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Pedras no caminho? 

Guardo todas, um dia vou construir um castelo… 

(Stones in my way? I save every single one, one day I´ll build a castle) 
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Abstract 

For decades, terrestrial microorganisms have been used as sources of 

countless enzymes and chemical compounds that have been produced 

by pharmaceutical and biotech companies and used by mankind. 

There is a need for new chemical compounds, including antibiotics, 

new enzymatic activities and new microorganisms to be used as cell 

factories for production. Therefore exploitation of new microbial 

niches and use of different strategies is an opportunity to boost 

discoveries. 

Even though scientists have started to explore several habitats other 

than the terrestrial ones, the marine environment stands out as a 

hitherto under-explored niche. This thesis work uses high-throughput 

sequencing technologies on a collection of marine bacteria established 

during the Galathea 3 expedition, with the purpose of unraveling new 

biodiversity and new bioactivities. Several tools were used for genomic 

analysis in order to better understand the potential harbored in 

marine bacteria.  

The work presented makes use of whole genome sequencing of 

marine bacteria to prove that the genetic repertoire for secondary 

metabolite production harbored in these bacteria is far larger than 

anticipated; to identify and develop a new phylogenetic marker for the 

identification of members of the Vibrionaceae family, which led to the 

identification of two new species using this straightforward pipeline; 

to discovery of new cytochrome P450 enzymes to be used in 
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biotechnology; and to a thorough study of the marine genus 

Photobacterium, by means of comparative genomics. 

In conclusion, this PhD thesis has contributed to our understanding 

of the marine microbial environment by studying genomic 

information of several marine bacteria, expanding the number of 

marine species taxonomically described, providing identification tools 

for further marine species documentation and pointing to these 

organisms as a very promising resource for further bioprospecting. 
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Dansk resumé 

Mikroorganismer isoleret fra jord har i årtier været en kilde til nye 

enzymer og kemiske forbindelser, der er blevet produceret af 

farmaceutiske og bioteknologiske virksomheder og anvendt af 

mennesker. Der er behov for nye kemiske forbindelser, herunder 

antibiotika, nye enzymatiske aktiviteter og nye mikroorganismer, der 

skal anvendes som cellefabrikker til produktion. Vi må derfor tænke i 

udnyttelse af nye mikrobielle nicher og anvendelse af forskellige 

strategier for at sikre en pipeline af nye opdagelser. Forskere er 

begyndt at udforske andre nicher end jordbunden, og her skiller 

havmiljøet sig ud som en hidtil under-udforsket niche. Formålet med 

dette phd-arbejde er at finde ny biodiversitet og ny bioaktivitet i 

marine bakterier. I arbejdet er anvendt analyse af genomer og gen-

sekvenser på en samling af marine bakterier, der er etableret under 

Galathea 3 ekspeditionen. 

Det konkluderes, ved analyse af hel-genom-sekvenser, at det genetiske 

repertoire for sekundær metabolit-produktion i disse bakterier er 

langt større end forventet; dvs som hidtil udforsket med klassisk bio-

assay-guided fraktionering. Desuden er genomsekvenserne anvendt til 

at udvikle en ny fylogenetisk markør (fur-genet) til identifikation af 

medlemmer af Vibrionaceae familien, hvilket har ført til identifikation 

af to nye arter. Genomerne er minet for potentielt bioaktive stoffer, 

her nye cytokrom P450 enzymer, der kan anvendes i bioteknologi, og 

de er klonet og udtrykt i både E. coli og gær. Endelig er komparativ 
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analyse af genomer-sekvenserne anvendt til en større fylogenetisk og 

genetisk analyse af den marine slægten Photobacterium.  

Samlet har dette ph.d.-arbejde bidraget til vores forståelse af marine 

mikroorganismer og deres diversitet, til udvikling af nye 

identifikations-redskaber samt peget på disse organismer som en 

meget lovende ressource for yderligere bioprospektering. 
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Resumo em Português 

Durante décadas, os microrganismos terrestres foram utilizados como 

fontes de inúmeras enzimas e compostos químicos que têm sido 

produzidos por empresas farmacêuticas e de biotecnologia e usadas 

pela humanidade. Existe uma necessidade de novos compostos 

químicos, incluindo antibióticos, novas actividades enzimáticas e de 

novos microrganismos para serem utilizados em produção 

biotecnológica. Por conseguinte, a exploração de novos nichos 

microbianos e a utilização de diferentes estratégias é uma 

oportunidade para intensificar estas descobertas. 

Embora os  cientistas tenham começado a explorar vários outros 

nichos para além do terrestre, o ambiente marinho destaca-se como 

um nicho ainda pouco explorado. Este trabalho utiliza as recentes 

tecnologias de sequenciação e aplica-as a uma colecção de bactérias 

marinhas, colecção esta estabelecidos durante a expedição Galathea 3, 

com o objetivo de desvendar nova biodiversidade e novas 

bioatividades. Foram utilizadas várias ferramentas de análise de 

genomas, a fim de melhor compreender o potencial presente em 

bactérias marinhas. 

O trabalho apresentado faz uso da sequenciação do genoma de 

bactérias marinhas para: provar que o repertório genético para a 

produção de metabolitos secundários presente nestas bactérias é 

muito maior do que o previsto; identificar e desenvolver um novo 

marcador filogenético para a identificação de membros da família 
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Vibrionaceae, que levou também à identificação de duas novas 

espécies; a descoberta de novas enzimas do tipo citocromo P450 para 

ser utilizados em biotecnologia; e para um estudo aprofundado do 

género Photobacterium, por meio de comparação de genomas. 

Em conclusão, esta tese de doutoramento contribuiu para 

compreender melhor o ambiente microbiano marinho, através do 

estudo da informação genética de várias bactérias marinhas, ampliou 

o número de espécies marinhas taxonomicamente descritas,

proporcionou o desenvolvimento de ferramentas para posterior 

identificação e classificação de espécies marinhas e comprovou que o 

estudo deste tipo de microrganismos poderá ser uma mais valia na 

descoberta de novos compostos, enzimas, etc. 
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1. Introduction

Terrestrial microorganisms have for decades been successfully used as 

a source of innumerable enzymes and chemical compounds, which 

have been put to use by pharmaceutical and biotech companies. 

Exploitation of new niches and use of different research strategies is 

required to boost the discovery of new chemical compounds, such as 

antibiotics, new enzymatic activities and new microorganisms to be 

used as cell factories for production. 

Approximately seventy percent of planet Earth is covered in Oceans. 

Hence it is no surprise that more than sixty percent of the global 

prokaryote distribution inhabits the environmental diverse oceanic 

environment 1. Nevertheless, the large majority of microbiological 

studies have dealt with the terrestrial microorganisms, since these 

environments were more accessible to researchers. In recent years, 

however, also the marine microbiota has become a topic of intense 

research 2–9. 

Consequently, several research groups and companies have turned to 

the marine environments with the hope of finding new enzymes, new 

chemistry, new metabolic pathways, or even new forms of life, that 

would help addressing the growing demand for efficient and 

biosustainable products 10–14. This coupled with the development of 

technologies for cultivating microorganisms and sequencing genes 

and genomes, have resulted in an increase of knowledge about the 

diversity and potential stored in the oceans 15–19. 
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In the research group of Professor Lone Gram at the Technical 

University of Denmark, we explore marine bacteria with the aim of 

finding strains and compounds that can be useful for mankind. In this 

PhD project we have used second and third generation sequencing 

technologies to obtain whole genome sequences (WGS) of bioactive 

marine bacteria from a unique collection of marine bacteria 

established during the Galathea 3 research expedition 20. The purpose 

of this thesis was to understand the genomic potential present in the 

studied marine bacteria and explore its possible applications. 

Although based on marine bacteria, the genomic approaches used 

throughout this PhD project can be applied in any field of 

Microbiology. 

1.1. The Galathea 3 collection 

The Galathea 3 global expedition took place in 2006/7 and navigated 

through the oceans (Figure 1). One of the seventy research projects on 

board aimed at isolating bacteria that generate bioactive molecules 

and could potentially be used as sources of novel antibiotics or as 

probiotic bacteria in marine aquaculture. The Galathea 3 bacterial 

collection is unique and consists of more than 500 bacterial strains, 

which have been isolated from all ocean environments due to their 

antagonistic activity towards the fish pathogen Vibrio anguillarum 20. 
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Figure 1 – Route of the Galathea 3 global expedition (www.galathea3.dk) 

Several strains were cultured, isolated and stored with the aim of 

identifying the compound(s) responsible for the bioactivity. Classical 

bioassay guided fractionation led to the isolation of several bioactive 

molecules including new chemical structures. For example, 

Photobacterium galatheae S2753 produces two novel compound 

families (solonamides and ngercheumicins), which interfere with 

virulence regulation in Staphylococcus aureus 21–23; and Vibrio 

nigripulchritudo S2604 produces a novel siderophore (nigribactin) 24. 

Moreover several known antibiotic compounds were re-discovered, 

including holomycin, an antibiotic previously only isolated from 

terrestrial streptomycetes, produced by P. galatheae S2753 6, and 

andrimid produced by Vibrio coralliilyticus S2052 6. Additionally, in 

pigmented Pseudoalteromonas, a range of antibiotic compounds 

(indolmycin, pentabromopseudilin, prodigiosin) were re-identified 
25,26. 
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1.2. Thesis Outline 

The thesis comprises an introductory segment (Chapters 1 to 6), 

where an introduction to the genomic Era and whole genome 

sequence applications is given, followed by Chapter 7, which includes 

six research articles based on the work performed during this PhD 

study. 

The PhD project focused on whole genome analyses of several marine 

bacteria, mostly from the Galathea 3 collection. The initial goal of the 

project was to resort to genome mining to identify new natural 

products and their biosynthetic pathways. The main question was if 

the chemistry so far identified from these marine bacteria matched the 

genomic potential within these organisms. In Chapter 7, Paper 1 in 

this thesis, we proved that the genomic potential of several marine 

species exceeds the chemistry so far identified. We were able to 

identify several clusters responsible for the production of known 

molecules, but also clusters that likely encode the biosynthetic 

machineries necessary to produce potentially new compounds 

(unpublished data). 

However the availability of whole genome sequences far exceeds one 

single application or opportunity, and soon several other features and 

details came to our attention. When studying the production of 

bioactive compounds such as siderophores and the Ferric-uptake 

regulator (Fur) protein (Paper 1), we noticed good species 

discrimination within the Vibrionaceae family could be found using 

the Fur protein sequence. Because phylogenetic relationships are 
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usually hard to determine in Vibrionaceae, and several 

misidentification of species regularly occur, we decided to explore the 

fur gene as a new phylogenetic marker in the Vibrionaceae family 

(Paper 2). This led not only to the proof of its usefulness but also to 

the identification of two new species within the family, 

Photobacterium galatheae (Paper 3) and Vibrio galatheae (paper not 

included in this thesis). We used this new phylogenetic marker for 

new species identification (V. galatheae) 27, but our main goal is to 

enable its use among the scientific, clinical and food-surveillance 

communities, which deal with the identification of isolates from the 

Vibrionaceae family. Therefore we developed a fur-database and an 

online tool, where submission of DNA sequences allows the 

identification of the isolate at the species level (Paper 4). 

We have also used the whole genome sequences in the description of 

three species, challenging the conservative nature of the microbial 

taxonomy community (e.g. Paper 3). In the reclassification of 

Alteromonas fuliginea (paper not included in this thesis) the power of 

these new taxonomic tools in resolving misidentification issues 

previously made using physiological or wet-lab molecular techniques 

is emphasized. 

Challenges associated with natural product discovery relate not only 

to their synthesis but also to the enzymatic complexity used in the 

tailoring of the produced compounds. Key enzymes in the production 

of many bioactive compounds are cytochromes P450, which often 

play a role in the tailoring of natural products in all domains of life 
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28,29. In Paper 5 we look at the cytochrome P450 diversity in marine 

bacteria and their potential application in biotechnology. Also, we 

demonstrate that such key enzymes can be cloned and expressed in 

model cell factories, such as Escherichia coli and Saccharomyces 

cerevisiae. 

Finally, in Paper 6 we look into the Photobacterium genus (the second 

largest genus in the Vibrionaceae family) and perform a comparative 

genomics study on this extremely versatile and heterogeneous genus. 
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2. The Genomic Era

Dr. Thomas Roderick first used the term ‘genomics’ in 1986 to 

describe the study and comparison of genomes of different species, 

including their evolution and relationships 30. Basically, genomics 

would require the use of DNA sequencing technology, followed by 

analyses using in vitro experiments and bioinformatic methodology to 

understand the structure and function of genes. 

The establishment of genomics was only possible because of the 

development of DNA sequencing technologies since the 1970s, which 

led to the exponential increase of sequencing projects 31–34. Sequencing 

became a main feature of biological research, leading to the definition 

of a genomic Era. 

2.1. Developments in Sequencing Technologies 

The initial DNA sequencing methods (first-generation sequencing 

technologies) were based on radioactive phosphorous (32P) and were 

extremely laborious and low-throughput 35–37. Developments on the 

Sanger sequencing technology, with the incorporation of modified 

and labeled nucleotides, use of higher throughput instruments and 

better algorithms for result reading, made Sanger sequencing a 

method of choice for decades. 

The first revolution happened with the development of the so-called 

Next-Generation Sequencing (NGS), now the second-generation 31–33. 
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The improvements and wide use of the second-generation sequencing 

technologies generated several opportunities in the field of genomics, 

but it also emphasized their limitations and the existing room for 

improvement 34,38. 

Although the methods had higher throughput than before, the quality 

of the sequencing results were actually poorer than the ones 

performed with older and more expensive techniques 15,16,33,39. These 

issues lead to the development of new single-molecule sequencing 

technologies, the third-generation of sequencing technologies. The 

read length in these methods is higher, sometimes up to 100 kb, more 

useful in the analysis of repetitive elements, which translates in a 

better whole genome reconstruction 15,33. Third-generation sequencing 

promises to once again revolutionize the sequencing field 34.  

A detailed description of the most used sequencing technologies is 

provided in Chapter 6 – Appendix 1. 
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3. Applications of Whole Genome Sequencing

The developments of sequencing technologies associated with the 

lower cost and higher throughput of DNA sequencing lead 

microbiology to a genomic Era 16,40. Statistics on the number of 

sequences and whole genome sequences deposited at GenBank – 

NCBI reflect this trend (Figure 2). Bacteria have smaller genome sizes 

as compared to the ones of higher organisms. Thus whole genome 

sequencing of bacterial genomes became affordable to most labs 

around the world; and soon high-throughput sequencing became part 

of many projects in the bacteriology field. 

Figure 2 – Number of sequences and whole-genome sequences deposited on 
NCBI (http://www.ncbi.nlm.nih.gov/genbank/statistics/). 

GenBank
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The generation of these whole genome sequences (WGS) provided 

several new avenues. It broaden our understanding of bacteria, 

brought WGS to more conservative fields such as taxonomy 41, and 

opened up new fields such as drug discovery by genome mining and 

single cell sequencing from environmental samples 12,42,43. 

The impact of sequencing technologies in bacteriology has been 

massive and we here describe some of the fields where this has 

happened and several of the opportunities it offered. 

3.1. Environmental Microbiology 

Earth’s biosphere is composed of networks of microorganisms, which 

are important for the ecosystem. Also such networks are important in 

industrial processes and directly for human wellbeing (e.g. human 

microbiome) 44. For all these reasons understanding of microbial 

communities, such as the organisms taking part, their physiology, and 

the interactions with each other and with other organisms is extremely 

important. 

Major questions in environmental microbiology sciences are: ‘who is 

there?’ and ‘what are they doing?’. Therefore systematics on the 

identification and naming of the identified organisms is very 

important. This systematical classification is named taxonomy. 
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3.1.1. Taxonomical Identification 

Taxonomy is one of the oldest fields in microbiology; the classification 

of fungi and bacteria goes back hundreds of years. In contrast, 

genomics is a very recent discipline, a few decades old. In the early 

years, bacterial classification was based on physiological traits of the 

different strains, mostly shape, which made it very unstructured. In 

1884 after the development of the Gram-staining 45, classification was 

made by Gram-positive, Gram-negative, Gram-variable or uneven-

Gram 46. Later, more complex phenotypic analyses were performed, 

such as fatty-acid analyses and growth conditions (temperatures, 

salinity, carbon-sources, etc.); followed by genetic analyses, which 

included DNA-DNA hybridization (DDH), the gold standard of 

species definition for many decades 41. 

3.1.1.1. Species determination 

With the introduction of Sanger sequencing, phylogenies based on the 

16S rRNA gene (and other genes) became of common use and started 

the molecular taxonomy Era 47. Today, with the use of whole genome 

sequencing, a new shift in microbial taxonomy is occurring. Several 

recent studies have been performed in order to validate the use of 

bacterial WGS in phylogenetic determinations 41,48,49. Table 1 

exemplifies the good correlation obtained between the wet-lab and in 

silico analyses of DNA-DNA relatedness.  
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Table 1 – Genomic DNA-DNA hybridization (DDH) percentages determined 
using in silico (diagonal up) and wet-lab approaches (diagonal down). Strains: 
S3431; P. citrea LMG 12323T; A. fuliginea DSM 15748. ND, not determined 
(Machado et al., 2016). 

The most accepted in silico method in taxonomy is the calculation of 

the Average Nucleotide Identity (ANI), since several studies have 

found that it correlates well with DNA-DNA hybridization (DDH) 

(Figure 3); a similarity value of 95 % ANI corresponds to a 70 % DDH 

similarity, being these the boundaries for species definition 48,50.  

Several online tools have been developed for WGS comparison, to 

infer the taxonomical relationship of two strains by comparing their 

WGS. One of the tools is a digital substitute of the wet-lab DNA-DNA 

hybridization 51, while others perform ANI or Average Amino-acid 

Identity (AAI) calculations 41,48. 

In silico DDH (% ± SD) 

S3431 LMG 12323 DSM 15748 

W
et

-la
b 

D
D

H
 (%

) 

S3431 19.9 ± 2.30 85.9 ± 2.37 

LMG 

12323 
20.2 19.6 ± 2.30 

DSM 

15748 
77.8 ND 
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Figure 3 – Correlation of ANI and in silico DNA-DNA hybridization values. 
Correlation performed using a selection of Photobacterium genomes representing 
several species (Machado & Gram, 2016). 

Although ANI determinations have been useful in taxonomy 

inferences, the thresholds used have failed in differentiating several 

species 41,49. Most of these cases are already known, since previously 

used taxonomy approaches have also failed to distinguish between 

these species. Examples of such cases are Escherichia coli vs. Shigella 

species, Bacillus anthracis vs. Bacillus cereus vs. Bacillus thuringiensis, 

Yersinia pestis vs. Yersinia pseudotuberculosis, Mycobacterium 

tuberculosis vs. Mycobacterium bovis, and Bordetella pertussis vs. 

Bordetella parapertussis vs. Bordetella bronchiseptica 41. 

3.1.1.2. Diversity analysis 

It is a fact that our understanding of bacteria was for years limited to 

the ones that could be grown in regular laboratory conditions. These 

y = 0.2493x + 77.326 
R  = 0.94859 
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are estimated to be only 1% of the whole bacterial diversity present in 

the environment 19,47,52. With the implementation of previously 

described molecular taxonomy methods such as the 16S rRNA gene 

this changed 53. Because of 16S rRNA gene conservation, it was 

possible to PCR amplify these genes without the need for cultivating 

the organisms present in a given sample, leading to the revelation of 

an immense microbial diversity previously overlooked 19,53. With the 

technological advances of sequencing technologies and the 

development of different protocols and data analysis pipelines, it 

became possible to have a more detailed look into the once unseen 

diversity 16,19,44,52,54. 

There are several methods used in environmental sample analyses 

(Figure 4), but the three main approaches are metagenomics, 

amplicon sequencing and more recently, single-cell sequencing 44. All 

these methods make use of second- or third-generation sequencing 

technologies in order to give the depth and high throughput needed in 

these projects and avoid the need for cultivation of all the organisms 

present in an given environment. These approaches can also be 

combined with each other or other methods in case there is a specific 

target organism or gene. 
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Figure 4 - Methods for microbial genomics. Standard metagenomics and sequence 
‘binning’ to generate microbial genomes (A). Targeted metagenomics by enrichment 
culture and sequence ‘binning’ to generate microbial genomes (B). Target 
enrichment of a given microorganism to produce a single microbial genome (C). 
Culture based isolation of a microorganism for an axenic culture and generation of a 
clonal microbial genome (D). Multiplex PCR-based single cell gene sequencing to 
generate multiple loci sequence information from single cells (E). Single cell whole 
genome sequencing by single cell isolation and whole genome amplification (WGA) 
(F). 44 

While metagenomics enables studies of the whole genetic diversity 

present in a given sample, amplicon sequencing relies on PCR to 
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amplify a given gene (e.g. 16S rRNA gene) and determines the 

diversity of sequences obtained, which can then be translated into the 

diversity of the sample 55–57. A huge drawback of these methodologies 

is the fact that one can not infer genetic coupling, because it is not 

clear if the genes identified are present within the same organism or 

different ones; only gene products encoded by the same organism can 

freely come in contact with each other and perform multiple 

enzymatic transformations or regulation of other genes 44. A recent 

study comparing metagenomics and amplicon-based methodologies 

in the study of microbial diversity identified an identification gap with 

amplicon sequencing, due to mismatches in the primer binding 

sequences of the 16S rRNA gene ‘universal primers’ 58. 

Another issue that can be encountered in this type of analysis is the 

variable number and possible low genetic variance of the sequenced 

gene. Regarding the 16S rRNA gene, although it is provides good 

differentiation at the genus level, it has several limitations in species 

distinction 59. This can be seen for the genera Pseudoalteromonas and 

Alteromonas, where species distinction using the 16S rRNA sequence 

is very poor for several Pseudoalteromonas species (Figure 5). 

The new single-cell sequencing approaches surpass this issue as it 

enables the almost full sequencing of a single organism without the 

need for cultivation 17,44,60. For example, in 2005, single-cell sequencing 

of a Bacillus sp. strain retrieved two different copies of the 16S rRNA 

gene. If using metagenomic or amplicon approaches this strain would 

be considered as two distinct organisms 17. 
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Figure 5 - Maximum likelihood phylogenetic tree based on 16S rRNA gene 
sequences of Pseudoalteromonas and Alteromonas type strains. Scale bar: 0,01 
substitutions per nucleotide site. Bootstrap support is indicated at nodes (1000 
replications). GenBank accession numbers are indicated. Salinispora arenicola 
ATCC BAA-917 was used to root the tree (not included in figure), GenBank 
accession number NR_042725 (Machado et al., 2016). 
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3.2. Clinical Microbiology 

Whole genome sequencing is also providing information on infectious 

diseases and epidemiology in clinical settings. With the widespread 

use of sequencing technologies, their application in clinical settings 

presents a great opportunity in disease agent surveillance and 

potentially control of bacterial infections 61,62. Many infection traits 

can be now more easily evaluated, including strain transmission 

within or between hospitals, antibiotic resistance evolution, 

identification of new bacterial pathogens and evaluation of genomic 

material exchange between pathogens 63. 

Several considerations have to be made when implementing WGS 

technologies in clinical microbiology: the cost, in-house or outsource 

sequencing, sequencing capacity, adaptability and data quality. 

Adding to the sequencing technology considerations, are the 

bioinformatics analyses performed downstream the process that 

should also be accounted for their cost, speed, automation, accuracy 

and detail 62. All the mentioned considerations present a barrier to the 

implementation of genomics in clinical settings, but larger hospitals 

and centers have already started to adopt WGS in diagnostics and 

epidemiological surveillance 63–65. The main potential applications of 

whole genome sequencing (WGS) in the clinical settings are: 

identification and typing, monitoring of antibiotic resistance and 

detection of virulence genes. 

 Owing to its potential, several investments have been made in the 

development of web tools that use WGS for clinical purposes. An 
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example of this is the Center for Genomic Epidemiology 

(www.genomicepidemiology.org), which aims at providing the 

scientific foundation for web-tools to be used in clinical settings, as 

well as at creating and validating of the databases used in these tools. 

It already offers several tools in phenotyping, typing and phylogeny 66–

72. 

3.2.1. Clinical Typing 

When identifying and tracing pathogens in clinical settings, typing is 

usually performed for epidemiological surveillance of outbreaks. 

Several methods of typing have been used: serotyping, ribotyping, 

multilocus variable number tandem repeat analysis (MLVA), pulse-

field gel electrophoresis (PFGE) and multilocus sequencing typing 

(MLST). Different methods have different resolution powers and the 

use of different methods in the characterization of a strain sometimes 

hampers strain comparison rather than helping it 62. 

The use of WGS may likely contribute to a more unbiased, easier and 

better comparison of strains from different laboratories, where 

different typing methods are used. For example, while MLST uses few 

housekeeping gene sequences in the typing of a specific strain, with 

WGS a higher number of genes could be used, hence providing a 

higher discriminatory power. Furthermore, with the more common 

use of WGS, typing according to single nucleotide polymorphisms 

(SNPs) has become a common method for distinguishing closely 

related strains and evaluating their evolutionary history 73. In the SNP 
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analyses WGS reads are mapped to a reference genome and SNPs are 

identified in the sequenced genome compared to the reference one. 

The Center for Genomic Epidemiology at DTU has contributed with 

several typing web-tools that can be used. An example is the MLST 

web-tool that has been developed using a set of genes from fully 

sequenced genomes, this allows classification of, for example 

Acinetobacter baumannii, Clostridium difficile and Escherichia coli 74. 

Also tools for serotyping prediction of E. coli using whole genome 

sequences, SerotypeFinder 71 or a fast taxonomy bacterial 

identification using whole genome sequencing reads, Reads2Type 75, 

are tools that will revolutionize the clinical typing, once whole genome 

sequencing reaches the common clinical settings. 

As previously described in the 3.1. Environmental Microbiology – 

3.1.1. Taxonomical Identification section, WGS offers the possibility 

of correct, almost flawless identification of strains at the species level 

without the need to perform time consuming phenotypic or other 

genetic tests. Therefore, the use of WGS as an identification tool for 

species where other methods are inconclusive seems very promising. 

One example is the recent report where WGS was used in the diagnose 

of neuroleptospirosis 64. More than 100 different infectious agents can 

cause encephalitis, making diagnose extremely difficult, and in this 

case, culturing methods did not work. Therefore, after several 

unsuccessful hospitalizations and treatments, clinicians used WGS to 

identify the infectious agent in the cerebrospinal fluid. 
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With the advances in the third-generation sequencing, it can also be 

envisioned a time where single-cell sequencing will be performed in 

diagnoses without the need for bacterial cultivation. 

3.2.2. Antibiotic Resistance Detection 

Drug-resistant pathogenic microorganisms are becoming a significant 

threat to public health, due to limited treatment possibilities. In order 

to avoid the increase of antibiotic resistance infections should be 

treated with efficient and narrow spectrum antibiotics. This way the 

use of antibiotics would decrease and pathogens would have a lower 

evolutionary pressure to acquire resistance. 

By sequencing the whole genome of a pathogen it is possible to 

identify genetic basis of resistance, therefore excluding treatments 

with antibiotics that the pathogen might be resistant to 76,77. This in 

silico approach of antibiotic resistance determination avoids the need 

to culture the pathogens and perform wet-lab antibiotic resistance 

assays, therefore saving time and expediting treatment adjustments 

that might be needed. 

Several online tools have been lately developed for a fast analysis of 

the bacterial resistance for clinical purposes, as previously mentioned 

the Center for Genomic Epidemiology has several tools available 

including ResFinder, for identification of resistance genes 67. Although 

its development dates from 2012, several updates have been made 
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throughout the years with addition of new resistance genes identified 

in recent studies. 

3.2.3. Virulence Profiling 

Another set of important genes to be identified in the clinical setting 

are the virulence genes encoded by the different pathogens. Virulence 

genes can be identified from WGS information, allowing a better 

understanding of the pathogen and help in the prediction of the 

course of disease, by knowing the capabilities of the pathogen. 

Tools to evaluate the pathogenic capabilities of a given bacteria by 

WGS analysis have been developed, such as PathogenFinder 68; but 

also to specifically identify known virulence genes that might have 

been acquired, for example VirulenceFinder 72. Using these it is 

possible to identify genetic basis of for example shiga or cholera toxins 

or virulence determinants like hemolysins or internalins. 

Furthermore, the analysis of WGS can potentially provide an 

understanding of the evolutionary events that led to the pathogenicity 

development and in this way expand the knowledge about bacterial 

pathogens and their interactions with the hosts. It has been previously 

mentioned that it is difficult to distinguish the species Bordetella 

pertussis, Bordetella parapertussis and Bordetella bronchiseptica even 

using WGS approaches (see section 3.1.1.1. Species determination). 

All these species colonize the respiratory tract of mammals and B. 

pertussis is a strict human pathogen causing whooping cough 78. 
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Genomic comparison of these species provided evidence that B. 

pertussis and B. parapertussis were independent derivatives of a B. 

bronchiseptica–like ancestor, and that differences in pathogenicity 

were related with a large-scale gene loss and inactivation by B. 

pertussis 79. Several other pathogens have been studied and the fact is 

that different pathogens thrive using different pathogenic approaches, 

making every case unique 79–81. 

3.3. Microbial Biotechnology 

Biotechnology consists of any technological application that uses 

biological systems, living organisms or derivatives thereof, to make or 

modify products or processes for specific use 82. It started with the use 

of microorganisms in the production of beer, cheese, yogurt and 

bread; and nowadays they are used in much broader applications in 

the chemical, food, pharmaceutical and biofuel industries, but also in 

bioremediation and agriculture. Here we focus on the 

biotechnological applications of bacteria as a source for drug and 

enzyme discovery, but also as cell factories for biosustainable 

production of chemicals, drugs and enzymes. 

3.3.1. Drug Discovery 

As previously mentioned, antibiotic resistance has become a clinical 

problem and a threat to human life 83. This is due to fast antibiotic 

resistance development by the pathogens, but also because the 
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pharmaceutical industries have failed to keep the antibiotic pipeline 

running 84–86. The technical developments on chemical synthesis were 

expected to supply the drugs of the future, thus natural product 

discovery was put aside because it was more laborious and expensive. 

But as chemical synthesis did not deliver, soon research turned back to 

natural products and a high percentage of new chemicals that are 

introduced into the markets by pharmaceutical companies are actually 

derived from natural products 87. 

During the last centuries, soil microorganisms have been exploited in 

the discovery of novel antibiotics and other drugs, supplying more 

than 80.000 natural products 88. The most explored genus in terms of 

secondary metabolites is probably Streptomyces 89–93. Several 

compounds with antifungal (nystatin, natamycin, amphotericin), 

antibacterial (chloramphenicol, streptomycin, holomycin) and 

antiparasitic (ivermectin) activities have been isolated from this genus 
94. 

A large number of bacterial natural products, including antibitoics, 

are produced as part of the so-called secondary metabolism and their 

biosynthesis relies on complex modular enzymes, such as non-

ribosomal peptide synthases (NRPSs) and/or polyketide synthases 

(PKSs), which are modular enzymes 95,96. 

The identification and study of the first biosynthetic gene clusters was 

done using PCR based approaches, which amplified NRPS and PKS 

domains 97,98. Later on, DNA libraries like metagenomics were used in 

the functional screening of biosynthetic clusters followed by 
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sequencing 99,100. The links established between natural products and 

the genetic makeup necessary for their production launched the 

genomic Era in drug discovery. This led to the great opportunity of 

using genetic material as a measure of the potential for the production 

of natural products by a certain organism 12,42,85,86,101,102.  

Several bioinformatic tools have been developed to allow the WGS 

analyses of the genetic potential of a strain for secondary metabolite 

production 42,85,86,102,103. These tools have become useful in measuring 

the potential of organisms to produce natural products, but also in 

matching identified compounds with their biosynthetic gene clusters. 

