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ABSTRACT  10 

Cultivation of microalgae in open ponds and closed photobioreactors (PBRs) using wastewater 11 

resources offers an opportunity for biochemical nutrient recovery. Effective reactor system design 12 

and process control of PBRs requires process models. Several models with different complexities 13 

have been developed to predict microalgal growth. However, none of these models can effectively 14 

describe all the relevant processes when microalgal growth is coupled with nutrient removal and 15 

recovery from wastewaters. Here, we present a mathematical model developed to simulate green 16 

microalgal growth (ASM-A) using the systematic approach of the activated sludge modelling 17 

(ASM) framework. The process model – identified based on a literature review and using new 18 

experimental data – accounts for factors influencing photoautotrophic and heterotrophic 19 

microalgal growth, nutrient uptake and storage (i.e. Droop model) and decay of microalgae. Model 20 

parameters were estimated using laboratory-scale batch and sequenced batch experiments using 21 
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the novel Latin Hypercube Sampling based Simplex (LHSS) method. The model was evaluated 22 

using independent data obtained in a 24-L PBR operated in sequenced batch mode. Identifiability 23 

of the model was assessed. The model can effectively describe microalgal biomass growth, 24 

ammonia and phosphate concentrations as well as the phosphorus storage using a set of average 25 

parameter values estimated with the experimental data. A statistical analysis of simulation and 26 

measured data suggest that culture history and substrate availability can introduce significant 27 

variability on parameter values for predicting the reaction rates for bulk nitrate and the 28 

intracellularly stored nitrogen state-variables, thereby requiring scenario specific model 29 

calibration. ASM-A was identified using standard cultivation medium, and it can provide a 30 

platform for extensions accounting for factors influencing algal growth and nutrient storage using 31 

wastewater resources. 32 

 33 
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1. INTRODUCTION 37 

Cultivation of green microalgae has been proposed as a suitable technology for wastewater 38 

remediation due to their capacity to remove nitrogen and phosphorus (Markou et al., 2014). 39 

Consequently, several studies have explored the integration of microalgal cultivation in existing 40 

wastewater treatment plants (WWTPs), focusing on high pollutant removal from high strength 41 

streams, e.g. effluent from anaerobic digester, or as a tertiary treatment step (Wang et al., 2010; 42 

Van Den Hende et al., 2014; Boelee et al., 2011). However, due to an increasing global population, 43 

climate change and industrialization, in the near future, we will be facing new global challenges, 44 

such as severe water scarcity (Bixio et al., 2006; Verstraete et al., 2009) or the depletion of non-45 

renewable phosphorus resources (Verstraete et al., 2009; Desmidt et al., 2015). Consequently, 46 

sewage, referred to as used water, should be considered as a source of energy, nutrients and fresh 47 

water rather than a waste (Verstraete and Vlaeminck, 2011). Cultivation of microalgae offers the 48 

potential to recover water, nitrogen and phosphorus from used water providing an opportunity for 49 

residual nutrient recycling (Shilton et al., 2012; Cai et al., 2013; Samorí et al., 2013; Mehta et al., 50 

2015). Moreover, it has been demonstrated that microalgal biomass can be used as a slow-leaching 51 

fertilizer (Mulbry et al., 2005). Hence, as an alternative to the conventional algal cultivation for 52 

nutrient removal from used water, Valverde-Pérez et al. (2015) propose an enhanced biological 53 

phosphorus recovery and removal (EBP2R) process, able to provide optimal cultivation media for 54 

green microalgal growth. The EBP2R combined with an algal PBR, referred to as TRENS system 55 

(Fang et al., 2016), is then able to produce an algal suspension where nutrients are stored in the 56 

algal biomass, which can be used for fertigation. Additionally, algal biomass can be used for biogas 57 

or biodiesel production (Mata et al., 2010; Wijffels et al., 2010; Perez-Garcia et al., 2011). Unlike 58 

crop-based biofuels, microalgal biomass does not compete with agricultural land used for food 59 
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production, qualifying it as a third generation biofuel (Clarens et al., 2010).  Nevertheless, typical 60 

cultivation of microalgae can have a high water and energy demand and a high greenhouse-gas 61 

footprint associated with the production of fertilizer used for cultivation (Clarens et al., 2010; 62 

Guieysse et al., 2013; Markou et al, 2014). Hence, large-scale microalgal cultivation for biofuel 63 

production appears neither energetically nor economically favourable, unless it is coupled with 64 

used water resource recovery and treatment (Lundquist et al., 2010; Pittman et al, 2011; Chen et 65 

al., 2015).   66 

The existing process modelling approaches (Table S1, SI) range in complexity, comprising models 67 

that account for either the influence of a single variable on growth, e.g. light exposure (Grima et 68 

al., 1994; Huesemann et al., 2013), or the combined influence of multiple variables, such as light, 69 

nutrient availability, temperature or pH (Ambrose, 2006; Wolf et al., 2007; Quinn et al., 2011; 70 

Broekhuizen et al., 2012; Guest et al., 2013; Decostere et al., 2013; Adesanya et al., 2014; Coppens 71 

et al., 2014; Fachet et al., 2014). Although the latter group of models includes more complex 72 

approaches, they all show some structural deficiency required to predict the performance of PBRs 73 

employed for used water management. The biofilm model PHOBIA (Wolf et al., 2007), for 74 

instance, includes the growth of heterotrophs, nitrifiers and microalgae on inorganic carbon, light 75 

and nitrogen, but disregards algal growth dependency on phosphate, a key aspect for applications 76 

in used water treatment. The model by Broekhuizen et al. (2012) accounts for the effects of pH, 77 

inorganic carbon, oxygen, nitrogen, phosphate and light on microalgal growth. However, growth 78 

and nutrient uptake are considered directly coupled, and storage of nutrients and growth on the 79 

stored nutrients is not considered. To this end, the model by Droop (1973) proposes an approach 80 

describing microalgal growth on stored nutrients as well as nutrient uptake and storage. This is an 81 

important structural attribute because the calibration of the microbial growth process rate can be 82 
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done independently from the process rates identified for nutrient uptake and storage. 83 

Consequently, the model can describe growth in the absence of external nitrogen or phosphorus – 84 

observed in real system – using the internally stored nitrogen and phosphorus, also referred to as 85 

quota (Bernard, 2011). Based on the Droop model, when nutrients are persistently limiting, the 86 

minimum internal nutrient quota is gradually reached and the growth rate converges to zero. As 87 

for the replenishment of the quota, when nutrients in the bulk medium are available in excess, after 88 

the nutrient limitation, the maximum internal quota is reached, thereby reaching the maximum 89 

growth rate, at which algal growth becomes independent from the nutrient availability (Bernard et 90 

al., 2011). There are several models with multiple substrate limitations in accordance to Droop’s 91 

approach (Ambrose, 2006; Bernard, 2011; Quinn et al., 2011; Guest et al., 2013; Fachet et al., 92 

