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Attaining the rate-independent limit of a rate-dependent strain

gradient plasticity theory

S.A. El-Naaman∗, K.L. Nielsen, C.F. Niordson

Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark

Abstract

The existence of characteristic strain rates in rate-dependent material models, corre-

sponding to rate-independent model behavior, is studied within a back stress based

rate-dependent higher order strain gradient crystal plasticity model. Such characteris-

tic rates have recently been observed for steady-state processes, and the present study

aims to demonstrate that the observations in fact unearth a more widespread phe-

nomenon. In this work, two newly proposed back stress formulations are adopted to

account for the strain gradient effects in the single slip simple shear case, and character-

istic rates for a selected quantity are identified through numerical analysis. Evidently,

the concept of a characteristic rate, within the rate-dependent material models, may

help unlock an otherwise inaccessible parameter space.

Keywords: Strain gradient plasticity, Size-effects, Rate-dependent theory, Crystal

plasticity, Back stress formulation

1. Introduction

Strain gradient plasticity theories have become an established part of contemporary

solid mechanics due to the increasing interest in micron and nano scale plasticity.
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Experiments have demonstrated that size-dependent behavior, in terms of increased

hardening and/or strengthening, is associated with spatial gradients of plastic strain

in ductile crystalline materials (see e.g. Fleck et al., 1994; Mu et al., 2014). The plastic

strain gradients are accommodated by a portion of lattice defects, often referred to as

geometrically necessary dislocations (GNDs), which leads to a long range internal stress

field. Many gradient theories of plasticity have been proposed to capture size-effects,

and although so-called lower order theories have been explored (e.g. Bassani, 2001;

Huang et al., 2004; Niordson and Hutchinson, 2003), the common approach involves

theories of a higher order nature, which enable micro-structural boundary conditions

(e.g. Fleck et al., 1994; Gurtin, 2000, 2002; Fleck and Hutchinson, 2001; Yefimov et al.,

2004; Evers et al., 2004; Bayley et al., 2006; Fleck and Willis, 2009a,b). The present

study employs the rate-dependent non-work conjugate type (or back stress based)

higher order theory formulated by Kuroda and Tvergaard (2006, 2008). In this type of

theory the virtual work principle remains the conventional one, while the evolution of

GND densities is accounted for through additional differential equations. Here, a back

stress, representing the long range internal stresses due to pile-up of GNDs, affects the

plastic slip rate as kinematic hardening.

In the following study the existence of a characteristic slip rate, at which a spe-

cific macroscopic quantity becomes independent of the rate sensitivity exponent, will

be demonstrated through numerical analysis of the idealized simple shear case for a

single crystal. The adopted methodology represents a promising tool for obtaining

rate-independent results using rate-dependent frameworks, and the extent of the mat-

ter remains to be explored. The idea of a characteristic rate was first discussed in detail
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by Nielsen and Niordson (2012) in relation to conventional rate-dependent steady-state

modeling and later exploited in Nielsen et al. (2012) to extract rate-independent re-

sults from a scale-dependent steady-state framework. Nielsen (2015) also found similar

results for steady-state sheet rolling. Characteristic rates may exist for a wide range

of other structural problems, and a broader sense of the phenomenon is demonstrated

through the results of the present study.

The paper is structured as follows. The strain gradient plasticity model and adopted

back stress formulations are briefly outlined in Section 2, (details can be found in

Kuroda and Tvergaard, 2006, 2008; El-Naaman et al., 2016b,a). The boundary value

problem treated is described in Section 3, after which, a series of numerical results are

presented in Section 4. The study is concluded in Section 5.

2. Strain gradient crystal plasticity model

The present study employs the strain gradient crystal plasticity theory proposed by

Kuroda and Tvergaard (2006, 2008) within a conventional rate-dependent small strain

elasto-viscoplastic framework. Hence, the total strain rate is given by; ε̇ij = (u̇i,j + u̇j,i) /2,

which is additively decomposed into an elastic part, ε̇eij, and a plastic part, ε̇pij, so that

ε̇ij = ε̇eij + ε̇pij. Plastic deformation occurs as a result of crystallographic slip on the

individual slip systems, and thus, the Cartesian components of the plastic strain rate

is given in terms of the slip rate, γ̇, on the α’th slip system, as

ε̇pij =
∑
α

γ̇(α)P
(α)
ij , P

(α)
ij =

1

2

(
s
(α)
i m

(α)
j +m

(α)
i s

(α)
j

)
. (1)