Thalossospiramides and salinosporamides are two examples where 

identification of the biosynthetic gene clusters allowed the 

understanding of the structural diversity of the compounds 104,105. In 

both cases different chemical structures correlated with differences in 

the biosynthetic gene clusters of the compounds. 

Numerous examples of bioactive molecule discovery using genome-

mining tools are available. Several of these are from the proliferous 

genus Streptomyces 106–110. Examples are the genome mining guided 

identification of new tris-hydroxamate tetrapeptide in Streptomyces 

coelicolor 107 and new sesquiterpene from S. avermitilis 110. 

Nowadays, new advances in natural product discovery have been 

made. Combinations of strategies using mass spectrometry analyses 

together with peptidogenomics and genome mining to build a 

molecular network of a given organism are being implemented 111. 
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This approach has been used in the recent report of the metabolic 

repertoire of ‘Entotheonella’ spp. 43. 

3.3.1.1. Bioactive Marine Compounds 

Even though scientists have started to explore several habitats other 

than the terrestrial ones, the marine environment stands out as a 

hitherto under-explored niche for new bioactive molecules 20,96,102,112,113. 

Previous studies have indicated that since the marine environmental 

conditions are very different from terrestrial habitats, novel 

compounds and chemical classes are present in this environment, and 

indeed some marine natural products are characterized by unique 

marine factors such as halogenation 10,114,115.  

During the last years our laboratory has demonstrated the potential of 

Gram-negative marine bacteria to produce an array of antibiotic and 

anti-virulence compounds 6,20–22,24–26,116. In this thesis, using WGS of 

some of these bacteria we were able to show that the potential for 

bioactive molecule production is much larger than previously 

identified by bioassay guided fractionation (Chapter 7, Paper 1) and 

identify some of the genetic basis for the production of known 

compounds (Figure 6).  
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Figure 6 – Previously known biosynthetic clusters identified using genome 
mining. Andrimid gene cluster from V. coralliilyticus S2052 (A) and holomycin 
gene cluster from P. galatheae S2753 (B). (Machado et al., 2015) 

The larger genetic repertoire for natural product biosynthesis has also 

been identified in other marine bacteria, such as cyanobacteria and 

actinobacteria 95,102,117,118. Marine actinobacteria from the genus 

Salinispora have been extensively studied regarding natural product 

biosynthesis 91,102,118. Several promising compounds have been have 

been isolated from this genus, with salinosporamides and 

lomaiviticins representing the most promising leads 119–121.  

Sponges have also gained a lot of attention in the natural product 

discovery field, because different chemical classes of compounds and 

new scaffolds were identified and are being used nowadays by the 

pharmaceutical industry 122,123. Many marine natural products have 

been isolated and identified from several different sources such as 

algae, sponges or molluscs; however, several recent studies have 

attributed the actual production of many of these compounds to 

microorganisms associated with the eukaryotic producer previously 

identified. Wilson et al., have in a recent study demonstrated that 

most of the natural product repertoire isolated from sponges is most 
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likely produced by previously uncultured bacterial symbionts 43. The 

study started by identifying different uncultured bacteria and archaea 

associated with the marine sponge Theonella swinhoei Y. From there 

whole genome sequencing followed by genome mining was used to 

identify the genetic potential of the “Entotheonella” species and find 

that “Entotheonella” was the symbiont responsible for most of the 

interesting chemistry identified in the previous studies done on the T. 

swinhoei sponges 43,124. 

Although useful in identification of biosynthetic gene clusters for the 

production of secondary metabolites, second-generation sequencing 

methodologies are very disadvantageous when analyzing repetitive 

sequences (see Chapter 6 – Appendix 1). As previously mentioned 

NRPS and PKS clusters are modular enzymes, with repetitive motifs 

(Figure 7). This makes it sometimes difficult to assemble such genetic 

information using solely second-generation sequencing technologies, 

which provide short readouts. Nowadays, combination of different 

technologies allows a faster and easier closing of bacterial genomes, 

therefore avoiding the loss of genetic information. For example, the 

cluster responsible for the biosynthesis of solonamide B remained 

unidentifiable until Photobacterium galatheae S2753 genome was 

resequenced using the PacBio third generation sequencing technology 

(Figure 7) 21,22. 
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Figure 7 – Putative solonamide B biosynthetic gene cluster. Solonamide B 
structure and schematic representation of the biosynthetic gene cluster assembled 
using second- and third-generation sequencing technologies (Machado, 
unpublished). 

3.3.2. Enzyme Discovery 

Microorganisms are not only a great source of antimicrobial 

compounds but they have also supplied many of the enzymes, which 

have been widely studied and applied in the biotech industry. There is 

a great interest in proteases, lipases, polysaccharide-degrading 

enzymes and also in extremozymes (enzymes from extremophile 

organisms) 7,125. 

New sequencing technologies brought great opportunities for enzyme 

discovery: in uncultivated organisms, using metagenomics or single 

cell sequencing; but also in the genomes of cultivated organisms. 

Moreover, the overall process has been expedited by allowing the 

immediate possibility of cloning and expression of these enzymes in 
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production organisms, therefore accelerating the path from 

identification to application. 

Genetic information coding for enzymes is much smaller than the one 

coding for secondary metabolite biosynthetic clusters. Enzymes are 

usual encoded by few kilo-base pairs, which makes it easier to use 

metagenomics approaches in enzyme discovery 8,56,126. When specific 

enzymatic functions are need, such as biomass degrading enzymes to 

be used in the production of biofuels, sequencing strategies to identify 

organisms and enzymes responsible for these functions can be put in 

place 127,128. There are several cases where metagenomics and single-

cell sequencing of uncultured organisms have been used to enhance 

the discovery of specific enzymatic functions, such as lignocellulolytic 

enzymes 127,128. 

The most common approach used in enzyme discovery is functional 

metagenomics, which simultaneously clones and evaluates expression 

and activity of a certain protein-coding gene. Although 

straightforward this methodology requires that the heterologous host 

used for expression (most often Escherichia coli) expresses the cloned 

gene and that the protein is well folded and active 8. Although it has 

been predicted that about 40% of the genes from different 

microorganisms could be expressed in E. coli 129, development of 

alternative heterologous hosts closer related to the species from the 

studied environments might be a more plausible option 8,126. 

With the identification of new marine taxa, certainly new enzymes 

and pathways will be discovered, enriching the enzyme variety 
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available to be used in biotechnology. Marine enzymes might present 

different activity features, when compared to their terrestrial 

counterparts. The enzyme properties, such as optimal pH, 

temperature and salinity will most likely reflect the environment 

where they have been evolving for years. 

Identification of a low-temperature-active lipase, two alkane 

hydroxylases from the deep-sea environment and other hydrolytic 

enzymes are some examples of enzyme discovery from the marine 

environment using the metagenomic approach 130–132. 

Another type of enzymes that has been gaining much attention in the 

last decades are cytochromes P450 (CYPs) enzymes. These enzymes 

can modify several types of compounds, usually by substrate mono-

oxygenation, and are of biotechnological interest due to their ability to 

perform challenging chemistry 28,133. In comparison with the 

membrane bound eukaryotic CYPs, the soluble bacterial CYPs are 

more stable and easier to express and purify 134. However, their use as 

biocatalysts in the biotechnological industry has not been fully 

explored. Marine bacteria are emerging as a reservoir of yet 

unexplored source of natural products, many of which are dependent 

on CYP-modifications and we have shown the presence of few CYP 

coding genes in these bioactive bacteria (Figure 8). Although the 

number of CYP enzymes in prokaryotes is not as high as in 

eukaryotes, diverse properties and activities might present new 

opportunities of usage (Chapter 7 – Paper 5). 
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Figure 8 – Overview of the number of identified cytochromes P450 (CYP) in 19 
marine bacterial genomes. Both members of alpha and gamma-proteobacteria were 
mined for putative CYPs. Strain names and numbers are referenced in the vertical 
axis with the NCBI whole genome sequence accession number in brackets. Black 
bars represent the number of CYPs identified per genome (Cavaleiro et al., 2016). 

3.3.3. Cell Factories 

A more recent focus in biotechnology is the use of microorganisms for 

the production of several products (e.g. enzymes, chemicals and 

biofuels). Previously, different species or strains would be tested to 

choose the best one, and these would be randomly mutagenized or 

adaptive laboratory evolved in order to optimize the producing 

organism. Today the strategies used in the design of cell-factories have 

been revolutionized by the developments in sequencing technologies, 

giving rise to the field of metabolic engineering 135–137. 

With the availability of WGS it has been possible to get a better 

understanding of the central metabolism and pathways present in a 
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given organism and predict which organism would be a better choice. 

For example, choosing an organism with high tolerance to specific 

compounds or one that does not encode for degradation pathways of 

the product to be produced 136. Furthermore, it made possible a better 

rational design of the cell-factory by genome engineering, rerouting 

and optimization of metabolic pathways, etc. 137. 

The discovery of new taxa is also an opportunity to discover new 

organisms to be used as new cell-factories in production. For example, 

Vibrio species have been previously suggested as good candidates due 

to their genomic and metabolic capabilities 138. A limitation in using 

new species in biotechnology is mostly the absence of genetic 

manipulation tools, which can be used in the design of these new cell 

factories. Another example is the use of actinomycetes in the 

production of drugs, where the limited genetic toolbox has been a 

restrictive factor and has now been targeted for improvement, thanks 

to the sequencing developments 139. 

Nevertheless, understanding of a production strain needs more than 

just a genomic evaluation. The second-generation of sequencing 

technologies also allowed the development of methods and protocols 

for RNA sequencing (RNAseq) 31. Combined with genome sequencing 

these RNAseq methods allow the qualitative and quantitative analysis 

of RNA transcripts in a population at a certain time, the so-called 

transcriptome. RNAseq studies gave a better understanding of 

regulatory and transcriptional responses occurring in the 

microorganisms used in biotechnological applications. Innumerous 
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studies have used this technique to identify tolerance mechanisms 

used by cell factories to cope with hazard substrates or products and 

the industrial production stresses 140. The analyses of transcriptomic 

and genomic data also made possible the creation of genome-scale 

metabolic models that are becoming more and more used in 

metabolic engineering for the efficient design of cell factories 137. 



35 

4.  Conclusions and Future Perspectives 

The opportunities arising from the developments of sequencing 

technologies are immense. Some of the fields that can greatly benefit 

from these developments have been introduced, and are also 

exemplified in Chapter 7 throughout the several research articles. 

The work presented in this thesis made use of whole genome 

sequencing of marine bacteria for: i) identification of biosynthetic 

gene cluster for the production of secondary metabolites, ii) 

taxonomical description of new species, iii) discovery of new 

cytochrome P450 enzymes, iv) identification and development of new 

phylogenetic markers to be used in clinical and environmental 

settings, and v) the better understanding of the Photobacterium genus 

by comparative genomics. 

Several examples of the practical applications of sequencing 

technologies are provided, specifically whole genome sequencing. 

These were mostly based on the second-generation sequence 

technologies, which have brought high-throughput to the sequencing 

field. New third-generation technologies promise to bring sequencing 

possibilities and applications to an even higher level. 

It is expected that third-generation sequence technologies can 

generate the genetic information from the uncultured bacteria and 

that this will allow us to develop a metabolic profile of these bacteria 

and generate laboratory culture conditions. This will allow further 

study, characterization and description of these new taxa, at the same 
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time untapping the genomic potential in many habitats and increasing 

our knowledge about the 99% of the unidentified microbial taxa. 

Furthermore, new taxa will most likely translate in the discovery of 

new compounds, enzymes and pathways that will bring microbiology 

to the foremost front of biosustainable production efforts of ultimately 

any product. 
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6. Appendix 1 – Sequencing Technologies 

6.1. First Generation Sequencing Technologies 

In 1975, Sanger and collaborators published the original Sanger 

sequencing method 1,2. This method used a DNA polymerase for 

extending a DNA sequencing, which would be labeled using 

radioactive phosphorous (32P) and then divided into two reactions 

types: one for amplification of the template DNA; and another 3’-

end degradation of the double-stranded template DNA. The 

amplification reaction would be performed four times in the absence 

of each nucleotide (“the minus system”), allowing correct 

amplification until the missing nucleotide; while the degradation 

reaction would be also performed four times in the presence of each 

nucleotide (“the plus system), and DNA template degradation would 

occur until positions where the used nucleotide was present (Figure 

1A). The samples would than be subjected to gel electrophoresis for 

result reading 1. 

At the same time Allan Maxam and Walter Gilbert were also working 

on a DNA sequencing method and in 1977 they published a new 

method for DNA sequencing 3. In this method a DNA molecule would 

be labeled with radioactive phosphorous (32P) and then cleaved in 

specific residues, depending on the reaction (cleavage reactions: 

A+G, A, C+T or C). The remaining labeled DNA molecule would be 

separated in a gel and the reading of the results from the four 
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different reactions would allow the determination of the DNA 

sequence (Figure 1B). 

Initially, Maxam and Gilberts method was widely used, but 

developments of the termination reactions in the Sanger sequencing, 

such as incorporation of modified nucleotides (di-deoxynucliotides - 

ddNTPs) and later labeled ddNTPs, made this technique less 

laborious and safer. Therefore Sanger sequencing became the 

method of choice for the next 30 decades. It benefitted with the 

automation processes in sample preparation but mostly in result 

reading and analyses, which made it a throughput technique that 

enabled the complete sequencing of the first human genome in 2004 

4,5. 

Figure 1 – First Generation Sequencing Methods. The principle of the 
Sanger sequencing method 1 (A). Example of a autoradiograph of a 
sequencing gel made using the Maxam and Gilbert sequencing method 3 (B). 

A B
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6.2. Second Generation Sequencing Technologies - 

Next Generation Sequencing (NGS) 

The Sanger sequencing kept being used and it is still used in smaller-

scale sequencing projects. However, with the success of the Human 

Genome Project, owing to the first complete sequence of the human 

genome, a need for better sequencing technologies was evident. The 

full sequence of the human genome had taken 14 years and an 

estimated cost of $3 billion US dollars 6, so the room for 

improvement was evident. 

Therefore, in 2004 a funding program was initiated by the National 

Human Genome Research Institute (NHGRI) to reduce the cost of the 

human genome to $1.000 US dollars in ten years 7. This was a great 

driving force behind the development and commercialization of Next 

Generation Sequencing (NGS) technologies, the second generation of 

sequencing technologies. 

6.2.1. 454 Sequencing 

The first NGS technology to reach the market was the 454 

sequencing by Life Sciences (now Roche) in 2005 8. This method 

relies on library construction by any method that is able to give a 

mixture of short adaptor-flanked fragments. These fragments are 

attached to beads, one fragment per bead, and each fragment 

amplified individually by emulsion PCR (Figure 2). After 

denaturation of unattached fragments, the sequencing takes place. 

During each sequencing amplification cycle (by means of a 

polymerase) a single species of unlabeled nucleotide is introduced 
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(Figure 2). If incorporation occurs, pyrophosphate is released and a 

light signal recorded (by the action of ATP sulfurylase and 

luciferase). The so-called pyrosequencing is therefore recorded in 

real time. The sequencing is not simultaneous for all the fragments 

since some might get ahead or behind others depending on their 

sequence and the order of base addition. 

Figure 2 – 454 Sequencing Workflow. The top panel outlines sample 
preparation. The bottom panel illustrates the pyrosequencing after 
incorporation of a nucleotide. PTP: picotiter plate. 9 

This technology is able to produce longer reads (maximum 1 kb), 

which is useful in several applications, and the running times are 

fairly fast (approx. 23 h). On the other hand, it is quite low 

throughput, with high reagent cost and presents high error rates 

when sequencing homopolymer repeats. Homopolymer repeats are 

consecutive instances of the same base, e.g. TTT or CCC. This occurs 
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because there is no control over multiple consecutive incorporations 

at a given cycle; the number of incorporations has therefore to be 

determined by light intensity and it is thus more error prone. 

454 sequencing use will most probably be discontinued, as Roche 

already announced the shut down of 454 and the supporting platform 

by mid-2016 (http://www.bio-itworld.com/2013/10/16/six-years-

after-acquisition-roche-quietly-shutters-454.html). 

6.2.2. Solexa/Illumina Sequencing 

Later in 2007 a new sequencing technology reached the market. This 

platform has in its origin the merging of four companies Solexa 

(Essex, UK), Lynx Therapeutics (Hayward, CA, USA), Manteia 

Predictive Medicine (Coinsins, Switzerland) and Illumina 10. 

As in 454 sequencing, libraries can be constructed by any method 

that gives rise to several hundred base-pairs adaptor-flanked 

fragments. These fragments are then bound in one end to a solid 

surface, which is coated with oligonucleotides complementary to the 

adaptors (Figure 3B). The single fragments are then amplified using 

bridge PCR, resulting in clusters of clonal fragments on the solid 

surface. After removal of unattached fragments by denaturation, the 

sequencing takes place. The reversible terminator nucleotides used 

in the sequencing have two modifications: a 3’ terminator moiety 

that allows a single nucleotide insertion and a fluorophore moiety 

specific for each nucleotide type (Figure 3C). After each cycle and 

image acquisition, both moieties are cleaved and the cycle is 

repeated. 
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Figure 3 – Solexa/Illumina Workflow. Library preparation (A). Cluster 
generation on solid surface by bridge PCR (B). Exemplification of 
sequencing using the fluorescent reversible terminator nucleotides (C). 11 

Currently Illumina has the highest throughput per run and the 

lowest per-base cost, performing sequencing of up to 300 base-pairs, 

which makes it compatible with most applications 10,12. The most 

common error type is substitution, instead of insertions or deletions 

(as for 454 sequencing of homopolymers), due to the use of reversible 

terminators that allow a single base amplification. Drawbacks are the 

need for tight control of sample loading, as high concentration of 

fragments might lead to overlapping clonal clusters and 

consequently low quality sequencing; and the need for sequence 

A B

C
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diversity of the fragment library, in order to have effective template 

generation with appropriate yields 6. 

6.2.3. Oligo Ligation Detection (SOLiD) Sequencing 

In the same year as Illumina, Sequencing by Oligo Ligation Detection 

(SOLiD) was released by Applied Biosystems (now Life Technologies) 

10. 

It also requires a library preparation of a mixture of short adaptor-

flanked fragments, that are subsequently bound to a bead for clonal 

fragment amplification by emulsion PCR, as in the 454 system. Beads 

containing the clonal fragments are then immobilized in a disordered 

array manner to a solid planar substrate. Sequencing occurs by the 

ligation of octamers to the fragment to be sequenced by a DNA ligase 

that extends the primer used. The readings are made using a 

flurophore in a determined position of the octamer, which is then 

cleaved right next to the base read and removal of the fluorophore. 

For example, if the fluorophore is in the 5th base of the octamer it will 

enable the reading of every 5th base (e.g. bases 5, 10, 15, 20, 25) 

(Figure 4). 
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Figure 4 – SOLiD Sequencing Principle. The bottom panel demonstrates 
the mechanism behind reading of two adjacent bases. 13 

SOLiD
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The reads for all the positions of the fragment are then obtained by 

using different length of primers plus octamers with fluorophores in 

the same position (e.g. the 5th position) or the same primer and 

octamer with fluorophores in different positions. A feature added to 

this system was a double reading of each base, by using octamers 

with fluorophores in two adjacent positions (e.g. 4th and 5th bases), 

improving this way the error correction. 

The fact that each base is read twice has made this technology to be 

claimed the most accurate with 99.94 % accuracy, possibly due to the 

fact that every base is read twice. Unfortunately this technology 

produces the shortest reads (maximum 75 bp) with relatively long 

running times. Because it is less widely use, kits and support services 

are less developed when compared to the Illumina technologies 6. 

6.2.4. Ion Torrent Sequencing 

More recently in 2010, Ion Torrent (now Life Technologies) brought 

to the market the Personal Genome Machine (PGM) 14. The system is 

similar to the 454 one, but instead of optical detection it uses 

semiconductor technology. 

A library of mixed short adaptor-flanked fragments is generated by 

any suitable method and then bound beads. The fragments in the 

beads are amplified using emulsion PCR to get clonal fragments. The 

beads are then placed on an Ion Chip, which was designed to detect 

pH changes in individual wells where each bead is placed. Each 

different nucleotide is supplied to the system and when 

incorporation occurs, a hydrogen atom is released creating 
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acidification of the well environment, which is registered by a 

detector that translated the level of acidification with the number of 

nucleotides incorporated. 

Figure 5 – Ion Torrent Sequencing Scheme. Structure of the Iron Torrent 
Chip used in pH-bsed sequencing (A) 11. Example of nucleotide 
incorporation with the release of hydrogen atoms (B) 
(http://www.chromosomechronicles.com/2011/04/12/ion-torrent-the-dark-
side-of-dna-sequencing/) 
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This technology does not need modified nucleotides or an optical 

reading system, which resulted in a faster, cheaper and smaller 

instrument and sequencing. The main problem of this technology is 

the previously mentioned homopolymers and the errors resulting 

from their occurrence. As for the 454 technology, because there is no 

control over the number of incorporated nucleotides during each 

cycle, during homopolymer sequencing the estimation is made by the 

calculation of a ratio, which might lead to insertion or deletion errors 

in the sequencing 6,11. 

6.3. Third Generation Sequencing Technologies Three 

third-generation technologies are nowadays commercially 

available: Pacific Biosciences (PacBio) Single Molecule Real Time 

(SMRT) sequencing, the Illumina Tru-seq Synthetic Long-Read 

technology and the Oxford Nanopore Technologies sequencing 

platform. The commercialization of these technologies open up the 

possibility of new applications, but these still need further 

development and improvements in order to compete with the widely 

used second-generation platforms. 

6.3.1. Pacific Biosciences (PacBio) Single Molecule Real Time 

(SMRT) Sequencing 

PacBio SMRT technology was introduced in 2010 and is so far the 

most established from its generation 15. The SMRT technology does 

sequencing-by-synthesis, it records the fluorescent nucleotides 



62 

incorporated in individual template molecules, therefore not 

requiring previous amplification of fragments as in the second-

generation technologies (Figure 6). The length of the reads produced 

can be up to 100 kb, although in average these are in the order of a 

few kilo basepairs (10 – 15 kb) 6,11,16. 

Figure 6 – PacBio SMRT Sequencing. Design of the SMRT cell and the 
principle behind single molecule real-time sequencing of the PacBio 
technology. The extremely small cells reduce the number of labeled 
molecules giving a more precise detection. The four-color nucleotides allow 
the real-time reading of the sequenced DNA. 13 

The occurrence of long reads is an advantageous in several 

applications, such as de novo sequencing of genomes, or analysis of 

repetitive sequences; nevertheless, the error rate in these reads is 

still quite high (approx. 15%). This method is fast, with running 

times of a few hours, but still low throughput and high cost, when 

compared to the widely used second-generation systems 6. 
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6.3.2. Illumina TruSeq Synthetic Long-Read Technology 

In 2012, Illumina TruSeq Synthetic Long-Read technology entered 

the market. As the name suggests, it relies on the amplification of 

approx. 10 kb barcoded fragments from a DNA template. The 

barcoding of the fragments allows the synthetic generation of the 

long reads after sequencing on a short read instrument. The 

synthetic long reads present a very low error rate (approx. 0.1%), 

which stands out from the higher error introduced in PacBio 

sequencing 16. 

This technology relies on long fragment amplification and is 

therefore biased by GC content and repetitive sequences, but also 

affected by early termination of amplification. Usage of this 

technology is even more expensive than PacBio, although it has 

already been used in few studies. 

6.3.3. Oxford Nanopore Technologies Sequencing Platform 

The latest technology introduced was Oxford Nanopore in 2014. The 

concept is simple, it makes use of a nanopore and electric current is 

applied. The current is monitored and as if forces single stranded 

molecules through the nanopore, different oscillations in the current 

correspond to the presence of different nucleotides in the nanopore 

(Figure 7). Several types of nanopores (biological and synthetic) are 

being tested, as well as improvements in the read measurements and 

software used. 
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Figure 7 – Oxford Nanopore’s Sequencing Strategy. DNA templates are 
ligated with two adapters. The first adaptor is bound with a motor enzyme 
and a tether. The second adaptor is a hairpin oligo that is bound by the HP 
motor protein. Changes in current that are induced as the nucleotides pass 
through the pore are used to discriminate bases. The library design allows 
sequencing of both strands of DNA from a single molecule (two-direction 
reads) 17 

This technology needs further development to reach its full 

potential, but it might become the cheapest and most portable 

sequencing method 6,16. The further developments achieved will 

determine its usage worldwide. During the writing of this thesis 

several improvements and opportunities of usage have been reported 
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for this technology, including the field studying of the Ebola 

outbreak in Africa 18. 
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Genome mining reveals unlocked bioactive
potential of marine Gram-negative bacteria
Henrique Machado1,2*, Eva C Sonnenschein2, Jette Melchiorsen2 and Lone Gram2

Abstract

Background: Antibiotic resistance in bacteria spreads quickly, overtaking the pace at which new compounds are
discovered and this emphasizes the immediate need to discover new compounds for control of infectious diseases.
Terrestrial bacteria have for decades been investigated as a source of bioactive compounds leading to successful
applications in pharmaceutical and biotech industries. Marine bacteria have so far not been exploited to the same
extent; however, they are believed to harbor a multitude of novel bioactive chemistry. To explore this potential,
genomes of 21 marine Alpha- and Gammaproteobacteria collected during the Galathea 3 expedition were
sequenced and mined for natural product encoding gene clusters.

Results: Independently of genome size, bacteria of all tested genera carried a large number of clusters encoding
different potential bioactivities, especially within the Vibrionaceae and Pseudoalteromonadaceae families. A very
high potential was identified in pigmented pseudoalteromonads with up to 20 clusters in a single strain, mostly
NRPSs and NRPS-PKS hybrids. Furthermore, regulatory elements in bioactivity-related pathways including chitin
metabolism, quorum sensing and iron scavenging systems were investigated both in silico and in vitro. Genes with
siderophore function were identified in 50% of the strains, however, all but one harboured the ferric-uptake-regulator
gene. Genes encoding the syntethase of acylated homoserine lactones were found in Roseobacter-clade bacteria, but
not in the Vibrionaceae strains and only in one Pseudoalteromonas strains. The understanding and manipulation of
these elements can help in the discovery and production of new compounds never identified under regular laboratory
cultivation conditions. High chitinolytic potential was demonstrated and verified for Vibrio and Pseudoalteromonas
species that commonly live in close association with eukaryotic organisms in the environment. Chitin regulation by the ChiS
histidine-kinase seems to be a general trait of the Vibrionaceae family, however it is absent in the Pseudomonadaceae.
Hence, the degree to which chitin influences secondary metabolism in marine bacteria is not known.

Conclusions: Utilizing the rapidly developing sequencing technologies and software tools in combination with
phenotypic in vitro assays, we demonstrated the high bioactive potential of marine bacteria in an efficient,
straightforward manner – an approach that will facilitate natural product discovery in the future.

Keywords: AntiSMASH, Genome mining, Pseudoalteromonas, Secondary metabolites, Vibrionaceae

Background
The discovery and development of new molecules for
medical treatment is in great need as the 21st century
unfolds. Drug-resistant pathogenic microorganisms are
becoming a significant threat to public health and the
pharmaceutical discovery pipelines have not been deliv-
ering the amount of new drugs required for efficient

disease treatment [1-3]. Chemical synthesis has devel-
oped to be faster and cheaper as compared to biological
screenings of organisms and extracts, however, chemical
synthetic libraries have not provided the expected novel
drugs and a high percentage of new chemicals that are
introduced into the markets by pharmaceutical compan-
ies are actually derived from natural products [4]. Most
of the natural products identified are produced by non-
ribosomal peptide synthases (NRPSs) and/or polyketide
synthases (PKSs) [5,6]. NRPSs and PKSs are multifunc-
tional modular enzymes that assemble small molecules
from monomers like pearls on a string. Both enzyme types
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have core domains responsible for the recognition of the
monomer, attachment to the enzyme, condensation and
chain-termination. Additionally, domains for tailoring the
monomers can be present. In case of PKSs, such as in fatty
acid synthesis, the monomers are acyl-CoAs, while NRPSs
connect naturally occurring as well as unnatural amino
acids to peptide chains. This wide range of possible sub-
units and the possibilities of their combinations lead to
the great diversity of polyketides (PKs) and non-ribosomal
peptides (NRPs) [7].
For the last century, soil microorganisms have been

isolated and screened intensively to discover novel anti-
biotics and other drugs, and, in total, microorganisms
have supplied more than 80.000 natural products [8].
Today, terrestrial Streptomyces is probably the best
exploited genus with respect to secondary metabolites
[9-13]. Streptomyces species produce a great diversity of
compounds with antifungal (nystatin, natamycin, ampho-
tericin), antibacterial (chloramphenicol, streptomycin, holo-
mycin) and antiparasitic (ivermectin) activity [14]. Also new
cultivation approaches are being used to culture new taxa,
which potentially can be a source of novel compounds, as
the recently described case of teixobactin [15].
Even though scientists have started to explore several

other habitats than the terrestrial, the marine environ-
ment stands out as a hitherto under-explored niche for
new bioactive molecules [6,16-19]. Previous studies have
indicated that since the environmental conditions are
very different from terrestrial habitats, novel compounds
and chemical classes are present, and indeed some mar-
ine natural products are characterized by the unique
marine factors such as halogenation [20-22]. Marine
natural products have been isolated and identified from
several different sources such as algae, sponges or mol-
luscs, however, several recent studies have attributed the
production of many of these compounds to microorgan-
isms associated with the eukaryotic producer previously
identified [23], bringing marine microorganisms to the
spotlight of natural product discovery.
Following the success of terrestrial streptomycetes as

producers of natural products, several researchers have
focused their search on marine actinobacteria and the
discovery of the first truly marine actinobacterium
Salinispora has provided a number of very interesting
bioactive compounds, including the anti-cancer compound
salinosporamide [24,25]. Also, subsequent mining of the
genome demonstrated an impressive number of potentially
bioactive gene clusters [16]. The Gram-negative proteobac-
teria have generally been thought to have less potential for
the production of bioactives than actinobacteria, however,
several bioactive compounds have been isolated from the
marine genus Pseudoalteromonas and more recently also
from strains of the Roseobacter clade and the Vibrionaceae
family [19,26-29].

