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Energy allocation models have proved useful for clarifying the ecological mechanisms which influence growth and reproduction schemes in species
with indeterminate growth and for understanding how traits correlate with generate the life history of specific species. In view of the need to under-
stand how exploitation affects species for which few data on key population parameters such as reproductive potential and population growth rate
are available, it would be helpful if simple energy allocation schemes parametrized by easily obtainable data could be used to estimate parameters
such as reproductive effort and output. Testing the predictions of three such models on fecundity data from a range of species, we show how the
simplifications required in a generalized energy allocation scheme are reflected in the deviations between model predictions and empirical data, and
discuss the validity of the assumptions underlying these models. We caution against over-reliance on generalized and simplified models to predict
reproductive effort.

Keywords: allometry, energy allocation model, fish ecology, reproductive effort.

Introduction
Reproductive output, the rate of egg or offspring production, is an im-
portant part of the relationship between parent stock size and subse-
quent recruitment (Lambert, 2008). For fish, this relationship is likely
todepend on anumberof biological processes including theproduction
of eggs, egg fertilization and mortality, hatching, and growth and sur-
vival of larvae and prerecruits. These processes vary over time and
space, are difficult to study in the field, and cannot yet be predicted
with sufficient accuracy. Hence, where catch predictions or estimates
of maximum sustainable yield are needed, the stock–recruitment rela-
tionship is often described by fitting fairly simple models, such as the
Beverton and Holt model (Beverton and Holt, 1957) or the Ricker
model (Ricker, 1954), to observations of past recruitment and
spawning-stock biomass.

Increasing rates of exploitation of marine stocks have emphasized
theneed toidentifymaximum sustainableyield and other fisheries ref-
erence points for poorly studied fish populations, such as many sharks
and rays (Dulvy et al., 2008, 2014; Carruthers et al., 2014). For these
so-called data-limited or data-deficient fish stocks, where little or no
information about stock size and/or recruitment is available, the

parameters of the stock recruitment models cannot be estimated.
Instead, it has been proposed to use life-history parameters such as
the maximum size or the size at maturity of the species to predict
the relative vulnerability to exploitation. This can be done by using
the life-history parameters to derive estimates of the steepness of the
stock–recruitment relationship at low levels of spawning stock size
(e.g. Mangel et al., 2010) or by using them to derive a lower limit
forthespawning reproductive potential, the ratiobetween the egg pro-
duction in the exploited and unexploited situation (e.g. Jennings et al.,
1998; Le Quesne and Jennings, 2012; Hordyk et al., 2015).

Life-history theory suggests that small short-lived species should
allocate more energy relative to size to current reproduction than
large longer-lived species that are likely to spawn several times
during their lifespan (Stearns, 2000). However, due to the variety
of reproductive patterns found among fish, few data are often avail-
able to predict how reproductive effort, defined as the proportion of
the available resources invested in reproduction, responds to the size
of the species, to its longevity and to environmental variation affect-
ing the feeding, metabolism, and mortality of the mature population
(Tomkiewicz et al., 2003; McBride et al., 2015). Nevertheless,
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estimates of total annual egg production have been found to reflect
observed recruitment patterns better than spawning-stock biomass
in within species comparisons (Kell et al., 2015). Furthermore, com-
paring across species, Denney et al. (2002) found recruitment to be
negatively related to fecundity, to age at maturity and to maximum
length, but positively related to growth rate, while Rickman et al.
(2000) found recruitment variability to be positively linked to
fecundity after differences in phylogeny had been accounted for.
Understanding how reproductive output and effort scale with
body size or growth rate across species might therefore prove
useful for evaluating the relative resilience of different fish species
to exploitation.

Several models have been proposed to link the reproductive
output of fish to the growth rate of the individuals, but their predic-
tions have rarely been tested. Here we investigate the extent to which
reproductive output and reproductive effort, defined as the propor-
tion of total growth allocated to egg and offspring production, can
be predicted from the von Bertalanffy growth model, which has fre-
quently been used in both theoretical and empirical studies of fish
growth. We begin by describing the von Bertalanffy model and
how it can be used to predict the scaling of reproductive output
with body weight at maturation. We then select three models that
use the von Bertalanffy parameters to predict reproductive effort
and show how their underlying assumptions affect their predictions.
Finally, using data on growth and reproduction from 71 species and
populations of fish including both teleosts and elasmobranchs, we
evaluate the capacity of the models to reliably convert growth para-
meters into predictions of reproductive effort.

