requiring less operations the algorithm is not optimal.
Moreover, in such shape one cannot explicitly find the GE in it.

But we can explore the factorization of MMM as the product σ · (vecA ⊗
vecB) to encode and derive algorithms. To perform a stepwise derivation of

14

the Näıve MMM algorithm we need only to consider its vectorized form and
start form the left side of (27). We appeal to the hidden identity which lies
in every composition dot to make Gaussian elimination appear in the matrix
product algorithm as shown in the following derivation:

vecMMM · (vecA⊕ vecB)

{ (27) and (·) identity }
= σ · id · (vecA⊗ vecB)

{ iso. (18) and set ./ = [E7,1(1), E8,2(1), E15,9(1), E16,10(1), E9,3, E10,4]}

= σ ·

 ∏
Ei,j(α)←./◦

Ei,j(α)−1

 ·
 ∏
Ei,j(α)←./

Ei,j(α)

 · (vecA⊗ vecB)

{ def. of column GE (19) and (·)-associativity }

= σ←./ ·

 ∏
Ei,j(α)←./

Ei,j(α) · (vecA⊗ vecB)


{ def. of row GE (20) }

= σ←./ · (vecA⊗ vecB)↑./

A thorough inspection after performing the matrix arithmetic reveals σ←./
is computationally innocuous, because is corresponds to a projection π1 for a
biproduct where c = (4 + 12) and (vecA⊗vecB)↑./ is the space containing the
Näıve MMM algorithm in the subspace of size 4 that π1 projects. Therefore,
equation:

vecNäıveMMM(A,B) = π1 · (vecA⊗ vecB)↑./ (28)

encodes a non-optimal algorithm and the derivation shown evidences the algo-
rithm is the result of applying GE. Thus one wonders if that is what Volker
Strassen meant with: “Gaussian elimination is not optimal” [3].

5.2. Strassen’s MMM algorithm

Our work allows the study of the space of matrix multiplication algorithms in
matricial form, thus future research on what are the different space transforms
which are used to achieve different algorithms to multiply matrices is in order,
as a first step in that direction let us show how to encode Strassen’s algorithm
in matrix form.

The algorithm performs better than the Näıve matrix multiplication using
only 7 multiplication operations instead of 8. The strategy to multiply:

C =

[
A11 A12

A21 A22

]
·
[
B11 B12

B21 B22

]
is to define seven matrices Mj for j ∈ {1, . . . , 7} as

15

• M1 := (A11 +A22) · (B11 +B22)

• M2 := (A21 +A22) ·B11

• M3 := A11 · (B12 −B22)

• M4 := A22 · (B21 −B11)

• M5 := (A11 +A12) ·B22

• M6 := (A21 −A11) · (B11 +B12)

• M7 := (A12 −A22) · (B21 +B22)

and then obtain the resulting matrix summing such Mj matrices as follows:

C =

[
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

]
Using our approach, we obtain Strassen’s algorithm (in this paper we show

only the case where Ai,j and Bi,j are constants) again by performing elementary
transformations, but those are not the ones entailing GE, therefore the algorithm
improves the non-optimal Näıve multiplication algorithm. The algorithm has
again the shape we obtained previously:

σ ·

 ∏
Ei,j(α)←./◦

Ei,j(α)−1

 ·
 ∏
Ei,j(α)←./

Ei,j(α)

 · (vecA⊗ vecB) (29)

but this time ./ is a concatenation of the following components corresponding
to calculate each Mj matrix.

• ./
M6

= [E9,10(1), E1,10(−1), E2,10(−1)]

• ./
M1

= [E13,1(1), E4,1(1), E16,1(1)]

• ./
M3

= [E4,2(−1)]

• ./
M5

= [E8,4(1)]

• ./
M7

= [E7,8(1), E15,8(−1), E16,8(−1)]

• ./
M4

= [E13,15(−1)]

• ./
M2

= [E9,13(1)]

and with the components performing the sums:

• ./
C22

= [E1,10(1), E2,10(1), E13,10(−1)]

16

• ./
C11

= [E15,1(1), E4,1(−1), E8,1(1)]

• ./
C12

= [E2,4(1)]

• ./
C21

= [E13,15(1)]

and if one wants to obtain σ as a projection one has to apply as well ./
P

=

[E4,2, E15,3, E10,4]. Therefore, to encode Strassen’s algorithm let us define:

./= ./
M6

| ./
M1

| ./
M3

| ./
M5

| ./
M7

| ./
M4

| ./
M2

| ./
C22

| ./
C11

| ./
C12

| ./
C21

| ./
P

and factorize equation (29) into the shape of Strassen’s algorithm by defining the
sequences: ./

C
= ./
C22

| ./
C11

| ./
C12

| ./
C21

| ./
P

and ./
D

= ./
M6

| ./
M1

| ./
M3

| ./
M5

| ./
M7

| ./
M4

| ./
M2

to obtain the encoding of the algorithm in following form:

vec StrassenMMM(A,B) =

σ←./ ·∏
./
C

Ei,j(α)

 · (vecA⊗ vecB)↑./
D

(30)

where one observes a clear separation between the conquer phase where one sums
the matrices Mj and the divide phase where the calculation of such matrices is
performed. Such separation mirrors the two phases of the Strassen algorithm,
but one should notice several issues pop in our formulation: 1 - the order of
calculation of Mj matters, 2 - the rearrangement ./

P
is redundant.