Hitherto, the vast majority of bioactive compounds have
been found using a classical bioassay-guided process,
however, this bioprospecting of drugs is expensive and
time-consuming, and re-discovery of known compounds
is, despite dereplication steps, a major challenge. The
process of drug discovery is currently undergoing changes
as a result of the rapid developments in sequencing tech-
nology and synthetic biology. The number of whole mi-
crobial genomes and metagenomic data made publicly
available is increasing exponentially and therefore, (meta)
genome mining has become an extremely attractive tool
for drug discovery [2,3,16,30,31]. It has led to the develop-
ment of new bioinformatic tools used for screening and
identification of the genetic background of the bioactiv-
ities including gene clusters responsible for the production
of the novel molecules. Many of these clusters are prob-
ably silent under most laboratory culture conditions and
require induction [32]. Several of the bioinformatic tools
have been designed to search specifically for PKS and
NRPS clusters, of which the structure is conserved. Sev-
eral recent reviews provide a comparison between differ-
ent tools, considering their modus operandi [30,31].
AntiSMASH version 2 is a strong comprehensive tool

[30] and includes the use of several of the other tools
available, such as the CLUSEAN tools [33], NRPSpredic-
tor1/2 [34,35] and a method by Minowa et al. [36]. Even
though the occurrence of misidentifications is quite
common, it is preferable to “over-identify” rather than
missing potential gene clusters [30]. Therefore, comple-
menting antiSMASH analysis with more specific tools
aids in the gene cluster identification. In this study,
we used three other tools: BAGEL3 for the identification
of bacteriocins [37]; NapDos for the identification of
keto-synthase (KS-domains) and condensation domains
(C-domains) [38]; and NP.search for the identification
of whole gene clusters that may be composed of several
KS- and/or C-domains [39]. C- and KS-domains catalyze
the chain formation of the subunits (peptides or acyl-
CoAs), respectively and a high number of these domains
reflects the richness of bonds possibly made by an organ-
ism and the degree of diversity on non-ribosomal peptide
synthesis.
The strains investigated in this genome mining study

were isolated during the Galathea 3 global expedition in
2006/7. Antagonistic activity towards the human patho-
gen Staphylococcus aureus and the fish pathogen Vibrio
anguillarum were the main selection criteria [19]. The
Galathea 3 bacterial collection has been used in previous
studies where identification of new bioactive compounds
has been successful. For instance, Photobacterium halo-
tolerans strain S2753 produces novel compound families,
the solonamides and ngercheumicins, which interfere with
virulence regulation in S. aureus [40-42]. Vibrio nigripul-
chritudo strain S2604 produces a novel siderophore:

Machado et al. BMC Genomics  (2015) 16:158 Page 2 of 12



nigribactin [43]. However, also several known antibiotic
compounds were re-discovered, for instance, S2753
produces holomycin [28], an antibiotic previously only
isolated from terrestrial streptomycetes, and Vibrio
coralliilyticus S2052 produces andrimid [28]. Also, in
pigmented Pseudoalteromonas, we have re-identified a
range of antibiotic compounds (indolmycin, pentabro-
mopseudilin, prodigiosin) [44,45].
During the last five years, we have demonstrated that

marine Gram-negative bacteria produce an array of anti-
biotic and anti-virulence compounds [19,28,29,40,41,43-45]
and here, we ask the question if the classical biopros-
pecting approach had fully revealed the potential of
these bacteria. We present an in silico study of different
marine bacterial genomes, which were analyzed using
several of the prediction tools developed for the iden-
tification of secondary metabolism pathways, namely
antiSMASH, NapDos, Np.search, and BAGEL3 [37,46,47].
We combined the genome mining with phenotypic

evaluation of molecules potentially involved in production
or regulation of bioactive compounds; namely, quorum
sensing signals, siderophores and chitinases.

Results and discussion
Marine bacterial genomes – genome size
The genomes were assembled using CLC Genomics
Workbench 7 (CLC bio, Aarhus, Denmark) to obtain
contig-based draft genomes of the strains. These draft
genomes were then annotated using the Rapid Annotation
using Subsystem Technology (RAST) [48,49]. The subse-
quent analysis of the genomes was performed using CLC
Main Workbench 7 (CLC bio, Aarhus, Denmark).
The genome size varied between 3.6 and 6.2 Mb in the

21 sequenced strains (Table 1). In the six Vibrionaceae,
the genomes varied between 4 and 6.2 Mb, and the ge-
nomes of the eight Pseudoalteromonas spp. ranged from
4.1 to 6.1 Mb. The genomes of the five strains from the
Rhodobactereaceae family were slightly smaller; from 3.6

Table 1 Potential for production of bioactive secondary metabolites from 21 marine bacterial strains
Strain Species Genome

size (Mb)
Antibacterial
activity

AntiSMASH
(total hits)

BAGEL3 NapDos NP.search

KS-domains C-domains NRPS PKS Mix Trans PKS

S2753 Photobacterium
halotolerans

5.5 yes 12 0 3 19 1 0 1 0

S2052 Vibrio coralliilyticus 5.4 yes 7 2 7 13 2 0 2 0

S2043 Vibrio coralliilyticus. 5.4 yes 7 2 7 13 2 0 2 0

S2604 Vibrio nigripulchritudo 6.2 yes 9 0 6 17 1 0 0 0

S2394 Vibrio neptunius 5.2 yes 6 1 4 12 1 0 1 0

S2757 Vibrio sp. 4.0 no 2 0 5 0 0 0 0 0

S2040 Pseudoalteromonas
piscicida

5.3 yes 14 1 8 58 7 0 1 0

S2724 Pseudoalteromonas
piscicida

5.2 yes 10 1 7 30 2 0 2 0

S816 Pseudoalteromonas
agarivorans

4.4 no 2 0 5 0 0 0 0 0

S3258 Pseudoalteromonas
ruthenica

4.1 yes 3 0 5 0 0 0 0 0

S3137 Pseudoalteromonas
ruthenica

4.1 yes 3 0 5 0 0 0 0 0

S4054 Pseudoaltermonas
luteoviolacea

6.1 yes 20 1 14 48 3 0 4 1

S2471 Pseudoalteromonas rubra 5.8 yes 17 2 12 56 3 0 2 1

S2151 Halomonas sp. 5.2 no 5 0 7 0 0 0 0 0

S3726 Marinomonas sp. 5.4 yes 5 0 6 17 2 0 0 0

S2292 Spongiobacter sp. 4.7 yes 5 1 3 3 0 0 0 0

S4079 Loktanella sp. 3.6 no 5 1 3 3 0 0 0 0

S4493 Paracoccus sp. 4.0 yes 11 1 3 2 0 0 0 0

S1942 Ruegeria mobilis 4.8 yes 8 1 4 1 0 0 0 0

F1926 Ruegeria mobilis 4.6 yes 9 0 5 1 0 0 0 0

DSM17395 Phaeobacter inhibens 3.8 yes 9 + 1 0 4 1 1 0 0 0
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to 4.8 Mb. The in vitro bioactivity (antibacterial activity
measured as zone size) [19] did not correlate to the gen-
ome size (Table 1).
It has been suggested that the potential for production

of secondary metabolites would be related to genome
size [11,50,51], with a larger genome allowing more
genes to be allocated to secondary metabolism. This no-
tion was to some extend developed by studies of the
genus Streptomyces which is a prolific producer of sec-
ondary metabolites and has relatively large genomes of
approx. 8 Mb in size as compared to other bacteria. This
understanding is changing, as the marine actinomycete
Salinispora sp. has a genome size of approx. 5 Mb, of
which approx. 10% is dedicated to secondary metabolism,
whereas only approx. 8% of the genome of Streptomyces
coelicolor has been reported as dedicated to secondary
metabolism [11,16].

Identification of gene clusters potentially encoding
secondary metabolites
The genomes were mined using bioinformatic tools for
the identification of clusters involved in secondary me-
tabolism, namely antiSMASH, NapDos, Np.search, and
BAGEL3 [37-39,47]. We found a high genetic potential
for secondary metabolite production also in Gram-negative
marine bacteria with genome sizes ranging from 4 to
6 Mb, with some strains reaching the considerable number
of eight distinct PKS/NRPS clusters (Table 1 – NP.search).
However, some strains with similar genome size harbored
none or very few potential bioactive clusters and thus,
there was no clear correlation between genome size and
number of secondary metabolism gene clusters. Some
strains, such as V. nigripulchritudo S2604 or Halomonas
sp. S2151, with larger genomes had a low number of hits;
and also contrarily, strains with smaller genomes had a
greater number of hits e.g. P. piscicida strains S2040 and
S2724 (Table 1).

Bioactivity potential - NRPS/PKS
The presence of gene clusters likely encoding bioactive
compounds is spread among the different families of
Alpha- and Gammaproteobacteria. Although our collec-
tion is limited in number, it appears that the Gamma-
proteobacteria class is richer in NRPS and PKS clusters
than the Alphaproteobacteria. The analysis using NapDos
and NP.search, in general, identified the same number of
potential bioactive gene clusters. A higher frequency of
KS- and C-domains was identified in pigmented Pseudoal-
teromonas strains (S2040; S2724; S4054; S2471) followed
by Vibrionaceae, with the exception of S2757 (no hits),
and Marinomonas sp. S3726 (high number of hits).
Some species in the Rhodobactereaceae family (Ruegeria

mobilis and Phaeobacter inhibens) are capable of inhibit-
ing a wide range of other bacteria [52-54]; however, in

general, few secondary metabolites have been identified
in these strains [54-57]. Here, we show that using bio-
informatics tools a few clusters could be identified, but
still the bioactive potential harbored in the genome of
these genera appears much lower than that observed in
Gammaproteobacteria.
A number of strains that were not antagonistic in

agar-based assays were included in the analysis and these
contained only few gene clusters potentially coding for
secondary metabolites (Table 1). This was the case for
Vibrio sp. S2757 and P. agarivorans S816, for which anti-
SMASH identified only two potential clusters (Table 1).
Another interesting group of strains included those

that received five hits in total in the antiSMASH analysis.
This includes the bioactives Marinomonas sp. S3726 and
Spongiobacter sp. S2292 and the non-bioactives Halomo-
nas sp. S2151 and Loktanella sp. S4079. Although, all of
them had a considerably lower number of hits in the anti-
SMASH analysis than the pigmented pseudoalteromo-
nads and the vibrios, the results of the other mining tools
(NaPDoS) demonstrate that Marinomonas sp. S3726 has a
great potential with 6 KS- and 17 C-domains identified
(Table 1). Thus, the sole number obtained by one given
analysis tool may not reflect the whole potential of the or-
ganism, and complementary analysis should be performed
to ensure discovery of the full bioactive potential. This
should also be done to avoid further work on clusters that
may not be true secondary metabolite clusters, it appears
from the analysis that NapDos and NP.search tools
seemed to identify only a subset of the NRPS/PKS clusters
identified by antiSMASH.
The potential for secondary metabolite production in

the strains is clearly much larger than so far identified by
bioassay-guided fractionation. For instance, the PK/NRP
hybrid andrimid has been identified as the bioactive com-
pound in V. coralliilyticus S2052 [28,29,58,59]. The gen-
ome mining identified the gene cluster likely encoding for
andrimid production genes (Figure 1(A)). Also, we found
at least three more NRPS clusters using antiSMASH, Nap-
Dos and NP.search (Table 1). Similarly, in P. halotolerans
S2753, the dithiolopyrrolone holomycin was identified in
extracts [28] and the corresponding gene cluster was
found by the bioinformatic tools used (Figure 1(B)); again,
four more NRPS/PKS clusters were found using anti-
SMASH, although only one more was discovered when
using NP.search (Table 1). As indicated, we and others
have identified several bioactive compounds from pigmen-
ted pseudoalteromonads and here we also identified the
respective gene clusters for indolmycin [44], violacein [60]
and pentabromopseudilin [5,61,62]. However, the pig-
mented pseudoalteromonads contained a large number of
potential bioactive clusters, including a very high number
of C-domains as compared to the other studied strains
(NapDos – Table 1).
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The case of Pseudoalteromonas ruthenica
In in vitro assays, Pseudoalteromonas ruthenica is highly
antagonistic against S. aureus and V. anguillarum caus-
ing large clearing zones in agar-based screening assays
[19]. However, we have not been able to identify the
compound(s) responsible for this inhibition by bioassay-
guided fractionation and anticipated that genome mining
would reveal potential bioactive gene clusters. Anti-
SMASH identified three gene clusters (one for sidero-
phore and two for bacteriocin biosynthesis), but only
the siderophore cluster was correctly identified, whereas
the bacteriocin-related clusters were misidentified and
encoded the flagella operon and a cluster encoding for
hypothetical proteins, a muramoyltetrapeptide carboxy-
peptidase and a 2,3,4,5-tetrahydropyridine-2,6-dicarboxy-
late N-succinyltransferase, involved in the biosynthesis of
peptidoglycan and lysine, respectively.
A second analysis of the P. ruthenica strains with anti-

SMASH based on PFAM domain probabilities increased
the number of potential gene clusters from three to thir-
teen. Mainly clusters encoding for acyl carrier proteins
were identified, but we also identified some biosynthetic
clusters such as lipopolysaccharide, capsular polysac-
charide, legionaminic acid and fatty acid biosynthesis.
From all the clusters, only one matched with the RAST
annotation as behaving an open reading frame (ORF)
encoding a non-ribosomal peptide synthase. Yet this
ORF was only 663 bp, and when we blasted the pre-
dicted aminoacid sequence against the NCBI protein
database, it presented a high similarity with a methionyl-
tRNA formyltransferase and not to an NRPS. In agree-
ment with these were NapDos and NP.search, which did
not identify any potential bioactive clusters (Table 1).
This reduces the likelihood that the clusters identified
by antiSMASH using PFAM domains are actually clusters
responsible for the production of bioactives.
In genome mining, the identification of clusters likely

involved in secondary metabolism, such as NRPS and
PKS, have been used as a measure of the potential for

finding novel natural bioactive compounds, including
antibiotics [63]. Yet, all the bioinformatic tools used to
search for the biosynthetic capabilities and potential of
P. ruthenica failed. This might be the case because the
antagonistic activity is due to other biosynthetic path-
ways as is for instance the case with the antibiotic tro-
podithietic acid produced by some Roseobacter clade
bacteria [64]. Also, it can be attributed to limitations in
the prediction algorithms. The prediction algorithms of
the bioinformatic tools are to some extend based on
identification of known biosynthetic activities and one
could speculate that truly novel biosynthetic pathways
would not be identified. To identify the core genes of a
biosynthetic pathway, most of the tools available use
profile-HMMs or alignments of conserved domains in
biosynthetic enzymes [30]. This is a problem in the iden-
tification of non-standard pathways and antiSMASH has
therefore implemented an algorithm to identify the dis-
tribution of protein domains usually associated with sec-
ondary metabolites [30], increasing the probability of
identification of clusters responsible for secondary me-
tabolites production. This not only increases the number
of hits, but also the time needed for evaluation of the
clusters, raising the question of the feasibility of using
genome mining in groundbreaking discoveries.

Bacteriocins
The number of clusters identified by antiSMASH as bac-
teriocins varied between one and five in each strain, with
an average of two clusters per strain. However, when the
genomes were analyzed using the prediction tool
BAGEL3 [37], the presence of bacteriocin-related genes
was only confirmed in a few strains. The distribution of
bacteriocin clusters did not follow a particular pattern
with respect to genera or species.
It seems evident that the specific prediction tools are

more accurate in identifying their defined target; therefore,
BAGEL 3 being most probably a better indicator of
the number of bacteriocin-related genes than antiSMASH

Figure 1 Previously known clusters identified in the studied marine bacteria, using genome mining. Andrimid gene cluster from V. coralliilyticus
S2052 (A); Holomycin gene cluster from P. halotolerans S2753 (B).
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itself. This becomes more evident from the P. ruthenica
case, where random genes were classified as bacteriocins
(see above).

Acyl homoserine lactones
Four of the 21 strains induced a clear response in the
AHL (acyl homoserine lactone) biomonitors (Table 2).
Three strains, Vibrio sp. S2757, Paracoccus sp. S4493
and P. luteoviolaceae 4054 induced both monitors whereas
P. inhibens DSM17395 induced only A. tumefaciens. This
is in agreement with previous studies where also Phaeo-
bacter sp. strain S27-4 induced A. tumefaciens and chem-
ical analysis identified 3-hydroxy-decanoyl-homoserine
lactone [64]. Interestingly, antiSMASH detected homoser-
ine lactone synthases in three of these four strains but not
in Vibrio S2757. The response in the monitor strains could
be caused by other compounds, such as diketopiperazines
that have been demonstrated to induce the AHL
monitors [65]. The same could be true for the extracts of
the V. coralliilyticus strains S2052 and S2043, which resul-
ted in a weak reaction in C. violaceum, and the genomes
did not contain an AHL synthase gene. AntiSMASH

detected AHL synthase genes in three strains (Loktanella
sp. and two Ruegeria mobilis) where no AHLs were de-
tected by the monitors (Table 2). These genes could po-
tentially encode novel AHLs not being in the detection
range of the used biological monitors [66]. On the other
hand, the bacteria may not have been cultured under con-
ditions allowing the expression of the presumed AHL syn-
thase genes or the AHL concentration produced was
below the detection limit. We considered if the potential
QS systems could be involved in production of secondary
metabolites. In P. luteoviolaceae, the AHL synthase gene
is adjacent to the gene cluster potentially involved in
indolmycin production [67], but in the other five strains
the HSL synthase genes detected by antiSMASH were
not in proximity to identified natural product gene clus-
ters. However, some were close to genes encoding acyl
synthases, alcohol dehydrogenases or proteins contain-
ing AMP-binding domains, which may potentially be in-
volved in secondary metabolism. Due to draft genomes
with multiple contigs, the association with natural prod-
uct gene clusters could have been lost in the analyzed
sequences.

Table 2 Iron system in the studied strains, comprising in silico and phenotypical results
Strain Species Response in AHL monitor AntiSMASH Siderophore

(CAS)
AntiSMASH Fur

Cv At HSL Siderophore NRPS

S2753 Photobacterium halotolerans - - 0 + 1 4 1

S2052 Vibrio coralliilyticus (+) - 0 - 1** 4*** 1

S2043 Vibrio coralliilyticus (+) - 0 (+) 1** 4*** 1

S2604 Vibrio nigripulchritudo - - 0 - 0 4*** 1

S2394 Vibrio neptunius - - 0 (+) 1 3*** 1

S2757 Vibrio sp. + + 0 + 1** 0 1

S2040 Pseudoalteromonas piscicida - - 0 + 0 11*** 1

S2724 Pseudoalteromonas piscicida - - 0 + 0 5*** 1

S816 Pseudoalteromonas agarivorans - - 0 + 1 0 1

S3258 Pseudoalteromonas ruthenica - - 0 + 1 0 1

S3137 Pseudoalteromonas ruthenica - - 0 - 1 0 1

S4054 Pseudoaltermonas luteoviolacea + + 1 (+) 0 11*** 1

S2471 Pseudoalteromonas rubra - - 0 (+) 0 9*** 1

S2151 Halomonas sp. - - 0 (+) 1 0 1

S3726 Marinomonas sp. - - 0 + 0 3*** 1

S2292 Spongiobacter sp. - - 0 - 0 1 1

S4079 Loktanella sp. - - 1 (+) 0 1*** 1

S4493 Paracoccus sp. + + 4 - 0 2 0

S1942 Ruegeria mobilis - - 2 (+) 0 1*** 1

F1926 Ruegeria mobilis - - 2 (+) 0 1*** 1

DSM17395 Phaeobacter inhibens - + 2 + 1* 1 1

Cv: Chromobacterium violaceum, At: Agrobacterium tumefaciens, HSL: homoserine lactone, CAS: chrome-azurol-S, + : strong bioactivity, (+) : weak bioactivity, − : no
bioactivity detected under the tested conditions, NRPS: including single NRPS clusters and NRPS fusion clusters (e.g. NRPS-bacteriocin, NRPS-ectoine). *Located on a
plasmid; **Cluster identified as a siderophore – ectoine cluster; ***At least one NRPS is in proximity to siderophore-associated genes (tonB-dependent receptor etc.).
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Siderophores and iron regulation
Iron is essential for almost all microorganisms being
required for key biological processes [68] and is also one of
the most important requirements for successful secondary
metabolism. The iron levels in seawater are extremely low,
and many marine bacteria are able to sequester iron using
siderophores that can also serve as a tool in microbial com-
petition. Hence, siderophores are included as secondary
metabolites in the antiSMASH search.
To complement the genetic search, we determined sidero-

phore activity using the CAS assay [69]. Pronounced sidero-
phore activity was detected in eight strains and a weak
reaction was observed in eight further strains. Only five strains
did not show any activity under the tested conditions (Table 2).
The NRPS prediction tools, NapDos and NP.search, do not
allow detailed prediction of the type of NRPS coding gene,
however, antiSMASH is able to distinguish siderophore syn-
thesis genes. The in silico analysis using antiSMASH identified
putative siderophore gene clusters in five of the eight strains
with a clear CAS reaction, and three of the eight with a weak
reaction. In one strain, P. ruthenica, antiSMASH detected
a siderophore synthesis gene, but the CAS assay was nega-
tive. In contrast, the CAS reaction was positive for three
strains (two P. piscicida and one Marinomonas) where a
siderophore biosynthesis gene was not detected. Anti-
SMASH predicts siderophore genes using the currently
available sequence information on siderophore-producing
NRPSs, which are mainly of terrestrial origin. Terrestrial
siderophores differ structurally from marine siderophores
that are usually associated with fatty acids [68]. We ana-
lysed the identified NRPS gene clusters for siderophore-
associated genes such as tonB-dependent receptor genes.

For twelve strains, these siderophore-associated genes
were found close to the NRPS gene leading to the hy-
pothesis that this NRPS gene could likely encode a
siderophore-producing NRPS. This would demonstrate
that all strains based on their genetic information
would be capable of scavenging iron using siderophores.
To detect this “hidden” activity for the five non-active
strains, the strains might require optimization of culture
conditions or certain biological cues from the environ-
ment. Iron can also be scavenged by other molecules and
non-siderophore iron sequestering systems may be oper-
ational in the bacteria where siderophore genes were not
detected. Indeed, several heme-related proteins were
identified among the studied marine bacteria by an
annotation-based search (data not shown).
Even though iron is essential for growth, excess of iron

can be toxic to bacteria and thus a tight regulation of up-
take is crucial for microbial survival [68]. In Gram-negative
bacteria, iron regulation is achieved by a repressor protein
named Fur (Ferric-iron uptake regulator) which acts at the
transcriptional level [70]. A Fur encoding gene could be
identified in all the studied strains and the amino acid
sequence predicted, with the sole exception of Paracoccus
sp. S4493 (Table 2; Figure 2(A)). The verified exception of
Paracoccus sp. S4493 might be due to sequencing limita-
tions, or the fact that this organism has another regu-
latory protein involved in iron sensing; in fact other
uptake regulators for different metals could be identified
(e.g. manganese, potassium, zinc, and nickel).
Within the classes of Proteobacteria, the Fur proteins

are relatively conserved at the amino acid level, presenting
a higher variation at the C-terminus and the N-terminus.

MTDHN L E - - - - - L K K AG L K V T L PR I K I L E I L QS PDNQH - I S AED V YK I L L D KGE E I GL A T V YR V L NQ F DD AG I V TRHH F E
MTDHN L E - - - - - L K K AG L K V T L PR I K I L E I L QS PDNQH - I S AED V YK I L L D KGE E I GL A T V YR V L NQ F DD AG I V TRHH F E
MTDHN L E - - - - - L K K AG L K V T L PR I K I L E I L QS PDNQH - I S AED V YK I L L D L GE E I GL A T V YR V L NQ F DD AG I VSRHH F E
MTDHN L E - - - - - L K K AG L K V T L PR I K I L E I L QS PDNQH - I S AED V YK I L L D L GE E I GL A T V YR V L NQ F DD AG I VSRHH F E
MTDHN L E - - - - - L K K AG L K V T L PR I K I L E I L QC PDNQH - I S AED V YK I L L D KGE E I GL A T V YR V L NQ F DD AG I V TRHH F E
MTDHN L E - - - - - L K K AG L K V T L PR I K I L E I L QS P ENQH - I S AED V YK I L L D KGE E I GL A T V YR V L NQ F DD AG I V TRHH F E
MTDHN L E - - - - - L K K AG L K V T L PR I K I L E I L QS PDNQH - I S AED V YK I L L DN S E E I GL A T V YR V L NQ F DD AG I V TRHH F E
MTDHN L E - - - - - L K K AG L K V T L PR I K I L E I L QS PDNQH - I S AED V YK I L L DN S E E I GL A T V YR V L NQ F DD AG I V TRHH F E
MSDNNQA - - - - - L KD AG L K V T L PR L K I L E V L QQP ECQH - I S AE E L YK K L I D L GE E I GL A T V YR V L NQ F DD AG I V TRHH F E
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GGH A V F E L SQ E EHHDHMVC L E SGE I I E F F D E T I ERRQQE I AE EHG F E L VD H A L V L Y VR P K GS K A T RQEG I AK K - - - -
AGT A V F E I AK GEHHDHMVCM D SGK V I E F YD P I I E KRQK E I A AEHG YE I ED HN L V L Y VR P K D - - - - - - - - - - - - - - - -
GS K S Y F D - T N VHDH PH Y YWE GEGR VSD AP S E E L V I QS L PQ P P E - GME I AS VD V V I - - - - - - - - R L R K K AE L S - - - - -
GS K S Y F D - T N VHDH PH Y YWE GEGR VSD AP S E E L V I QS L PQ P P E - GME I AS VD V V I - - - - - - - - R L R K K AE L S - - - - *
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GAK S Y F D - T N MT DH PH F YWE D T AH L T D AP A EQL E I AR VPH AP E - G AE I AS VD V V I - - - - - - - - R L RR K - - - - - - - - -
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neighbor joining tree using Jukes-Cantor protein distance measurement method (B).
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Nevertheless, the conserved features such as DNA-
binding-α-helix and Fe2+ and Zn2+ binding domains
could be identified [71]. A neighbor joining tree using
Jukes-Cantor protein distance measurement method
(Figure 2(B)) demonstrates the conservation of closely
related species, indicating that the fur gene is a phylogenetic
trait instead of a random species variation or a product of
recent horizontal gene transfer. In fact, the clusters based
on protein sequences follow the phylogenetic distribution;
the analyzed Alphaproteobacteria sequences form a separ-
ate, distant group from the families of Gammaproteobac-
teria, in which the Pseudoalteromonadaceae and the
Vibrionaceae families form two distinct clusters from the
other Gammaproteobacteria. The only exception here was
the Spongiobacter sp. S2292, which clustered together with
the Pseudoalteromonas spp. This is interesting, since the
16S rRNA sequence (GenBank acc. no. FJ457273.1) would
place Spongiobacter sp. S2292 closer to the Endozoicomonas
genus and therefore within the order of Oceanopirillales, in
which the species Halomonas andMarinomonas are also in-
cluded [72]. This fact brings to question the phylogenetic
placement of Spongiobacter as it remains an unclassified
member of Gammaproteobacteria, and this association indi-
cates a closer association with Pseudoalteromonas species
than with the other Gammaproteobacteria.
Interestingly, this clustering seems to be specific at

species level, even for the Vibrio strains studied. Identify-
ing Vibrio strains to species level typically requires multi-
locus sequence analysis [73,74]. We recently showed that
the fur gene is a good phylogenetic marker (Machado &
Gram, submitted) to be added to the multilocus sequen-
cing analysis performed nowadays in e.g. Vibrio species
definition [73-75] and might also be possibly used in other
genera for species differentiation.

Chitinases and regulation
Chitin is ─ after cellulose ─ the most abundant carbon
source on Earth. Enzymes capable of degrading this
organic compound are very useful in biotechnological
industries. At the same time, chitin is also an important
environmental clue influencing regulators of virulence
and secondary metabolism [58,76-78]. We have previously
shown that an andrimid producing V. coralliilyticus S2052
focuses its secondary metabolism exclusively on andrimid
when grown on chitin as compared to growth on glu-
cose and casamino acids [58]. This could be coupled
with transcriptional changes and we therefore also mined
the genomes for chitin catabolic cascade sensor histidine
kinase (ChiS) and chitin binding proteins (CBP).
By phenotypic assays, we identified several strongly

chitinolytic strains and screened their genomes for chitinase
encoding genes. All of the Vibrionaceae and pigmented
Pseudoalteromonas sp., with the exception of P. agarivorans
S816, were capable of degrading chitin (Table 3). The

genome mining revealed presence of three to nine chitinase
encoding genes per strain in the chitinolytic bacteria.
Chitin-related genes were present in Vibrio species,

which is likely related to their ecology and close association
with crustaceans [79,80]. The pigmented pseudoalteromo-
nads are also often associated with eukaryotic surfaces [44]
including organisms containing no chitin. However, several
pseudoalteromonads had genes encoding for chitinases
and showed prominent chitinolytic activity.
The chitinolytic cascade has previously been studied in

Vibrio species where its tight regulation was attributed
to the hybrid chitin catabolic sensor/kinase (ChiS) to-
gether with a periplasmic chitin oligosaccharide binding
protein (CBP) [77]. This regulatory system has been
shown to regulate expression of 50 genes, most of which
involved in chitin catabolism [77]. Furthermore, it has

Table 3 Chitinolytic systems in the studied strains,
comprising in silico and phenotypic results
Strain Species Chitinase

activity
Chitin

Chitinase ChiS CBP

S2753 Photobacterium
halotolerans

+++ 3 1 1

S2052 Vibrio coralliilyticus ++ 9 1 2

S2043 Vibrio coralliilyticus ++ 9 1 2

S2604 Vibrio nigripulchritudo + 8 2 0

S2394 Vibrio neptunius ++ 7 1 0

S2757 Vibrio sp. ++ 3 1 1

S2040 Pseudoalteromonas
piscicida

++ 4 1 0

S2724 Pseudoalteromonas
piscicida

+++ 4 0 0

S816 Pseudoalteromonas
agarivorans

- 0 0 0

S3258 Pseudoalteromonas
ruthenica

++ 3 0 1

S3137 Pseudoalteromonas
ruthenica

++ 3 0 1

S4054 Pseudoaltermonas
luteoviolacea

+ 10 0 0

S2471 Pseudoalteromonas
rubra

+ 7 0 0

S2151 Halomonas sp. - 0 0 0

S3726 Marinomonas sp. - 0 0 0

S2292 Spongiobacter sp. - 0 0 1

S4079 Loktanella sp. - 0 0 0

S4493 Paracoccus sp. - 0 0 0

S1942 Ruegeria mobilis - 0 1 0

F1926 Ruegeria mobilis - 0 1 0

DSM17395 Phaeobacter inhibens - 0 0 0

ChiS: chitin catabolic cascade sensor histidine kinase, CBP: chitin binding proteins.
- : no chitinase activity detected, + : low chitinase activity, ++ : medium chitinase
activity, +++ : strong chitinase activity.
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been also shown that natural substrates such as chitin in-
fluence secondary metabolite production, such as the in-
duction of their production [58]. We searched for the chiS
gene, which was present in all of the six Vibrionaceae, one
Pseudoalteromonas, and two Ruegeria (Table 3). The
Alphaproteobacteria did not degrade chitin, though two
Ruegeria mobilis strains harbor the chitin sensor genes.
Interestingly, the ChiS regulator was only present in

the Vibrio strains, suggesting that transcriptional shaping
by chitin could be a trait associated with this family.
Changes in secondary metabolism by chitin and the
presence of the regulator ChiS requires further studies
for confirmation.

Conclusions
Here, we presented a straightforward, comprehensive gen-
ome mining approach analyzing marine bacterial strains
for secondary metabolism and associated features such as
quorum-sensing, iron acquisition, chitin use as a carbon
source and its regulation. The use of complementary tools
for genome mining is of great value in narrowing down
the potential gene clusters from a large pool obtained by
broad prediction software such as antiSMASH. We dem-
onstrated the great potential of marine bacteria for sec-
ondary metabolite production, with special focus on
Vibrio and pigmented Pseudoalteromonas species.

Methods
Bacterial strains and growth conditions
Bacterial strains used in this study were isolated during
the Danish Galathea 3 global research expedition (http://
www.galathea3.dk/uk) [19] and selected due to their
antagonistic activity against a Gram-negative (Vibrio angu-
illarum) and a Gram-positive (Staphylococcus aureus)
pathogenic bacterium. Pure cultures of each strain were
stored in cryoprotectant solution at −80°C from their
isolation until the present study. Phaeobacter inhibens
DSM17395 was obtained from the German Collection of
Microorganisms and Cell Cultures (DSMZ, Germany).
Some of the strains have previously been used in classical
bioassay-guided bioprospecting and produce antibiotics or
anti-virulence compounds [19,22,27-29,40-45,58]. Strains
were routinely grown on Marine Agar (Difco 2216) and in
Marine Broth (Difco 2216).