The von Bertalanffy growth model and reproductive effort
In species with indeterminate growth, such as most fish, the lifetime
growth trajectory is often well described by von Bertalanffy’s growth
equation:

dW

dt
= aWn − bWd, (1)

where a, b, n, and d are constants, W is body weight, and t is age. This
equation was derived by Pütter (1920) and von Bertalanffy (1938) as a
mechanistic model of fish growth based on a simple mass balance
argument. In the expression, aWn represents the net rate of energy as-
similation and bWd the rate of energy loss with a the assimilation co-
efficient and b the loss parameter (von Bertalanffy, 1938; Ursin, 1967;
Day and Taylor, 1997; Essington et al., 2001). von Bertalanffy further-
more assumed that the net rate of energy assimilation would scale with
body surface (n ¼ 2/3), while the rate of energy loss would scale with
body weight (d¼ 1). These assumptions make it possible to integrate
equation (1) and arrive at a formula for body weight at age:

W(t) = a

b

( )3

1 − exp − b

3
(t − t0)

( )[ ]3

, (2)

where t0 is a theoretical age for which W(t0)¼ 0. Using W¼ qL3,
where L is length, the equation can be transformed to:

L(t) = q−1/3 a

b
1 − exp − b

3
(t − t0)

( )[ ]
. (3)

Intheliterature,equations(2)and(3)areusuallyexpressedintermsofthe
von Bertalanffy growth parameters, L1 = q−1/3(a/b), W1¼ (a/b)3,
and k ¼ b/3 (Andersen et al., 2008; Charnov et al., 2013), where

L1 and W1 are the asymptotic length and weight and k is the rate
at which this size is approached. In this case, equations (1)–(3)
turn into the familiar von Bertalanffy equations for growth rate,
weight at age, and length at age:

dW

dt
= 3kW1/3

1 W2/3 − 3kW, (4)

W(t) = W1[1 − exp(−k(t − t0))]3, (5)

L(t) = L1[1 − exp(−k(t − t0))]. (6)

As originally formulated, the rate of energy loss in equation (1), bW,
must include costs associated with both somatic maintenance and re-
production. Assuming that the maintenance cost per cell and unit of
time is fixed, the total maintenance costs should increase linearly with
the number of cells and hence be proportional to W. Similarly, empir-
ical studies have shown that reproductive output per unit of time to a
first approximation is proportional to W in many fish species (e.g.
Roff, 1983; Wootton, 1992, though there are exceptions). Hence,
for a mature fish, the loss parameter b can be interpreted as being
equal to m + r, where m and r are the specific loss rates due to costs
associated with maintenance and reproduction. We will refer to
these rates as maintenance cost and reproductive effort, respectively.

When the asymptotic size has been reached the rate of growth is
zero according to equation (4). Inserting W1 in equation (1), this
implies that bW1 = aW2/3

1 . Because fish close to their asymptotic
size are rarely observed in research survey samples, for many
species, in particular elasmobranchs, the within species relationship
between body weight and reproductive output is difficult to estab-
lish. Analyses of reproductive allometries may be simplified by
standardizing measurements to the reported size at maturation,
which can be established independently of growth parameters
from observed maturity ogives. Defining the relative body weight
at maturation ashW ¼Wm/W1 and replacing the total loss param-
eter b with the maintenance cost and the reproductive effort m + r,
the equality can be reformulated to:

(m + r)Wm = ah−1/3
W W2/3

m . (7)

Consequently, at maturation, the expected reproductive output is
Rm = rWm / ah−1/3

W W2/3
m . However, for this proportionality to be

valid in cross-species analysis neither a nor hW must scale with the
asymptotic size of the species.