2014). Although nitrogen can be stored in the form of amino acids (Romero-García et al., 2012) 93 

or nitrate (Coppens et al., 2014), literature is not conclusive about the presence of a possible 94 

nitrogen quota for microalgae (Richmond, 2004).  95 

Although growth of algae on different organic substrates is well documented (Mata et al., 2010; 96 

Brennan and Owende, 2010; Perez-Garcia et al., 2011; Van Wagenen et al., 2015a), none of the 97 

above mentioned models combines mixotrophic and heterotrophic growth processes. Moya et al. 98 

(1997) propose a simple model for microalgal growth as a function of light (autotrophic growth) 99 

and acetate (heterotrophic growth) – the latter expressed using Haldane kinetics. Whilst this 100 

approach is useful to predict heterotrophic algal growth in nutrient excess conditions, it does not 101 

account for the effects of nitrogen and phosphorus, thereby limiting the model applicability (see 102 

e.g. Adesanya et al., 2014).  103 

Béchet et al. (2013) propose three different approaches to model the effect of light on algal growth: 104 

i) type I: models accounting for an average light intensity and its impact on the algal growth; ii) 105 
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type II: models accounting for the light gradient in the PBR and the effect on the photosynthetic 106 

rate; and iii) type III: models that consider the photosynthetic rate of an individual algal cell as a 107 

function of the light history. The effect of light on algal growth can be modelled by taking into 108 

account photo-inhibition using the Steele, Peeters-Eilers and Haldane kinetics (Bouterfas et al., 109 

2002; Ambrose, 2006), or omitting the inhibition term using the Monod, Platt-Jassby, Poisson 110 

single-hit and Smith models (Bouterfas et al., 2002; Ambrose, 2006; Skjelbred et al., 2012). 111 

Design, operation and control of PBRs require process models that are able to predict microalgal 112 

growth, as well as the nutrient uptake and storage from used water. Whilst such consensus models 113 

already exist for bacterial processes, i.e. the Activated Sludge Models (ASMs) (Henze et al., 2000), 114 

for algal systems there is still a lack of a consistent and consensus-based modelling approach. Thus 115 

the primary objective of the study is to develop such modelling approach. This is necessary for the 116 

development and assessment of operation and control structures for nutrient removal and recovery, 117 

which are poorly developed for PBRs, or the generate input data for life cycle assessment studies 118 

relevant to PBRs (e.g., Olivieri et al., 2014; Valverde-Pérez et al., 2016; Fang et al., 2015).  119 

Proper sets of experiments have to be designed to identify unique sets of model parameters. Whilst 120 

optimal experimental design for parameter identification is widely reported for conventional 121 

activated sludge models (e.g. Checchi and Marsili-Libelli, 2005; Chandran and Smets, 2005), this 122 

aspect has been seldom studied in algal models. Muñoz-Tamayo et al. (2014) reported optimal 123 

experimental design to estimate parameters related to algal growth dependence on light and 124 

temperature while Decostere et al. (2016) looked into the identifiability of inorganic carbon related 125 

parameters using a novel respirometric-titrimetric assay (Decostere et al., 2013). To our 126 

knowledge, only one study has dealt with the identifiability analysis of nutrient related parameters 127 

(Benavides et al., 2015). However, this study is based on synthetic data generated by simulating 128 
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an arbitrary chosen model structure. Therefore, a secondary objective of our study was to design 129 

experiments that can be used to infer data to analyse the identifiability and the reliability of the 130 

parameter estimates. Consequently, to assess the reliability of the parameter estimates, 131 

uncertainties imposed by factors known to affect them in activated sludge models, such as culture 132 

history or substrate availability (Grady et al., 1996) should be assessed. 133 

The main objectives of the present work are (i) to carry out an exhaustive literature review on 134 

process models of algal growth, nutrient uptake and storage; (ii) to identify and evaluate a 135 

biokinetic process model – based on the state-of-the-art and using novel formulations of process 136 

rate equations – for photoautotrophic and heterotrophic microalgal growth in the ASM framework; 137 

(iii) to assess the impact of culture history and substrate availability on parameter estimates and 138 

their effects on the accuracy of predicting microalgal growth and nutrient storage; (iv) to assess 139 

the model identifiability using data obtained from three different laboratory-scale experimental 140 

setups, thereby identifying the sources of parameter variability. 141 

2. ASM-A MODEL DEVELOPMENT 142 

2.1.Modelling in the ASM framework 143 

The systematic model development in this study was carried out as an extension to the well-144 

established Activated Sludge Model, ASM-2d (Henze et al., 2000). By using the ASM framework, 145 

we facilitate the integration of the microalgal model into the existing benchmark models (e.g. 146 

Nopens et al., 2010). ASM-2d includes all the bacterial groups involved in enhanced biological 147 

phosphorus removal systems (EBPR), i.e. ordinary heterotrophs, nitrifiers and polyphosphate 148 

accumulating organisms. The expressions included in this study do not consider the above 149 

mentioned bacteria, but only the biochemical processes catalysed by green microalgae (Gujer 150 

matrix shown in Table 1). Special attention has been paid to the typical challenges faced when 151 
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extending ASM type models (Snip et al., 2014), including: i) units, in accordance with the ASM 152 

framework, are expressed in chemical oxygen demand (g-COD), g-N and g-P per cubic metre; and 153 

ii) the continuity of the mass balances in the model is checked (Hauduc et al., 2010). To make the 154 

integration of the algal model into the existing model structures straightforward, ASM 155 

nomenclature (Table 2) was followed (Corominas et al., 2011). 156 

Uptake and storage of nitrogen (R1 and R2): ASM-A considers the microalgal uptake and 157 

storage of both ammonia (R1) and nitrate (R2) nitrogen (Table 1). The uptake and storage of 158 

nitrogen depends on the availability of external nitrogen (SNH4 or SNO), as well as on the internal 159 

cell quota of nitrogen (XAlg,N) – the latter being defined as the total intracellularly stored nitrogen. 160 

Nitrogen uptake rate decreases as the stored nitrogen approaches the maximum internal cell quota, 161 

XAlg,Nmax, in the biomass (XAlg). Typically, ammonia is preferred over nitrate for most algal species 162 

(Cai et al., 2013; Markou et al., 2014). Therefore, a competitive inhibition term by ammonia is 163 

included in the nitrate uptake process rate (R2, Table 1). 164 

Uptake and storage of phosphorus (R3): The uptake and storage of phosphorus (R3, Table 1) 165 

depends on the availability of external soluble orthophosphate (SPO4), and on the internal cell quota 166 

of phosphorus (XAlg,PP) – the latter being defined as the total intracellularly stored phosphorus. 167 