Genomic DNA isolation and Sequencing
High purity genomic DNA was extracted by succes-
sive phenol:chloroform:isoamyl-alcohol purification steps
followed by precipitation with isopropanol, treatment with
RNase and a final purification and precipitation step [81].
Quantification was done in 1% agarose gel electrophoresis,
NanoDrop Spectrometer (Saveen Werner, Sweden) and
Qubit 2.0 Analyser (Invitrogen, United Kingdom). Se-
quencing of the genomes was performed by Beijing

Genomic Institute (Shenzhen, China). Libraries of 500 bp
were used for 100 bp paired-end sequencing of genomes
using the Illumina sequencing technology on a HiSeq2000
with a minimum coverage of 100. Genomic DNA se-
quences were assembled in contigs using CLC Gen-
omic Workbench (CLC Bio, Aarhus, Denmark). All
the genomes had a coverage of 75x or higher. All of
them were submitted to the National Center for Biotech-
nology Information (NCBI) database under the accession
numbers AUXW00000000, JMIB00000000, APME000000
00, AQCH00000000, CP002972, CP002973, CP002974,
CP002975, JXXR00000000, JXXS00000000, JXXT000
00000, JXXU00000000, JXXV00000000, JXXW00000
000, JXXX00000000, JXXY00000000, JXXZ00000000,
JXYA00000000, JXYB00000000, JXYC00000000, JXYD0
0000000, JXYE00000000, JXYF00000000, JXYG00000000.

Bioinformatic analysis
The draft genomes were annotated using RAST [49] and
submitted to secondary metabolite gene cluster analysis
using antiSMASH 2.0 [47], NapDos [38], NP.search [39],
as well as to the bacteriocin-specific software BAGEL 3
[37]. Following RAST annotation, a homology search
was conducted on the ferric-iron uptake regulator gene
fur and an annotation-based search was performed for
genes encoding, chitinases and the chitin catabolic cas-
cade sensor gene chiS.

Verification of antibacterial activity
The strains were re-tested for their antibacterial activity,
as previously described [19]. Briefly, strains to be tested
were grown in Marine Agar (Difco 2216) for 24 – 48 h
and one colony was spotted in plates of artificial seawater
agar with 3% Instant Ocean (IO; Aquarium Systems Inc.,
Sarrebourg, France) containing Vibrio anguillarum strain
90-11-287 serotype O1 [82] or Staphylococcus aureus
strain 8325 [83] embedded. The plates were incubated
and observed for clearing zones in the agar.

Production of acyl homoserine lactones
Production of acyl homoserine lactone (AHL) com-
pounds was analysed using two AHL monitor systems
Agrobacterium tumefaciens NT1(pZLR4) [84] and Chro-
mobacterium violaceum CV026 [85] as described by
Ravn et al. [86]. The strains were grown in 10 mL
½YTSS or sea salt medium (1.5% sea salt, 0.3% casamino
acids, 0.4% glucose) in 50 mL Falcon tubes for 48 hours
at 200 rpm and room temperature and extracted with
10 mL ethyl acetate acidified with 1% formic acid. The
extract was dried under nitrogen, resuspended in 0.5 mL
ethyl acetate containing 1% formic acid and stored
at −20°C. The extracts were tested with the AHL-reporter
strains in a plate well assay [87].

Machado et al. BMC Genomics  (2015) 16:158 Page 9 of 12



Siderophore activity
Siderophore activity was tested using the liquid CAS
assay [69]. The marine strains were grown in 10 mL sea
salt medium or ½YTSS in 50 mL Falcon tubes at 25°C
and 200 rpm for 24 and 48 hours at room temperature.
1 mL of culture was centrifuged for 5 min at 12,100 × g
and the supernatant was mixed with CAS solution in a
1:1 ratio. Colour change from blue to orange indicating
siderophore activity was observed after 5 min and 24 h.

Chitinase activity
Chitinase activity was tested on chitin containing agar
plates. Strains were grown on Marine Agar (Difco 2216)
for 24 – 48 h and one colony was spotted on plates con-
taining 20 g/L sea salts, 3 g/L casamino acids, 0.08% hy-
drolyzed chitin, 20 g/L agar. The plates were incubated
for 72 h and chitinase activity monitored at 24, 48 and
72 h. The natural turbidity of the media due to chitin al-
lows the visual evaluation of chitin degradation, which
leads to clearance of the media. Chitinase activity was
graded qualitatively: low chitinase activity (<1.0 mm)
zones were scored with one plus, medium chitinase
activity zones (1.0 mm – 3.0 mm) with two pluses, and
strong chitinase activity (>3.0 mm) with three plusses.
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Microbial taxonomy is essential in all areas of microbial science. The 16S rRNA gene sequence is one of the main phylogenetic
species markers; however, it does not provide discrimination in the family Vibrionaceae, where other molecular techniques al-
low better interspecies resolution. Although multilocus sequence analysis (MLSA) has been used successfully in the identifica-
tion of Vibrio species, the technique has several limitations. They include the fact that several locus amplifications and sequenc-
ing have to be performed, which still sometimes lead to doubtful identifications. Using an in silico approach based on genomes
from 103 Vibrionaceae strains, we demonstrate here the high resolution of the fur gene in the identification of Vibrionaceae spe-
cies and its usefulness as a phylogenetic marker. The fur gene showed within-species similarity higher than 95%, and the rela-
tionships inferred from its use were in agreement with those observed for 16S rRNA analysis and MLSA. Furthermore, we devel-
oped a fur PCR sequencing-based method that allowed identification of Vibrio species. The discovery of the phylogenetic power
of the fur gene and the development of a PCR method that can be used in amplification and sequencing of the gene are of general
interest whether for use alone or together with the previously suggested loci in an MLSA.

In microbial science, rapid identification of isolates to the genus
or species level is essential in many areas, for instance, when

diagnosing an infection or unraveling the microbial diversity in
different niches. Therefore, identification and classification must
be reliable, reproducible, and informative and at the same time
fast and user friendly. Hence, tools that allow identification should
be easy and affordable for the average user (1).

Identification of microbial species was originally based on phe-
notypic assays, due to both the influence of other biology disci-
plines, such as botany, and the technological limitations at the
time (2). While phenotypic identification has been an important
tool, the approach was of more limited use for several microbial
groups, including the family Vibrionaceae, where some species
had indistinguishable phenotypes and other species could have
divergent phenotypes among strains of the same species (1). More
recently, genetically based methods, in particular, have been de-
veloped for species identification and phylogeny, with the “mo-
lecular clock” approach introduced by Carl Woese proving a
strong tool (3). The most common genetic marker has been the
16S rRNA gene, but the sequences of a range of housekeeping
genes are also being used. In the future, genome sequences (gene
sequences or single-nucleotide polymorphisms [SNP]) will be
used in phylogeny and identification.

The family Vibrionaceae comprises 159 species in 6 genera, of
which the genus Vibrio is the largest and most extensively charac-
terized (4, 5). For many genera, the common approach of using
16S rRNA gene similarity as the main phylogenetic species marker
has failed, due to its low interspecies resolution (6).

Due to the limitations of the 16S rRNA gene phylogeny in
Vibrio classification and to the development of molecular tech-
niques, such as fluorescent amplified fragment length polymor-
phism (FALP) and multilocus sequence analysis (MLSA), the clas-
sification of Vibrionaceae soon evolved from using a single gene to
using several gene sequences for identification and phylogeny.
In particular, the introduction of an MLSA scheme using nine
gene sequences (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, topA,

and the 16S rRNA gene) has provided much higher resolution
for Vibrionaceae identification and taxonomy, and this has al-
lowed the identification of new Vibrio species previously misiden-
tified (6–11).

While the use of MLSA as described above has improved the
resolution of Vibrionaceae phylogeny, it has been hampered by
requiring several gene sequences. With the explosion of genome
sequencing, this will become easier; however, for a great number
of laboratories, the use of a single gene sequence for identification
and phylogeny will be preferable for years to come. The use of the
fur gene as a phylogenetic marker in bacteria has been suggested in
several studies (12, 13). Also, one study (14) suggested the use of
the fur gene as a discriminative phylogenetic marker between the
species Alliivibrio salmonicida and Alliivibrio logei (previously
Vibrio salmonicida and Vibrio logei, respectively); however, to our
knowledge, no further work has addressed this possible marker.
The fur gene encodes a ferric uptake regulator (Fur), which in
most bacterial species is the major system for maintenance of iron
homeostasis. Fur senses excess intracellular Fe2! and binds to the
promoter regions of the genes involved in iron acquisition,
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TABLE 1 Vibrionaceae strains used in this study

Species Strain

WGS/fur
GenBank
accession no.

Strains used in the in silico studya

Aliivibrio fischeri ZF-211 AJYI01
Aliivibrio logei 5S-186 AJYJ01
Aliivibrio logei ATCC 35077 ASAH01
Enterovibrio calviensis DSM 14347T JHZA01
Enterovibrio norvegicus FF-33 AJYD01
Grimontia hollisae CIP 101886T ADAQ01
Grimontia sp. AK16 ANFM02
Photobacterium aphoticum JCM 19237 BBMN01
Photobacterium angustum S14 AAOJ01
Photobacterium damselae

subsp. damselae
CIP 102761T ADBS01

Photobacterium damselae
subsp. piscicida

DI21 AKYG01

Photobacterium halotolerans S2753 JMIB01
Photobacterium halotolerans DSM 18316T AULG01
Photobacterium leiognathi lrivu.4.1 BANQ01
Photobacterium leiognathi

subsp. mandapamensis
svers.1.1. BACE01

Photobacterium phosphoreum ANT220 CCAR01
Photobacterium profundum 3TCK AAPH01
Photobacterium sp. SKA34 AAOU01
Photobacterium sp. AK15 AMZO01
Salinivibrio costicola subsp.

costicola
ATCC 33508T "

LMG 11651T
ASAI01

Shewanella xiamenensis BC01 JAEC01
Vibrio albensis " V. cholerae VL426 ACHV01
Vibrio anguillarum 96F AEZA01
Vibrio anguillarum RV22 AEZB01
Vibrio azureus NBRC 104587T BATL01
Vibrio brasiliensis LMG 20546T AEVS01
Vibrio breoganii ZF-55 AJYL01
Vibrio campbellii CAIM 519T " NBRC

15631T
AMDG01

Vibrio caribbeanicus ATCC BAA-2122T AEIU01
Vibrio cholerae MO10 AAKF03
Vibrio cholerae CP110 AMWF01
Vibrio cholerae TM 11079-80 ACHW01
Vibrio coralliilyticus P1 AEQS01
Vibrio coralliilyticus ATCC BAA-450T ACZN01
Vibrio coralliilyticus OCN008 AVOO01
Vibrio cyclitrophicus ZF14 AIDH01
Vibrio cyclitrophicus FF75 ATLT01
Vibrio diazotrophicus NBRC 103148T BBJY01
Vibrio ezurae NBRC 102218T BATM01
Vibrio fortis Dailan14 JFFR01
Vibrio fluvialis PG41 ASXS01
Vibrio fluvialis I21563 ASXT01
Vibrio halioticoli NBRC 102217T BAUJ01
Vibrio harveyi CAIM 1792 AHHQ01
Vibrio harveyi NBRC 15634 "

ATCC 14126T
BAOD01

Vibrio harveyi ZJ0603 AKIH01
Vibrio harveyi AOD131 AOMR01
Vibrio harveyi E385 AYKI01
Vibrio harveyi VHJR4 CAUN01
Vibrio harveyi VHJR7 CAUO01
Vibrio ichthyoenteri ATCC 700023T AFWF01
Vibrio jasicida 090810c BAOC01
Vibrio kanaloae 5S-149 AJYX01
Vibrio litoralis DSM 17657T AUFZ01

TABLE 1 (Continued)

Species Strain

WGS/fur
GenBank
accession no.

Vibrio maritimus JCM 19240 BBMT01
Vibrio maritimus JCM 19235 BBMR01
Vibrio metschnikovii CIP 69.14T ACZO01
Vibrio mimicus VM223 ADAJ01
Vibrio mimicus MB451 ADAF01
Vibrio mimicus CAIM 602T AOMO01
Vibrio mimicus SX-4 ADOO01
Vibrio natriegens NBRC 15636T "

ATCC 14048T "
DSM 759T

ATFJ01

Vibrio nigripulchritudo ATCC 27043T AFWJ01
Vibrio nigripulchritudo FTn2 CANW01
Vibrio nigripulchritudo SOn1 CAOF01
Vibrio ordalii FS-238 AJYS01
Vibrio ordalii 12B09 AJYV01
Vibrio ordalii FF-93 AJYT01
Vibrio ordalii FS-144 AJYU01
Vibrio orientalis CIP 102891T "

ATCC 33934T
ACZV01

Vibrio owensii ATCC 25919 BANZ01
Vibrio owensii CAIM 1854T BAOH01
Vibrio pacinii DSM 19139T JONH01
Vibrio parahaemolyticus NIHCB0603 AVOM01
Vibrio parahaemolyticus IDH02189 JAHD01
Vibrio proteolyticus NBRC 13287T BATJ01
Vibrio rhizosphaerae DSM 18581T JONG01
Vibrio rotiferianus DAT722 AFAJ01
Vibrio rumoiensis 1S-45 AJYK01
Vibrio sagamiensis NBRC 104589T BAOJ01
Vibrio scophthalmi LMG 19158T AFWE01
Vibrio shilonii "

V. mediterranei
AK1T ABCH01

Vibrio sinaloensis DSM 21326 AEVT01
Vibrio sp. PPCK-2014 JJMN01
Vibrio splendidus ZS-139 AJZE01
Vibrio splendidus FF-6 AJZI01
Vibrio splendidus ATCC 33789 AFWG01
Vibrio splendidus 12B01 AAMR01
Vibrio splendidus 12E03 AJZD01
Vibrio splendidus ZF-90 AJZF01
Vibrio splendidus 5S-101 AJZG01
Vibrio splendidus FF-500 AJZH01
Vibrio splendidus 1F-157 AJZJ01
Vibrio splendidus 1S-124 AJZL01
Vibrio tasmaniensis 1F-187 AJZM01
Vibrio tasmaniensis 1F-155 AJZN01
Vibrio tasmaniensis 5F-79 AJZP01
Vibrio tasmaniensis ZS-17 AJZQ01
Vibrio tubiashii ATCC 19109T AFWI01
Vibrio tubiashii NCIMB 1337 "

ATCC 19106
AHHF01

Vibrio variabilis JCM 19239 BBMS01
Vibrio vulnificus BAA87 JDSE01
Vibrio vulnificus NBRC 15645T "

ATCC 27562T
AMQV01

Culture collection strains used in
PCR sequencing method
development

Aliivibrio fischeri DSM 2168 KP721366

(Continued on following page)
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thereby blocking their transcription. In contrast, when iron avail-
ability is limited, derepression of the corresponding genes occurs.
In addition to iron transport, Fur controls a range of other pro-
cesses, such as redox stress resistance, energy metabolism, flagellar
chemotaxis, and metabolic pathways (15–17).

The purpose of the present study was to determine if the fur
gene could be used as a new phylogenetic marker in the identifi-
cation of Vibrionaceae species. The availability of several fully ge-
nome-sequenced strains allowed us to address this in an in silico
analysis. To facilitate broader use of fur as a phylogenetic marker,
despite highly variable regions outside the fur gene, we developed
a PCR sequencing-based method for the analysis of the fur gene in
Vibrionaceae species.

MATERIALS AND METHODS
In silico analysis of fur sequences. The whole-genome sequences (WGS)
from 104 strains were used in this study: 83 Vibrio strains representing 44
species, 3 Aliivibrio strains representing 2 species, 12 Photobacterium
strains representing 7 species, 2 Enterovibrio strains representing 2 species,
2 Grimontia strains representing 1 species, 1 Salinivibrio costicola strain,
and 1 sequence from Shewanella xiamenensis BC01 as an unrelated Gram-
negative bacillus (Table 1). The genome sequences were used in the in
silico analysis of the fur gene. The genomes were all analyzed using CLC
Main Workbench version 7 (CLC, Aarhus, Denmark). For the genomes
annotated by NCBI, an annotation-based search was performed for the
fur genes. Those not annotated were submitted to a BLAST search against
the annotated fur genes and manually curated if necessary.

Phylogenetic-data analysis. The fur sequences isolated in silico or
PCR amplified and sequenced in this study were aligned using the align-
ment tools in CLC Main Workbench version 7 (CLC, Aarhus, Denmark).
The Gap cost settings were as follows: gap open cost of 10 points and gap
extension cost of 1 point, and end gaps were treated like any other gap. The
alignments obtained were used to perform a pairwise comparison of the
number of differences and the percent identity using CLC Main Work-
bench version 7 (CLC, Aarhus, Denmark). Furthermore, maximum-like-
lihood phylogeny trees were also generated using the CLC Main Work-
bench version 7 (CLC, Aarhus, Denmark) tools. Neighbor-joining was the
tree construction method used, with the Jukes-Cantor nucleotide distance
measure. The design of the trees was finalized using MEGA 6 (18).

Bacterial strains and genomic-DNA extraction. The bacterial strains
used for development of the PCR method (Table 1) were grown in Marine
Broth (Difco; catalog no. 279110) overnight at 25°C, and genomic DNA
was isolated using the NucleoSpin Tissue kit (Macherey-Nagel, Düren,
Germany). The quality of the genomic DNA was checked by 1% agarose
gel electrophoresis and quantified by absorbance using DeNovix DS-11.

Primer design. The degenerate primers fur_AP _fw (5=-CCWCCAT
AYTGDGWMCGRTTNGCATTCCWCCATAYTGDGWMCGRTTNGC
ATT-3=) and fur_AP_rv (5=-ACWGTHGGYYTWCGTGATACWTGGG-
3=) were designed according to the alignments done using the fur regions
of several Vibrio, Aliivibrio, and Photobacterium strains. Also, an extra set
of primers were designed for amplification in other Vibrio species where
the AP primers did not work: fur_V_fw (5=-TAACCYYTTGAASTTGAA
STTCG-3=), fur_TS_rv (5=-CGWAYDGGHTAYTTCTGTGYDGAT-3=),
and fur_OM_rv (5=-GTGGCRGATAAYGTKMGHAAAGG-3=). These
primers were then used to amplify the whole fur gene. Due to the different
sizes of the fragments, internal primers were also designed to confirm the
presence of the fur gene in the amplified fragment: fur_Sp_internal_fw
(5=-CACCAYTTYGAAGGCGGYAAGTC-3=) and fur_Sp_internal_rv
(5=-ATYTCTTTYTGKCGYTCTTCRAT-3=).

PCR amplification and sequencing. Amplification reaction mixtures
contained 1# PfuX7 buffer [20 mM Tris-HCl, pH 8.8, 10 mM KCl, 6 mM
(NH4)2SO4, 2 mM MgSO4, 0.1 mg/ml bovine serum albumin (BSA), 0.1%
Triton X-100], a 200 $M deoxynucleoside triphosphate (dNTP) mixture,
0.4 $M each primer, 1 $l of a 10-fold dilution of genomic DNA as the
template, and 1 $l of PfuX7 polymerase (19) in a final reaction volume of
25 $l. The PCR amplification was carried out in a thermal cycler (Veriti
96-well thermal cycler; Applied Biosystems) as follows: a 2-min initial
denaturation step at 98°C, followed by 30 cycles of 98°C for 20 s, 52°C for
20 s, and 72°C for 25 s, with a final extension step of 2 min at 72°C. The
amplified products were visualized by agarose gel electrophoresis (1 or
1.5%) and ethidium bromide staining. The PCR products were enzymat-
ically purified by treatment with exonuclease I (ExoI) (Thermo Scientific)
and FastAP thermosensitive alkaline phosphatase (Thermo Scientific) be-
fore sequencing at GATC Biotech (Cologne, Germany) or Macrogen
(Amsterdam, The Netherlands). The sequences were analyzed using CLC
Main Workbench version 7 (CLC, Aarhus, Denmark).

Nucleotide sequence accession numbers. The sequence data gener-
ated in this study were deposited in GenBank under the accession num-
bers provided in Table 1.

TABLE 1 (Continued)

Species Strain

WGS/fur
GenBank
accession no.

Enterovibrio calviensis DSM 14347T KP721381
Grimontia hollisae DSM 15132T KP721382
Photobacterium damselae ATCC 33539T KP721367
Photobacterium halotolerans LMG 22194T KP721368
Photobacterium angustum S14 KP721369
Photobacterium rosenbergii LMG 22223T KP721370
Vibrio coralliilyticus ATCC BAA-450T "

DSM 19607T
KP721371

Vibrio fluvialis NCTC 11327T KP721372
Vibrio harveyi DSM 19623T "

ATCC 14126T
KP721373

Vibrio nigripulchritudo ATCC 27043T KP721374
Vibrio owensii DY05T KP721375
Vibrio parahaemolyticus ATCC 17802T KP721376
Vibrio splendidus ATCC 33125T KP721377
Vibrio vulnificus ATCC 27562T "

DSM 10143T
KP721378

Vibrio anguillarum DSM 21597T KP721379
Vibrio ponticus DSM 16217T KP721383
Vibrio chagasii DSM 17138T KP721384
Vibrio brasiliensis DSM 17184T KP721385
Vibrio porteresiae DSM 19223T KP721386
Vibrio pectenicida DSM 19585T KP721387
Salinivibrio costicola subsp.

costicola
DSM 11403T KP721380

Isolates used in the testing of the
PCR sequencing method

Photobacterium halotolerans S2753 KP721398
Vibrio anguillarum 775 KP721388
Vibrio coralliilyticus S2043 KP721394
Vibrio coralliilyticus S2052 KP721395
Vibrio nigripulchritudo S2604 KP721397
Vibrio neptunius S2394 KP721396
Vibrio parahaemolyticus V2 KP721401
Vibrio sp. S188 KP721389
Vibrio sp. S203 KP721390
Vibrio sp. S344 KP721391
Vibrio sp. S787 KP721392
Vibrio sp. S1110 KP721393
Vibrio sp. S2757 KP721399
Vibrio sp. S4497 KP721400
Vibrio sp. VibAn KP721402

a Genomes from GenBank.
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RESULTS AND DISCUSSION
16S rRNA gene limitations. 16S rRNA gene sequences have long
been used for distinguishing and classifying new strains at the
genus and species levels. This approach has been very successful in
several bacterial groups, but not in the Vibrionaceae, due to low

FIG 1 BLAST analyses and closest hits to the different 16S rRNA alleles in
three different Vibrionaceae strains. Hits from the same strain are in boldface.

FIG 2 Phylogenetic tree of 103 Vibrionaceae strains. The tree is based on in
silico analyses using the complete fur gene sequences and was constructed by
the neighbor-joining method. S. xiamenensis BC01 was used as the outlier.
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interspecies resolution achieved using the gene (6). This is in part
caused by the many alleles of the 16S rRNA gene that, when cloned
and sequenced individually, can identify a strain as belonging to
several different species (20). To confirm this observation, we
used three closed genomes as examples and used the different 16S
rRNA alleles in a BLAST search in order to identify the species
(Fig. 1). Not only did the number of alleles seem to be variable
among vibrios, but the identification drawn from each allele
pointed to a different species, and thus, the identifications made
using this approach in vibrios are very questionable. Furthermore,
when using next-generation sequencing techniques, such as Illu-
mina, the length of the reads obtained does not allow differentia-
tion of the different alleles, resulting in genome assemblies with
only one 16S rRNA allele.

In silico analysis of fur sequences. For all 103 strains analyzed,
only one copy of the fur gene was identified in the whole genome.
The fur sequences varied in size between 441 and 456 bp, with the
exception of Shewanella xiamenensis BC01, where the fur gene was
only 432 bp. The fur genes with 441 bp were from Vibrio halioticoli
and Vibrio ezurae, and only Vibrio nigripulchritudo SOn1 had a
456-bp fur sequence, making the variance of the gene size mostly
between 444 and 453 bp (see Fig. S1 in the supplemental material).

The maximum-likelihood phylogeny tree constructed with the
alignment of the fur genes (Fig. 2) confirmed the clustering of the
different species in a manner similar to what has been observed for
both 16S rRNA gene- and MLSA-based trees (4, 6, 8, 21–24). The
clades recently emended by Sawabe et al. (4) could also be identi-
fied (Fig. 2), although a few differences arose. Within the Vibrio
species, the major differences observed were the clustering of
Vibrio rotiferianus DAT722 within the Splendidus clade rather
than within the Harveyi clade, as previously described (4). Other
species, such as Vibrio metschnikovii and Vibrio fluvialis, did not
cluster in the Cholerae clade but were clearly closely related. A
similar observation was made for the species Vibrio orientalis and
Photobacterium phosphoreum.

At the species level, some of the strains previously identified as
Vibrio splendidus, namely, V. splendidus 12E03, V. splendidus ZS-
139, and V. splendidus ATCC 33789, clustered separately from the
other V. splendidus strains. In fact, V. splendidus 12E03, V. splen-
didus ZS-139, and V. splendidus ATCC 33789 clustered in the
Vibrio cyclitrophicus and the Vibrio fortis branches of the phyloge-
netic tree (Fig. 2). This could be explained by the previously dem-
onstrated genetic diversity and polyphyletic nature of V. splendi-
dus (7, 8, 25), or it could be that these strains were misidentified,
which is a recurrent problem within the genus Vibrio (22, 26, 27).
The second hypothesis seems to be consistent with the genomic
data index (ANI) at EzGenome (http://www.ezbiocloud.net
/ezgenome/hierarchy?n"Vibrionales&d"2#), where ANI-based
trees locate these strains closer to other named Vibrio species.

A comparison of the 103 sequences revealed a percent similar-
ity in the same species of more than 97%, with the exception of
two species pairs, V. splendidus and Vibrio tasmaniensis, as well as

FIG 3 Phylogenetic tree of 140 Vibrionaceae isolates (including strains shown
in Fig. 1). The tree is based on the PCR-amplified and sequenced complete fur
gene sequences of representatives of each species and the fur sequences of the

type strains and of the isolates used in the development and testing of the PCR
sequencing-based method and was constructed using the neighbor-joining
method. The circles indicate fur genes sequenced in the development and
testing of the PCR sequencing-based method: the solid circles are the type
strains used in the development of the method, and the open circles are the
environmental strains used to test the method. S. xiamenensis BC01 was used
as the outlier.
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Vibrio anguillarum and Vibrio ordalii, where the above-men-
tioned species threshold did not apply (see Fig. S2 in the supple-
mental material). This is similar to what has been shown by others
using the genes rpoA, recA, and pyrH, where 98%, 94%, and 94%
similarities within the same species were reported (8). Among
these genes, pyrH has been described as the most discriminatory
(28); however, this study was performed in a small selection of
strains, focusing mostly on the Harveyi, Campbellii, and Rotiferia-
nus groups, making it difficult to do meaningful comparison be-
tween the discriminatory powers of this gene and the fur gene
described here. Another gene reported as a possible good phylo-
genetic marker in the family Vibrionaceae is atpA (22). Compared
with this gene, fur presents itself as a better phylogeny discrimina-
tor. The atpA gene phylogeny showed very high homology be-
tween species within the main identified groups, which could vary
between 94 and 99%, while in the fur gene phylogeny, only the two
previously described pairs (V. splendidus-V. tasmaniensis and V.
anguillarum-V. ordalii) show that limitation.

Development of a PCR sequencing-based method. The
above-described in silico analysis confirmed the value of the fur
sequence as a phylogenetic marker in the family Vibrionaceae,
allowing the distinction of most of the strains at species level.
Therefore, a PCR-based method that could be widely used by re-
searchers working with Vibrionaceae genera would be extremely
valuable as a simpler tool in the classification of Vibrio isolates or
as an extra differentiation marker added to an MLSA.

To develop and validate the PCR method and the designed
primers, 22 type strains obtained from several culture collections
(Fig. 3) were used in the establishment of a general protocol for the
amplification of fur. They included 1 Aliivibrio type strain, 4 Pho-
tobacterium type strains, 1 Enterovibrio type strain, 1 Salinivibrio
type strain, 1 Grimontia type strain, and 14 Vibrio type strains. The

degenerate fur_AP primers (see Materials and Methods) ampli-
fied the fur gene in most Vibrio species and in all the Photobacte-
rium, Aliivibrio, Enterovibrio, Grimontia, and Salinivibrio species
tested. The main challenge was the design of a reverse primer
suitable for all the Vibrio strains, since the variation in sequence
downstream of the fur gene is significant (Fig. 4). Therefore, we
designed an extra set of primers, including one forward and two
distinct reverse primers, allowing us to amplify the fur genes from
the Vibrio strains on which the above-mentioned set of primers
(AP) did not work. The primers developed here did allow ampli-
fication of all the tested strains of Vibrio species and the other
genera of the family Vibrionaceae. The differences between the
flanking regions of the fur gene have been described previously
(13), and the conserved genetic organization of the region up-
stream from the fur gene was not reflected in the downstream
region, where there is higher variability between species (13). We
also noted in our amplification process that there was a species-
dependent fragment size of the amplicon. The relationship be-
tween the fragment size amplified and the species needs further
investigation, although it could possibly expedite the attribution
of a provisional clade or even species at an earlier stage in the
classification process.

The limited number of genomes available from Grimontia,
Salinivibrio, Enterovibrio, Photobacterium, and Aliivibrio species
hampers the design of more universal primers, and once more
WGS from strains belonging to these genera are available, a more
in-depth analysis of the fur gene flanking regions might provide
enough information for the design of primers suitable for all the
strains belonging to these species. The so-called “primer prob-
lems” have been previously reported in several MLSA analyses,
both for strains from the genus Vibrio and for strains of the genus

FIG 4 Analysis of the variability downstream of the fur gene by alignment of the fur regions from six whole-genome-sequenced Vibrio species.
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Photobacterium (4, 6). This likely reflects the large genomic vari-
ability between members of the family Vibrionaceae.

After amplification and sequencing of the amplicons, the se-
quences were used in two approaches: (i) the fur sequences were
extracted from the consensus sequence and subjected to BLAST
searches against the NCBI database or (ii) the whole consensus
sequence was used in the BLAST analysis. Both approaches
showed a high level of identification, since the first BLAST hits in
both cases corresponded to strains of the same species as the tested
strains. Nevertheless, this approach using the NCBI database di-
rectly presented some limitations. Because few fur sequences are
available for the Vibrio species, the hits that were obtained corre-
sponded to whole-genome-sequenced strains, limiting the analy-
sis to such strains. In fact, the results were more expressive and
clearer when the extracted fur sequences were subjected to BLAST
searches against a database created with the sequences used in the
in silico analysis. This shows the importance of creating a database
with more fur sequences in order to obtain more accurate identi-
fications and to bring this method to its full potential.

Identification of Vibrio strains using the fur gene sequence.
To test the method developed, a collection of previously isolated
Vibrio species was used. The strains have been categorized in our
laboratory by conventional 16S rRNA gene sequence analyses
(29), and some also by sequencing of recA, toxR, and rpoA genes
(30). PCR, as has been described, worked well for all the tested
strains (Fig. 4), so the amplicons were purified and sequenced.
The fur genes were identified in all the sequenced amplicons.

The isolated fur sequences were incorporated in the phyloge-
netic tree, giving an overview of the distribution of the isolates
between the different species and clades (Fig. 3). Of the tested
isolates, strains S2757 and S2394 could not be identified with high
certainty, although it is obvious that strain S2757 clustered closely
with Vibrio tubiashii (Fig. 3). This inconclusive identification
could indicate that strain S2757 belongs to a new species; further
attempts using MLSA were also inconclusive (data not shown).
With respect to strain S2394, the fact that no WGS or fur se-
quences from Vibrio neptunius are available led to a close associa-
tion of the strain with Vibrio coralliilyticus, which makes sense,
given its close phylogenetic proximity (4) (Fig. 3).