The superposed dots denote material time derivative, P
(α)
ij is the Schmid orientation

tensor, and unit vectors s
(α)
i and m

(α)
i specify the slip direction and the slip plane
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normal, respectively (see Fig. 1). The equilibrium equations for the non-work conjugate

formulation are given by conventional stress equilibrium in absence of body forces;

σij,j = 0, where the Cauchy stress rate tensor is given by; σ̇ij = Lijkl (ε̇kl − ε̇pkl),

in which Lijkl is the fourth order elastic stiffness tensor. Thereby, the conventional

incremental principle of virtual work reads

∫
V

Lijklε̇klδε̇ijdV =

∫
V

Lijklε̇
p
klδε̇ijdV +

∫
S

Ṫiδu̇idS, Ṫi ≡ σ̇ijnj, (2)

where Ṫi are the traction rates, ni is the outward unit normal to the surface S bounding

the volume V . In a two dimensional setting, an additional partial differential equation

accounts for the evolution of GND density; 1/bγ
(α)
,i s

(α)
i + ρ

(α)
G = 0, where b is the

magnitude of the Burgers vector, and ρ
(α)
G is the GND density of edge type on slip

system α (Ashby, 1970). The GND density balance equation is expressed on weak

form as

1

b

∫
V

δρ,is
(α)
i γ(α)dV =

1

b

∫
S

δρζ(α)dS +

∫
V

δρρ
(α)
G dV, ζ(α) ≡ γ(α)nis

(α)
i , (3)

where δρ is a weighting function (or virtual GND density)1.

A perfectly plastic, gradient-enhanced version of the widely used conventional power

law slip rate relation (Hutchinson, 1976; Peirce et al., 1983) is employed, so that

γ̇(α) = γ̇0sgn
(
τ (α) − τ (α)b

)( |τ (α) − τ (α)b |
τ0

)1/m

, (4)

where γ̇0 is a reference slip rate, τ (α) is the Schmid stress (τ (α) = σijP
(α)
ij ), τ

(α)
b is a back

stress, m is the rate sensitivity exponent, and τ0 is the critical resolved shear stress2.

1For a detailed discussion on the micro-structural boundary conditions see Kuroda and Tvergaard

(2008).

2Note that for τ
(α)
b equal to zero, Eq. (4) reduces to the conventional theory.
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The back stress, τ
(α)
b , is phenomenologically related to the distribution of the GND

density, and accounts for the long range internal stresses due to dislocation pile-up. In

the present study, two back stress formulations, proposed in El-Naaman et al. (2016b),

are adopted. One is a thermodynamically consistent formulation derived from a free

energy potential

τ
(α)
b = µτ0b

µLµ+1
(∣∣∣ρ(α)G

∣∣∣+ ρ0

)µ−1

ρ
(α)
G,is

(α)
i , 0 < µ ≤ 1, (5)

where ρ0 is a non-zero numerical parameter, which resembles the presence of statisti-

cally stored dislocations (see e.g. Groma et al., 2003; Yefimov et al., 2004). Note that

Eq. (5) corresponds to a quadratic free energy for µ = 1.

The second back stress relation employed in the present study is given by the piece-

wise function,

τ
(α)
b =


bτ0L

2ρ
(α)
G,is

(α)
i , for |τ (α)b | ≤ τT

sgn
(
ρ
(α)
G,is

(α)
i

)
bκτ 1−κT τκ0 L

2κ
∣∣∣ρ(α)G,is

(α)
i

∣∣∣κ , for |τ (α)b | > τT

, (6)

where 0 ≤ κ ≤ 1 is assumed and τT defines a transition point, from a quadratic free

energy based back stress, into a power law dependence on the GND density gradients.

Note that Eq. (6) corresponds to a quadratic free energy for κ = 1, but thermody-

namical consistency is not guaranteed for other values of κ. However, the numerical

solutions presented, have been found to satisfy positive dissipation throughout the

loading history, such that; σij ε̇
p
ij =

∑
α τ

(α)γ̇(α) ≥ 0.