Accordingly, the phosphorus uptake rate decreases as the stored phosphorus approaches the 168 

maximum internal cell quota, XAlg,PPmax. 169 

Photoautotrophic growth (R4): Nutrient limitations are described according to Droop (1973). 170 

The specific growth rate decreases as the internal cell quota approaches the minimum internal 171 

quota (XAlg,Nmin or XAlg,PPmin). The consumption of inorganic carbon (SAlk) is modelled using Monod 172 

kinetics. Light limitation is determined by the photo-synthetically available irradiance passing 173 
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through the PBR. In this study, we assume that the microalgae are exposed to a constant average 174 

light intensity (type I light model, Béchet et al., 2013), denoted as IAv. To identify a suitable model 175 

structure that describes the light influence on microalgal growth, six different model equations 176 

were fitted to the obtained experimental data. Light dependence is modelled using the Steele 177 

equation, which was identified through an extensive model discrimination exercise using 178 

experimental results (section 4.1.1). 179 

The COD mass-balance cannot be closed for the photoautotrophic microalgal growth, which is 180 

explained as follows. During the photophosphorilation, algae produce the energy needed for 181 

carbon fixation through the Calvin cycle and release oxygen as a by-product. In addition, the 182 

energy produced can also be used to build macromolecules (e.g. lipids or starch), to assimilate 183 

nitrate, etc. (Wilhelm and Jakob, 2011). The energy not used via the Calvin cycle yields to a higher 184 

oxygen production without contributing to biomass production (i.e. COD production), and thus 185 

preventing the mass-balance to be closed. Since carbon dioxide, light and water, the substrates in 186 

this process do not contribute to the COD balance, they cannot be used either to close the balance. 187 

Therefore, the stoichiometry for photoautotrophic growth is set according to literature (Park and 188 

Craggs, 2011), and, in this case, the continuity check is only used to close the mass balances for N 189 

and P. 190 

Heterotrophic algal growth (R5): Acetate is used as the organic carbon substrate (SA), state-191 

variable included in the ASM-2d. The Monod kinetics is used to model the heterotrophic growth 192 

as a function of the substrate concentration. Oxygen serves as a terminal electron acceptor for 193 

heterotrophic growth (SO2), and its effect is modelled by Monod kinetics. Inhibition of the 194 

heterotrophic growth by light intensity is modelled using the competitive inhibition term. The 195 
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nutrient consumption associated with algal growth is included analogously to that described in the 196 

photoautotrophic growth. 197 

Algal decay (R6): The algal decay process rate includes the internal resources used for 198 

maintenance, biomass loss during dark respiration and death and lysis that reduces the amount of 199 

active biomass in the culture. In addition, the term includes reduction in biomass due to predators 200 

grazing on the algal biomass. The decay process is modelled following the dead-regeneration 201 

principle, which states that a fraction of the products from decay become available for microbial 202 

growth (van Loosdrecht and Henze 1999). 203 

2.2.Limitations of the model 204 

ASM-A was identified using experimental data inferred using synthetic growth medium. 205 

Conversely, in real systems, factors related to light attenuation (e.g., chromophores) and toxicity 206 

(e.g., pharmaceutical residues), occurring in (treated) used water can significantly influence 207 

growth conditions that the present model and its calibration do not account for and future model 208 

identification studies should quantify them. Furthermore, although the model is implemented as 209 

an extension of the ASM-2d and predicts bacterial growth and some interactions between bacteria 210 

and algae (e.g. support of heterotrophic bacterial growth via oxygen supply from the algae), direct 211 

interactions between algal and bacterial growth, are not considered in this study, and bacterial 212 

processes are assumed negligible during the experiments. Further details about how bacterial-algal 213 

interactions are accounted for by means of the ASM-A model are described in the Supporting 214 

Information (SI, pages S29-S31). 215 

High oxygen levels can cause photo-oxidative damage on microalgae (Muñoz and Guieysse, 216 

2006). Photo-oxidative damage caused by elevated O2 levels is reported at significantly higher 217 
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levels of oxygen in the liquid phase (e.g. 24.5 mg O2·L-1 reported in Alcántara et al., 2013) than 218 

that observed in our study (10 mg O2·L-1), and mostly it occurs in photobioreactors with poor 219 

mixing. This can be avoided with adequate mixing as was the case in our study. The effect of O2 220 

inhibition thus could not be measured, and targeted experiments should be done – in the future – 221 

to extend the application of the model to account for photo-oxidative inhibition during autotrophic 222 

algal growth. Elevated organic carbon content can potentially inhibit autotrophic microalgal 223 

growth (Alcántara et al., 2013). Van Wagenen et al. (2015b) reported no decrease in 224 

photoautotrophic growth and nutrient removal in the presence of sufficient light intensity and up 225 

to 400 mg·L-1 volatile fatty acids (VFA). This concentration is significantly higher than what is 226 

expected in effluents from domestic wastewater treatment systems (Tchobanoglous et al., 2004). 227 

Therefore, we contend that autotrophic growth inhibition by VFAs can be ignored. 228 

The charge balances have not been tracked through model development. Hauduc et al. (2010) 229 

suggest using alkalinity as a sink to close charge balance, leading to stoichiometric coefficients 230 

that disregard the biological processes. In the future, the charge balance should be closed using 231 

methods for pH estimation (e.g. Flores-Alsina et al., 2015), thereby achieving more accurate 232 

estimation of the carbon speciation which might additionally affect microbial growth rates 233 

(Decostere et al., 2013). Moreover, the model currently does not consider temperature effects on 234 

model parameter values, which is particularly important when considering open pond type 235 

systems. This must be addressed in next model generations. 236 

<Table 1> 237 

<Table 2> 238 

 239 
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3. MATERIALS AND METHODS 240 

3.1.Microalgae and culture media  241 

The mixed green microalgal consortium used in this study was isolated in a natural pond in contact 242 

with used water. The culture mainly consists of Chlorella sorokiniana (identification made by the 243 

PCR method after isolation of the species as described in the SI, page S24, Fig. S1, SI) and 244 

Scenedesmus sp. (based on microscopic observations, Fig. S2, SI). The algal culture grows strictly 245 

in suspension, without significant biofilm or aggregate formation.  The mixed culture was 246 

cultivated using the MWC+Se synthetic medium (Guillard and Lorenzen, 1972), unless otherwise 247 

specified.  248 

3.2. Experimental design and description of the reactors 249 

3.2.1. Microbatch experiments 250 

Microbatch experiments were set up in 24-well black microtiter plates (VisiPlate, PerkinElmer 251 

Inc., Waltham, MA) in a temperature controlled room at 20 ºC. The microbatches – placed on a 252 

shaker table operated at 160 rpm – were inoculated with 2 mL samples with 14 mg NO3
--N·L-1 253 

and 1.55 mg PO4-P·L-1. Thereby, nutrients were available in excess in the medium. The light was 254 

supplied by cool white LEDs (Werner Co., USA).   255 

To assess the effect of light intensity on the microalgal growth, neutral density filters were attached 256 

to the bottom of the microbatches to create different light intensities (Van Wagenen et al., 2014). 257 