It is evident that whole-genome sequencing and bioinformat-
ics will drive identification and taxonomy in the future. Neverthe-
less, it may be a while until the average laboratory can afford the
whole-genome sequencing of their strains and can master the
bioinformatics needed to correctly identify them. Therefore, we
believe that the discovery of the phylogenetic power of the fur gene
and the development of a PCR method that can be used in ampli-
fication and sequencing of the gene is of general interest, whether
for use alone or together with the previously suggested loci in an
MLSA.
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A novel, Gram-negative marine bacterium, S2753T, was isolated from a mussel of the Solomon
Sea, Solomon Islands. Analysis of the 16S rRNA gene sequence and whole genome sequence
data placed strain S2753T in the genus Photobacterium with the closest relative being
Photobacterium halotolerans DSM 18316T (97.7 % 16S rRNA gene similarity). Strain S2753T

was able to grow from 15 to 40 8C and in NaCl concentrations of 0.5 to 9 % (w/v). The
predominant fatty acids were 16 : 1v7c/16 : 1v6c (27.9 %), 16 : 0 (22.1 %) and
18 : 1v7c/8 : 1v6c (21.4 %). The genomic DNA G+C mol content was 49.5 mol%. Based
on the phylogenetic, chemotaxonomic and phenotypic differences, strain S2753T is considered
to represent a novel species of the genus Photobacterium. Furthermore, whole genome
sequence analysis comparing S2753T and type-strains of closely related species of the genus
Photobacterium also demonstrated that the strain is genomically distinct enough
to be considered a novel species. The name Photobacterium galatheae is proposed and
the type-strain is S2753T(5LMG 28894T5DSM 100496T).

The genus Photobacterium contains 23 species with validly
published names (www.bacterio.net) at the time of writing.
Beijerinck (1889) first described bacteria in the genus and
all of the members have been isolated from marine and
aquatic environments: from sediments, water samples or
samples associated with marine animals.

In this study we report on the identification and character-
ization of a novel isolate belonging to the genus Photobac-
terium. In 2006, Gram and colleagues took part in a global
research expedition, the so-called Galathea 3 expedition
(Gram et al., 2010). During the expedition hundreds of
bacteria with antibacterial activity were isolated from sea-
water and biofilm samples of marine organisms. On 31st
December 2006, a swab sample was obtained from a
mussel in the Solomon Sea (9 06.480 S 156 51.570 E),
near the Solomon Islands. Sterile seawater (3–5 ml) was

added to the swab, which was vigorously vortexed, serially
diluted and plated onto half-strength Marine Agar (MA;
BD Difco 2216). Plates were incubated for 327 days
until colonies were observed. Colonies were tested for
antagonistic activity against other bacteria by replica-
plating of the MA plates onto a new agar plate into
which Vibrio anguillarum had been embedded (Gram
et al., 2010). Bacteria capable of inhibiting V. anguillarum
caused a clear zone in the turbid agar and were isolated
and pure cultured from the original MA plates. Strain
S2753T was able to inhibit not just V. anguillarum
(a Gram-negative fish pathogen) but also Staphylococcus
aureus (Gram-positive human pathogen) (Gram et al.,
2010; Wietz et al., 2010). The strain produced several
secondary bioactive metabolites, including the antibiotic
holomycin (Mansson et al., 2011a, b).

Strain S2753T was routinely cultivated on MA or in Marine
Broth (MB; BD Difco 2216) for one day at 25 8C, unless
otherwise indicated. Cell morphology was investigated by
phase-contrast microscopy (Olympus BX51) and scanning
electron microscopy (FEI Quanta FEG 200 ESEM) of cells
grown for one day at 25 8C in MB. The ability of strain

The GenBank/EMBL/DDBJ accession number for the 16S rRNA
gene sequence of strain S2753T is KR704916.

Three supplementary figures and four supplementary tables are
available with the online Supplementary Material.
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S2753T to grow at different temperatures (4, 10, 15, 20, 25,
28, 30, 35, 40, 45 8C) was tested on MA and in different
NaCl concentrations [0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14 % (w/v)] in synthetic Zobell medium
(5 gl21 Bacto peptone, 1 gl21 yeast extract, 0.1 gl21 ferric
citrate) (ZoBell, 1941). Gram testing was performed
using the 3 % (w/v) KOH method (Gregersen, 1978) and
catalase activity was tested using 3 % (v/v) H2O2

(Cowan, 1974). Oxidase activity was assessed using a BBL
DrySlide (BD). Antibiotic sensitivity was tested on Iso-sen-
sitest agar (CM0471B, Oxoid) supplemented with 1.5 %
(w/v) NaCl using the following antibiotics: 2,4-diamino-
6,7-diisopropylpteridine (vibriostatic agent O129 at 10
and 150 mg per disc), chloramphenicol (30 mg/disc), ery-
thromycin (15 mg/disc), tetracycline (30 mg per disc) and
penicillin (1.5 IU). API 20 NE (20050, Biomerieux), API
ZYM (25200, Biomerieux) and Biolog GN2 (Biolog Inc.,
USA) tests were performed in accordance with the manu-
facturers’ instructions when comparing metabolic and
enzymatic profiles of S2753T and closely related type-
strains of species of the genus Photobacterium. Because of
the salt requirements for growth of the marine strains, a
solution of 1.5 % (w/v) NaCl was used when resuspending
colony mass, unless a specific solution was proposed in the
manufacturer’s protocol. The Identification Service at
DSMZ, Braunschweig, Germany, carried out fatty acid ana-
lyses using the Sherlock Microbial Identification System
(MIDI).

Cells of S2753T were straight, rod-shaped, with mean length
2.2¡0.4 mm and mean width 0.99¡0.13 mm. They had a
polar flagellum of 4.3¡1.14 mm (Fig. S1, available in the
online Supplementary Material). The strain was Gram-
negative and oxidase- and catalase-positive. S2753T grew
between 15 and 40 8C, and in 0.5 to 9 % (w/v) NaCl. The
optimum temperature and salinity were 28 8C and 1–6 %
(w/v) NaCl. After 48 h incubation at 25 8C in MA the
strain grew in colonies of 3–5 mm diameter, depending on
the cell mass and the level of swarming of each colony.
S2753T grew aerobically and anaerobically (using an anaero-
bic jar and Gas Generaion kit BR0039, Oxoid) and it grew on
thiosulfate citrate bile salts sucrose medium (TCBS,
CM0333, Oxoid) with small, green colonies (approximately
1 mm). The strain was sensitive to the vibriostatic agent
O129, chloramphenicol, erythromycin and tetracycline,
but resistant to penicillin (Table 1). Further results from
the phenotypical and Biolog GN2 assays performed are
available as supplementary data (Tables S1–S4).

The fatty acid profile of strain S2753T was similar to those
of the type strains of closely related species of the genus
Photobacterium (Table 2) with the dominant cellular fatty
acids being 16 : 1v7c/16 : 1v6c (27.89 %), 16 : 0
(22.11 %) and 18 : 1v7c/18 : 1v6c (21.41 %).

The presence of several different 16S rRNA gene sequences
in species of the order Vibrionaceae has been previously
reported (Machado & Gram, 2015) and we identified 12
copies of this gene in the closed genome of S2753T

(unpublished) (Fig. S2). The 16S rRNA gene sequences
were not identical, although nine copies shared great simi-
larity. A gene representative of the nine most conserved
sequences was chosen to represent the 16S rRNA gene
sequence of S2753T (Fig. S3). This sequence was also the
one confirmed by both culture collections where the strain
was deposited. The extracted 16S rRNA gene (KR704916)
was compared to the 16S rRNA genes from type-strains of
species of the genus Photobacterium using CLC Main Work-
bench, version 7 (CLC Bio). The analysis included the gen-
eration of a phylogenetic tree using the neighbour-joining
method with the Jukes–Cantor nucleotide distance measure.
Phylogenetic trees were visualized using MEGA 6 (Tamura
et al., 2013). Sequence similarity calculations pointed to
the closest relatives of strain S2753T being Photobacterium
halotolerans MACL01T, Photobacterium aquae AE6T, Photo-
bacterium aphoticum CECT 7614T and Photobacterium gang-
hwense FR1311T, with similarity percentages of 97.67 %,
96.35 %, 96.95 %, and 96.00 %, respectively (Fig. 1). This
close relationship was also apparent from the topology of
the multi-locus sequence analysis (MLSA) based phyloge-
netic tree (Fig. 2). The MLSA was performed using seven
gene sequences (gyrB, pyrH, recA, topA, gapA, ftsZ, and
rpoA), which were found and extracted from the whole

Table 1. Differential phenotypic, physiological and biochemi-
cal characteristics of strain S2753T and related strains of
species of the genus Photobacterium

Strains: 1, S2753T; 2, P. halotolerans DSM 18316T; 3, P. ganghwense

DSM 22954T; 4, P. aphoticum DSM 25995T; 5, P. aquae CGMCC

1.12159T. +, Positive; 2, negative; ND, not determined. All data

were generated in this study.

Characteristic 1 2 3 4 5

Enzymic profile (API 20
NE and API ZYM):
Indole Production 2 2 + 2 2
Arginine dihydrolase 2 2 + + +
b-Galactosidase 2 + + + 2

Assimilation of (API 20 NE):
L-Arabinose 2 + 2 2 2
D-Mannose 2 + + 2 2
Potassium gluconate 2 + + 2 2
Capric acid 2 2 + 2 2
Phenylacetic acid 2 2 + 2 2

Oxidization of (Biolog GN2):
N-Acetyl-D-galactosamine + 2 2 + 2
L-Arabinose 2 + 2 2 2
D-Galactose 2 2 + + 2
D-Mannose 2 + 2 + +
b-Methyl-D-glucoside 2 + + + +
Sucrose 2 + 2 2 2
cis-Aconitic acid 2 + + 2 2
D-Gluconic acid 2 + + + 2
L-Pyroglutamic acid 2 + + 2 +

Growth at 10 8C 2 + ND ND ND

Resistance to Penicillin (1.5 IU) + 2 2 2 2
DNA G+C content (mol%) 49.50 50.90 50.50 49.70 49.10
Genome size (Mb) 4.53 4.69 5.54 5.26 5.08
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genome sequences by a similarity-based search to known
sequences (Gabriel et al., 2014).

To assess the genomic relatedness of S2753T and closely
related strains of species of the genus Photobacterium,
whole genome sequencing was performed on S2753T

(Machado et al., 2014), P. ganghwense DSM 22954T

(LDOU01), P. aphoticum DSM 25995T (LDOV01) and
P. aquae CGMCC 1.12159T (LDOT01). The genome of
P. halotolerans DSM 18326 was available on GenBank
(AULG01). The reference type-strains were obtained from
the Leibniz Institute DSMZ-German Collection of Micro-
organisms and Cell Cultures and from the China General
Microbiological Culture Collection, as indicated by the
strain designation.

High purity genomic DNA was extracted by successive
phenol/chloroform:isoamyl-alcohol purification steps fol-
lowed by precipitation with 2-propanol, treatment with
RNase, and a final purification and precipitation step
(Sambrook & Russel, 2001). Quantification of genomic
DNA was carried out in 1 % agarose gel electrophoresis,
using a NanoDrop Spectrometer (Saveen Werner) and a
Qubit 2.0 Analyser (Invitrogen).

Sequencing of the S2753T genome was carried out by the
Beijing Genomic Institute (Shenzhen, China). Libraries of
500 bp were used for 100 bp paired-end sequencing of gen-
omes using the Illumina sequencing technology on a
HiSeq2000. Sequencing of the P. ganghwense, P. aphoticum
and P. aquae type strains was performed at the Novo Nor-
disk Foundation Center for Biosustainability (Horshølm,
Denmark). Libraries of 300–400 bp were used for 151 bp
paired-end sequencing of genomes using the Illumina
sequencing technology on a MiSeq. The data were
assembled to contigs (.200 bp) using the De novo Assem-
bly in CLC Genomic Workbench, version 7 (CLC Bio). The
genomes were compared using the Genome-to-Genome
Distance Calculator 2.0 (GGDC) tool from DSMZ
(http://ggdc.dsmz.de/) (Auch et al., 2010a, b; Meier-Kolth-
off et al., 2013) and the Average Nucleotide Identity (ANI)
calculator from Kostas Lab (http://enve-omics.ce.gatech.
edu/ani/) (Goris et al., 2007). ANI values comparing
S2753T to other species of the genus Photobacterium were
less than 95 % (the typical threshold for species delimita-
tion) and all DNA–DNA-hybridization values (GGDC)
were less than 22 % (Table 3), where 70 % is usually the
limit for species identity (Auch et al., 2010a, b; Meier-
Kolthoff et al., 2013).

Based on the phenotypic, phylogenetic and genomic data,
strain S2753T should be recognized as a novel species
within the genus Photobacterium and the name Photobac-
terium galatheae sp. nov. is proposed.

Description of Photobacterium galatheae sp. nov.

Photobacterium galatheae (ga.la.the’ae. N.L. gen. n.
galatheae referring to the research expedition on which
the type strain was first isolated).

Cells are motile rods, 1.6–3.0 mm long and 0.74–1.2 mm
wide, with polar flagella 2.5–6.9 mm in length. Cells are
Gram-stain-negative, non-spore-forming, facultatively
anaerobic and occur mainly as single cells. When grown on
MA 2216 at 25 uC, colonies are irregular in shape and size,
depending on the biomass and swarming levels. Growth
occurs from 15 to 40 uC and in NaCl concentrations of 0.5
to 9 % (w/v). Utilizes dextrin, glycogen, Tween 40, Tween
80, N-acetyl-D-galactosamine, N-acetyl-D-glucosamine,
D-fructose, a-D-glucose, maltose, D-mannitol, D-psicose,
trehalose, pyruvic acid methyl ester, acetic acid, citric acid,
b-hydroxybutyric acid, DL-lactic acid, succinic acid, bromo-
succinic acid, D-alanine, L-alanine, L-alanyl-glycine,
L-asparagine, L-aspartic acid, L-glutamic acid, L-histidine,

Table 2. Cellular fatty acid profiles of strain S2753T and
related strains of species of the genus Photobacterium

Strains: 1, S2753T; 2, P. halotolerans DSM 18316T; 3, P. ganghwense

DSM 22954T; 4, P. aphoticum DSM 25995T; 5, P. aquae CGMCC

1.12159T. Values given are percentages of total fatty acids. 2, Not

detected (,0.25 %); TR, trace amounts (0.25–1 %). All data were

generated in this study.

Fatty acids 1 2 3 4 5

10 : 0 2 TR 2 2 2
12 : 0 3.92 5.07 3.41 1.96 1.67

11 : 0 3OH 2 2 2 TR TR

13 : 0 iso 2 2 TR TR 1.22

13 : 0 2 2 2 TR TR

12 : 0 3OH 6.11 4.74 2.80 1.86 1.73

14 : 00 1.32 TR 3.30 3.57 2.70

Summed feature 1

(15 : 1 iso H/13 : 0 3OH)

TR TR TR TR TR

15 : 0 iso 2 2 TR 2.05 2.55

15 : 0 anteiso 2 2 2 TR 2.10

15 : 1v8c TR TR TR 1.53 TR

15 : 1v6c 2 2 2 TR TR

15 : 0 1.30 1.18 1.15 7.14 2.82

Summed feature 2

(12 : 0 aldehyde?)

4.19 3.85 3.40 2.16 2.16

16 : 0 iso TR 1.50 TR TR 1.48

16 : 1v9c 2.19 1.75 2 2 2
Summed feature 3

(16 : 1v7c/16 : 1v6c)
27.89 30.18 31.47 42.96 40.49

16 : 1v5c TR 2 TR TR 2
16 : 0 22.11 22.72 21.97 15.09 9.00

17 : 1 isov9c 2 2 TR 1.04 2.07

17 : 0 iso TR 2 1.01 1.35 2.06

17 : 0 anteiso 2 2 2 1.31 3.52

17 : 1v6c 2 2 TR TR TR

17 : 1v8c 2.21 1.43 1.04 1.12 1.01

17 : 0 2.06 1.91 1.61 1.89 1.11

18 : 1v9c TR TR 2 2 2
Summed feature 8

(18 : 1v7c/18 : 1v6c)
21.41 22.21 26.17 14.90 18.33

18 : 0 TR TR TR 2 2

Photobacterium galatheae sp. nov.
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Photobacterium aquae CGMCC 1.12159T

Photobacterium aphoticum  DSM 25995T
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Photobacterium halotolerans DSM 18316T

Photobacterium galatheae S2753T100

Vibrio proteolyticus  ATCC 15338T
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Fig. 2. Phylogenetic tree based on MLSA analysis using seven gene sequences (gyrB, pyrH, recA, topA, gapA, ftsZ and
rpoA) of closely related type strains of species of the genus Photobacterium. Strain S2753T appeared clustered with
Photobacterium halotolerans MACL01T. The nodes with bootstrap support of 70 or more are indicated (1000 replications).
GenBank accession numbers are indicated. Vibrio proteolyticus ATCC 15338T was used to root the tree. Bar, 0.02 nucleo-
tide substitutions per position.
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Fig. 1. Phylogenetic tree based on 16S rRNA gene sequences of type strains of species of the genus Photobacterium. Strain
S2753T appeared to cluster with Photobacterium halotolerans MACL01T, Photobacterium aquae AE6T, Photobacterium
aphoticum CECT 7614T and Photobacterium ganghwense FR1311T, with percentage similarities of 97.67 %, 96.35 %,
96.95 % and 96.00 %, respectively. The nodes with bootstrap support of 70 or more are indicated (1000 replications).
GenBank accession numbers are indicated in parentheses. Vibrio proteolyticus ATCC 15338T was used to root the tree.
Bar, 0.005 nucleotide substitutions per position.
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L-proline, L-serine, L-threonine, urocanic acid, inosine,
uridine, thymidine, putrescine, glycerol, adipic acid, malic
acid and trisodium citrate as sole carbon sources. It does
not utilize L-arabinose, D-mannose, potassium gluconate,
capric acid, D-galactose, beta-methyl-D-glucoside, sucrose,
cis-aconitic acid, D-gluconic acids, L-pyroglutamic acid
and phenylacetic acid. Strain S2753T reduces nitrate to
nitrite and hydrolyses gelatin but it does not hydrolyse aescu-
lin. It is negative for indole production, urease, arginine
dihydrolase and b-galactosidase activities. The primary
fatty acids are 16 : 1v7c/16 : 1v6c (27.89 %), 16 : 0
(22.11 %) and 18 : 1v7c/18 : 1v6c (21.41 %). Susceptible
to the vibriostatic agentO129, chloramphenicol, erythromy-
cin and tetracycline, but resistant to penicillin.

The type strain is S2753T(5LMG 28894T5DSM 100496T),
which was isolated from the surface of a mussel in the Solo-
mon Sea, Solomon Islands. The DNA G+C mol content of
the type strain is 49.5 %.
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Abstract 

Background 

Gene based methods for identification of species from the 

Vibrionaceae family has developed during the last decades to address 

the limitations of the commonly used 16S rRNA gene phylogeny. 

Recently, we found that the ferric-uptake regulator gene (fur) can be 

used as a single phylogenetic marker providing species discrimination, 

consistent with Multi-Locus Sequencing Analyses and whole genome 

phylogenies.  

Results 

To allow for broader and easy use of this marker, we have developed 

an online prediction service that allows the identification of 

Vibrionaceae species based on the fur-sequence. The input is a DNA 

sequence that can be uploaded on the web service; the output is a table 

containing the strain identifier, e-value, and percentage of identity for 

each of the matches with rows coloured in green for hits with high 

probability of being the same species. The service is available on the 

web at: http://www.cbs.dtu.dk/services/furIOS-1.0/. The fur-sequences 

can be derived either from genome sequences or from PCR- 

amplification of the genomic region encoding the fur gene. We have 

used 191 strains identified as Vibrionaceae based on 16S rRNA gene 

sequence to test the PCR method and the web service on a large 

dataset. We were able to classify 171 of 191 strains at the species level 

and 20 strains remained unclassified. Furthermore, the fur 
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phylogenetics and sub-sequent in silico DNA-DNA hybridization 

demonstrated that two strains (ATCC 33789 and ZS-139) that have 

previously been misidentified as V. splendidus and are more closely 

related to V. tasmaniensis and V. cyclitrophycus, respectively. 

Conclusion 

FurIOS is an easy-to-use online service that allows the identification of 

bacteria from the Vibrionaceae family at the species level using the fur 

gene as a single phylogenetic marker. Its simplistic design and 

straightforward pipeline makes it suitable for any research 

environment, from academia to industry. 

Keywords: Vibrionaceae, Vibrio, Photobacterium, fur gene, phylogeny, 

identification 
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Background 

A key aspect in microbial taxonomy is the identification of 

microorganisms at the species or genus level. This is important to 

distinguish pathogenic species in health and environmental sciences, 

to identify beneficial or symbiotic species and also to study microbial 

diversity in environmental niches in Nature. Due to the widespread 

use and importance of bacterial identification, methods and processes 

should preferably be affordable, fast and easy to use 1. 

The Vibrionaceae is a large family of marine Gram-negative gamma-

proteobacteria, which includes organisms of different environmental 

importances, e.g. symbiotic (e.g. Vibrio fischeri), bioactive (e.g. V. 

coralliilyticus and Photobacterium galatheae) and pathogenic 

organisms (e.g. V. cholerae and Aliivibrio salmonicida). Several of the 

human pathogenic Vibrio species, such as V. cholera and V. 

parahaemolyticus, are mesophilic organisms and changes in sea water 

temperature and salinity influence their distribution 2–5. The increase 

in sea water temperature has been linked to a number of human 

illness outbreaks caused by Vibrio species (e.g. V. cholera, V. 

parahaemolyticus, V. vulnificus) 2 and to several epidemics in marine 

animals, such as oysters, salmon, sea bass, eel, trout, shrimps and 

corals, caused by V. salmonicida, V. anguillarum, P. damselae, V. 

vulnificus and V. coralliilyticus 2,4,6. The rising sea water temperatures 

have also been linked to the increase in the numbers of V. cholera 

associated with plankton in the North Sea 7. The increased spread of 

Vibrio pathogens and their importance as infectious and/or food 
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poisoning agents has a direct impact on health of mankind and 

requires changes in microbiological food control processes and 

clinical settings 8. Any survey or intervention to reduce risk requires 

that the organisms can be rapidly and correctly identified. 

Identification of species from the Vibrionaceae family has primarily 

been based on Multi-Locus Sequencing Analysis (MLSA), which relies 

on the amplification and sequencing of up to nine genes (ftsZ, gapA, 

gyrB, mreB, pyrH, recA, rpoA, topA, and the 16S rRNA gene) 9–12. This 

has been necessary due to the limitations of 16S rRNA gene phylogeny 

in this family, where several (7-15) different 16S rRNA genes are 

encoded in a single genome 13–15. We have recently identified the 

ferric-uptake regulator gene (fur) as a new phylogenetic marker in the 

Vibrionaceae family, and developed a PCR based method for the 

amplification of the genomic region encoding the fur gene 14. Its use as 

a single phylogenetic marker in the classification of Vibrionaceae at 

the species level could reduce the timing and cost of strain 

identification. To enable the use of this potential worldwide, we here 

describe the design of an online platform, FurIOS 1.0, which allows an 

easy and fast identification of Vibrionaceae species using only their fur 

DNA sequence. We also use a collection of 191 Vibrionaceae strains to 

demonstrate its potential. 
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Implementation 

Database design 

A ferric-uptake regulator gene (fur) sequences database was created 

extracting the sequences from available whole genome sequences and 

using the data collected during the design of the gene amplification 

methodology 14. The BLAST compatible version was generated using 

makeblastdb from NCBI BLAST+ command line tools. This database 

includes 134 sequences representing 78 species of the Vibrionaceae 

family, covering the 6 genera (Vibrio, Photobacterium, Aliivibrio, 

Grimontia, Enterovibrio and Salinivibrio). The use of the fur gene as a 

phylogenetic marker and the publication of more fur sequences will 

allow the improvement of this database by increasing the number of 

species represented. 

Implementation of FurIOS 1.0 

FurIOS is implemented in Python, compatible with version 2. The 

BLAST is performed using NCBI BLAST+ version (2.2.28+) 16, blastn 

calls and output parsing is handled using BioPython 17. The script 

verifies the format of the input, parameterizes the blastn command 

call and formats the output. BLAST runs with the following 

parameters: e-value of 10; gap open penalty of 5; gap extension penalty 

of 2; mismatch penalty of -3; match reward of 2; word size of 11; 

maximum number of returned alignments of 50. These parameters are 

the default CLC Main Workbench (CLC Aarhus, Denmark version 7) 
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used in the design of the method and evaluation of the potential of the 

fur as a phylogenetic marker 14. The web interface is provided by the 

Center for Biological Sequence Analysis (CBS) at the Department of 

Systems Biology, Technical University of Denmark and the webpages 

are designed according to their standards. Documentation can be also 

found on the website. 

Testing of the identification pipeline 

Bacterial strains and genomic DNA extraction 

The bacterial strains used in the implementation of the identification 

pipeline were 191 Vibrionaceae strains from the Galathea 3 culture 

collection 18. These strains have been identified as Vibrionaceae by 

analysis of the 16S rRNA gene sequence 18. Here, we aimed at a more 

specific classification, at the species level. Strains were grown 

overnight at 25 °C and 200 r.p.m. in Marine Broth (Difco 279110), 

before genomic DNA was extracted using the NucleoSpin® Tissue Kit 

(Macherey-Nagel, Düren, Germany). Genomic DNA quality was 

checked by 1% agarose gel electrophoresis and quantified by 

absorbance using DeNovix DS-11 (DeNovix Inc., Wilmington, USA). 

PCR amplification and sequencing 

Amplification of the fur gene was performed as previously described 
14, with few changes. Briefly, amplifications were performed in a total 

volume of 25 µL using 5 ng final concentration of genomic DNA as 
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template, 0.2 µM of each primer (fur_AP_fw and fur_AP_rv 14) and 

TEMPase Hot Start Master Mix Blue (Ampliqon A/S, Odense, 

Denmark), following the producers instructions. The PCR 

amplification was carried out in a thermal cycler (Applied Biosystems® 

Veriti® 96-Well Thermal Cycler) as follows: 15 min initial denaturation 

step at 95 °C, followed by 30 cycles of 95 °C for 25 s, 52 °C for 25 s, 

and 72 °C for 1 min, with a final extension step of 5 min at 72 °C. The 

amplified products were visualised after agarose gel electrophoresis 

(1%) and ethidium bromide staining. The PCR products were 

enzymatically purified by treatment with Exonuclease I (ExoI) 

(Thermo Scientific) and FastAP Thermosensitive Alkaline 

Phosphatase (Thermo Scientific) before being sequenced by Macrogen 

(Macrogen Europe, Amsterdam, The Netherlands). The sequencing 

reads were assembled and analysed using the CLC Main Workbench 

(CLC Aarhus, Denmark version 7). 

Species identification 

The fur gene sequences were merged in a single FASTA file. This file 

contained 191 fur sequences, each with a headline identifying the 

strain number (e.g. “>S2757”). This file was uploaded to the web 

interface of the FurIOS 1.0 (http://www.cbs.dtu.dk/services/furIOS-

1.0/) and the analyses performed. The highest hit was selected from 

the output for each of the strains (Table S1) and the strain classified at 

the species level if the percentage of identity was above 95%. In cases 

where lower than 95% identity was obtained, the strain was classified 
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as a possible new species. The fur gene sequences have been deposited 

on GenBank under accession numbers KU756296 – KU756481, 

KP721394, KP721390, KP721391, KP721399 and KP721400. 

Genomic analyses of Vibrio splendidus strains 

In silico DNA-DNA hybridization was performed for strains of the V. 

splendidus representing the three different fur phylogenetic clusters of 

this species. The genomes were compared using the Genome-to-

Genome Distance Calculator 2.1 (GGDC) tool from DSMZ 

(http://ggdc.dsmz.de/) 19–21. The used whole genome sequences of V. 

splendidus strains FF-500, 1F-157, FF-6, ZF-90, 1S-124, ZS-139, ATCC 

33789 and NCCB 53037T are publically available at NCBI under 

whole-genome sequenced accession numbers AJZH00000000, 

AJZJ00000000, AJZI00000000, AJZF00000000, AJZL00000000, 

AJZE00000000, AFWG00000000, LNQX00000000, respectively. 

Results and Discussion 

The FurIOS web service 

Users can access FurIOS via the web interface: 

http://www.cbs.dtu.dk/services/furIOS-1.0/. The input can be the 

whole fur open-reading frame of the sequence of the strain to be 

identified, the whole sequenced fragment, whole genome sequences or 

metagenomics data (with a maximum of 100 contigs of up to 200,000 

nucleotides, making a total of 20 million nucleotides per submission). 
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Submission of untreated sequences (raw sequencing data) is possible 

and decreases the need for sequence processing by the user, thereby 

accelerating the process. The sequences can be uploaded on the web 

service by “copy and paste” or using a file in FASTA format (Fig. 1A). 

The output is a table containing the strain identifier, e-value, and 

percentage of identity for each of the matches with rows coloured in 

green for hits with percentage of identity higher than 95% (Fig. 1B), 

representing a high probability of being the same species 14. The 

service is provided with pre-established settings used in the design and 

evaluation of fur as a phylogenetic marker 14, however a portable 

version where parameters can be selected by the user will be provided 

upon request. 

Sequence based identification has in other settings also been 

developed into online tools, which have been successfully used for 

several years for MLSA of pathogenic bacteria (e.g. 

http://mlst.warwick.ac.uk/mlst/; http://www.mlst.net/; 

http://bigsdb.web.pasteur.fr/). A tool based on MLSA has been under 

development for identification of Vibrio species 

(http://www.lge.ibi.unicamp.br/temp/vibrionaceae/), however is 

appears not to be functional. FurIOS is therefore the first functional 

online service developed for the classification of Vibrionaceae species 

and it is easier to implement and use than the MLSA based analyses, 

because it uses a single gene with great discriminatory power 14,22. 
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Figure 1 – Workflow and visualization example. (A) Example of sequence 
submission, this should be in fasta format and can be a multiple sequence 
submission. (B) Example of a result in table format, which includes the E-
value and the percentage of identity; the predicted species is coloured in 
green. 

A 

B 
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The corresponding author will act as a curator of the database. Newly 

published fur sequences can be send to the curator, who will use them 

to update the FurIOS database, in order for the database to be up to 

date. Publications making use of FurIOS will also be checked for 

relevant sequences to be added. 

Characterization of Vibrionaceae isolates 

A selection of 191 strains belonging to the Galathea 3 collection 18 was 

chosen to test the methodology here presented. These strains have 

been identified as Vibrionaceae by 16S rRNA gene sequencing 18, and 

were used to assess if species affiliation could be done using the 

FurIOS database. The fur sequences were amplified, sequenced and 

submitted to the FurIOS web service. For each of the strains, the 

highest identity hit was extracted (Table S1). Species affiliation could 

be assigned to 171 of the 191 strains (Fig. 2). Based on the fur 

sequence, the remaining 20 isolates had an identity lower than 95% 

and were therefore classified as “other species” (Fig. 2). These 20 

strains could potentially be new Vibrio species or species not yet 

represented in the FurIOS database, due to unavailability of whole 

genome or fur sequences. Of the 20 “other species”, 15 were 95 to 90% 

similar to the fur gene sequences of known species, whereas the 

remaining five strains had similarities between 89 and 80% (Table S1). 
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Figure 2 – Classification of 191 strains belonging to the Galathea 3 
Vibrionaceae culture collection. The identification corresponds to the 
highest hit obtained from the analyses using FurIOS 1.0. In cases where 
lower than 95% identity was obtained, the strain was classified as “other 
species”. 

The fur gene sequence of strain S2757 had an 89% identity to V. 

tubiashii DSM 19142. The isolate was therefore classified as “other 

species”. This strain has been further studied and has been recently 

described as the type strain of the new species V. galatheae 22. In that 

study 22, 16S rRNA, MLSA and fur gene analyses were performed and 

the fur gene, as a single gene analysis, provided as good discrimination 

as did the MLSA analysis 22. This confirms that the fur gene analyses 

can also be used in the classification of new species belonging to the 

Vibrionaceae family.  