Several relatively simple models yielding predictions of repro-
ductive effort from growth parameters have been proposed (e.g.
Day and Taylor, 1997; Lester et al., 2004; Thygesen et al., 2005;
Charnov, 2008; Charnov et al., 2013; Andersen and Beyer, 2015).
The last four models retain the basic assumption that Rm / aWn

m

but differ in the interpretation of how energy usage, or costs due
to loss rates, change over a lifetime. By comparison, Day and
Taylor (1997) consider reproductive effort r to increase with age
and Lester et al. (2004) deviate from the growth assumption of equa-
tion (1) by assuming that the assimilation coefficient changes at
some point in early life such that a differs between young and old
individuals. If growth is the only available empirical measure, the as-
similation coefficient a is calculated implicitly as a part of the overall
energy allocation. The predicted reproductive effort r will therefore
depend on the chosen cost allocation scheme. It is also worth noting
that equation (6) and thus the parameters k and L1, which are typ-
ically obtained by excluding very young individuals, describe a
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smooth asymptotic growth curve from t0 onwards, although early
life growth is often better described by an unconstrained power
law of the type dW/dt1Wn (Beyer, 1989; Day and Taylor, 1997).

We select three of the models listed above (Charnov, 2008;
Charnov et al., 2013; Andersen and Beyer, 2015) to examine the
effect of different assumptions of energy allocation schemes on
the assimilation coefficient a and the prediction of reproductive
effort r. We exclude the model by Thygesen et al. (2005), whose
assumptions are similar to those of Charnov et al. (2013), the Day
and Taylor (1997) model, whose assumption of non-constant r
differs from the main pattern in fish (Roff, 1983; Wootton, 1992),
and the Lester et al. (2004) model, which does not calculate the as-
similation coefficient.

Methods
The selected models share the assumption that reproductive output
can be expressed as a fixed proportion of body size per unit time
such that reproductive output at maturation can be modelled as
Rm = rWm / aWn

m, but differ in the interpretation of the energy
loss, and therefore in the calculation of the assimilation coefficient
a, as described below. It should also be noted that the value of the as-
similation exponent n has been the subject of some debate (e.g.
Bertalanffy, 1957; West, 1997; Glazier, 1999, 2005, 2015a,b; West
et al., 2001), with some suggesting that the limitations of the internal
circulatorysystem may justifyavalue ofn ¼ 3/4, rather than n ¼ 2/3.
The former was chosen by the authors of the third model described
below. However, as discussed by Glazier (2015b) many different pro-
cesses contribute to the scaling of metabolic rate with body size and
the value of the overall metabolic exponent may differ between
taxa, and respond to the environment of the animal, as well as to its
internal state. The value of the exponent is not expected to substan-
tially affect the fit between model predictions and data (as discussed
in Glazier, 2005), although it alters the predicted reproductive invest-
ment. For consistency, we use n ¼ 2/3 in our comparisons, but we
also run model 3 for n ¼ 3/4 and compare the results.

(i) Model 1 (Charnov et al., 2013): This model assumes that juven-
ile growth is described by a simple power law (dW/dt = a1Wn)
and uses the relation between the growth parameters in equa-
tions (1) and (5) to give a1 = 3kW1−n

1 . Furthermore, growth
is assumed to be determinate so that at maturation, the
energy which would otherwise be devoted to further growth is
given to reproduction such that R1 = a1Wn

m and, consequently,
r1 = a1Wn−1

m .

(ii) Model 2 (Charnov, 2008): This model assumes a biphasic
growth scheme with maturation denoting the switching
point. Juvenile growth is assumed to obey a power law
dW/dt = a2Wn. Solving the differential equation assuming
that size at birth, W(t ¼ 0) is close to zero and that size at mat-
uration W(t = tm) = Wm gives a2 = W1−n

m /(tm(1 − n)).
Adult growth is assumed to obey equation (1), with reproduct-
ive effort r2 ¼ b such that W1 = (a2/r2)1/(1−n). Combining
these equations gives relative size at maturation as
hW = Wm/W1 = (r2tm(1 − n))1/(1−n). Rearranging equation
(6) shows thathL = Lm/L1 = 1 − exp[−ktm]. Assuming that
W / L3, hW = h3