Two sets of experiments were carried out, resulting in twelve different light intensities ranging 258 

from 12 to 870 µmol photons m-2 s-1.  259 

In addition, microbatch experiments were set up to assess the heterotrophic growth of microalgae 260 

in darkness. The MWC+Se culture medium was modified by adding acetate as organic carbon 261 
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supplied at different concentrations (10-1000 mg·L-1). The cultures were grown on the same shaker 262 

table, and kept in complete darkness (Van Wagenen et al., 2015a).  Moreover, two sets of 263 

measurements at two different light intensities (120 µmol photons m-2 s-1 and 450 µmol photons 264 

m-2 s-1) were conducted to assess the effect of light intensity on the acetate uptake rate (200 mg·L-265 

1 acetate in each well) and heterotrophic growth. At each measurement point, the algal biomass 266 

was measured and the content of three wells were removed and prepared for acetate measurement. 267 

This method allowed us to monitor the growth rate together with the acetate removal rate in the 268 

microbatch scale.    269 

3.2.2. Sequenced batch experiments in 1-L PBRs 270 

Batch experiments were set up using 1-L wide-neck glass bottles (Duran®, Germany) with constant 271 

stirring at 180 rpm using magnetic stirrers and with a multi-port system, allowing for sample 272 

extraction and aeration with CO2 enriched air (5 % CO2) at a flow rate of 10 L·h-1. pH was kept 273 

between 6.5-8. Light was supplied from the two sides of the batches using 18-W fluorescent lamps 274 

(GroLux, Sylvania®, USA), providing 160 µmol photons m-2s-1 continuously. Three parallel batch 275 

reactors were run where the nitrogen source in one was ammonium while in the others nitrate. The initial 276 

concentration of nutrients was varied by decreasing the nitrogen (either ammonium or nitrate) or 277 

phosphorus levels 3 times. Initial nitrogen and phosphorus concentrations ranged between 0.3-14 278 

mg·L-1 as N and 0.1-1.55 mg·L-1 as P, respectively. Microalgal biomass was diluted when optical 279 

density (OD) reached a value of 0.4 (corresponding to 0.21 g TSS·L-1, Fig. S3). 90% of the volume 280 

was replaced with fresh cultivation medium thereby avoiding self-shading in the culture (and thus 281 

light limitation). Temperature was kept constant in the room at 20ºC. During the batch experiments 282 

the limiting and the non-limiting nutrients as well as cell density were monitored. 283 
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Heterotrophic growth and the acetate uptake were assessed in 1-L batches under dark conditions 284 

at 20 ºC with concentration of 14 mg NO3
--N·L-1 and 1.55 mg PO4-P·L-1, ensuring nutrients to be 285 

in excess. Initial acetate concentrations were set to 200 and 400 mg·L-1. Constant air was supplied 286 

to the cultures to avoid limitation by oxygen and the batches were kept in complete darkness.  287 

3.2.3. Sequential batch experiments in 24-L PBRs 288 

Experimental data were collected for model calibration and validation in a 24 L laboratory-scale 289 

airlift PBR. In the first four cycles (Descending cycles), the initial ammonia and nitrate 290 

concentration decreased in sequential cycles from 10 to 5 to 2.5 to 0.5 mg-N·L-1. In the following 291 

four cycles (Ascending cycles), the initial ammonia and nitrate concentration increased from 0.5 292 

to 2.5 to 5 to 10 mg-N·L-1 (Fig. 1). Each cycle was run once in a consecutive manner. The reactor 293 

was operated with constant aeration with CO2 enriched air (5% CO2) with 600 mL·min-1 flow rate. 294 

pH varied between 6.2-7. The temperature varied between 17-21 ºC. A custom-built lamp, 295 

providing 600 ± 50 µmol photons m-2 s-1, with two metal-halide light bulbs (OSRAM©, Germany), 296 

was placed on top of the reactor.  297 

<Figure 1> 298 

3.3.Analytical methods 299 

 In-vivo fluorescence (IVF) at 440 nm excitation and 690 nm emission was used to measure and 300 

estimate directly the algal growth in microplates due to its high sensitivity at low biomass 301 

concentrations (Van Wagenen et al., 2014). Acetate was measured using HPLC (Van Wagenen et 302 

al., 2015a). Biomass in the 1-L and 24-L batch reactors was analysed by measuring the OD at 750 303 

nm and by total suspended solids (TSS) measurement using glass fibre filter (Advantec©, USA) 304 

with a pore size of 0.6 µm (APHA, 1995). TSS units were converted to COD using a conversion 305 
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factor of 0.72 gTSS/gCOD (estimated as explained in the SI).Total nitrogen and phosphorus 306 

measurements in the suspension were done using commercial test kits (Hach-Lange©, USA). 307 

Following sample filtration (0.2 µm filter), ammonium, nitrate, nitrite and phosphate 308 

concentrations were measured using test kits supplied by Merck© (USA). The internal cell quota 309 

of nitrogen was calculated based on the difference of total nitrogen in the algal suspension 310 

(algae+medium) and total soluble nitrogen in the filtrate (soluble organic N, NH4
+, NO2

- and NO3
-311 

). The internal cell quota of phosphorus was obtained by the difference of total phosphorus in the 312 

algal suspension and soluble phosphate in the filtrate.  313 

3.4.Model implementation and calibration 314 

3.4.1. Calibration procedure for 1-L and 24-L batch experiments 315 

A model identifiability analysis was carried out to determine if the information gathered from the 316 

1-L and 24-L batches was rich enough, both quantitatively and qualitatively, to estimate 317 

parameters. The methodology developed, adapted from literature, is referred to as the Latin 318 

Hypercube Sampling based Simplex (LHSS). It comprises 5 modular steps (Fig. 2): Step 1: the 319 

parameter space for the parameters to be estimated in each experiment is defined, based on the 320 

extensive literature review presented in section 2.1; Step 2: Latin Hypercube Sampling (LHS, 321 

Helton and Davis, 2003) is used to select values from the parameter space; Step 3: the parameter 322 

sets are used as initial values (a priori) for the local optimization algorithm, Simplex (Nelder and 323 

Mead, 1965). The objective function to be minimized is the root mean square normalized error 324 

(RMSNE) relative to the measured value (ym): 325 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑦𝑦𝑚𝑚−𝑦𝑦

𝑦𝑦𝑚𝑚
)2𝑛𝑛

𝑖𝑖=1       (1) 326 

where n is the number of measurement points, and y is the predicted value. 327 
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Simplex can identify different optimal parameter sets. Step 4: Thresholds are set by visualization 328 

of the distribution of the RMSNE (histogram) for the estimated parameter subsets resulting in 329 

different cut-off values in the two scales (1% and 10% of the minimum RMSNE, Fig. S4, SI). 330 