Ninety of the 171 strains were identified as V. splendidus, however, 

these did not cluster as one tight single cluster but were distributed 

across the phylogenetic tree (Fig. 3). This species was represented in 

three clusters, two large and one small, all placed within the 

Splendidus clade, to which V. fortis, V. cyclitrophicus, V. crassostreae, 
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V. tasmaniensis and V. kanaloae species also belong 12. The three V. 

splendidus clusters correspond to fur homology to different V. 

splendidus strains. The first cluster contained strains with fur 

homology to V. splendidus strains FF-6, FF-500, 1F-157, 1S-124 and 

ZF-90 (Table S1). The second smaller cluster and the third cluster 

contained strains with fur homology to V. splendidus ZS-139 and 

ATCC 33789, respectively. The different clustering suggests a different 

phylogenetic relationship between these strains, previously identified 

as the same species. 

These discrepancies have been previously reported and attributed to 

the possible misidentification of Vibrio strains 23–25 or to the genetic 

diversity and polyphyletic nature of V. splendidus 9,26,27. To address 

this, we performed in silico DNA-DNA hybridization using the whole 

genome sequences of the V. splendidus strains represented in the three 

clusters (FF-6, FF-500, 1F-157, 1S-124, ZF-90, ZS-139 and ATCC 

33789) and the recently published genome of the V. splendidus type 

strain NCCB 53037T (Table 1). Based on DNA-relatedness, strains 

ATCC 33789 and ZS-139 were not similar enough to V. splendidus 

type-strain to be considered the same species and possibly represent 

new species. The fur sequences with high homology to the sequence 

from strain ZS-139 were closely related to V. cyclitrophycus (93% 

identity) while homology to strain ATCC 33789 placed them 

phylogenetically close to V. tasmaniensis (91% identity). 
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Figure 3 – Phylogenetic tree of 191 Galathea 3 Vibrionaceae strains. The 
tree is based on the complete fur gene sequences analysis and was 
constructed by the neighbor-joining method. S0386 was used as the outlier, 
since it classified as a Photobacterium sp.. The nodes with bootstrap support 
of 70 or more are indicated (1000 replications). 

From the phylogenetic analysis it is also possible to evaluate the 

relatedness of some of the strains identified as “other species” (Fig. 3). 

Some of these will most likely be the same species (e.g. S1348, S1349 

and S1350, or S2320, 2321 and 2322). 

Here we identified at the species level 90% of 191 Vibrionaceae strains 

from the Galathea 3 culture collection. The most abundant species was 

Vibrio splendidus, followed by V. tasmaniensis, V. crassostreae and V. 

campbellii (Fig. 2). The collection was based on culturing from marine 

samples and subsequent testing of antibacterial activity against the fish 

pathogen V. anguillarum 18, and this may explain the over 

representation (70%) of the species belonging to the Splendidus clade 

in this collection 12. Several studies have shown the presence of V. 

splendidus in water samples through all seasons, with higher 

predominance in summer, and in locations ranging from the artic to 

the tropics 13,28. These features reflect the great adaptability of this 

species 13, which can also explain its over representation in a global 

culture collection such as the Galathea 3 collection. 

Nevertheless, this dataset allowed the evaluation of the potential of 

this identification method and web tool in the classification of 

Vibrionaceae environmental samples at the species level, by means of 



17 

a single PCR reaction and sequencing of its product. The method 

presented here can be used for identification of Vibrionaceae species 

in less than 24 hours, and it requires minimal equipment and service. 

The analyses of the 191 sequences using the FurIOS web service took 

only three minutes, although this time may depend on the server 

usage at the moment of use. 

The recent findings have provided the Vibrionaceae taxonomy field 

with new and more accurate approaches to evaluate the phylogeny 

and taxonomy relatedness between the different species of this family. 

This comes as a great opportunity to revaluate the evolutionary 

theories in this family as well to discover and correctly classify newly 

identified species.  

Conclusions 

FurIOS is an easy-to-use online service that allows the identification of 

bacteria from the Vibrionaceae family at the species level using the fur 

gene as a single phylogenetic marker. This online-service available to 

any user worldwide is an extra effort to implement the use of the 

recently developed method for the amplification of the fur gene 

sequence, with greater discriminatory power when compared to 

MLSA or 16S rRNA analyses. Its simplistic design and straightforward 

pipeline makes it suitable for any research environment, from 

academia to industry, and especially for quick species identification in 

clinical and food-safety settings, where Vibrionaceae strains are of 

high risk (e.g. microbiological control of sea food products). 
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Supplementary Table 1 

Table S1 – Results of the identification of Vibrionaceae strains from the 
Galathea 3 collection using FurIOS1.0. 

Strain	   Name	   E-‐value	   %	  Identity	  
S0203 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   98	  
S0278 Vibrio	  splendidus	  ZS-‐139	   0,00E+00	   99	  
S0344 Vibrio	  pacinii	  DSM	  19139	   0,00E+00	   100	  
S0387 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   100	  
S0537 Vibrio	  splendidus	  ZS-‐139	   0,00E+00	   99	  
S0538 Vibrio	  splendidus	  ZS-‐139	   0,00E+00	   86	  
S0539 Vibrio	  splendidus	  ZS-‐139	   0,00E+00	   100	  
S0553 Vibrio	  splendidus	  ZS-‐139	   0,00E+00	   99	  
S0562 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S0567 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S0571 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   100	  
S0573 Vibrio	  kanaloae	  5S-‐149	   0,00E+00	   100	  
S0575 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S0576 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S0648 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   99	  
S0649 Vibrio	  splendidus	  FF-‐6	   0,00E+00	   100	  
S0679 Vibrio	  splendidus	  FF-‐6	   0,00E+00	   100	  
S0681 Vibrio	  splendidus	  FF-‐6	   0,00E+00	   100	  
S0682 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   100	  
S0693 Vibrio	  kanaloae	  5S-‐149	   0,00E+00	   100	  
S0703 Vibrio	  splendidus	  FF-‐6	   0,00E+00	   100	  
S0787 Vibrio	  shilonii	  AK1	   0,00E+00	   99	  
S0792 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   99	  
S0838 Vibrio	  fortis	  Dalian14	   0,00E+00	   97	  
S0843 Vibrio	  brasiliensis	  LMG	  20546	   0,00E+00	   93	  
S0845 Vibrio	  brasiliensis	  LMG	  20546	   0,00E+00	   93	  
S1063 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   99	  
S1081 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   98	  
S1084 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   98	  
S1085 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S1099 Vibrio	  harveyi	  VHJR7	   0,00E+00	   96	  
S1100 Vibrio	  crassostreae	  9CS106	   0,00E+00	   97	  
S1101 Vibrio	  crassostreae	  9CS106	   0,00E+00	   97	  
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S1104 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S1108 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   99	  
S1131 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S1132 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S1137 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S1142 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   99	  
S1160 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   99	  
S1171 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   98	  
S1341 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S1344 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   98	  
S1349 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   91	  
S1350 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   91	  
S1362 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S1364 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S1365 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S1371 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S1383 Vibrio	  fortis	  Dalian14	   0,00E+00	   96	  
S1394 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S1399 Vibrio	  tubiashii	  DSM	  19142	   0,00E+00	   99	  
S1604 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   99	  
S1605 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   99	  
S1606 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   99	  
S1651 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   98	  
S1652 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   99	  
S1653 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S2043 Vibrio	  coralliilyticus	  S2052	   0,00E+00	   100	  
S2054 Vibrio	  coralliilyticus	  S2052	   0,00E+00	   100	  
S2148 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S2149 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   98	  
S2155 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   98	  
S2160 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S2227 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   93	  
S2228 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S2229 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S2234 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   98	  
S2291 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   93	  
S2321 Vibrio	  caribbeanicus	  ATCC	  BAA-‐2122	   7,74E-‐179	   90	  
S2345 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   99	  
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S2349 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S2351 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S2352 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   92	  
S2396 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   92	  
S2538 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   99	  
S2674 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   99	  
S2681 Vibrio	  alginolyticus	  TS13	   0,00E+00	   97	  
S2686 Vibrio	  alginolyticus	  TS13	   0,00E+00	   97	  
S2688 Vibrio	  alginolyticus	  TS13	   0,00E+00	   97	  
S2689 Vibrio	  alginolyticus	  TS13	   0,00E+00	   97	  
S2690 Vibrio	  alginolyticus	  TS13	   0,00E+00	   97	  
S2719 Vibrio	  brasiliensis	  LMG	  20546	   2,09E-‐154	   86	  
S2723 Vibrio	  alginolyticus	  TS13	   0,00E+00	   97	  
S2725 Vibrio	  alginolyticus	  TS13	   0,00E+00	   97	  
S2757 Vibrio	  tubiashii	  DSM	  19142	   3,10E-‐171	   89	  
S2850 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   92	  
S2895 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   99	  
S2946 Vibrio	  crassostreae	  9CS106	   0,00E+00	   99	  
S2947 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   100	  
S2948 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   100	  
S2949 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   98	  
S2951 Vibrio	  tasmaniensis	  1F-‐187	   0,00E+00	   99	  
S3026 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   98	  
S3027 Vibrio	  crassostreae	  9CS106	   0,00E+00	   99	  
S3142 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   100	  
S3143 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   100	  
S3144 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   100	  
S3145 Vibrio	  splendidus	  ZF-‐90	   0,00E+00	   100	  
S3246 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   99	  
S3247 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   99	  
S3248 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   100	  
S3249 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   100	  
S3250 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   100	  
S3251 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   98	  
S3252 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   98	  
S3253 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   98	  
S3254 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   100	  
S3256 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   100	  
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S3259 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   100	  
S3261 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   98	  
S3262 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   99	  
S3301 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   98	  
S3302 Vibrio	  splendidus	  ZS-‐139	   0,00E+00	   99	  
S3303 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   99	  
S3305 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   99	  
S3307 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   100	  
S3308 Vibrio	  splendidus	  ZF-‐90	   0,00E+00	   99	  
S3309 Vibrio	  splendidus	  ZF-‐90	   0,00E+00	   99	  
S3310 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   100	  
S3311 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   99	  
S3312 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   100	  
S3314 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   99	  
S3315 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   99	  
S3316 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   99	  
S3320 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   99	  
S3434 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   99	  
S3435 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   99	  
S3436 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   99	  
S3494 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   99	  
S3495 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   99	  
S3658 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S3659 Vibrio	  tubiashii	  DSM	  19142	   0,00E+00	   98	  
S3660 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S3667 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S3669 Vibrio	  fortis	  Dalian14	   0,00E+00	   98	  
S3706 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   98	  
S3707 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S3728 Vibrio	  cholerae	  TM	  11079-‐80	   2,53E-‐134	   82	  
S3729 Vibrio	  cyclitrophicus	  FF75	   0,00E+00	   99	  
S3778 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   92	  
S3781 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S3783 Vibrio	  cyclitrophicus	  FF75	   0,00E+00	   99	  
S3789 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S3791 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S3792 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S3793 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
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S3794 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S3854 Vibrio	  alginolyticus	  TS13	   0,00E+00	   97	  
S3855 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  
S3857 Vibrio	  rotiferianus	  DAT722	   0,00E+00	   99	  
S3858 Vibrio	  crassostreae	  9CS106	   0,00E+00	   96	  
S3859 Vibrio	  fortis	  Dalian14	   0,00E+00	   97	  
S3860 Vibrio	  alginolyticus	  TS13	   0,00E+00	   97	  
S3861 Vibrio	  crassostreae	  9CS106	   0,00E+00	   96	  
S3862 Vibrio	  crassostreae	  9CS106	   0,00E+00	   97	  
S3863 Vibrio	  crassostreae	  9CS106	   0,00E+00	   96	  
S3864 Vibrio	  crassostreae	  9CS106	   0,00E+00	   96	  
S3897 Vibrio	  crassostreae	  9CS106	   0,00E+00	   96	  
S3900 Vibrio	  crassostreae	  9CS106	   0,00E+00	   96	  
S3925 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   99	  
S3927 Vibrio	  splendidus	  12E03	   0,00E+00	   93	  
S3941 Vibrio	  crassostreae	  9CS106	   0,00E+00	   99	  
S3943 Vibrio	  crassostreae	  9CS106	   0,00E+00	   96	  
S4075 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   98	  
S4078 Vibrio	  harveyi	  VHJR7	   0,00E+00	   98	  
S4228 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   99	  
S4235 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   99	  
S4309 Vibrio	  alginolyticus	  TS13	   0,00E+00	   97	  
S4497 Vibrio	  rotiferianus	  DAT722	   0,00E+00	   99	  
S4635 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   99	  
S4636 Vibrio	  tasmaniensis	  ZS-‐17	   0,00E+00	   99	  
S4638 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   100	  
S4639 Vibrio	  kanaloae	  5S-‐149	   0,00E+00	   99	  
S4733 Vibrio	  tasmaniensis	  5F-‐79	   0,00E+00	   96	  
S4734 Vibrio	  tasmaniensis	  5F-‐79	   0,00E+00	   100	  
S4735 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   100	  
S4736 Vibrio	  splendidus	  ZF-‐90	   0,00E+00	   100	  
S4737 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   100	  
S4739 Vibrio	  splendidus	  1S-‐124	   0,00E+00	   100	  
S4740 Vibrio	  splendidus	  FF-‐500	   0,00E+00	   99	  
S0386 Photobacterium	  gaetbulicola	  Gung47	   1,31E-‐131	   82	  
S3662 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   99	  
S0200 Vibrio	  splendidus	  1F-‐157	   0,00E+00	   95	  
S0568 Vibrio	  splendidus	  ATCC	  33789	   0,00E+00	   97	  



28 

S0788 Vibrio	  coralliilyticus	  S2052	   0,00E+00	   99	  
S1348 Vibrio	  campbellii	  CAIM	  519	  =	  NBRC	  15631	   0,00E+00	   91	  
S1396 Vibrio	  coralliilyticus	  S2052	   0,00E+00	   99	  
S2056 Vibrio	  coralliilyticus	  S2052	   0,00E+00	   100	  
S2320 Vibrio	  caribbeanicus	  ATCC	  BAA-‐2122	   7,74E-‐179	   90	  
S2322 Vibrio	  caribbeanicus	  ATCC	  BAA-‐2122	   7,74E-‐179	   90	  
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ABSTRACT 

 

Cytochromes P450 (CYPs) are enzymes that modify several types of compounds, usually by 

substrate mono-oxygenation, and are of biotechnological interest due to their ability to 

perform challenging chemistry. In comparison with the membrane bound eukaryotic CYPs, 

the soluble bacterial CYPs are more stable and easier to express and purify. However, their 

use as biocatalysts in the biotechnological industry has not been fully explored. Marine 

bacteria are emerging as a yet unexplored source of natural products, many of which are 

dependent on CYP-modifications. We mined 19 genomes of bioactive marine bacteria and 

identified 26 distinct CYP open-reading frames (ORFs). These ORFs were compared to 

previously studied bacterial CYPs to identify their phylogenetic relationships and putative 

functions. Five CYPs were analyzed in more detail and expressed in the model cell factories 

Escherichia coli and Saccharomyces cerevisiae. Expression in yeast confirmed cytoplasmic 

localization of the bacterial CYPs. Furthermore, we showed that codon optimized bacterial 

CYPs were properly folded in yeast. To our knowledge, the present study represents the first 

successful mining for CYPs from marine bacterial genomes in a merger of white and blue 

biotechnology. 

 

 

Keywords Cytochrome P450 (CYP), Marine bacterial CYPs, Biotechnological potential, 

Yeast expression 

 



INTRODUCTION 

 

Cytochromes P450 (CYPs) are a superfamily of enzymes found in many different taxonomic 

groups. These heme-thiolate proteins bind to carbon monoxide exhibiting an absorption 

spectrum at 450 nm, which is the phenomenon responsible for their designation. They use 

electrons from NAD(P)H to catalyze scission of molecular oxygen and an associated protein, 

the redox partner, to transfer the reducing equivalents to the heme prosthetic group. CYPs 

modify several substrates by mono-oxygenation and this is the most common function of 

these enzymes, although other functions have been described [1,2,3]. 

 

Several natural compounds are synthesized in microorganisms, plants and fungi through a 

plethora of chemical modifications catalyzed by CYPs [3]. Natural product synthesis includes 

several unique chemical reactions, some of which are performed by the associated CYPs. 

Therefore, understanding the mechanisms of action of CYP enzymes, associated with natural 

product synthetic clusters, will allow for catalytic innovation and can be of great use in 

biotechnological processes [3]. 

 

In Nature, eukaryotic CYPs are often part of membrane-associated multi protein complexes 

and their use as synthetic catalysts at an industrial scale is hampered by this complexity as 

well as their limited stability and activity when isolated [4,5]. Additionally, the requirements 

for a constant supply of NAD(P)H and a redox partner are challenges in establishing CYP-

based biocatalysis. Despite these obstacles, CYPs have been successfully used in industrial 

settings. For example, in yeast, the co-expression of a CYP, its redox partner and cytochrome 

b5 from plants led to high yield production of the antimalarial drug artemisinin [6,7].  

 

During the last decades, CYPs have received increased attention. Of the 905 total identified 

CYPs in 2009, 30% were of plant origin, but these only represented 11% of total family 

diversity [8]. Remarkably, bacterial CYPs accounted for only 6% of the total number of 



CYPs, but 18% of family diversity [8].  By August 2013, approximately 20,000 CYP 

enzymes had been identified and catalogued

(http://drnelson.uthsc.edu/CytochromeP450.html). 

 

In contrast to eukaryotic CYPs, the bacterial CYPs offer several advantages. So far, all 

identified bacterial CYPs are soluble (in contrast to membrane-bound) enzymes that are faster 

and more stable catalysts than their eukaryotic counterparts [4]. The bacterial CYPs are 

usually associated with ferredoxins and ferredoxin reductases, which are used as redox 

partners [9]. One of the most extensively studied bacterial CYPs is CYP102A1 from Bacillus 

megaterium, commonly known as BM3 [10]. BM3 is a self-sufficient enzyme, as it is fused 

with a FAD/FMN reductase (differs from ferredoxin reductases since it has a flavin moiety 

instead of iron-sulfur core), and it uses C12-C20 saturated or unsaturated fatty acids as natural 

substrates [11]. For several years, efforts to achieve immobilization, cofactor regeneration and 

development of assays for CYPs have been focused on BM3 [12]. However, the major 

achievements with BM3 are mostly related to protein engineering towards, in particular, 

hydroxylation of BM3-unnatural substrates [5,13,14,15,16,17,18]. Additional efforts have 

been dedicated to engineering other prokaryotic CYPs into enzymes with the capability to 

modify a broad range of substrates aiming to exploit their unique ability to perform 

challenging chemistry in biotechnological processes [19].  

 

Soil microorganisms have been successfully explored as sources of bioactive compounds 

used by the pharmaceutical and biotech industries [20], but the use of marine bacteria for 

similar purposes is on the rise [21,22,23]. Marine bacteria are believed to harbor a multitude 

of novel bioactive compounds due to the unique environmental conditions they have adapted 

to, such as high pressure, high salinity, high or low temperature or oligotrophic conditions 

[24,25]. Some of these bioactive compounds are produced by biosynthetic reactions catalyzed 

by CYPs, which are typically encoded in biosynthetic gene clusters [26]. However, there are 

very few studies on marine CYPs and bioprospecting marine bacteria would likely provide 



novel CYPs. In the present study we have mined the genome sequences of several bioactive 

marine bacteria for CYP-encoding genes. Selected candidates were cloned and expressed in 

both E. coli and S. cerevisiae to explore their cellular localization and biotechnological 

potential in these model microbial cell factories. This study also explores the heterogeneity of 

CYP enzymes in marine bacteria and the process of discovering new CYP enzymatic 

functions.  

 

MATERIALS AND METHODS 

Strains and media 

All strains used for cloning and expression are listed in Table 1. Saccharomyces cerevisiae 

strain PAP1503 was obtained from Per Amstrup Pedersen (Copenhagen University, 

Denmark). Yeast strains were grown either in synthetic complete (SC) drop-out media (0.67% 

Yeast Nitrogen Base with required amino acids from Sigma-Aldrich, St. Louis, MO, USA)) 

or standard yeast peptone dextrose (YPD) medium (1% yeast extract, 2% peptone, 2% 

dextrose from Sigma-Aldrich, St. Louis, MO, USA) for both liquid cultures and agar plates. 

Yeast transformants were selected on SC media without the appropriate selection 

requirements corresponding to the plasmid-encoded auxotrophic markers. Escherichia coli 

strain NEB5α (New England Biolabs, Ipswich, MA, USA) was used for cloning and 

propagation of plasmids. E. coli strain BL21 (DE3) (Novagen, Madison, WI, USA) was used 

for radioactive labeling studies. Chemically competent cells of NEB5α and BL21 (DE3) were 

prepared as described elsewhere [27]. Competency of the cells was 2.6-3.3 × 107 CFU/μg 

DNA. Bacteria were propagated on Luria-Bertani (LB) agar plates (Oxoid, Altrincham, UK) 

or liquid 2xYT media (1.6% tryptone, 1% yeast extract from Sigma-Aldrich, St. Louis, MO, 

USA) supplemented with spectinomycin (50 μg/mL) or ampicillin (100 μg/mL) when 

required and Phosphate, Ammonium and Selenomethionine (PASM) media for 35S-

methionine labeling of proteins [28]. 35S-methionine was purchased from Perkin Elmer 

(Waltham, Massachusetts, USA). Plasmids were isolated using the NucleoSpin® Plasmid 

QuickPure Kit (Macherey-Nagel, Durën, Germany). 



 

Table 1 – Strains and plasmids used in this study 

 

 

Genomic DNA isolation and sequencing 

High purity genomic DNA was extracted by successive phenol:chloroform:isoamyl-alcohol 

purification steps followed by precipitation with isopropanol, treatment with RNase, and a 

Strains/Plasmids Property Source
Saccharomyces cerevisiae 
PAP1503 MATα ura3-52 trp1::GAL10-GAL4 lys2-801 leu2Δ1 his3Δ200 

pep4::HIS3 prb1Δ1.6R can1 GAL 
[29,30]  

PAP1503_P4 PAP1503 transformed with plasmid pEMBLyex4_P4 This study 
PAP1503_P5 PAP1503 transformed with plasmid pEMBLyex4_P5 This study 
PAP1503_P7 PAP1503 transformed with plasmid pEMBLyex4_P7 This study 
PAP1503_P9 PAP1503 transformed with plasmid pEMBLyex4_P9 This study 
PAP1503_P29 PAP1503 transformed with plasmid pEMBLyex4_P29 This study 
PAP1503_BM3 PAP1503 transformed with plasmid pEMBLyex4_BM3 This study 
PAP1503_CYP79A1 PAP1503 transformed with plasmid pEMBLyex4_CYP79A1 This study 

Escherichia coli 
NEB5α fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80Δ(lacZ)M15 gyrA96 

recA1 relA1 endA1 thi-1 hsdR17 
New England 
Biolabs 

NEB5α_P5 NEB5α transformed with plasmid pCDF_P5 This study 
NEB5α_P7 NEB5α transformed with plasmid pCDF_P7 This study 
NEB5α_P9 NEB5α transformed with plasmid pCDF_P9 This study 
NEB5α_P29 NEB5α transformed with plasmid pCDF_P29 This study 
BL21 (DE3) F– ompT gal dcm lon hsdSB(rB

- mB
-) λ(DE3 [lacI lacUV5-T7 gene 

1 ind1 sam7 nin5]) 
Novagen 

BL21 (DE3)_P5 BL21 (DE3) transformed with plasmid pCDF_P5 This study 
BL21 (DE3)_P7 BL21 (DE3) transformed with plasmid pCDF_P7 This study 
BL21 (DE3)_P9 BL21 (DE3) transformed with plasmid pCDF_P9 This study 
BL21 (DE3)_P29 BL21 (DE3) transformed with plasmid pCDF_P29 This study 

Plasmids 
pEMBLyex4 High copy-number yeast expression vector controlled by the 

galactose-inducible GAL1-CYC1 promoter, 2μ origin of 
replication, URA3, leu2-d 

 [31] 

pEMBLyex4_P4 P4 ORF expressed from PGAL1-CYC1 promoter in pEMBLyex4 This study 
pEMBLyex4_P5 P5 ORF expressed from PGAL1-CYC1 promoter in pEMBLyex4 This study 
pEMBLyex4_P7 P7 ORF expressed from PGAL1-CYC1 promoter in pEMBLyex4 This study 
pEMBLyex4_P9 P9 ORF expressed from PGAL1-CYC1 promoter in pEMBLyex4 This study 
pEMBLyex4_P429 P29 ORF expressed from PGAL1-CYC1 promoter in pEMBLyex4 This study 
pEMBLyex4_BM3 BM3 ORF expressed from PGAL1-CYC1 promoter in pEMBLyex4 This study 
pEMBLyex4_CYP79A1 CYP79A1 ORF expressed from PGAL1-CYC1 promoter in 

pEMBLyex4 
This study 

pCDFDuet-1 Cloning and expression vector, SpR Novagen
pCDF_P5 P5 ORF expressed from PT7 promoter in pCDFDuet-1 This study 
pCDF_P7 P7 ORF expressed from PT7 promoter in pCDFDuet-1 This study 
pCDF_P9 P9 ORF expressed from PT7 promoter in pCDFDuet-1 This study 
pCDF_P29 P29 ORF expressed from PT7 promoter in pCDFDuet-1 This study 



final purification and precipitation step [32]. Quality assessment and quantification of 

genomic DNA was done in 1% agarose gel electrophoresis, NanoDrop Spectrometer (Saveen 

Werner, Sweden), and Qubit 2.0 Analyzer (Invitrogen, United Kingdom). The genomic DNA 

was used as a template for PCR amplification of the genes of interest.  

 

Bioinformatic analysis 

The strains used in the genome mining (Fig. 1) were isolated during the Danish Galathea 3 

global research expedition (http://www.galathea3.dk/uk) [33] and whole genome sequenced 

[23]. Prediction of cytochrome P450 genes was performed using an annotation and 

homology-based search after RAST genome annotation [34]. Identification of specific 

biosynthetic gene clusters was performed using antiSMASH 2.0 [35] and annotation-based 

analyses [34]. Possible identity of all predicted cytochromes P450 to known proteins was 

done by Basic Local Alignment Search (BLAST) analysis. Membrane protein topology 

predictions were made using the online tools Topcons http://topcons.cbr.su.se/ [36] and ΔG 

predictor http://dgpred.cbr.su.se/ [37]. An attempt to identify the families of the new CYPs 

was performed using the information in the “cytochrome P450 homepage” [8].  
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Figure 1. Overview of the number of identified cytochromes P450 (CYP) in 19 marine 

bacterial genomes. 

Both members of alpha and gamma-proteobacteria were mined for putative CYPs. Strain 

names and numbers are referenced in the vertical axis with the NCBI whole genome sequence 

accession number in brackets. Black bars represent the number of CYPs identified per 

genome. 

 

PCR, oligonucleotide design and uracil excision cloning  

All oligonucleotides used for PCR amplification were purchased from Integrated DNA 

Technologies (Coralville, IA, USA) and are listed in Table S1. Oligonucleotides were 

designed with melting temperatures (Tm) of approximately 60°C. The uracil excision-specific 

oligonucleotides were designed with U-overhangs of Tm varying from 20 to 30°C. 

Oligonucleotides used for amplification of parts for homologous recombination-based yeast 

DNA assembly were designed with homology arms of >27 bp. DNA amplification and 

assembly in E. coli with uracil excision cloning were accomplished as described previously 

[38,39]. PCR products were purified using a PureLink™ Quick Gel Extraction and PCR 

Purification Combo Kit (Life Technologies, Foster City, USA). PCR products were quantified 

using a NanoDrop 8000 (Thermo Scientific, Wilmington, USA). 

 

Plasmids and strains construction 

All plasmids used for CYP-ORF expression are listed in Table 1. For testing CYP expression 

in E. coli, PCR products containing CYP-predicted ORF and U-overhangs complementary to 

the entry vector were cloned in a pCDFDuet-1 plasmid via two-fragment uracil excision 

cloning. BL21 (DE3) was transformed and assayed as described below (see section 35S-

methionine labeling of proteins). In order to avoid negative effects of rare codons in S. 

cerevisiae, the genes were codon optimized using the codon optimization tool from Integrated 

DNA Technologies and then synthetized as gBlocks™ gene fragments (Integrated DNA 

Technologies, Coralville, IA, USA). The codon optimized sequences of P4, P5, P7, P9 and 



P29 have been deposited on GenBank with accession numbers KU710259, KU710260, 

KU710261, KU710262, and KU710263, respectively. These codon optimized gene fragments 

were used as PCR templates for assembly in yeast. Three PCR products with long homology 

arms encoding for protein of interest (CYP), GFP (C-terminally fused to a His8 tag) and 

pEMBLyex4 plasmid previously digested with BamHI and HindIII were transformed directly 

into PAP1503 and assembled in yeast by homologous recombination [40]. The resulting 

construct encodes for the protein of interest (CYP) C-terminally fused to GFP with a TEV 

protease cleavage site in between. The newly assembled plasmids were extracted from yeast 

and transformed into NEB5ɑ for plasmid amplification. All constructs were confirmed by 

colony PCR and sequencing. 

 

35S-methionine labeling of proteins 

Transcription and translation of cytochrome P450 enzymes in E. coli was confirmed using the 

rifampicin blocking technique and 35S- methionine labeling [41] as described previously [42]. 

 

Assay for overexpression and production of GFP-fusions 

Overexpression of CYP-GFP fusions in S. cerevisiae was performed in strain PAP1503 as 

described elsewhere [40] with minor modifications: synthetic complete (SC) medium was 

used instead of synthetic minimal (SD) medium. PAP1503 transformants were grown 

overnight (30°C, 200 rpm) in SC supplemented with glucose (20 g/L) without uracil. 

Overnight cultures were used to inoculate SC without uracil and leucine (SC-ura-leu) in a 

1:50 ratio. Cultures were grown at 30°C for 48 hours before they were used to inoculate 250 

mL of SC-ura-leu medium supplemented with glucose (5 g/L) with an initial optical density 

(OD) of 0.05. This was done in triplicate. Cultures were grown at 30°C, 200 rpm until OD 1.0 

before GFP-fusion production was induced by addition of galactose at a final concentration of 

2% (m/v). Cultures were then grown for 24 hours at 20°C with shaking at 200 rpm.  

 

Microscopy 



S. cerevisiae cells were grown as described above (see previous section). Fluorescence of 

CYP-GFP fusions was visualized at 400 x magnification with a DM4000B fluorescence 

microscope from Leica (Wetziar, Germany). CYP79A1 from Sorghum bicolor was used as a 

membrane protein control [43]. 

 

Protein purification and quantification 

Cell pellets from 0.75 L of CYP-GFP producing cultures were resuspended in 30 mL IMAC 

buffer A (50 mM TRIS-HCl pH 7.5, 500 mM NaCl, 20 mM imidazole) supplemented with 1 

tablet/50 mL complete, EDTA-free Protease Inhibitor Cocktail (Sigma-Aldrich, St. Louis, 

MO, USA) and cells were lysed by three passes at 20.000 psi through an Emulsiflex-C5 

(Avestin, Ottawa, Canada). After centrifugation for 15 min at 15.000g, the supernatant was 

loaded onto a 5 mL HisTrap FF crude column (GE Healthcare, Buckinghamshire, UK) 

equilibrated with IMAC buffer A. The columns were washed with 10 column volumes of 

IMAC buffer A and the proteins of interest eluted with a 10 column volume gradient of 0-

100% IMAC buffer B (50 mM TRIS-HCl pH 7.5, 500 mM NaCl, 500 mM Imidazole). 