L. Reconciling these expressions gives
r2 = −3khL/(log(1 − hL)).

(iii) Model 3 (Andersen and Beyer, 2015): This model proposes a
growth trajectory dW/dt = a3Wn − mW − r3c(W/W1)W,
where m and r3 are maintenance cost and reproductive effort,

respectively, andc is a maturity ogive describing the proportion
of mature individuals of size w in a population,
c(W/W1) = (1 + (W/(hW W1)) − u)−1. The exponent u
specifies the width of the maturity ogive and is set to u¼ 10.
The maturity ogive function is close to 0 for very small indivi-
duals (W ,, Wm) and serves to confine costs of reproduction
to mature individuals. Defining a maintenance fraction param-
eter 1 ¼m/(m + r3), the lifetime growth function is given by
dW/dt = a3Wn[1 − (W/W1)1−n(1+ (1 − 1)c(W/W1))].
The value of a3 is taken to be that which minimizes the difference
between the model predictions and the size trajectory described
by equation (5). In practice, Andersen and Beyer (2015) used
equation (5) to calculate weight at age at 10 regularly spaced
points in time (between age 1 years and the age at which 95%
of the asymptotic size is attained) and found the value of a3

which gave the best fit,assuming afixed value of the maintenance
fraction 1 ¼ 0.8. Back calculating gives r3 = a3(1 − 1)Wn−1

1 .

The different assumptions underlying the models result in different
approaches to calculate growth and consequently the energy avail-
able for reproduction, as shown in Figure 1.

To test the accuracy of the models, we collected growth parameters
and other lifehistory data from published sources on a range of fish
species from which we generated model predictions as well as empir-
ical estimates of reproductive output and effort. Reproductive output
was calculated as R̂m = FmW0 and reproductive effort as r̂ = R̂m/Wm

, where Fm is fecundity at maturation and W0 is the egg or offspring
weight. The species included in the analyses are determinate spawners
(Murua and Saborido-Rey, 2003) and no species is reported to have
more than one spawning season per year. As determinate spawners
cannot generate more oocytes at a later point in the spawning
season, reproductive effort for species in these dataset is limited to
r , 1. All rates are annual. The dataset included 41 species encom-
passing 71 fish stocks (Supplementary material), which were
treated as independent data points. All analyses were performed
using R v3.2.1 software (R Core Team, 2012). The scaling analyses
were performed using ordinary least square log–log regressions,
log10(Y) = a+ b log10(Wm), as the measurement error for Wm was
assumed to be smaller than for reproductive output and growth para-
meters. The accuracy and bias of the models were tested by regressing
the estimated reproductive output and effort on the predicted values,
i.e. log10(R̂m)� log10(Rm) and r̂�r, and analysing the slope and the
intercept, as advised by Piñeiro et al. (2008).

Figure 1. Predicted size (black symbols) and reproductive output (grey
symbols) for a hypothetical fish with asymptotic length L1 ¼ 100 cm,
growth parameter k ¼ 0.1 year21, length at maturation Lm ¼ 67 cm,
and length at birth Lt¼0 ¼ 0 cm, for which weight W ¼ 0.01L3 g. The
solid line describes growth generated from equation (6) with the above
parameters; model 1 is represented by circles, model 2 by squares and
model 3 by triangles.
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Results
Three aspects of the predicted reproductive parameters are analysed
here: the scaling of empirical estimates of reproductive output (R̂m)
and effort (r̂) at maturation with size at maturation (Wm) as pre-
dicted from the energy allocation schemes; the performance of
model predictions compared with empirical data; and the validity
of assuming independence between the assimilation coefficient a
and the size at maturation.