Parameter subsets resulting in an error higher than these thresholds are considered as local minima 331 

and omitted in further steps; Step 5: The distribution of the optimal parameter set values obtained 332 

through Simplex, combined with the average parameter values, standard deviations and correlation 333 

matrix are used for identifiability assessment. The distributions of parameter value estimates are 334 

plotted as histograms that are interpreted according to their relative wideness, i.e. the narrower the 335 

histogram, the more identifiable the parameter is (Van Daele et al., 2015). Parameter 336 

identifiability, in this step, is assessed by additionally considering the standard deviations and the 337 

correlation matrix, as suggested by Sin et al. (2010). Based on the correlation matrix, if the 338 

correlation of parameters is comparably high, then the parameter identifiability should be assessed 339 

by analysing the impact of setting one of the parameters to its minimum and maximum boundaries 340 

defined by the standard deviation on the simulation output. The Janus coefficient (J) is used to 341 

assess the difference in model predictions (Sin et al., 2007). The Janus coefficient describes the 342 

accuracy of the model prediction, and for reliable predictions its value is close to 1. Janus 343 

coefficients higher or lower than 1 indicate that predictions are worse or better than the original 344 

model approximations obtained through parameter estimation, respectively. We find that 500 LHS 345 

samples are sufficient to reach convergence on the parameter distributions.   346 

<Figure 2> 347 

3.4.2. Autotrophic growth model calibration 348 

Specific growth rates were obtained as a function of light intensity using microplate experimental 349 

data. Six different expressions (specified in the model development section), describing the effect 350 
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of light on algal growth, were tested by approximating the experimental data. Parameter values for 351 

the maximum photoautotrophic growth rate (µA,max) and the saturation light intensity (IS) were 352 

obtained from the fitting.  353 

XAlg,Nmax, XAlg,Nmin, XAlg,PPmax and XAlg,PPmin were approximated as the observed maximum and 354 

minimum quota reached overall in the 1-L and 24-L sequenced batch experiments. The 355 

stoichiometric parameters, nitrogen and phosphorous content of algal biomass (iNxalg and iPxalg) 356 

were set as the minimum observed quota of nitrogen and phosphorus. Parameter values for µA,max 357 

and half saturation coefficients of  ammonium (KNH4,Alg), nitrate (KNO,Alg) and phosphate (KPO4,Alg) 358 

and the maximum specific uptake rates of ammonium (kNH4,Alg), nitrate (kNO,Alg) and phosphate 359 

(kPO4,Alg) were obtained in the 1-L batches with the LHSS parameter estimation method. Microalgal 360 

decay rate (bXalg) was set at 2%*µA,max as suggested by Quinn et al. (2011). 361 

Parameters µA,max, KNO3,Alg, KNH3,Alg, KPO4,Alg, kNO3,Alg, kNH3,Alg, kPO4,Alg and bXalg were  also estimated 362 

using the experimental data obtained using the 24-L reactor setup. Average light intensity was set 363 

in each cycle, calculated based on Benson et al. (2007), i.e. by integrating the Lambert-Beer 364 

equation over the culture depth. The parameter estimates used to calibrate the Lambert-Beer 365 

equation are those presented by Wágner et al. (2014). 366 

3.4.3. Heterotrophic growth model calibration  367 

The Monod kinetics was fitted on the results obtained in microbatch experiments. Data obtained 368 

in 1-L batch experiments were used to estimate kinetic parameters using the LHSS method. 369 

Parameter values for minimum and maximum quotas, half saturation coefficients and maximum 370 

specific uptake rates of N and P are taken from the autotrophic growth process rate. Parameter 371 

values for the maximum heterotrophic growth rate (µH,max) and the half saturation coefficient of 372 
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acetate (KA) were estimated using data obtained in the microbatch and 1-L batch experiments. The 373 

observable yield on acetate (YAC) was calculated from the 1-L batch experiments as the ratio of g 374 

biomass produced as COD and g acetate consumed as COD. 375 

In the presence of light and acetate, we observe mixotrophic growth. To assess the effect of light 376 

on heterotrophic growth kinetics (described in section 3.2.1), we calculated the heterotrophic 377 

biomass production based on the acetate consumption in the microbatch experiments. The 378 

observed value of µH,max was estimated using the data from the exponential growth phase for both 379 

light intensities using the estimated heterotrophic biomass production. The value of the half-380 

saturation coefficient for light inhibition (KI) was estimated by approximating the observed µH,max 381 

at different light intensities from the microbatch experiments, including µH,max estimated in 1-L 382 

batch in darkness, using the competitive inhibition term.  383 

3.4.4. Literature values 384 

Remaining model parameters were taken or calculated based on literature (specified in Table 3). 385 

In ASM-A, the half-saturation coefficient of inorganic carbon (KAlk) is according to Broekhuizen 386 

et al. (2012). The microbial growth yield on inorganic carbon (YXalg,SAlk) was calculated based on 387 

the stoichiometry presented in Park and Craggs (2011). The half-saturation coefficient for oxygen 388 

(KO2) in the heterotrophic growth is based on the minimum operational oxygen level reported in 389 

literature, and is given as 20% of the saturation oxygen concentration (Morales-Sánchez et al., 390 

2013). The inert fraction of the biomass (fXI) produced via decay is accounted for according to 391 

Henze et al. (2000). The nitrogen and phosphorus released during the decay process in the form of 392 

inert and biodegradable matter (iNXalgI, iNXalgS, iPXalgI and iPXalgS) is based on Henze et al. (2000). 393 

3.4.5. Model implementation 394 
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The ASM-A model was developed as an extension of the simulation model ASM-2d (Henze et al., 395 

2000), which was implemented in Matlab (The MathWorks, Natick, MA; Flores-Alsina et al., 396 

2012). The Matlab solver ode15s was used (see e.g. Flores-Alsina et al., 2012). 397 

3.5. Model evaluation 398 

The experimental design developed for the 24-L sequenced batch PBR (Fig. 1) was used through 399 

a two-step model evaluation. To this end, the hypothesis tests set for the two model evaluation 400 

steps comprise the questions (I) Do culture history and/or substrate availability significantly 401 

influence parameter estimates?; (II) What are the practical consequences for model calibration?, 402 

i.e. can we use a mean parameter set to accurately predict algal cultivation in PBRs?; (III) Can we 403 

explain inaccuracies as a result of parameter variability? To answer hypothesis-I, it is noteworthy 404 

that the experimental design (Fig. 1) used with different initial substrate to biomass ratio in each 405 

cycle allows decoupling the culture history from the substrate availability impact. Through the 406 

first evaluation step, parameter sets obtained through each descending cycle (Table 4) were 407 

confronted with data obtained in the corresponding (same initial substrate concentrations) 408 

ascending cycle (Fig. 1). To assess model accuracy, we used the Janus coefficient (Sin et al., 2007). 409 