Fractions containing the proteins of interest were identified by SDS-PAGE, pooled and 

concentrated using Amicon Ultra-15 Centrifugal Filters (Millipore, Billerica, Massachusetts, 

USA). The CYP proteins of interest (P4, P5, P7 and P29) were concentrated using a 30 kDa 

cut-off filter, while P9 and BM3 were concentrated using a 10 kDa and 50 kDa cut-off filter, 

respectively. Protein concentrations were measured with a NanoDrop ND-1000 (NanoDrop 

Technologies, Inc., Wilmington, DE, USA). Samples were kept at 4°C until permanent 

storage at -80°C.  

 

In-gel fluorescence 

In-gel fluorescence of purified GFP-fusions was carried out in a G:Box chemi XT4 (Syngene, 

Cambridge, UK) using Mini-PROTEAN® TGX™ precast gels from Biorad (Hercules, USA) 

and with 465 nm excitation and 535 nm emission. 

 



Absorption Spectroscopy 

Absorption spectra of CYP-GFP fusions at 450 nm were recorded with a SLM Aminco DW-

2000 TM spectrophotometer (Spectronic Instruments, Rochester, NY, USA) as described 

elsewhere [44]. Purified protein-GFP fusions were used in concentrations between 0.07-1.2 

mg/mL in Tris-HCl buffer pH 8.0. 

 

RESULTS 

Mining the genomes of marine bacteria for cytochromes P450 and redox partners 

The genomes of 19 bioactive marine strains, previously identified as secondary metabolite 

producers [23,45,46], were mined for cytochrome P450 (CYP) encoding genes and a total of 

26 putative CYP genes were identified (Table S2). The number of CYPs ranged from zero to 

nine per bacterial genome (Fig. 1). The identified CYP domain-containing open reading 

frames (ORFs) had GC contents between 39 and 73% and gene sizes from 300 to 1,400 bp 

(Table S2). Members of the alpha-proteobacteria had up to nine CYP-encoding genes, while a 

maximum of two was detected in a single gamma-proteobacterial strain (Fig. 1). CYP genes 

found in the gamma-proteobacteria were associated with putative specific pathways or 

biosynthetic clusters, such as a predicted gamma-butyrolactone biosynthetic cluster, a cluster 

involved in agar degradation or a non-ribosomal peptide/ polyketide synthase (Table 2). 

 

Table 2 - Short-list of putative CYPs to be further studied and their redox partners 

P450 Strain GenBank 
Accession 

Size 
(bp) 

GC 
(%) 

TM 
domains 

Genomic 
context 

CYP family Ferredoxins Ferredoxin 
Reductases 

P4 S3431 KDC54395 1173 41 None 
Agar 

degradation 
CYP236A1 4 2 

P5 S3726 KJZ11492 1209 39 None 
Butyrolactone 

cluster 
CYP107E1 3 1 

P7 S4079 KJZ21287 1176 54 None Exopolymer 
metabolism 

CYP104A2 4 3 

P9 S4493 KJZ30079 312 56 None 
Cobalt-zinc-

cadmium 
resistance 

CYP152B1 2 2 

P29 S4054 KKE82924 1341 39 None NRPS-PKS CYP197A1 3 3



The CYP redox-partners in bacteria are usually ferredoxins or flavoprotein reductases [4] and 

in line with this putative ferredoxins and ferredoxin reductases were identified in all the 

nineteen genomes. For CYPs P4 and P7, genes potentially encoding for redox partners were 

identified immediately downstream of the predicted CYP (Table 2). 

 

Features of CYPs 

We used UniProt (Universal Protein Resource), BLAST (Basic Local Alignment Search 

Tool) and the Cytochrome P450 homepage [8] to compare all predicted CYP sequences with 

previously studied CYPs. All the 26 identified CYPs contained cytochrome P450 domains, 

that were also identified by Pfam analyses [47], regardless of their gene size (data not shown). 

Although sequence conservation is low within this family of enzymes, their general 

topography and structural fold are highly conserved, allowing CYP domain identification [1]. 

Next, we compared the putative CYP protein sequences to known bacterial CYPs using the 

BLAST server on the Cytochrome P450 homepage (http://blast.uthsc.edu/) [8]. Several of the 

identified CYPs were conserved within the same species or genus. However, some diversity 

(with respect to CYP family) was found in CYP sequences across the different genera of 

studied marine bacteria (Fig. 2). The most similar bacterial CYPs, a recently reported marine 

CYP (AHA34040) and previously studied CYPs (AAC68886 and ADC79647) are also shown 

(Fig. 2). 
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Figure 2. Phylogenetic tree of the further studied CYPs. 

The five CYPs selected for further studies (highlighted in bold) shown together with the most 

similar bacterial CYPs, previously studied CYPs (AAC68886 and ADC79647) and a recently 

studied marine CYP (AHA34040). The nodes with bootstrap support of 70 or more are 

indicated (1000 replications). GenBank accession numbers are indicated for CYPs, except for 

the family representatives, where the CYP identification has been used. 

 

Five CYPs were selected for further analyses based on high sequence homology to CYPs 

belonging to different families with previously identified distinct functions, genome 

clustering, pathway prediction, and microorganism diversity: one putative CYP from 

Pseudoalteromonas sp., one from Marinomonas sp., one from Loktanella sp., one CYP from 

Paracoccus sp. and finally, one from Pseudoalteromonas luteoviolacea (Table 2). These 

CYPs not only differed in their primary sequences but were also located in distinct genetic 

environments, suggesting their participation in different metabolic reactions. The metabolic 

pathways and specific reactions, including substrate type were predicted using antiSMASH, 

RAST and BLAST analyses. CYPs P5 and P29 are part of two secondary metabolism 

clusters, predicted to be involved in gamma-butyrolactone and non-ribosomal peptide - 

polyketide synthesis, respectively (Table 2). CYPs P4, P7 and P9 are present in genomic 



regions related to agar degradation, exopolymer metabolism and cobalt-zinc-cadmium 

resistance, respectively (Table 2). 

 

Expression of putative CYPs in model cell factories 

To further study the five putative CYPs, all genes were PCR amplified from genomic DNA 

using the oligonucleotides listed in Table S1 and cloned downstream from a phage T7 

promoter (PT7) in the pCDFDuet-1 plasmid. Despite several attempts, we were not able to 

amplify the P4-encoding ORF from the genome of Pseudoalteromonas sp. (S3431). Proper 

transcription and translation in the model bacterium E. coli BL21 (DE3) was monitored using 

35S-methionine labeling of proteins followed by gel electrophoresis (see materials and 

methods). BL21 (DE3) with an empty plasmid was used as negative control. P9 was only 

produced in very low amount, but full-length proteins were observed for all tested CYPs (Fig. 

S1).  

 

To elucidate whether these putative CYPs would express in another popular model cell 

factory, Saccharomyces cerevisisae, genes codon optimized for this eukaryotic host were 

ordered form a commercial source (see materials and methods). Additionally, we included the 

well studied bacterial CYP, BM3, as a control [10,11]. All five putative marine CYP-

encoding codon optimized DNA fragments and the control were fused with DNA encoding 

GFP and a His8-tag in a pEMBLyex4 plasmid in the S. cerevisiae strain PAP1503 by yeast 

homologous recombination (Fig. 3A). Subsequently the strains were starved for leucine to 

increase plasmid copy number as described previously [40]. Starved cultures were used as 

inoculum for higher volume cultures and gene expression was then induced with galactose 

since CYP-GFP fusion expression is driven by the CYC1-GAL1 promoter [40]. Expression 

was confirmed by whole cell fluorescence. All CYP-GFP expressing cells appear green under 

the microscope suggesting that all fusions are being produced in yeast, despite the different 

fluorescent intensities observed (Fig. 3B). 
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Figure 3. CYPs production in yeast. 

(A) Schematic representation of the homologous recombination process that allows the 

pEMBLyex4 backbone plasmid and the DNA parts encoding for CYPs and GFP to be 

assembled in yeast. (B) Imaging of live yeast cells, induced with galactose for 24 hours at 

20°C, producing the different analyzed CYP-GFP fusions P4, P5, P7, P9 and P29, the BM3 

soluble control and the CYP79A1 membrane protein control. (C) SDS-PAGE analysis of 

purified CYP-GFP fusions P4, P5, P7, P9 and P29. The calculated molecular weights of CYP-

GFP fusions are: P4, 71 kDa; P5, 72 kDa; P7, 71 kDa; P9, 38 kDa; P29, 78 kDa. 

 

Cellular localization of bacterial CYPs expressed in S. cerevisiae 

In contrast to bacterial CYPs, the hydrophobic nature of plant CYPs limits their potential in 

biotechnological applications. To explore the cellular localization of the marine bacterial 

CYPs expressed in yeast we monitored their appearance with a fluorescence microscope (Fig. 

3B). Topology predictions using the online software Topcons (Topcons 



http://topcons.cbr.su.se/ [36] and ΔG predictor http://dgpred.cbr.su.se/ [37] identified no N-

terminal transmembrane segments in the CYPs. In line with this, the GFP signal derived from 

the heterologously expressed bacterial CYPs were homogeneously dispersed in the yeast 

cytoplasm, as compared to a plant membrane-bound CYP that localized to the periphery of 

the cells (Fig. 3B). Microscopy also showed that P9 localized in intensely fluorescent spots 

possibly representing misfolded aggregates (Fig. 3B). 

 

Protein integrity and CO spectra 

To evaluate the stability and integrity of the expressed CYP-GFP fusions, all five putative 

CYPs were purified by affinity using HisTrap columns, and assessed by SDS-PAGE (Fig. 

3C) and in-gel fluorescence (Fig. S2). CYP-GFP fusions appeared to be produced as full-

length fusions (Fig. 3C) with very little free GFP being detected (Fig. S2). In line with the 

microscopy data (Fig. 3B), P4 and P5 fusions were produced in the highest yields – the final 

concentrations being 0.184 and 0.175 mg/mL, respectively. The production levels of P7-GFP 

and P29-GFP were 0.065 and 0.066 mg/mL, respectively. Surprisingly, the concentration of 

P9-GFP was high at 0.151 mg/mL but only very little protein was detected when analyzed by 

SDS-PAGE and in-gel fluorescence (Fig. 3C and Fig. S2). 

 

Proteins belonging to the P450 family exhibit light absorption maxima at 450 nm when 

correctly incorporated heme is bound to carbon monoxide. Hence, the most widely used 

method for assaying properly folded and active CYPs involves obtaining CO-binding 

difference spectra [48]. With this in mind, we used the purified CYP-GFP fusions to perform 

CO-binding difference spectra using bacterial CYP BM3 as a positive control (Fig. 4A). 

Again, P4 and P5 were well-behaved, exhibiting the characteristic peak at 450 nm confirming 

the CYP family predictions and suggesting that the enzymes are expressed in a correctly 

folded and active form. P7 and P29 were tested, but the CO-binding spectra were 

inconclusive probably due to low protein concentration (Fig. 4D and 4F). The P9 absorption 



spectra (Fig. 4E) showed no peak at all, as expected by the absence of full-length protein and 

fluorescence (see previous result sections). 
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Figure 4. CO spectra different spectra of reduced CYPs. 

The analyzed CYP-GFP fusions were kept in 10 mM Tris-HCl buffer pH 7.0 and used in 

protein concentrations of 0.065-0.184 mg/mL. Absorbance was measured ranging from 400 to 

500 nm wavelength and appearance of the 450 nm characteristic peak (or the 420 nm peak for 

misfolded CYPs) was assessed for (A) BM3; (B) P4; (C) P5; (D) P7; (E) P9; (F) P29. 

 

DISCUSSION 

CYPs have received attention due to their association with specific and relevant metabolic 

pathways and their ability to perform challenging chemistry. Many studies have focused on 

plants that have a high amount of CYPs per genome [3,49,50,51]. Despite their ubiquity and 

diversity, the study and engineering of plant CYPs is facing several challenges. In higher 

organisms, CYPs are membrane associated, representing a major obstacle in expressing and 

purifying this class of enzymes [52]. Consequently, only two crystal structures of plant-

derived CYPs have been published [53,54]. In addition, plant CYPs are less efficient than 



their bacterial counterparts [55], meaning that high levels of expression would probably be 

required for effective and fast conversion of substrates.  

 

Bacterial CYPs, although present in lower number as compared to numbers in eukaryotes, are 

soluble, more stable and exhibit higher activity [9,55]. Thus, they are easier to engineer, 

overexpress, purify and crystallize [52]; and known structures of bacterial CYPs have been 

used to assemble mammalian CYP structures based on homology modeling [56,57,58]. The 

hydroxylation of camphor by CYP101 (P450cam) in Pseudomonas putida [59] was a major 

breakthrough in the cytochrome P450 field and a few examples of studies on bacterial CYPs 

have been unraveling important functions in the modification of natural compounds, such as 

the antibiotic albaflavenone in S. coelicolor A3(2) [26] or polybrominated aromatic 

compounds in P. luteoviolacea 2ta16 [60]. However, reports of new bacterial CYPs with new 

functions/substrates are still scarce. 

 

Marine bacteria are ideal sources of novel chemistry since they are understudied and capable 

of performing a wide range of biological processes under environmentally challenging 

conditions [61,62]. Here we present a study on genome mining and expression of bacterial 

CYPs. Although the number of putative CYPs identified in the 19 analyzed genomes was 

only 26, the diversity was considerable, with 19 different CYPs with protein identity lower 

than 40% (Fig. S3). This diversity was also mirrored in their location in distinct genomic 

environments and similarity to different CYP families, suggesting their participation in 

different metabolic reactions. 

 

The number of ORFs with CYP domains identified in the studied marine bacteria varied from 

zero to nine per genome (Fig. 1). The high number identified for Ruegueria mobilis F1926 

could be due to the poor quality of the genome sequence of this strain, which has more than 

one thousand contigs. Indeed, the four CYPs found in the other R. mobilis strain (S1942) 

suggest the average number of CYPs probably varies between zero and four in these marine 



bacteria. The possible wrong annotation of ORFs with CYP domains can explain the poor 

results obtained for the 300 bp-CYP P9 (Fig. 3B and Fig. S1). P9 showed high similarity to 

CYP152B1, which is involved in fatty acid metabolism [63,64]. P9 function is likely different 

from the other selected CYPs. The P4 and P6 CYPs were present in the same genomic 

context, sharing 99,74% of amino acid identity (Fig. S3). These CYPs were found within a 

predicted agar degradation cluster where several agarases are present, pointing to a function 

in sugar modification. The closest related CYP family identified for these CYPs is CYP236, 

represented by CYP236A1. The latter was shown to have five agarases placed closely to it in 

a 101 kb plasmid (pSD15) from the agar degrading Microscilla sp. PRE1 [65].  

 

AntiSMASH analysis has shown that P5 CYP is part of a predicted gamma-butyrolactone 

biosynthesis cluster in Marinomonas sp. S3726 [23,35]. Gamma-butyrolactone is a building 

block compound used in chemical industry and of great interest in bio-based production 

[66,67,68]. CYP family prediction places P5 in the CYP170 family. CYP170A1 is the family 

representative and it is responsible for the oxidation of the terpenoid epi-isozizaene to 

albaflavenone in Streptomyces coelicolor A3(2) [61]. CYP170A1 catalyzes a two-step full 

oxidation of epi-isozizaene to albaflavenone, similar to what could be expected for 

conversion of tetrahydrofuran to gamma-butyrolactone by oxidation of an aromatic ring (Fig. 

S4). 

 

The predicted CYP P7 had high similarity to CYP104A2, an Agrobacterium tumefaciens 

CYP responsible for O-demethylation of plant phenolic compounds produced when infected 

with the plant-pathogen [69,70]. Other CYPs from the same CYP104 family are responsible 

for the O-demethylation of guaiacol during the degradation of the lignin polysaccharide [71]. 

The P7-coding gene is located next to predicted fructose transport and capsule polysaccharide 

export genes, pointing to a possible involvement in O-demethylation of sugars or 

polysaccharides. Sugar modifications might affect cell fitness and create a bias towards low 

producers, which could explain the low concentration of P7 in yeast (Fig. 3B and C). Despite 



the inconclusive P7 CO-spectrum, the fact that this ORF clusters in the genome with 

ferredoxins/ferredoxin reductases supports its CYP prediction, as the confirmed P4 CYP 

(Table 2). 

 

According to antiSMASH predictions, P29 is located right next to a NRPS/PKS gene cluster, 

suggesting its role as a tailoring enzyme involved in compound modification(s). Homology 

searches placed it in the CYP197 family, previously identified in Streptomyces and Bacillus 

species [72,73]. Streptomyces are known for being prominent producers of natural products 

and contain the highest number of structurally characterized CYPs [3]. 

 

All CYPs were successfully expressed in E. coli (Fig. S1) as commonly observed for other 

bacterial CYPs [12]. A growing field aims at introducing chemical modifications, not possible 

with standard organic chemistry [55]. One such example in E. coli is the synthesis of 1α,25-

dihydroxyvitamin D3 from vitamin D3, where a bacterial CYP (CYP105A1) from 

Streptomyces griseolus was used [74]. Protein engineering efforts to modify P450cam [75] 

and BM3 [14] for in vivo oxidation of unnatural substrates demonstrate the importance of 

bacterial CYPs, and support the idea that new bacterial CYPs can be engineered to achieve 

broader specificity for biotechnological applications. Hence, the marine bacterial CYPs 

presented here appear as promising candidates for protein engineering. 

 

Most of the successful commercial and industrially relevant CYP-dependent processes have 

been performed in S. cerevisiae. Production of a myriad of different compounds such as 

hydrocortisone, pregnenolone, amorphadiene (precursor of artemisinic acid), polyketides, 

isoprenoids, steviol components and opiates has been done in yeast, proving its value as a cell 

factory for these types of molecules [6,76,77,78]. Two major advantages of using yeast are a 

well-developed genetic engineering toolbox and a long history of use in the food industry.  

 

Conclusions 



To our knowledge, our work is the first demonstration of marine bacterial CYPs being 

expressed in yeast. This model cell factory offered a convenient assay allowing for cellular 

localization studies with GFP-fusions that are easily observed under the microscope. We also 

showed that it is possible, without further optimization besides codon optimization, to 

successfully express and produce bacterial CYPs in yeast. The stability and integrity of CYP-

GFP fusions purified from yeast was evaluated by in-gel fluorescence and CO absorption 

spectra confirming that P4 and P5 are cytochromes P450 - and that they are properly folded in 

the yeast system (Fig. 4). Future work should focus on the further optimization of P7 and P29 

expression in yeast.  

 

Besides the obvious advantages of unraveling new functions that can be useful in 

biotechnology and replacing eukaryotic CYPs, this study is a first step towards exploiting the 

full potential of the bacterial CYPs present in marine environments. Future studies will aim at 

identifying the specific function of these enzymes. 
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Supporting information 

Table S1. List of oligonucleotides and plasmids. 

Number Name Sequence 
1 P4_E.coli_fw AGATATACCUATGGCGAAAGTAATATTTATAACCAAAACAAACGA
2 P4_E.coli_rv ATTATGCGUTTATTTTGATTTAAAGCTAACGTGCAGACTGT
3 P5_E.coli_fw AGATATACCUATGAGTATCGAGTTGCATAGTAAGTTAAATAGT
4 P5_E.coli_rv ATTATGCGUTTAGTTAATAACGATAGGTAGGCTATCTGGGC
5 P7_E.coli_fw AGATATACCUATGCTGGATTTGCCAATCAATGAGAC
6 P7_E.coli_rv ATTATGCGUTTAGTCGAGATAGACCGGCAGAT
7 P9_E.coli_fw AGATATACCUATGCTCGACCTCTATGGTACGAAC
8 P9_E.coli_rv ATTATGCGUATGCTCGACCTCTATGGTACGAAC
9 P29_E.coli_fw AGATATACCUATGAAGCAAATACCAAAAGTAACCAACAAAG

10 P29_E.coli_rv ATTATGCGUTTATTGCTCAATTAACTTATTCACTTTCATGACCAAC
11 pCDF_P450_fw ACGCATAAUGCTTAAGCYGAACAGAAAGTAATCGTATTG 
12 pCDF_P450_rv AGGTATATCUCCTTATTAAAGTTAAACAAAATTATTTCTACAGGGGA

ATTG 
13 Seq_pCDF_fw AGGTTTTGCGCCATTCGATGG 
14 Seq_pCDF_rv CGATTATGCGGCCGTGTACAA 
15 P4_yGFP_fw ACACAAATACACACACTAAATTACCGGATCAATTCTAAGATAATT 

ATGACTTCAAAGATTATAGGCGTTAGTGATTTTCC 
16 P4_yGFP_rv AAATTGACTTTGAAAATACAAATTTTCCTTAGACTTAAAAGAGACGT

GCAAGGAA 
17 P5_yGFP_fw ACACAAATACACACACTAAATTACCGGATCAATTCTAAGATAATT 

ATGAGTATCGAGTTACATTCAAAGTTG 
18 P5_yGFP_rv AAATTGACTTTGAAAATACAAATTTTCGTTAATAACAATTGGCAAAG

AATCAGGAC 3’ 
19 P7_yGFP_fw ACACAAATACACACACTAAATTACCGGATCAATTCTAAGATAATT 

ATGCTAGACCTACCAATTAACGAAAC 
20 P7_yGFP_rv AAATTGACTTTGAAAATACAAATTTTCGTCTAAGTATACTGGTAGAT

TTAACGG 
21 P9_yGFP_fw ACACAAATACACACACTAAATTACCGGATCAATTCTAAGATAATT 

ATGTTAGACTTATATGGCACGAACAC 
22 P9_yGFP_rv AAATTGACTTTGAAAATACAAATTTTCATCAAGACAACGTACATTTC

TCATGATAAATC 
23 P29_yGFP_fw ACACAAATACACACACTAAATTACCGGATCAATTCTAAGATAATTA

TGAAGCAGATCCCGAAG 
24 P29_yGFP_rv AAATTGACTTTGAAAATACAAATTTTCCTGCTCGATCAACTTGTTAA

CTTTCATAA 
25 BM3_yGFP_fw ACACAAATACACACACTAAATTACCGGATCAATTCTAAGATAATTA

TGACAATTAAAGAAATGCCTCAGCCAAAAACGT 
26 BM3_yGFP_rv AAATTGACTTTGAAAATACAAATTTTCCCCAGCCCACACGTCTTTTG

CGT 
27 CYC-GAL_long_seq_fw TTACTATACTTCTATAGACACGCAAACAC 
28 GFP_seq_rv GTAGCATCACCTTCACCTTC 
29 GFPup_fw GAAAATTTGTATTTTCAAAGTCAATTTTCTAAAGGTGAAGAATTAT 
30 GFPHISdo_rv CTTCAATGCTATCATTTCCTTTGATATTGGATCATCTAATGGTGATGG

TGATGGTGATGGTGTTTGTACAATTCATCCATACCAT 
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Figure S1. Bacterial CYPs expression in E. coli BL21 (DE3) (35S-methionine labeling of 

proteins). 
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Figure S2. Bacterial CYP-GFP fusions production in yeast S. cerevisiae (In-gel 

fluorescence). 

 



Figure S3. Amino-acid comparison of the 26 marine bacterial CYPs identified in this study. 

The top quadrant presents the percentage of identity among the CYPs and the lower quadrant 

the number of differences. 

A

B

Figure S4. The chemical modifications performed by CYPs. (A) epi-isozizaene to 

albaflavenone and (B) tetrahydrofuran to gamma-butyrolactone. 
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Abstract 

Vibrionaceae family is a large marine bacterial family, which can 

constitute up to 50% of the prokaryotic population in marine waters. 

Photobacterium is the second largest genus in the family and includes 

ecological diverse species, with lifestyles ranging from free-living to 

symbiotic or pathogenic. We used comparative genomics on 35 strains 

representing 16 of the 28 species described so far, to understand if 

such diverse lifestyles would be reflected in the genomic information. 

We developed a well-supported phylogeny for the genus using the 

genomic information by standard and novel approaches. This 

phylogeny correlated well with the occurrence of higher and lower GC 

content clades. High genomic diversity could be identified and was 

attributed to the number of foreign DNA acquisition occurrences by 

means of plasmid uptake, bacteriophage infection and genomic island 

transposition. 

The analyses here presented proves the high exchange of genetic 

material in the Photobacterium genus, therefore increasing the 

awareness of the variability existent within species and the carefulness 

needed in generalizing conclusions, as every case seems to be unique. 
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Introduction 

Oceans cover most (70%) of Planet Earth and it has been estimated 

that they harbor more than 60% of the global prokaryotic diversity 1. 

During the last decades, bioprospecting efforts have turned to the 

marine environments with the hope of finding novel drugs, enzymes, 

metabolic pathways, or even new forms of life that could address the 

growing demand for efficient and biosustainable products 2–6. Also, 

the rapid development in sequencing technologies and the focus on 

improved cultivation of hitherto un-cultured microorganisms has 

dramatically increased our understanding of both diversity and 

biotechnological potential stored in the marine habitats 7–12. 

 

Vibrionaceae is a prominent marine bacterial family and it represents 

0.8% of the bacterial composition as found in the Tara oceans 

metagenomic data 12. Based on molecular assessment, it can constitute 

up to 50% of the prokaryotic population in marine waters 13,14. Vibrio 

is the largest genus within this family (73% in Tara oceans data) and it 

has been extensively studied, in part due to the importance of the 

human pathogen V. cholera 15–19. The genus Photobacterium (16%) is 

the second largest of the family, followed by Aliivibrio (3%).  

Species belonging to the Vibrionaceae family have been reported to be 

taxonomically close related 20. However most of the studies have been 

based on Vibrio species, and few included P. profundum strains. 

Recent metagenomic data shows that although these two genera seem 

to have similar ecological strategies, Photobacterium spp. dominates in 
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the lower pelagic depths (surface water layer and deep chlorophyll 

maximum layer) while Vibrio spp. takes over in higher depths 

(mesopelagic zone) (Figure 1) 12. This suggests different ecological 

strategies and roles between the two genera. 

Figure 1 – Taxonomic composition of the Vibrionaceae family at different 
pelagic depths. The data was retrieved from the Tara oceans project, and 
included stations where information was acquired for the three depths12. 
Surface water layer: down to 5 m depth; deep chlorophyll maximum layer: 
from 5 to 200 m depth; and mesopelagic zone: from 250 to 1,000 m depth. 
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Vibrio 

Enterovibrio 

Aliivibrio 

Salinivibrio 

Surface Water Layer 

Deep Chlorophyll Maximum Layer

Mesopelagic Zone
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Photobacterium includes ecological diverse species, with lifestyles 

ranging from free-living to symbiotic or pathogenic, as does the Vibrio 

genus 21. Twenty-eight species belonging to the genus have been 

described, of which 26 have validly published names 

(www.bacterio.net) and two are not yet valid (P. atrarenae and P. 

marinum) 21–30. Of these 28, only 27 are available since no type strain 

has been deposited for P. aplysiae, 31,32. Twenty-two of the 28 species 

have been described during the last 15 years, making it a relatively 

new and unstudied genus. 

The majority of the Photobacterium strains have been isolated from 

marine environments (both from water samples and marine 

organisms), although isolation of a P. halotolerans from the 

rhizosphere of a terrestrial weed has recently been described 33,34. 

All species of this genus were originally thought to be luminescent, but 

as more species were characterized, it became evident that a large 

number did not display this trait 21,24. This ecological important 

characteristic is part of the symbiotic life style of some Photobacterium 

species. It is attributed to the expression of the lux-rib operon 35, which 

has been used in taxonomy studies for the division of the genus into 

clades 21,36. 

Recently, we and other scientists have whole genome sequenced 

several strains of this genus, representing a total of 16 different 

species. The vast majority of these have been isolated from the marine 

environment, although with different approaches and goals. Some 
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were isolated as symbionts of marine animals, others from spoiled 

fish, and others as commensals in association with oysters, crabs and 

fish 21,37–39. Some were isolated as free-living organisms from coastal or 

pelagic waters 40, and P. galatheae S2753, was isolated due to its 

antagonism of pathogenic bacteria 28,41. 

In this study, we use a collection of whole genome sequences from 35 

strains representing 16 of the 28 species described so far. As 

previously mentioned, the genus is widespread in marine 

environments, and can grow and colonize under different conditions 

and/or in association with eukaryotic organisms. We hypothesized 

that these different lifestyles would be reflected in the genomic 

information. Using comparative genomics we investigated the 

evolutionary mechanisms responsible for the genomic diversification 

within the genus, and analyzed the genetic foundation of known 

physiological traits of Photobacterium spp.. 

The analyses provide better understanding of the genus phylogeny, by 

elucidating evolutionary relationships using genomic information; it 

reveals the large genomic diversity within the genus and the role of 

foreign DNA in the genome evolution.  
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Material and Methods 

General genome statistics 

The shotgun whole genome sequences from 35 strains of the 

Photobacterium genus and the sequence of Vibrio pacinii DSM 19139 

were used in this study (Table 1). Calculation of basic genome 

statistics such as size, GC content and amino acid usage was done 

using the CMG biotools 42. These tools were also used for gene finding 

using prodigalrunner, generation of BLAST atlases comparing the 

protein-coding open reading frames and for the pan- and core-

genome analyses of the studied strains. 

Table 1 – Strains used in this study and accession numbers of its 

genomes. 

Strain WGS/ChrI ChrII Plasmid 
Photobacterium angustum ATCC 25915 JZSO01 
Photobacterium angustum ATCC 33975 JZSM01 
Photobacterium angustum ATCC 33977 JZSN01 
Photobacterium angustum S14 AAOJ01 
Photobacterium aphoticum DSM 25995 LDOV01 
Photobacterium aphoticum JCM 19237 BBMN01 
Photobacterium aquae CGMCC 1.12159 LDOT01 
Photobacterium damselae subsp. 
damselae ATCC 33539 JZSI01 

Photobacterium damselae subsp. 
damselae CIP 102761 ADBS01 

Photobacterium damselae subsp. 
piscicida DI21 AKYG01 KC344732 

Photobacterium gaetbulicola AD005a JWLZ01 
Photobacterium gaetbulicola Gung47 CP005973 CP005974 KC687076 
Photobacterium galatheae S2753 JMIB01 
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Photobacterium ganghwense DSM 22954  LDOU01 
Photobacterium halotolerans DSM 18316 AULG01 
Photobacterium halotolerans MELD1 JWYV01 
Photobacterium iliopiscarium ATCC 
51760 JZSQ01 

Photobacterium iliopiscarium ATCC 
51761 JZSR01 

Photobacterium kishitanii ATCC BAA-
1194 JZSP01 

Photobacterium kishitanii GCSL-A1-1 JZTE01 
Photobacterium kishitanii GCSL-A1-2 JZTD01 
Photobacterium kishitanii GCSL-A1-3 JZTC01 
Photobacterium kishitanii GCSL-A1-4 JZTB01 
Photobacterium leiognathi ATCC 25521 JZSK01 
Photobacterium leiognathi ATCC 33979 JZSL01 
Photobacterium leiognathi lrivu.4.1 BANQ01 
Photobacterium leiognathi subsp. 
mandapamensis svers.1.1 BACE01 

Photobacterium phosphoreum ANT-2200 CCAR01 
Photobacterium phosphoreum ATCC 
11040 JZSJ01 

Photobacterium profundum 3TCK AAPH01 
Photobacterium profundum SS9 CR354531 CR354532 CR377818 
Photobacterium sanctipauli A-394 JGVO01 
Photobacterium sp. AK15 (marinum) AMZO01 
Photobacterium sp. SKA34 AAOU01 
Photobacterium swingsii CAIM 1393 LELC01 

Phylogenetic analyses. 