For a detailed description of the adopted back stress formulations and choice of

model parameters see El-Naaman et al. (2016a,b).
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3. Boundary value problem

The single slip simple shear problem, with positive slip in the x2-direction, is considered

in order to demonstrate the rate-dependent behavior of the adopted back stress based

strain gradient plasticity model (see Fig. 1 for a schematic illustration and definition

of the slip system). The following model parameters are used throughout: Young’s

modulus E = 130 GPa, Poisson’s ratio ν = 0.3, τ0 = 50 MPa, and b = 0.286 nm. The

following two back stress model parameters are used: ρG,0 = 105 mm−2 and τT/τ0 =

0.06 in Eqs. (5) and (6), respectively. Periodicity in the x1-direction is imposed for the

material domain of height H and width W , such that

ui(0, x2) = ui(W,x2) (7a)

ρ
(α)
G (0, x2) = ρ

(α)
G (W,x2). (7b)

The following additional boundary conditions are imposed on the displacement field:

u1 = u2 = 0 at x2 = 0 (8a)

u1 = U(t) and u2 = 0 at x2 = H. (8b)

The top and bottom boundaries of the material domain are microscopically passivated

by the following higher order boundary conditions imposed on the GND density field

equation:

ζ(α) ≡ γ(α)nis
(α)
i = 0 at x2 = 0 and x2 = H. (9)

This models that dislocations are unable to exit through these boundaries.

The conventional and micro-structural equilibrium equations are solved in a stag-

gered scheme, using the finite element method (FEM), with time integration carried out

by the forward Euler method. Eight-node isoparametric quadrilateral elements, with
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reduced Gauss integration, are used for the displacement field analysis, and equivalent

four-node elements, with full Gauss integration, are used for the GND density field

analysis. The employed finite element mesh consists of 58 elements in the x2-direction

and includes a refined mesh at the microscopically passivated boundaries to resolve the

possibly steep gradients.

4. Methods, results, and discussion

The present numerical study focuses on the macroscopic response of the adopted gra-

dient crystal plasticity model, where the model rate sensitivity is investigated, and

a problem dependent characteristic rate is identified for the constrained simple shear

problem. The material domain is sheared to a macroscopic shear strain Γ = 0.03, after

which, one complete load cycle is performed, so that the macroscopic shear strain goes

once to -0.03 and back to 0.03. Care was taken to ensure that a steady state cyclic

response is obtained by running multiple load cycles about the zero strain axis.

Figures 2 and 3 show the shear stress vs. macroscopic shear strain using the ther-

modynamically consistent back stress formulation (Eq. (5)) and the purely pheno-

menological back stress (Eq. (6)), respectively. Results are shown for a macroscopic

shear rate of Γ̇ = 2γ̇0, for different values of the material length parameter, L, and

for different values of the back stress exponents µ and κ, respectively. In both cases,

the response curves for L/H = 10 show a seemingly anomalous change in slope during

plastic flow with inflection points close to zero strain. This phenomenon is discussed

in detail in El-Naaman et al. (2016a) and will not be elaborated in the present paper.

In order to identify the characteristic rate for a given specific quantity, a simple

procedure is carried out. This procedure implies running a series of calculations for
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different values of the rate exponent, m, so that the quantity of interest can be plot-

ted as function of the applied rate for each value of m. The convergent intersection

between the curves then reveals the quantity specific rate-independent point. The ex-

istence of a well defined intersection is contingent upon the quantity investigated being

monotonically increasing or decreasing with the rate sensitivity in an interval above

and below the characteristic rate, respectively. Note that in order to identify the rate-

independent point it is not necessary to employ low values of m, since the intersection

may be obtained for curves at any given rate sensitivity. Indirectly introduced through

the reference slip rate, γ̇0, in Eq. (4), the rate-independent point, tied to the charac-

teristic rate, may open the door for a parameter space, which is otherwise inaccessible

due to the numerical difficulties associated with the limit m −→ 0 (see also Nielsen

et al., 2012).

The Kuroda and Tvergaard (2006, 2008) theory is not formulated in a rate-independent

framework, however, rate-independent results may readily be extracted by identifying

the characteristic rate through the aforementioned procedure. In the following, this

will be demonstrated for the maximum attained shear stress on the hysteresis curve,

|τ12|max.

Figures 4 and 5 show |τ12|max as function of the applied shear rate. Figure 4 shows

results obtained using the thermodynamically consistent back stress formulation (Eq.

(5)) for different values of µ and L, and Fig. 5 shows results obtained using the purely

phenomenological back stress formulation (Eq. (6)) for different values of κ and L.

Clearly convergent intersections are observed for both back stress models. In both

formulations, the intersections occur at a higher shear stress when L is increased, due
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to the increased strain gradient hardening. Furthermore, the intersection translates

slightly toward lower rates for increasing L3.