The basis for the energy allocation models analysed here is that
annual reproductive output at maturation scales with size at matur-
ation as R̂m /Wn

m, and consequently that the reproductive effort
should scale as r̂ /Wn−1

m . Figure 2a shows how R̂m scales with
Wm. The estimated slope b ¼ 0.84 is significantly steeper than the
assumed range of the assimilation exponent n (2/3 ≤ n ≤ 3/4); in
comparison, Charnov et al. (2001) calculated a slope of 0.81. The
size-dependency of the reproductive measures did not differ signifi-
cantly between elasmobranchs and teleosts (p(slope) ¼ 0.76,
p(intercept) ¼ 0.51). As shown by Nee et al. (2005), a log–log re-
gression in which the dependent variable necessarily must be a frac-
tion of the predictor variable (here, reproductive output at
maturation depends on size at maturation as Rm ¼ rWm) tends to
yield a good fit (high r2 value) simply because the variance of the
predictor variable, Wm, which spans several orders of magnitude,
is much higher than the variance of the reproductive effort r,
which should be in the range 0–1 for annual determinate spawners.
Correspondingly, Figure 2b shows that although the scaling of re-
productive effort to size is simply the slope of reproductive
output 21, the scatter is much greater.

A scatterplot of observed data against model predictions should
yield points clustered around a line with slope b ¼ 1 and intercept
a ¼ 0 (Piñeiro et al., 2008). Scatterplots of reproductive output
against model predictions showed the expected cluster of points
with slopes quite close to 1, although Model 3 was slightly shallower
(Figure 3a–c). The intercepts, however, suggest that model 1 over-
estimates reproduction while model 2 yields predictions on
level with the empirical estimates and model 3 underestimates

reproduction. Scatterplots between reproductive effort and model
predictions reveal a much poorer fit (Figure 3d–f), consistent
with the notion that model fit relies considerably on the size depend-
ence of reproductive output. As suggested by Figure 3a, model 1
considerably overestimates reproductive effort and also produces
several estimates of r . 1. Models 2 and 3 produce predictions
closer to the empirical estimates, although the predictions from
model 2 exceed those of model 3. Furthermore, only model 3 gener-
ates a slope that is not significantly different from unity.

The sensitivity of model 3 was examined with respect to the value
of the maintenance fraction 1 and the value of the assimilation ex-
ponent n. Lower values of the maintenance fraction slightly
improved the fit of the predicted reproductive effort, although r2

did not exceed 0.25, but also produced a shallower slope than the
expected unity (b , 1), which would increase the risk of overesti-
mating high values of reproductive effort. Setting 1 ¼ 0.8 may be
considered a reasonable compromise. Running model 3 for n ¼
3/4 did not substantially affect either slope b or fit r2 of predicted
reproductive output (b′ ¼ 0.92(0.035) vs. b ¼ 0.91(0.036) and
r2 ¼ 0.91 vs. r2 ¼ 0.9) or effort (b′ ¼ 0.89(0.21) vs. b ¼ 1.1(0.27)
and r2 ¼ 0.21 vs. r2 ¼ 0.19).

An assumption underlying the use of these three energy allocation
schemes is that reproductive output scales with size as Rm / aWn

m,
where the assimilation coefficient a is independent of size Wm.
Examining the pattern of estimated values of a against size at matur-
ation Wm shows that, although the relative size at maturation (hW) is
independent of Wm (p¼ 0.39, n ¼ 71), this assumption is violated
by all approaches towards calculating the coefficient (Figure 4).
Furthermore, the estimates of model 1 are slightly higher than those
of the other models, corresponding to the higher predicted reproduct-
ive output and effort generated by model 1. The difference between the
predictions of models 2 and 3, however, cannot be explained by differ-
ences in the assimilation coefficient, but points to the effect of the
assumed allocation of maintenance costs after maturation.

Although temperature is not specifically included in the models,
it is known to affect biological rates (e.g. Gillooly et al., 2001). The

Figure 2. Relationship between (a) reproductive output at maturation R̂m and (b) reproductive effort r̂ and size at maturation Wm in 73
populations of fish. Log–log linear regression statistics shown as slopeb, intercepta, and standard error in brackets; solid and dashed lines show the
fitted regression with 95% confidence interval. Note that the intercept a is the logged value.
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dependence on temperature was investigated by adding the inverse
of the temperature in Kelvin sensu the Arrhenius equation as a term
in the multiple linear regressions, and also by analysing the residuals

of the regressions against temperature, but results were non-
significant always. Regression parameters and p-values can be
found in Supplementary material.