To answer hypothesis-II and III, in the second evaluation step, Monte Carlo simulations were 410 

performed to obtain a confidence interval of model predictions (Sin et al., 2009). The probability 411 

range of ASM-A parameters was assigned by calculating the minimum/maximum parameter 412 

values as the mean estimated parameter values minus/plus the standard deviation, respectively. 413 

The mean and standard deviation values were calculated through the initial descending cycles 414 

(Table 3). The uncertainty classes were assigned to each parameter based on previous knowledge, 415 

as suggested by Sin et al. (2009), and are reported in Table S2. 416 
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For those state-variables that failed both evaluation steps global sensitivity analysis (GSA) was 417 

carried out. The GSA method applied in this study is linear regression of Monte Carlo simulations 418 

(Saltelli et al., 2008) – also referred to as the standard regression coefficient (SRC) method (more 419 

details on the method are present in the SI, pages S27-S28). Only the parameters for which βi ≥ 420 

0.1 are considered to be influential (Sin et al., 2011). In this study, 1000 Monte Carlo simulations 421 

are found to be sufficient to achieve convergence.  422 

4. RESULTS AND DISCUSSION 423 

4.1. Model identification 424 

4.1.1. Autotrophic growth 425 

The Steele expression (included in R4) was found to most accurately (R2=0.995) describe the light 426 

dependence of algal growth (Table S3, SI; Fig. 3). We note, however, that the R2 obtained with all 427 

six expressions is comparably high, i.e. R2>0.99. The Steele equation accounts for the photo-428 

inhibition on algal growth, a factor not fully supported by the measured data, and hence, further 429 

assessment at higher light intensities is necessary to understand better the inhibition by light. In 430 

full-scale systems, however, the prevalence of such high average light intensity (>900 µmol m-2 s-431 

1) is assumed to be negligible. The estimated values for µA,max and Is are 3.6±0.04 d-1 and 758±23 432 

µmol m-2 s-1, respectively (Table 3). It should be noted that we used observed growth rates to 433 

calibrate phototrophic growth, disregarding the effect of the decay rate. Therefore, the maximum 434 

growth rate may be underestimated.  435 

<Figure 3> 436 

  4.1.2. Heterotrophic growth 437 
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According to the microbatch experimental results, for SA= 0-180 mg COD·L-1, heterotrophic 438 

growth can be effectively described using the Monod expression (suggested by Turon et al. (2015)) 439 

(Fig. S5, SI). The approximation of the experimental data (R2=0.7) results in µH,max=0.7±0.06 d-1 440 

and KA=10.7±3.6 g COD∙m-3  (Table 3). We note that our measurements show a plateau (Fig. S5, 441 

SI) – with growth rates around 0.38 d-1 – above approx. 180 mg·L-1 acetate concentration. Species 442 

that are capable of growing under both heterotrophic and photoautotrophic conditions are reported 443 

to have similar heterotrophic and photoautotrophic growth rates (Ogawa and Aiba, 1981; Van 444 

Wagenen et al., 2015a) – as opposed to our case. The value of µA,max is significantly higher than 445 

that obtained for µH,max (i.e. µA,max=3.6±0.04 d-1 and µH,max=0.7±0.06 d-1). However, when 446 

microbatches with acetate were exposed to different light intensities, the observed µH,max is 447 

comparably higher (i.e. 2.8±0.8 d-1 and 2.14±0.6 d-1). Under mixotrophic growth conditions, the 448 

oxygen needed to support heterotrophic growth in microbatch experiments is overcompensated by 449 

the oxygen produced during the autotrophic growth. Therefore, it is suggested that heterotrophic 450 

microbatch experiments were limited by the oxygen level, thereby decreasing the observed µH,max 451 

(i.e. 0.7 ±0.06 d-1). It is also hypothesised that the plateau observed in Fig. S5 (µ around 0.38 d-1) 452 

is caused by the inefficient oxygen transfer in the microplates. 453 

The kinetic parameters obtained from the measurements conducted in 1-L batches (Fig. S6a, SI) 454 

are the heterotrophic growth on acetate and the affinity coefficient for acetate, i.e. µH,max=4.5±0.05 455 

d-1 and the KA= 6.3±0.52 gCOD∙m-3. The estimated parameters were evaluated using an 456 

independent set of experimental data (Fig. S6b, SI), and results obtained show low discrepancy 457 

between measured and simulated data (J~1, Table S4, SI). However, the value of µH,max obtained 458 

at this scale is significantly higher than that obtained in the microbatch experiments 459 

(µH,max=0.7±0.06 d-1).  Since 1-L batch reactors were continuously aerated, oxygen was not 460 
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limiting heterotrophic growth. Typical values of COD measured in influent domestic used water 461 

are in the range of 250-800 mg·L-1 (Tchobanoglous et al., 2004). Thus in used water treatment 462 

processes acetate and other volatile fatty acids are not expected to inhibit heterotrophic growth. 463 

YAC was calculated to be 0.42 gCOD∙g-1COD (Table 3) from the 1-L batch experiments. KI was 464 

determined using measured data inferred in both microbatch (mixotrophic growth, at two different 465 

light intensities) and 1-L batch experiments (heterotrophic growth, no light), estimated to be 466 

331±160 µmol m-2 s-1 (Fig. 4). Due to the low experimental data considered in this study, KI should 467 

be interpreted with caution. 468 

<Figure 4> 469 

4.1.3. Nutrient uptake and storage 470 

The kinetic parameters were estimated using the LHSS method (Step 1-3, Fig. 2) using data 471 

obtained in the 1-L batch experiments, resulting in µA,max=3.54±0.05 d-1, KNH3,Alg = 6.7±1.63 gN∙m-472 

3, KNO,Alg = 6.87±2.56 gN∙m-3, KPO4,Alg= 4.71 ± 0.65 gP∙m-3, kNH3,Alg = 2.55±0.61 gN∙m-3, kNO,Alg = 473 

2.13±0.86gN∙m-3 and kPO4,Alg= 4.84 ± 0.67 gP∙m-3 (Table 3). The specification of the experimental 474 

data that are used to calculate the objective function in each of the 1-L batch experiments is 475 

included in the supporting information (Table S5). Initial conditions for the 1-L and 24-L batch 476 

experiments are reported in the supporting information (Table S6). The upper and lower 477 

boundaries of the LHSS simulations are included in the supporting information in Table S7. In 478 

accordance with the standard deviations of the parameter values (for µA,max, the average standard 479 

deviation is 1.5%, and for uptake rates and affinity coefficients it is below 40%), the histograms 480 