Analogous to the results obtained for the maximum shear stress, |τ12|max, rate-

independent points also exist for the dissipated hysteresis energy, which is defined as the

area inside the hysteresis loop. However, these results are omitted in the present paper,

since a high level of coincidence between the curves impair a graphical representation.

This is due to the fact that, while the shape of the hysteresis loop changes significantly,

the area remains approximately the same for all computations, as one may perceive

from Figs. 2 and 3. The uncertainty in the intersections for the hysteresis energy were

found to be on the order of 0.5 percent (or below).

5. Conclusion

The existence of a characteristic rate at which specific macroscopic quantities reveal

their rate-independent value has been demonstrated for the pure shear case of an

infinite slab between rigid platens. Here, considering the visco-plastic higher order

strain gradient crystal plasticity model proposed by Kuroda and Tvergaard (2006,

2008). Both when assuming a quadratic free energy, but also when adopting the newly

proposed back stress formulations (El-Naaman et al., 2016b,a), clear and unambiguous

intersections (defining the characteristic rate) are found when plotting the quantities

vs. deformation rate for various rate sensitivity exponents. Specific to the purely

phenomenological back stress formulation (Eq. (6)), the transition parameter τT is

3The peak in strain gradient hardening at intermediate values of µ (also reported in El-Naaman

et al., 2016b) is evident in Figs. 2 and 4a for µ = 0.3.
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significant for the quality of the intersection and should be chosen carefully. Choosing

τT too high can result in a response dominated by quadratic free energy. In general,

the choice of back stress models was found to have a slight influence on the resulting

characteristic rate as well as the corresponding rate-independent value of the objective

quantity.

The characteristic rate is strongly tied to the characteristic time introduced into the

material model by the reference strain rate, γ̇0, and is fundamental to the power law

type strain rate hardening relations used in the visco-plastic theories. The presented

results and observations establish the findings reported in Nielsen and Niordson (2012),

Nielsen et al. (2012) and Nielsen (2015) as a widespread phenomenon, and show that

by exploiting it, results at the rate-independent limit may, in fact, be reached for

the present model, which only exists in a rate-dependent framework. It should be

made clear, however, that the phenomenon is a purely theoretical concept and, to the

best of the authors knowledge, remains to be observed in experiments. Regardless of

this, the concept is highly significant in modeling contexts, since it does in fact exist

within widely used visco-plastic theories. Bearing this in mind, the authors encourage

experimental investigations to clarify the matter.

6. Acknowledgments

The work is financially supported by The Danish Council for Independent Research

under the research career programme Sapere Aude as part of the project “Higher Order

Theories in Solid Mechanics”, grant 11-105098/FTP.

10



References

Ashby, M., 1970. The deformation of plastically non-homogeneous alloys. Philos. Mag.

21, 399–424.

Bassani, J., 2001. Incompressibility and a simple gradient theory of plasticity. Journal

of the Mechanics and Physics of Solids 49, 1983–1996.

Bayley, C., Brekelmans, W., Geers, M., 2006. A comparison of dislocation induced

back stress formulations in strain gradient crystal plasticty. International Journal of

Solids and Structures 43, 7268–7286.

El-Naaman, S., Nielsen, K., Niordson, C., 2016a. An investigation of back stress for-

mulations under cyclic loading, Submitted.

El-Naaman, S., Nielsen, K., Niordson, C., 2016b. On modeling micro-structural evolu-

tion using a higher order strain gradient continuum theory. International Journal of

Plasticity 76, 285–298.

Evers, L., Brekelmans, W., Geers, M., 2004. Non-local cystal plasticity model with

intrinsic SSD and GND effects. Journal of the Mechanics and Physics of Solids 52,

2379–2401.

Fleck, N., Hutchinson, J., 2001. A reformulation of strain gradient plasticity. Journal

of the Mechanics and Physics of Solids 49, 2245–2271.

Fleck, N., Muller, G., Ashby, M., Hutchinson, J., 1994. Strain gradient plasticity:

Theory and experiment. Acta Metallurgica et materialia 42 (2), 475–487.

11



Fleck, N., Willis, J., 2009a. A mathematical basis for strain-gradient plasticity theory.

Part I: Scalar plastic multiplier. Journal of the Mechanics and Physics of Solids 57,

161–177.

Fleck, N., Willis, J., 2009b. A mathematical basis for strain-gradient plasticity theory.