Figure 3. Relationship between estimated reproductive output R̂m and model predictions (log –log linear regression; a–c) and between estimated
effort r̂ and model predictions (linear regression; d–f) in 73 populations of fish. Regression statistics shown as slope b, intercept a, and standard
error in brackets; solid and dashed lines show the fitted regression with 95% confidence interval. Thicker lines indicate the 1:1 relation. Note that the
intercept a in (a–c) is the logged value and that the x-axis differs between (d–f).

Figure 4. Relationship between size at maturation Wm and the calculated assimilation coefficient a for the three models. Solid and dashed lines
show the fitted regression and 95% confidence interval. Regression statistics shown as slope b, intercept a, and standard error in brackets.
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Discussion
Being able to predict reproductive effort and consequently fecund-
ity, for which information tends to be scarce (Tomkiewicz et al.,
2003) and resource demanding to collect (Lambert, 2008), from
relatively simple and easily obtained data such as growth and size
at maturation could provide important information when develop-
ing management plans and assessing extinction risk of poorly
studied but increasingly exploited fish stocks. For instance,
Andersen and Beyer (2015) used model 3 to estimate the levels of
fishing mortality that generate the maximum sustainable yield,
FMSY, lead to a marked decrease in recruitment, Flim, or to popula-
tion collapse, Fcrash. However, as our analysis shows, models
employing simple energy allocation schemes which can be parame-
trized using readily available growth data tend to produce predic-
tions of limited accuracy (Figure 3d–f).

Size- and age-dependent energy allocation schemes have been
used with considerable success in analyses of life histories
(Kozlowski, 1991) to model the scaling of reproductive output with
size (Charnov et al., 2001; Andersen and Beyer, 2015). By addressing
the complex three-way interaction between surplus energy, growth,
and reproduction, they offer flexibility towards handling the charac-
teristic indeterminate growth in many species of fish (Heino and
Kaitala, 1999). In common with most energy allocation schemes,
the models analysed here suggest that it is the surplus energy which
determines reproductive effort, i.e. r/ aWn−1

m . However, as only
growth is easily measurable, estimating the surplus energy requires
assumptions on not just the assimilated energy but also auxiliary
energy expenditures such as maintenance in both juveniles and
adults.

Data on growth in fish are typically of the form of von Bertalanffy
parameters. To predict reproduction from these parameters the von
Bertalanffy model must be reinterpreted as a life-long energy
budget. This is a key step as the closed-form von Bertalanffy equation
describes a smooth growth trajectory throughout life, whereas an
energy allocation scheme must account for the change in allocation
to reproduction at the onset of maturation, and much of the differ-
ence in the predictions of the analysed models can be traced back to
the method for estimating the assimilation coefficient a (illustrated
in Figure 1). If the assimilation coefficient is calculated from
growth and an assumed loss term, as is true when rearranging equa-
tion (1) to give equation (4), the estimated value of the assimilation
coefficient is higher than it would be if no loss is assumed. Hence,
model 1, which does not include a loss term when estimating the
surplus energy available for reproduction, greatly overestimates re-
productive effort. In model 2, the assimilation coefficient is calculated
without the loss term, which lowers the estimate of the assimilation
coefficient, but ignoring maintenance for all juveniles still causes
growth to follow a steeper slope than equation (6) describes, as illu-
strated in Figure 1. Furthermore, assuming that the shift between ju-
venile and adult size trajectories is entirely caused by reproduction
still causes model 2 to overestimate reproductive effort, although
not to the same degree as model 1. Including a maintenance loss
term throughout life appears to produce predictions of reproductive
effort more consistent with the empirical estimates, but calculations
for model 3 are slightly more cumbersome and also require an add-
itional term, 1, which defines the ratio of maintenance loss to
overall loss. It could be argued that treating1 as a species-specific par-
ameter might improve the precision of model 3; however, Andersen
and Beyer (2015) estimated the maintenance fraction 1 indirectly
from reproductive effort and the assimilation coefficient on the

assumption that it is a species-independent parameter. As there is
no independent means of calculating the maintenance fraction, this
is of limited help for data-deficient stocks.