(Table S8, SI) show a relatively narrow parameter distribution, thereby indicating that the 481 

parameters are identifiable (Step 5, Fig. 2). The low standard deviation obtained can be attributed 482 
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to the fact that parameter estimation was carried out by omitting measurement noise. The cut-off 483 

value of 1% is set as a general threshold for local minima rejection (Step 4, Fig. 2) in all three 484 

experiments (Table S8, Fig. S4a, S6b, SI). This included more than 70% of the parameter sets in 485 

the ammonium and phosphorus limiting 1-L batches (Table S8, SI). However, in the nitrate batch, 486 

as a result of the high number of local minima identified and rejected (Fig. S4a, SI), even though 487 

convergence was reached in the RMSNE distribution, only approx. 15% of the parameter sets were 488 

included in the 1% range. Based on the correlation matrix, the parameters can be considered highly 489 

correlated, i.e. the matrix elements are close to 1 (Table S8, SI). Therefore, we further assessed the 490 

impact of the parameter variability on the model output (Step 5, Fig. 2). To this end, we compared 491 

the simulation results using parameter values on the boundaries given by their standard deviation. 492 

We show one example (Fig. S7, SI), where we altered one parameter that is highly correlated with 493 

another (in this case we alter kNO,Alg that is correlated with KNO,Alg). We set kNO,Alg to its maximum 494 

and minimum value (i.e. mean ± standard deviation), and the effect of this manipulation was 495 

assessed using the simulation outputs (including algal biomass concentration, soluble nitrate 496 

concentration and nitrogen storage). We found comparably low variation in the model outputs 497 

when altering kNO,Alg (Janus coefficient ~ 1, Fig. S7, SI). This approach was also employed to test 498 

all experimental data (Table S8, SI) and all highly correlated parameters. The discrepancies 499 

obtained between the outputs are comparably low in all cases (Janus coefficients ~ 1, not shown; 500 

Step 5, Fig. 2), thus suggesting parameters are identifiable. The minimum and maximum nitrogen 501 

content observed throughout these experiments are XAlg,Nmin=0.012±0.003 gN∙g-1COD and 502 

XAlg,Nmax=0.09±0.004 gN∙g-1COD, respectively. The minimum and maximum phosphorus content 503 

measured throughout these experiments are used as minimum and maximum quotas in the final 504 

model calibration set, i.e. XAlg,PPmin=0.0021±0.0005 gP∙g-1COD and XAlg,PPmax= 0.019± 0.0006 505 
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gP∙g-1COD, respectively (Table 3). Any phosphorus content above this minimum quotum is 506 

referred to as “phosphorus storage” for the algae, which can include polyphosphate (Powell et al., 507 

2008).  508 

Experiments assessing the effect of nutrient limitation on microalgal growth were conducted in a 509 

24-L batch reactor (Fig. 5; Fig. S8-S10, SI). The lowest and highest levels of nitrogen quota found 510 

are XAlg,Nmin=0.00936±0.002 gN∙g-1COD and XAlg,Nmax=0.13±0.016 gN∙g-1COD, respectively 511 

(Table 3), which are included as the minimum and maximum quotas in the model calibration 512 

exercise as final parameter values. Any nitrogen content above this minimum quotum is referred 513 

to as “nitrogen storage” for the algae, which can be in different forms (Romero-García et al., 2012; 514 

Coppens et al., 2014). The minimum and maximum phosphorus content observed throughout the 515 

24-L batch experiments are XAlg,PPmin=0.0028±0.0006 gP∙g-1COD and XAlg,PPmax=0.016±0.0006 516 

gP∙g-1COD, respectively, which were within the range found for the 1-L batch data.  The affinity 517 

coefficients, KNH4,Alg, KNO,Alg and KPO4,Alg and the uptake rates, kNH4,Alg, kNO,Alg and kPO4,Alg were 518 

estimated to evaluate and possibly validate the values obtained using the 1-L batch data. We 519 

assumed that, in the 24-L batch experiments, the culture was exposed to an average light intensity 520 

(estimated for each of the batches – Table S9, SI) in the PBR and that there was no inorganic 521 

carbon limitation. Additionally, the RMSNE values obtained through parameter estimation are 522 

presented in Table 5. Based on experimental data obtained in the 1-L and 24-L batches (Table 3), 523 

a comparative assessment of parameter estimates was carried out, indicating significant 524 

discrepancy for only nutrient uptake process rate parameters, i.e. kNH4,Alg, kNO,Alg and kPO4,Alg (up to 525 

50-times difference). This discrepancy could be explained as a consequence of the different 526 

hydrodynamics of the batch reactors. That is, 1-L reactors are well mixed by a magnetic stirrer and 527 

bubbling. However, the 24-L reactor mixing only relies on the advective flow induced by the 528 
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bubbling in the inner side of the reactor. Therefore, there is a higher chance to induce dead zones 529 

in the second reactor. Poor mixing has been reported to affect parameter estimates, showing 530 

apparent slower dynamics (Arnaldos et al., 2015). Moreover, the discrepancy may be due to the 531 

lack of accounting for the impact of light attenuation under dynamic conditions along the 532 

experiment in the 24-L PBR. Additionally, the lack of temperature control in the in the 24-L batch 533 

reactors resulted in oscillating temperatures below 20 °C during the experiments. The lower 534 

temperature may have caused reduced microbial activity (Ras et al., 2013) that could have 535 

contributed to the discrepancy between the parameter values.  536 

<Figure 5> 537 

In an effort to benchmark parameter values obtained herein, literature values (Table S2, SI) 538 

selected from studies focusing on Chlorella sp. and/or Scenedesmus sp. were used. A close 539 

agreement is found between parameter values estimated in this study and those in literature - also 540 

the case for nutrient uptake rates (kNH4,Alg, kNO,Alg and kPO4,Alg) obtained using the 24-L batch data. 541 

Our results suggest that, in the absence of dissolved nitrogen species, microalgal growth can be 542 

sustained by accessing intracellularly stored nitrogen. A similar case holds for dissolved 543 

phosphate, indicating growth utilising internally stored phosphorus (Fig. 6). These findings agree 544 

well with published observations (Powell et al., 2008; Coppens et al., 2014), and highlights the 545 

relevance of using the Droop model in ASM-A, which uncouples nutrient uptake and storage from 546 

microalgal growth. 547 

Subsequently, a default parameter set is selected from the different sets obtained in different scales, 548 

and the rationale for the selection approach is elucidated in the following. The IAv of 549 

photoautotrophic growth and the KI for heterotrophic growth parameters are inferred from the set 550 
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estimated using microbatch experiments. The short light path of the microbatches results in an 551 

even light distribution. Hence the entire culture is expected to be evenly exposed to the same light 552 

intensity. XAlg,Nmax, XAlg,Nmin, XAlg,PPmax and XAlg,PPmin were set as the overall minimum and maximum 553 

values reached and were inferred from sets estimated using 1-L (P quota) and 24-L (N quota) batch 554 