Part II: Tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids

57, 1045–1057.

Groma, I., Csikor, F., Zaizer, M., 2003. Spatial correlations and higher-order gradient

terms in a continuum description of dislocation dynamics. Acta Materialia 51, 1271–

1281.

Gurtin, M., 2000. On the plasticity of single crystals: free energy, microforces, plastic-

strain gradients. Journal of the Mechanics and Physics of Solids 48 (5), 989–1036.

Gurtin, M., 2002. A gradient theory of single-crystal viscoplasticity that accounts for

geometrically necessary dislocations. Journal of the Mechanics and Physics of Solids

50, 5–32.

Huang, Y., Qu, S., Hwang, K., Li, M., Gao, H., 2004. A conventional theory of

mechanism-based strain gradient plasticity. International Journal of Plasticity 20,

753–782.

Hutchinson, J., 1976. Bounds and self-consistent estimates for creep of polycrystalline

materials. Proc. R. Soc. Lond. A 348, 101–127.

Kuroda, M., Tvergaard, V., 2006. Studies of scale dependent crystal viscoplasticity

models. Journal of the Mechanics and Physics of Solids 54, 1789–1810.

12



Kuroda, M., Tvergaard, V., 2008. On the formulation of higher-order strain gradient

crystal plasticity models. Journal of the Mechanics and Physics of Solids 56, 1591–

1608.

Mu, Y., Hutchinson, J., Meng, W., 2014. Micro-pillar measurements of plasticity in

confined cu thin films. Extreme Mechanics Letters 1, 62–69.

Nielsen, K., 2015. Rolling induced size effects in elastic-viscoplastic sheet metals. Eu-

ropean Journal of Mechanics A/Solids 53, 259–267.

Nielsen, K., Niordson, C., 2012. Rate sensitivity of mixed mode interface toughness of

dissimilar meallic materials: Studied at steady state. International Journal of Solids

and Structures 49, 576–583.

Nielsen, K., Niordson, C., Hutchinson, J., 2012. Strain gradient effects on steady state

crack growth in rate-sensitive materials. Engineering Fracture Mechanics 96, 61–71.

Niordson, C., Hutchinson, J., 2003. On lower order strain gradient plasticity theories.

European Journal of Mechanics A/Solids 22, 771–778.

Peirce, D., Asaro, R., Needleman, A., 1983. Material rate dependence and localized

deformation in crystalline solids. Acta Metall. 31, 1951–1976.

Yefimov, S., Groma, I., van der Giessen, E., 2004. A comparison of a statistical-

mechanics based plasticity model with descrete dislocation plasticity calculations.

Journal of the Mechanics and Physics of Solids 52, 279–300.

13



Figures

Figure 1: Schematic of the simple shear problem showing a thin film of height H between rigid
platens, modeled as infinite in the x1-direction with model domain width W . The film has a
single vertical slip system, which is passivated at the top and bottom horizontal boundaries.
The domain is subject to a prescribed displacement rate U̇ .
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Figure 2: Numerical results for the single slip simple shear problem (Fig. 1) subject to
one hysteretic cycle at a macroscopic shear rate of Γ̇ = 2γ̇0, using the thermodynamically
consistent back stress (Eq. (5)). Results are shown for different values of µ and L, with m =
0.02 and ρ0 = 105 mm−2.
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Figure 3: Numerical results for the single slip simple shear problem (Fig. 1) subject to one
hysteretic cycle at a macroscopic shear rate of Γ̇ = 2γ̇0, using the purely phenomenologically
devised back stress (Eq. (6)). Results are shown for different values of κ and L, with m =
0.02 and τT /τ0 = 0.06.
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Figure 4: Maximum shear stress vs. macroscopic shear strain rate for three different values of
the rate sensitivity exponent m. The figure shows (a) results for three different values of µ
with L/H = 0.3, and (b) results for two different values of L with µ = 0.01. The characteristic
rates corresponding to the intersections are given in the figures.
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Figure 5: Maximum shear stress vs. macroscopic shear strain rate using the back stress power
law (Eq. (6)) for three different values of the rate sensitivity exponent m. The figure shows
(a) results with κ = 0.1 and τT /τ0 = 0.06, compared with the the classical quadratic gradient
energy based back stress, both with L/H = 0.3, and (b) shows results for two different values
of L with κ = 0.1. The characteristic rates corresponding to the intersections are given in
the figures.
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