The overall applicability of energy allocation schemes for generat-
ing useful life-history predictions has been demonstrated repeatedly
with single-species models (e.g. Quince et al., 2008a,b; Ohnishi
et al., 2012). In addition to circumventing the problem of cross-
species scaling of parameters, confining the analyses to a single
species naturally accounts for species-characteristic aspects of repro-
duction. Specifically, reproductive investment is typically calculated
as the proportion of body mass devoted to reproduction, R/W,
while the actual cost of reproduction may include activities such as
migration (Jørgensen et al., 2008), courtship (Svensson et al.,
2004), territoriality (Dijkstra et al., 2005), etc., which are likely to be
specific to the habitat and the species, and therefore difficult to ad-
equately account for outside a single-species model. Moreover,
general models tend to assume a degree of constancy with respect
to population growth and fecundity parameters, although these are
known to vary between years and across habitats (Shelton et al.,
2006; Brander, 2007), possibly in response to variable habitat charac-
teristics (Dutil and Brander, 2003; Lambert, 2008). There are few
meta-analyses of the relationship between fecundity and body size
in fish, and the assumption of constant reproductive effort r is typic-
ally derived from Roff (1983), although half of the 17 stocks included
in that analysis showed a positive relationship between size and gona-
dosomatic index. By comparison, Wootton (1992) estimated the ex-
ponent between total egg volume and body length in a dataset of 238
teleost fish to be 3.09, which is slightly higher than the isometric as-
sumption, though this too is an approximation (e.g. Bedford,
1986). Although constant or near-constant effort may be assumed
to be the norm, it should not be thought of as a universal rule.
However, if, as assumed by Rickman et al. (2000), data are more reli-
able for individuals close to the size at maturation, deviations from
constant r should have the smallest impact if comparisons are made
at Wm.

The model predictions of reproductive output and effort depend
on our assumption about the lack of a cross-species scaling of the rela-
tive size at maturation (hW) is the assimilation coefficient a with body
weight at maturation. Although the empirical estimates of hW were
highly variable (mean¼ 0.38, standard deviation ¼ 0.22) they did
not scale with body weight at maturation. In all three models investi-
gated, however, a did (Figure 4). This may partly be explained by a
general difference between the within-species and cross-species
scaling of growth parameters in fish. Sibly et al. (2015) analysed the
von Bertalanffy growth parameters of 576 species of fish and found
k to scale with W−0.35

1 within species, but with W−0.23
1 across

species. If we use the across-species scaling of k, then we would expect
a = 3kW1/3

1 (equations 1 and 5) to scale with W1 raised to a power of
0.33–0.23 ¼ 0.10 across species, a scaling which is not significantly
different from the value estimated by model 2 (see Figure 4) and en-
tirely consistentwith the steeper than expected scaling ofreproductive
output with species size in Figure 2.

The data presented here suggest that the key challenge in predict-
ing reproductive output lies with the incorporation of costs, both in
terms of their timing and magnitude, and failure to provide a rea-
sonable framework is likely to produce unrealistic predictions. Of
the models tested here, model 3 which assumed a gradual escalation
of the costs of reproduction mimicking the proportion of mature
individuals in a population, produced the most reasonable results.
Although this model is computationally more complicated and
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does not provide an analytical means of calculating the assimilation
coefficient a, the improved performance strongly suggests that
maintenance costs, even if such costs would be difficult to quantify,
cannot be ignored. Nevertheless, the model failed to improve the ac-
curacy of the predicted reproductive effort, suggesting that other
factors play an important part. For instance, it may be too simplistic
to assume that reproductive effort translates directly to fecundity
and perhaps the inclusion of qualitative factors, such as the preva-
lence of spawning migrations, could help improve predictions.
Although energy allocation schemes are powerful tools for under-
standing life histories in a number of populations, extrapolation
of results to data deficient species should be done with considerable
attention to the underlying assumptions of these models and the
particular characteristics of the species in question.

Supplementary data
Supplementary material is available at the ICESJMS online version
of the manuscript.
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