experimental data. The heterotrophic growth kinetic parameters and YAc are inferred from sets 555 

estimated using 1-L batch data as we found oxygen limitation under microbatch scale. For model 556 

evaluation purposes we selected as default, the above mentioned parameters and the literature 557 

values (Table 3, bold values).  558 

<Table 3> 559 

<Table 4> 560 

4.2. Model evaluation 561 

An independent experimental data set (i.e. data obtained in the ascending cycles in the 24-L batch 562 

reactor, Fig. 6) is employed as a means for model evaluation (described in section 3.5). In the first 563 

evaluation step, the RMSNE values obtained by approximating the experimental data using the 564 

simulation model – calibrated with the specific parameter sets obtained through each respective 565 

descending cycle (Table 4) - are relatively low and, for algal biomass concentration, ammonium 566 

and phosphate concentrations as well as the nitrogen and phosphorus storage, J~1 (Table 5). This 567 

outcome indicates that culture history does not significantly affect parameters that the 568 

aforementioned outputs are sensitive to (hypothesis-I). In most cases, the RMSNE value for the 569 

ammonium concentration state-variable is comparably high (Table 5). This is the consequence of 570 

normalizing the error using observed values that gives more weight to low magnitude values 571 

(Hauduc et al., 2015). As the ammonium bulk concentration decreases below ~0.1 in most cycles 572 
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(e.g. Fig. 5 and 6), the calculated RMSNE value is high (Eq. 1). Hence, J becomes more sensitive 573 

in the case of ammonia, giving relatively high values for the evaluation of cycle 7 (Table 5). To 574 

further support this hypothesis, the J for cycle 7 is re-calculated using the mean absolute error 575 

(MAE), which gives higher penalty to large errors. As expected, the J, based on MAE, indicates 576 

high accuracy in the validation step (J=1.65). The experimental values of microalgal biomass 577 

concentration, bulk ammonium and phosphate concentration and phosphorus storage are in the 578 

proximity of the best fit (lowest RMSNE) of the Monte Carlo simulation results (Fig. 6a, 6b, 6d 579 

and 6f).  580 

<Table 5> 581 

This outcome therefore suggests that ASM-A calibrated using the selected mean default parameter 582 

set - with the associated uncertainties (Table 4) – can be used to predict algal cultivation in PBRs, 583 

in which Chlorella and Scenedesmus are the dominating species (hypothesis-II). This, however, is 584 

not the case for predicting the nitrate concentration and, to a lesser extent, the internal nitrogen 585 

storage, indicated by experimental data located outside the confidence interval.  586 

<Figure 6> 587 

Nitrogen storage can be predicted in the ascending cycles using the parameters estimated from the 588 

parallel descending cycles, i.e. J~1 (Table 5). In the second evaluation step, however, the 589 

discrepancy between the predicted and measured nitrogen storage cannot be explained through 590 

parameter variability (i.e. most data falls outside the predictive confidence interval, hypothesis-III, 591 

Fig 3e). Consequently, substrate availability is assumed to significantly affect the predicted 592 

nitrogen storage, thereby indicating the need for case-specific calibration of the nitrogen storage 593 

process (hypothesis-II). Finally, the bulk nitrate concentration prediction fails for both evaluation 594 
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steps (J>>1 Table 5, experimental data falls outside the predictive confidence interval, Fig. 6c). 595 

This outcome suggests that culture history can significantly impact parameter values associated 596 

with bulk nitrate prediction (hypothesis-I).  597 

According to the GSA results (Fig. 7; Fig. S11, SI), the most sensitive model parameter, affecting 598 

the soluble nitrate concentration is the uptake rate of nitrate kNO,Alg, which also affects nitrogen 599 

storage (Fig. 7a and 7b). Therefore the identifiability of kNO,Alg is subsequently assessed using the 600 

LHSS method (Table S10-S13, SI; Step 5, Fig. 2). We find that based on the histograms obtained 601 

(Table S10-S13, SI), the distribution of parameter values estimated is relatively narrow, and 602 

standard deviations calculated for each cycle are relatively low (< 40%), thus suggesting that kNO,Alg 603 

is identifiable (Step 5, Fig. 2). Based on the correlation matrix (Table S10-S13, SI), kNO,Alg is highly 604 

correlated with the affinity for nitrate. Thus, we assessed the impact of parameter variability on 605 

model outputs – analogously to the procedure described in section 4.1.3 (Step 5, Fig. 2). kNO,Alg 606 

was altered to its maximum and minimum value given by the standard deviation separately  using 607 

the kNO,Alg estimated in each cycle (1-4) (Table 4). Comparably low variation in the outputs (J ~ 1) 608 

is obtained (illustrated with an example drawn from cycle 1, Fig. S12, SI), thereby indicating kNO,Alg 609 

as identifiable (Step 5, Fig. 2). Since kNO,Alg is identifiable, the case specific calibration of kNO,Alg  610 

is recommended. To this end, kNO,Alg was estimated for each cycle, leaving the rest of the parameter 611 

kept at the mean values, and results show hysteresis in the parameter value (Fig. 7c). This outcome 612 

can serve as a possible explanation to the observations related to the impacts of culture history and 613 

substrate availability on nitrate and nitrogen storage predictions.  614 

According to Fig. 8 and Fig. S13- S15, using the case-specific calibration of kNO,Alg, the increased 615 

model accuracy in terms of bulk nitrate does not necessarily translate into improved prediction of 616 

the nitrogen storage, possibly as consequence of the scattered data obtained in the 24-L batches 617 
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(Fig. 8a and 8c).Therefore, future research should further assess the dynamics of internal nitrogen 618 

storage in green microalgal cells that could lead to the re-identification or possible extension of 619 

the Droop model.    620 

<Figure 7> 621 

<Figure 8>  622 
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5. Conclusions 623 

This study presents the identification and evaluation of a biokinetic model for photoautotrophic 624 

and heterotrophic microalgal growth, developed in the activated sludge modelling framework 625 

(ASM-A), thereby facilitating coupled implementations with the already existing simulation 626 

model platforms. We conclude that: 627 

•  Through the specific experimental design and data treatment, the model parameters could be 628 

estimated and were identifiable. Furthermore, the experimental design permitted the 629 

quantification of model parameter variability caused by culture history and substrate 630 

availability. 631 

• The average parameter estimates can be used to predict microalgal biomass growth, effluent 632 

ammonium and phosphate concentrations and phosphorus storage. This is not the case for the 633 

nitrogen storage and soluble nitrate concentration, which depends on the culture history and 634 

substrate availability. 635 

• The most sensitive parameter affecting the prediction of the soluble nitrate concentration and 636 

nitrogen storage is the maximum uptake rate of nitrate. The case specific re-estimation of 637 

kNO,Alg can potentially explain the observations related to the impacts of culture history and 638 

substrate availability on nitrate and nitrogen storage predictions.  639 
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