6. Conclusion

The main question addressed in this paper is the search for the matrix σ
related to the linear map dσe prescribed to uniquely exist for every bilinear map,
thus for matrix-matrix multiplication (MMM) algorithms. As a byproduct of
such search, we refactor the tensor product universal law and express MMM as
a multiplication of matrices: σ · (vecA⊗vecB). We explore such expression to
encode the Näıve and Strassen’s algorithms after applying stepwise refinements
resulting in equations (28) and (30) respectively. As observed in section 5 the
stepwise derivation of the Näıve algorithm corresponds to apply GE to the
columns of σ and to the rows of (vecA ⊗ vecB). Such observation reinforces
the statement: “Gaussian elimination is not optimal” [3].

Regarding the search for the matrix which multiplies matrices we conclude
such matrix is not as generic as the function composing functions (f · g)(x)
which lies in a setting enabling the expression of: “apply function g to the input
x and the result of such operation g(x) to function f”. In the matrix case the
matrix composing matrices depends on the formulation of the tensor embedding
(26) which one is able to express in matrix form, but it depends on the input
matrices A and B and does not work as a matrix.

17

Our work expands previous research that has been applied to several com-
puter science domains [6, 7, 8, 9], but our exposition steps further some leaps
in the achievement of the original goal of combining category theory, linear al-
gebra, and computer science in the derivation of MMM algorithms [4, 5]. Our
work relies on an improved expression of the GE using biproducts in section 3
and adapts the original formulations to combine general set functions and finite
linear maps.

We envisage future research to extend our approach to other algorithms. The
approach can be used to study and derive practical algorithms with optimal
running times depending on the particular architectures. In addition, given
the current belief asserting MMM is in Ω(n2) we envisage a different proof
for such and for the optimal theoretical algorithm based on a good setting of
projections/injections. . . After all it is a quest for “the” optimal multiplication.

Acknowledgements.

The author would like to thank Edward Hermann Haeusler and CNPq-Brasil
for hosting and allowing this work. Thanks to the reviewers work and for the
insightful requests as is the case of the Strassen’s algorithm that derived into
subsection 5.2 and further conclusions.

[1] G. Birkhoff, S. Mac Lane, A survey of modern algebra (1977).

[2] S. Lang, Linear algebra. Undergraduate texts in mathematics (1987).

[3] V. Strassen, Gaussian elimination is not optimal, Numerische Mathematik
13 (4) (1969) 354–356. doi:10.1007/BF02165411.

[4] H. Macedo, J. Oliveira, Matrices As Arrows! A Biproduct Approach to
Typed Linear Algebra, in: Mathematics of Program Construction, Vol. 6120
of Lecture Notes in Computer Science, Springer, 2010, pp. 271–287. doi:

10.1007/978-3-642-13321-3_16.

[5] H. Macedo, J. Oliveira, Typing linear algebra: A biproduct-oriented ap-
proach, Science of Computer Programming 78 (11) (2013) 2160–2191. doi:
10.1016/j.scico.2012.07.012.

[6] H. D. Macedo, J. N. Oliveira, A linear algebra approach to OLAP,
Formal Aspects of Computing 27 (2) (2015) 283–307. doi:10.1007/

s00165-014-0316-9.

[7] J. N. Oliveira, Towards a linear algebra of programming, Formal Aspects of
Computing 24 (4) (2012) 433–458. doi:10.1007/s00165-012-0240-9.

[8] J. Oliveira, V. Miraldo, ”Keep definition, change category” - a practical
approach to state-based system calculi, Journal of Logical and Algebraic
Methods in Programming (2015) .doi:10.1016/j.jlamp.2015.11.007.

[9] D. Murta, J. Oliveira, A study of risk-aware program transformation, Science
of Computer Programming 110 (2015) 51 – 77. doi:10.1016/j.scico.

2015.04.008.

18

http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1007/978-3-642-13321-3_16
http://dx.doi.org/10.1007/978-3-642-13321-3_16
http://dx.doi.org/10.1016/j.scico.2012.07.012
http://dx.doi.org/10.1016/j.scico.2012.07.012
http://dx.doi.org/10.1007/s00165-014-0316-9
http://dx.doi.org/10.1007/s00165-014-0316-9
http://dx.doi.org/10.1007/s00165-012-0240-9
http://dx.doi.org/10.1016/j.jlamp.2015.11.007
http://dx.doi.org/10.1016/j.scico.2015.04.008
http://dx.doi.org/10.1016/j.scico.2015.04.008

	Introduction
	Background on the category of matrices
	Encoding Gaussian elimination using biproducts
	Refactoring the tensor product universal law
	Stepwise derivation of MMM algorithms
	Naïve MMM algorithm
	Strassen's MMM algorithm

	Conclusion