The 16S rRNA genes used are the publically available sequences 

originally published for each strain. The genes used for the MLSA 

(ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA) and the fur gene, 

were obtained from the genomes using the CLC Main Workbench 
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(CLC Aarhus, Denmark version 7). An annotation-based search was 

performed for the genes of interest using the NCBI annotation. The 

genomes not annotated at NCBI were annotated using RAST 43,44. The 

accession numbers for 16S rRNA sequences and the gene locus tags 

are provided in Table S1. Alignments and Maximum Likelihood 

Phylogeny trees were done using the tools in the CLC Main 

Workbench (CLC Aarhus, Denmark version 7). Maximum Likelihood 

Phylogeny trees were constructed using the Neighbor Joining method 

with the Jukes-Cantor nucleotide distance measure. The topology of 

the tree was tested with 1000 bootstrap replications. MEGA 6 was 

used to finalize the tree design 45. 

The Genome-to-Genome Distance Calculator by DSMZ was used to 

determine in-silico DNA-DNA reassociation percent values 46, and the 

Average Nucleotide Identity (ANI) calculator to estimate the ANI 

values 47. The nucleotide identity percentages for the fur gene and the 

MLSA were calculated using the pair-wise comparison tool of CLC 

Main Workbench (CLC Aarhus, Denmark version 7). 

lux-rib operon 

The lux genes were identified by homology search to previously 

described genes 36,48,49 using the BLAST tools of CLC Main Workbench 

(CLC Aarhus, Denmark version 7). The lux operons were blasted 

against whole genome sequences of the studied Photobacterium 

strains using MultiGeneBLAST 50. 
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Identification of prophages, genomic islands and secondary 

metabolite clusters 

Prophages, genomic islands and secondary metabolite clusters were 

identified using the online tools PHAST, IslandViewer 3 and 

antiSMASH 3.0, respectively 51–53. The whole genome sequences were 

submitted to the different tools, and the identified clusters compared 

using MultiGeneBLAST 50. 

CRISPR-Cas 

Genome sequences were analyzed in CRISPRfinder 54 and homology 

searches for CRISPR associated genes were performed using CLC 

Main Workbench (CLC Aarhus, Denmark version 7). Using the CLC 

Main Workbench BLAST tool, direct repeats and protospacers were 

compared among each other and to previously identified prophages. 

Confirmation of cas genes was performed by BLAST comparison of 

the identified open-reading frames to the NCBI nucleotide database.  

Plasmid comparison 

We used previously described Photobacterium plasmids to search the 

genomes for contigs belonging to plasmids using CLC Main 

Workbench (CLC Aarhus, Denmark version 7). Plasmids used in the 

search included: pPHDD1 (FN597600.2), pAQU1 (AB571865.1), 

pP99-018 (AB277723.1), pP91278 (AB277724.1), pPHDP60 
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(KC344732.1), pPHDP10 (DQ069059.1), pPHDP70 (KP100338.1), 

pP9014 (AB453229.1), pPH1 (AY789019.1), pPBPR1 (CR377818.1), 

and the unnamed plasmid from P. gaetbulicola Gung47 (KC687076.1). 

Identification of virulence and histamine production genes 

The genes hlyA and dly are key virulence genes of P. damelae 55–57. 

Virulence related genes were identified using the BLAST tools of CLC 

Main Workbench (CLC Aarhus, Denmark version 7). Also the genetic 

basis for histamine production was evaluated, by searching for 

histamine producing genes, previously identified in Photobacterium 

strains 38. 
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Results 

General Features of the sequenced genomes 

The genomes ranged in size from 4.2 to 6.4 Mb (Figure 2). The largest 

genomes were those of P. profundum and P. gaebuticola, which are the 

only species with fully sequenced genomes. The GC content of the 

genomes varied between 38.7 and 50.9%, and the strains clustered in 

two groups based on GC%; one around 40% and another around 50%. 

This corresponded to the clustering observed in amino acid usage 

(Figure S1). The only exception was P. swingsii, which had a GC 

content of 43.4%. The number of genes per genome estimated using 

prodigalrunner ranged from 4,000 to 7,000. 

The only two completely sequenced genomes, from P. profundum SS9 

and P. gaetbulicola Gung47, have a larger and a smaller chromosome 

of approximately 4 and 2 Mb, plus megaplasmids of 80 and 35 Kb, 

respectively. The presence of 2 chromosomes is a trend of the 

Vibrionaceae family and it is assumed that the draft genomes used also 

include two chromosomes and large plasmids, but fully closed 

genomes would be required to assert this. 
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Figure 2 – Genome size and GC content of the studied genomes. The size 
is represented in mega-bases (Mb) by the horizontal bars and the percentage 
of GC by the black squares. 
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Phylogeny 

The 16S rRNA phylogeny is widely used in the classification of 

Photobacterium species and it is sometimes the only phylogenetic 

discrimination provided when new species are described 22,26,58,59. We 

constructed a phylogenetic tree with the 16S rRNA gene sequences 

available from the species (Figure 3A). However, this gene only 

provides a low discriminatory power in resolving species relatedness 

for this genus. For instance, P. angustum strains appear scattered 

throughout the phylogenetic tree (Figure 3A), P. damseale subsp. 

piscicida DI21 and Photobacterium marinum AK15 cluster closely to 

V. pacinii DSM18139, and although P. profundum strains cluster 

together, the phylogenetic distance represented by the length of the 

branches seems exaggerated. 

The limitations of the use of the 16S rRNA gene as a phylogenetic 

marker in Vibrionaceae were previously reported 60,61, and the use of 

MultiLocus Sequence Analysis (MLSA) has been proposed when 

evaluating Vibrionaceae phylogenetic relationships 60,62–65. We 

extracted the gene sequences generally used in these analyses (ftsZ, 

gapA, gyrB, mreB, pyrH, recA, rpoA) from the genomes and 

constructed a phylogenetic tree (Figure 3B). The gene topA was not 

used, since no sequence was found in the genome of P. galatheae 

S2753. The sequences of the seven genes allowed a phylogenetic 

evaluation using a concatenation length of approximately 7,230 bp. 

Here, strains belonging to the same species cluster tightly and the 

phylogenetic relationship between species was clearer. This also 
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allowed recognizing a mis-identification or mis-naming of two strains: 

P. phosphoreum ANT-2200 and P. damseale subsp. damseale ATCC 

33539, which belong to the species P. kishitanii and P. angustum, 

respectively. Also, although the species P. marinum has not been 

recognized, we here show that the type-strain AK15 seems to be 

indeed the representative of a new species 29. 

The ferric up-take regulator gene (fur) has recently been described as a 

powerful phylogenetic marker for the Vibrionaceae family (Machado 

& Gram, 2015). In order to evaluate if this was the case for the 

Photobacterium genus, we extracted the fur sequences from the 

sequenced genomes and used them for the construction of a 

phylogenetic tree (Figure 3C). The disposition of the species in the 

phylogenetic tree was different from the one in the MLSA analysis, but 

the core phylogenetic relationships observed were the same. In both 

cases, species P. kishitanii, P. phosphoreum and P. illiopiscarium 

formed one cluster, P. leiognathi and P. angustum another cluster, 

while P. damselae and P. profundum had their own cluster. Also two 

small clusters comprising P. halotolerans and P. galatheae, and P. 

aphoticum and P. aquae could be identified. 

>> 

Figure 3 – Phylogenetic trees. The trees were constructed using the 16S 
rRNA gene (A), seven house-keeping genes (ftsZ, gapA, gyrB, mreB, pyrH, 
recA, rpoA) (B) and the fur gene (C). The topology of the tree was tested with 
1000 bootstrap replications, and Vibrio pacinii DSM 19139 used to root the 
tree. 
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In order to provide a quantitatively evaluation of the different 

phylogenetic approaches, we assessed them by comparing one of the 

genomes (P. angustum ATCC 33975) to all the other 34 

Photobacterium genomes. In silico DNA-DNA hybridization, fur and 

MLSA percentage of identity values were calculated and correlated to 

the Average Nucleotide Identity (ANI). A correlation coefficient 

between 0.84 and 0.95 of the phylogenetic information could be 

observed for all the tested methods (Figure 4). In fact, the fur gene 

identity showed a higher correlation coefficient than the MLSA 

identity, closer to the coefficient obtained for the methods using the 

whole genome sequences (DNA-DNA hybridization and ANI). 
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Figure 4 – Evaluation of the discriminatory power of the different 
methods. Assessment was made using the genomic information of P. 
angustum ATCC 33975 in comparison with the genomic information from 
all the other Photobacterium strains used in the study. The values were 
plotted and the equation of correlation is presented. The R2 represents the 
correlation coefficient. 

Pan- and core-genome 

The pan-genome refers to the total number of orthologous genes in all 

the 35 strains, while the core genome represents the number of 

orthologous genes shared between all the strains. A pan- and core-

genome analyses were performed using the 35 strains of the 

Photobacterium genus (Figure 5). The pan-genome consisted of 

28,951 gene families, while the core-genome had 1,232 gene families. 

Taking into consideration the average gene number of 4,750 for the 

Photobacterium strains, 1,232 genes represents 25% of the total 

genome, which means that 1/4 of the genome is conserved.  

Using a power-law regression, it is possible to evaluate the openness of 

a pan-genome 66. The Photobacterium pan-genome is open, with a γ 
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parameter of 0.62 in a power-law regression fitting relatively well the 

data analyzed (R2 = 0.89) (Figure S4).  

Figure 5 – Pan- and core-genome plot of the 35 Photobacterium strains. 

BLAST altases 

To visualize the gene content conservation in the Photobacterium 

genus, we constructed a BLAST atlas using 30 Photobacterium strains 

that represented the different species. Because the reference genomes 

have to be closed genomes, we compared 29 strains to P. profundum 

SS9 and P. gaetbulicola Gung47 (Figure 6). The large chromosome is 

more conserved than the smaller one and the plasmids, which appear 

to be extremely variable between species and strains. Also, it is 
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possible to identify genomic regions unique for the reference strain or 

to its species. 

Figure 6 – BLAST atlas using the chromosomes and plasmids of P. 
profundum SS9 and P. gaetbulicola Gung47 as reference strains. The first 
blue lane is the reference genome used, followed by other strains of the same 
species also colored in blue. The remaining species and strains are colored in 
green and appear in the outsider rings of the atlas. 
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Genomic islands and prophages 

The genetic exchange of foreign DNA by means of transposable 

elements, phage infection or conjugative plasmids has been suggested 

as a driving force in the evolution of members of Vibrionaceae 21,67–69. 

Using Island Viewer 52, we searched for genomic islands in the fully 

sequenced genomes of P. profundum SS9 and P. gaetbulicola Gung47, 

and compared these to the genomes of other strains from the same 

species (Figure 7). Some of the major genetic differences between the 

strains of the same species seem indeed to be related to the presence or 

absence of specific genomic islands. Genomic regions only present in 

the reference strain are placed closed to identified genomic islands.  

Additionally, using the PHAge Search Tool (PHAST) 51 we identified 

32 intact prophage sequences and 59 incomplete ones. From the 32 

intact sequences of prophages, 16 were present in multiple strains. 

Prophage C was present only in P. profundum strains, and prophage B 

seems to be present in all P. kishitanii strains. This is an indication of 

species-specific prophages, although prophage B is also present in 

other strains and prophage A is spread among several species. Also, 

the vast majority of prophages identified were a single case. 
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Figure 7 – Identification of genomic islands in the fully sequenced 
genomes of P. profundum SS9 and of P. gaetbulicola Gung47. The 
genomes of the mentioned strains are compared to another from the same 
species, P. profundum 3CTK and P. gaetbulicola AD005, respectively. The 
circle inside the BLAST atlas shows the Island Viewer results (integrated 
results in red, SIGI-HMM in orange and IslandPath-DIMOB in blue). 
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CRISPR-Cas System 

The bacterial and archaeal adaptive immune systems entail CRISPR-

Cas modules 70 and we queried the genomes for the architecture of the 

CRISPR-Cas systems including the cas gene organization, the direct 

repeats and the protospacers in the CRISPR locus. We divided the 

architecture of the CRISPR-Cas systems into seven clusters (Figure 8). 

Most of the architectures identified were similar to the previously 

described ones of Yersinia pestis (Figure 8A), Escherichia coli (Figure 

8B) and Desulfivibrio vulgaris (Figure 8C) 71. Also, we identified two 

clusters in P. profundum SS9 similar to the ones of Y. pestis and E. coli, 

encoded in the chromosome and plasmid, respectively (Figure 8D and 

8E, respectively). These clusters had different gene arrangement 

and/or included genes coding for unknown proteins in the operon. 

Other two clusters containing CRISPR-associated genes were 

identified (Figure 8F and 8G). 

In most of the cases, both direct repeats and protospacers could be 

identified both upstream and downstream to the cas operon. These 

were also identified elsewhere in the genome or in distinct contigs, 

usually consisting of one of the ends of the contig. For example, 

further upstream from the Tn7 in the P. galatheae S2753 (Figure 8G), 

an array of 16 protospacers could be identified beside a gene coding 

for a DNA nicking enzyme. 
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Figure 8 – Different CRISPR/Cas subtypes identified across the 
Photobacterium genomes. CRIPR/Cas similar to Yersinia pestis (A), 
Escherichia coli (B) and Desulfivibrio vulgaris (C), and other new gene 
organizations (D – F). 

The Direct Repeats (DR) that flanked the protospacers were extracted 

and compared. The similarity of the DRs correlated with the type of 

clusters the strain had. P. aphoticum JCM 19237 and P. aphoticum 

DSM 25995 had the same DR, so did P. iliopiscarium ATCC 51760, P. 

iliopiscarium ATCC 51761, P. aquae CGMCC 1.12159 and P. 

profundum SS9. P. angustum ATCC 25915, P. damselae subsp. 

damselae ATCC 33539 (actually P. angustum) and P. angustum ATCC 

33975 had also high similarity DRs (> 95% Identity), which were also 

similar (95% < Identity > 86%) to the ones from P. profundum SS9, P. 

galatheae S2753, P. angustum S14 and P. leiognathi lrivu.4.1. 

The protospacers are short sequences that are derived from 

bacteriophages or other foreign DNA, such as conjugative plasmids 
70,72. Therefore, these sequences may provide a history of encounters of 

a specific bacterium with phages and/or plasmids. The number of 

spacers varied considerable between different strains, from 1 to 64 

protospacers in the same CRISPR array (Figure 8). The 4 spacers in P. 

leiognathi lrivu.4.1 were 100% identical to the first 4 spacers in P. 

angustum S14, which had an array of 45 spacers. Also high similarity 

(> 93% Identity) could be identified in the first spacers of P. angustum 

ATCC 25915, P. damselae subsp. damselae ATCC 33539 (actually P. 
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angustum) and P. angustum ATCC 33975, although for the P. 

angustum strains the protospacers have not been identified just 

downstream of the cas operon, but elsewhere. We have also compared 

the protospacers to the prophage sequences identified in these 

genomes. Interestingly for P. angustum ATCC 33975 an array of 9 

sequential spacers were 100% identical to an intact prophage sequence 

identified within the same genome. 

Secondary metabolism 

Although Photobacterium strains have mostly been described due to 

their association with marine animals, recently their potential in drug 

discovery and other applications have been reported 28,33,34,73–76. Using 

antiSMASH 3.0 53, different biosynthetic gene clusters were identified 

(Table S2) with some clusters being present across the genus and 

others being species specific (Figure 9). The same terpene biosynthetic 

cluster could be identified in all the P. angustum strains (including the 

mis-identified P. damselae subsp. damselae ATCC 33539, actually a P. 

angustum). Another species-specific cluster was the polyunsaturated 

fatty acid cluster present in both P. profundum strains. 
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Figure 9 – Summary figure of some of the shared genomic traits between 
the Photobacterium strains. The phylogenetic tree is based on the MLSA 
phylogenetic distances. Squares represent the lux-rib operon, color-coded 
for the different gene cluster architectures. Triangles indicate the presence of 
genes coding for histamine producing proteins. Hexagons indicate the 
presence of CRISPR-Cas loci, color-coded for the different gene cluster 
architectures. Inverted triangles indicate the common prophages, each 
different also color-coded. Circles represent antiSMASH hits: brown for 
aryl-polyene biosynthetic gene cluster; yellow for ectoine biosynthetic gene 
cluster; blue for terpene biosynthetic gene cluster; white for polyunsaturated 
fatty acid biosynthesis gene cluster; and green for NRPS biosynthetic gene 
clusters. 

Other biosynthetic clusters such as for siderophore, aryl-polyene and 

ectoine were widely distributed across the genus (Figure 9). A 

siderophore cluster was present in 11 strains, although two distinct 
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siderophore biosynthetic clusters were identified (Figure S2). The 

ectoine cluster was present in 18 strains (two of these had two out of 

three genes needed for its biosynthesis) (Figure 9 – yellow circles). 

Finally, the most widely distributed cluster was the aryl-polyene 

biosynthetic cluster, which was identified in 23 out of the 35 strains 

(Figure 9 – brown circles). 

Plasmids and virulence genes 

Most Photobacterium species have been described as symbiotic or 

associated with other marine organisms 21,26,35,39,77. Furthermore, strains 

of P. damselae are pathogens of marine organisms, especially fish 78,79. 

The genes hlyA and dly are key virulence genes of P. damelae 55–57, and 

we therefore conducted an homology search to evaluate the possible 

virulence of other Photobacterium species. The genes could only be 

identified in P. damselae subsp. damselae CIP 102761. In this strain, 

two copies of the hlyA gene were identified, one in contig_1, close to 

an IS4 transposase and a phage integrase and the other in contig_4, 

next to the dly gene. 

Often draft whole genome sequences contain plasmid sequences. 

Plasmids are important mediators of several physiological traits of 

Photobacterium, such as virulence, drug resistance and biosynthetic 

capabilities 55,80–82. We compared known Photobacterium plasmids to 

the here studied genomes. Plasmid pPHDD1 showed high similarity 

to contig_4 of P. damselae subsp. damselae CIP 102761 genome. Some 

of the contigs of P. damselae subsp. piscicida DI21 also had high 
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similarity to plasmids pPHDP60, pPHDP10 and pPHDP70, which 

have been previously isolated from this strain 80,83. 

Bioluminescence 

One of the traits of the Photobacterium genus is, as the name suggests, 

the fact that it used to be composed only of luminous bacteria 21. 

However, this is not true for all species of the genus, but this trait and 

the lux genes have been used in the general classification of the 

different species and strains 21,35,36. We identified the lux-rib operon 

and compared it between the strains. The lux-rib operon was only 

found in P. kishitanii, P. phosphoreum, and P. leiognathi (Figure 9). In 

all the strains of P. kishitanii, P. leiognathi subsp. mandapamensis 

svers.1.1., and P. phosphoreum ANT-2200, the genes luxF and ribE 

were present (Figure 10A). P. phospohoreum ATCC 11040 had no ribE 

encoded in the operon (Figure 10B), while all the other strains of P. 

leiognathi (ATCC 25521, ATCC 33979 and Irivu 4.1) carried neither 

ribE nor luxF genes (Figure 10C). Although it had been suggested 

before that some strains of P. angunstum are luminous 21, here none of 

the six P. angustum strains (S14, ATCC 25915, ATCC 33977, ATCC 

33975, SKA34 and P. dameselae subsp. damselae ATCC 33539) 

encoded the genes responsible for luminescence. An extra set of rib 

genes (ribDEBH) could be identified elsewhere in the genome for all 

the 35 strains (data not shown). 
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Figure 10 – Different organizations of the lux-rib operon in 
Photobacterium. P. kishitanii, P. leiognathi subsp. mandapamensis svers.1.1., 
and P. phosphoreum ANT-2200 (A); P. phospohoreum ATCC 11040 (B); P. 
leiognathi ATCC 25521, ATCC 33979 and Irivu 4.1 (C). 

Histamine production 

Ingestion of fish containing high levels of histamine is the most 

frequent cause of fish poisoning incidents within the United States 84. 

This is denominated scombrotoxin fish poisoning. Recently, high-

histamine producing Photobacterium strains have been isolated from 

freshly caught fish 38, raising awareness for the need to revise food 

safety rules regarding sea food. The histamine production relies on 

histidine decarboxylase enzyme (Hdc). We searched for histamine 

producing genes, previously identified in Photobacterium strains 38. 

Genes could be identified in all P. kishitanii strains, P. angustum 

ATCC 33977, P. phosphoreum ANT-220 (actually P. kishitanii), P. 

damselae subsp. damselae ATCC 33539 (actually P. angustum) and P. 

damselae subsp. damselae CIP 102761 (Figure 9 and Figure S1). 

luxC luxD luxA luxB luxF luxE luxG ribE ribB ribH ribAA

B
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Discussion 

This study aimed at understanding the genomic diversity of the 

Photobacterium genus, the drives for its evolution and impact on 

ecological strategies by analyzing whole genome sequences of 35 

strains representing 16 different species. 

The genomes revealed a 10% GC variation within the genus, with the 

formation of two distinct GC% groups. The GC content has been 

previously correlated to several environmental conditions as well as to 

the amino acid usage 85. The strains with higher GC content clustered 

together in the amino acid usage analysis, creating two different 

clusters, the high and low GC clusters. The genome size range was in 

accordance with the ones reported for other genera from the 

Vibrionaceae family 86. The largest genomes identified belonged to the 

P. profundum SS9, which has been shown to be an environmentally 

extremely versatile species. It is able to grow at cold temperatures, 

down to 0 °C, and in pressurized environments from 0.1 to 70 MPa 87–

89. It seems therefore logical that such environmental versatility is 

associated with a larger genome size 90. It was previously shown that 

genome size and GC content are related with the ecological strategies 

carried by the different marine bacteria, with free-living bacteria 

having lower GC and smaller genomes, when compared to patch-

associated bacteria 91; and also that symbionts, parasites and 

commensals would experience genome reduction due to specialization 
92,93. Here we observe that the smallest genomes are indeed among the 

known symbiotic (P. iliopiscarium, P. damselae, P. phosphoreum), but 
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also P. galatheae and P. halotolerans had small genomes. An 

interesting observation is that symbiotic species presented lower GC 

content than the free-living or patch associated ones.  

Phylogeny 

The poor phylogenetic discriminatory power of the 16S rRNA gene in 

the Vibrionaceae family was previously reported 61,86. Here, we used 

several clustering methods to investigate the phylogenetic 

relationships within the Photobacterium genus. Different approaches 

led to distinct phylogenetic results (MLSA, fur and amino acid usage), 

nevertheless the core groups were the same (Figure 3). Independently 

of the method used, the species with higher GC content clustered 

together, suggesting an evolutionary correlation of GC content and 

phylogenetic proximity within the genus. 

We suggest the use of MLSA or fur phylogenetic analysis in the future 

characterization of new isolates at the species level. Interestingly, the 

fur gene of approximately 450 bp had a better correlation to the ANI 

than the MLSA, which used approximately 6,800 bp more in the 

analysis. This observation strengthens the previously suggestion of the 

use of the fur gene as a single phylogenetic marker in the Vibrionaceae 

family 61. 

The phylogenetic analysis showed a misidentification of two isolates, 

P. phosphoreum ANT-2200 and P. damselae subsp. damselae ATCC 

33539. The P. phosphoreum ANT-2200 isolate is definitely a P. 
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kishitanii, which was previously suggested by others 21,36,38, and we 

confirmed this in the phylogenetic assessment, but also throughout 

the different genomic features studied. The genome identified as 

belonging to P. damselae subsp. damselae ATCC 33539 was similar to 

the ones of P. angustum, but the 16S rRNA phylogeny using the 

original sequence placed this strain elsewhere. Since no other 

physiological discrepancies have been previously reported, we believe 

that the case of P. damselae subsp. damselae ATCC 33539 might be a 

wrong whole genome sequence submission to NCBI or the sequencing 

of the wrong strain; this mistake should nevertheless be fixed, since it 

might affect future studies.  

It has been suggested to divide the Photobacterium genus into two or 

three clades 21,24. The most recent review on this genus suggested two 

clades, which would divide the species into clade 1 (P. angustum, P. 

leiognathi, P. aquimaris, P. kishitanii, P. phosphoreum and P. 

iliopiscarium) and clade 2 (P. aplysiae, P. lipolyticum, P. profundum, P. 

fridigiphilum, P. indicum, P. damselae, P. jeanii, P. ganghwense, P. 

halotolerans, P. gaetbulicola, P. lutimaris and P. rosenbergii) 21. This 

suggestion was based both on the molecular phylogenetic evaluation, 

but also on the creation of a luminous/symbiotic and a non-

luminous/non-symbiotic cluster. Our results support the phylogenetic 

relationship previously observed between the species of each cluster, 

but the identification of genes responsible for luminescence suggest 

that P. angustum and P. damselae are not luminescent species as 

previously reported 21. P. damselae has acquired lux genes through 
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horizontal gene transfer 49, which might explain the absence of these 

genes in the studied strains. On the other hand, luminescence of P. 

angustum strains may vary 21, although we could not identify lux genes 

in any of the six P. angustum strains (ATCC 25915, ATCC 33975, 

ATCC 33977, S14, SKA34, and the misidentified P. damselae ATCC 

33539). Furthermore, P. ganghwense has been defined as being 

bioluminescent, however, it has not been described how this feature 

was evaluated in the original study 59, nor could we identify lux genes 

in the genome of the type-strain. Therefore, the generic division of 

luminous versus non-luminous clades should be avoided. Analysis of 

the lux-rib operon further showed that strains ATCC 25521, ATCC 

33979 and Irivu.4.1 are most likely P. leiognathi subsp. leiognathi, 

according to their lux-rib gene organization 36. 

Genomic diversity 

We identified a pan-genome of 28,951 genes and a core-genome of 

1,232 genes using 35 genomes (Figure 5). The pan-genome for this 

genus alone is greater than what has been reported in a study of the 

Vibrionaceae family, where 32 genomes of a total of 13 species from 

three different genera were used 86. This suggests a highly genomic 

diverse genus, matching their ability to colonize diverse 

environmental niches 90,94 and supports the theory that high gene 

content variation exists in environmental marine strains 66,94. The 

number of core-genome genes is in agreement to the observed in 

other marine Gammaproteobacteria 95, although this is two times 
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higher than what has been shown for the Vibrio genus, where the 

core-genome comprised approximately 500 genes 86. This difference 

can be explained by the high number of Vibrio species (more than 

120), which reflects the genomic and ecological diversity of that genus; 

the higher the number of species, the higher possibility of a species 

missing a core-gene.  

 

The gene content of thirty whole genome sequences was compared to 

the reference genomes of P. profundum SS9 and P. gaetbulicola 

Gung47 (Figure 6). The large chromosome seems to be more 

conserved between species than the smaller chromosome or plasmids, 

as previously described for other members of the Vibrionaceae family 
86. The smaller chromosomes appear to be very variable and even 

differences between strains of the same species can be observed 

(Figure 7).  

 

Genome evolution 

It has been several times suggested that horizontal gene transfer was 

probably the cause and means of genomic evolution in the 

Vibrionaceae family 20,21,67,69, but not many studies have been 

performed to address this proposal. In the Photobacterium genus, 

studies on horizontal gene transfer are limited to the lux-rib operon 

and a chitinase A gene 49,96. Horizontal gene transfer can occur by 
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uptake of environmental DNA, conjugative plasmids and 

bacteriophage infection. 

Identification of genomic islands in the closed genomes of the 

reference strains showed their participation in the genomic variation 

of strains belonging to the same species (Figure 7). Phage DNA has 

been suggested as one of the main sources for lateral gene transfer in 

bacteria, example in the Vibrionaceae family is the most important 

virulence factor in V. cholera, encoded in the CTXϕ phage integrated 

in the large chromosome 18,20. We identified 32 intact and 59 

incomplete prophage sequences, suggesting an intense exchange of 

genomic material, with an average of 2.6 prophages per genome. 

These prophages were also distinct; from the 20 different intact 

prophages identified in the 35 studied genomes, only 3 of them had a 

reoccurrence in a second strain. 

The bacterial immune system (CRISPR-Cas) allows the protection 

against re-infection by the same bacteriophage 72. The system uses 

sequence homology to identify and neutralize possible threats. Several 

cas gene arrays have been described in several bacterial species 71. 

Interestingly, the cas operons previously associated with Escherichia 

coli, Desulvibrio vulgaris and Yersinia pestis were identified in strains 

of the Photobacterium genus (Figure 8). From the seven clusters 

identified only two (Figure 8A and 8F) seem to have a correlation with 

species, since presence/absence and type of cluster seems randomly 

spread across the different species (Figure 10). 
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The estimation of direct repeats (DR) and protospacers in the CRISPR 

arrays is very difficult in draft genomes due to the short sequencing 

reads and the repetitive nature of the sequences, which make them 

difficult to correctly assemble. Nevertheless, several CRISPR arrays 

have been identified in the studied genomes, some of them containing 

sequences from prophages encoded in the same genome, suggesting 

multiple phage infections throughout evolution. Arrays with extensive 

number of protospacers in some strains indicate innumerous 

bacteriophage infections. 

 

Another evidence of high genomic exchange is in the number and 

distribution of secondary metabolism biosynthetic clusters (Figure 9). 

The ectoine and aryl-polyene clusters seem to be present in two and 

three branches of the phylogenetic tree, respectively. This suggests 

various events of gain and loss of these clusters throughout the 

evolution of Photobacterium species. On the other hand, terpene and 

poly-unsaturated fatty acid clusters are species specific, P. angustum 

and P. profundum, respectively. These must have been acquired in the 

speciation process and maintained due to physiological advantages. 

 

Other functions 

Some phenotypes of interest have been observed and further studied 

in Photobacterium. These include bioluminescence, virulence and 

histamine production 21,35,36,38,78,79. We confirmed that genes encoding 
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virulence traits are not commonly present in Photobacterium genomes 

and that these are most likely acquired from the environment by e.g. 

plasmid uptake 80. 

On the other hand, bioluminescence was initial thought to be a 

widespread feature of the genus 21. We identified the genetic basis for 

bioluminescence only in three species P. kishitanii, P. phosphoreum, 

and P. leiognathi. This correlated with phylogenetic analysis, with the 

exception of P. iliopiscarium, that might have lost this trait due to 

niche adaptation. Although it had been suggested before that some 

strains of P. angunstum are luminous 21, here none of the six P. 

angustum strains (S14, ATCC 25915, ATCC 33977, ATCC 33975, 

SKA34 and P. dameselae subsp. damselae ATCC 33539) encoded the 

genes responsible for luminescence. 

Histamine production seems to be specific for P. kishitanii and P. 

damselae, however genes responsible for this feature could be 

identified also in one P. angustum strain (ATCC 33977). The same has 

been observed for the type IV secretion systems in Pseudovibrio and 

attributed to the frequency with which those genes are horizontally 

acquired 99,100. There are also several reports describing P. 

phosphoreum as histamine producing species 97,98. In this study we 

only had two P. phosphoreum genomes and one was a mis-identified 

P. kishitanii. In the P. phosphoreum genome we did not identify the 

genes responsible for histamine production, but it might be that it is 

present in some P. phosphoreum strains. This once again reveals the 
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plasticity of the genomic information in this genus, which has an 

impact on the observed phenotypes. 

Conclusion 

We have here shown the genetic diversity harbored in the extremely 

versatile genus Photobacterium. We confirmed the non-pathogenic 

nature of these genus, and increase the awareness to genetic material 

exchange happening in this genus, which might lead to acquisition of 

virulence factors, as in the case of P. damelae. This genus seems to be 

extremely versatile in environments colonized, possibly due to the 

genetic diversity observed. Furthermore, we present evidence for the 

exchange of genetic material at high levels, reflected in the variability 

of the smaller chromosome, in the number of protospacers, prophages 

and genomic islands, and in the number of secondary metabolite 

clusters. We have also shown the potential of some of the species for 

the production of bioactive molecules, considering their secondary 

metabolite cluster richness. 
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Table S1 – GenBank assession numbers for the 16S rRNA gene and MLSA phylogenies. 
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Figure S1 – Amino-acid usage in the Photobacterium strains.
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Figure S2 – Cluster encoding the proteins responsible for histamine 
production in Photobacterium. 
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