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Abstract

This paper addresses the Electric Vehicle Scheduling Problem (E-VSP), in which a set of timetabled bus trips, each

starting from and ending at specific locations and at specific times, should be carried out by a set of electric buses or

vehicles based at a number of depots with limited driving ranges. The electric vehicles are allowed to be recharged fully

or partially at any of the given recharging stations. The objective is to firstly minimize the number of vehicles needed to

cover all the timetabled trips, and secondly to minimize the total traveling distance, which is equivalent to minimizing

the total deadheading distance. A mixed integer programming formulation as well as an Adaptive Large Neighborhood

Search (ALNS) heuristic for the E-VSP are presented. ALNS is tested on newly generated E-VSP benchmark instances.

Result shows that the proposed heuristic can provide good solutions to large E-VSP instances and optimal or near-optimal

solutions to small E-VSP instances.

Keywords: electric vehicles, vehicle scheduling, partial charging, large neighborhood search

1. Introduction1

In recent years, a growing public concern about greenhouse gas emissions and health related pollution from the2

transportation sector has led to more attention to electric and other alternative fueled vehicles both in academies and3

industry (World Health Organization). Large vehicles such as buses contribute largely to this issue. For instance, in4

Copenhagen, Denmark, buses travel approximately 110 million kilometers a year and the bus fleet on average produces5

around 0.9 kg CO2 per kilometer along with other pollutants (Movia). Moreover, buses operate mainly in urban areas6

with dense population and therefore cause the greatest impact on health. If the public transit switched to zero-emission7

electric buses, the pollution in the city could be reduced significantly.8

However, it is not trivial to substitute conventional buses with electric buses due to existing disadvantages of battery9

driven vehicles, e.g., limited battery capacity and long recharging time. These limitations result in ‘range anxiety’, which10

is the fear of running out of battery and the concern of making an unplanned trip (Bakker (2011)).11

On the other hand, within commercial transport, a high degree of planning could be expected especially in the schedule12

based transportation sector, which carries out schedules with high punctuality according to a timetable. This suggests that13

electric vehicles have a good potential to be used for urban bus operations. However, to better utilize electric buses, the14
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above mentioned limitations must be taken into consideration during planning. This is the motivation of studying the15

Electric Vehicle Scheduling Problem (E-VSP) in this work.16

The E-VSP, in which a set of timetabled trips should be assigned to a set of electric vehicles with limited driving17

ranges based at different depots, is an extension of the well-known Vehicle Scheduling Problem (VSP). The E-VSP can18

be described as a Multi-Depot VSP with distance constraints and charging possibilities. In the E-VSP, each trip starts from19

and ends at specific locations at predefined times. Each vehicle can be recharged fully or partially at any given recharging20

station. The recharging time is assumed to be a linear function of the amount of charged battery.21

An E-VSP solution is a set of vehicle schedules, where each vehicle starts from and ends at its base depot, each trip22

is covered by exactly one vehicle and the vehicles’ driving ranges are not exceeded. The objective is to first minimize23

the number of vehicles used and secondly minimize the total distance traveled. As the traveling distance of each trip is24

fixed, minimizing the total traveling distance is equivalent to minimizing the distance between the depot and the trip and25

between any two trips in the schedule, also known as deadheading distance.26

The VSP has been extensively studied in the literature and extended to different variants, including the Multi-Depot27

VSP (MD-VSP) (Bodin et al. (1983) and Carpaneto et al. (1989)), the Multiple Vehicle Types VSP (Lenstra and Kan28

(1981)), and the VSP with Route Constraints (VSP-RC) (Bunte and Kliewer (2009)) where different types of route con-29

straints can be enforced, including route duration (Freling and Paixao (1995)), route distance (Bodin et al. (1983)) or30

maximum vehicle bus line changes (Kliewer et al. (2008)). All the above mentioned VSP variants consider conventional31

vehicles and none of them allows recharging. A variant of the VSP that considers recharging/refueling options is the32

Alternative Fuel Vehicle Scheduling Problem (AF-VSP) studied by Adler (2014). In his problem, the alternative fuel33

vehicles are allowed to be refueled at given recharging stations to prolong the total distance the vehicles can travel. How-34

ever, the AF-VSP is different from our E-VSP in the following aspects: 1) The AF-VSP only considers full charging. The35

vehicle’s fuel level is set to full after visiting any recharging station; whereas the E-VSP considers partial charging, and36

introduces an extra decision on the necessary charging amount for each visit at any recharging station; 2) the charging37

time in the AF-VSP is fixed regardless of the remaining fuel level; whereas our charging time is assumed to be a linear38

function of the charged amount. In other words, the AF-VSP is a special case of our E-VSP. In Adler (2014), the author39

propose a construction heuristic as well as a column generation approach to solve the AF-VSP, and tests his algorithms40

on the metropolitan bus system of Phoenix, Arizona.41

Another thread of literature relevant to the E-VSP is the Vehicle Routing Problem (VRP) for electric/alternative fuel42

vehicles, where the vehicles are used to serve a set of customers instead of the timetabled trips. Erdoğan and Miller-43

Hooks (2012) introduce the Green Vehicle Routing (G-VRP). Similar to Adler (2014), they also assume full charging and44

a fixed charging time for each visit to the recharging station. Felipe et al. (2014) consider an extension of the G-VRP,45

where recharging stations are of different types with different costs and recharging speeds. Moreover, partial charging46

is allowed and the recharging time is assumed to be a linear function of the amount of energy recharged. Schneider47

et al. (2014) extend the G-VRP to the Electric Vehicle Routing Problem with Time Windows (E-VRPTW) by considering48

customers’ time windows, unlimited number of recharges per route and a variable recharging time which depends on the49

remaining fuel level when a vehicle arrives at the recharging station. However, partial charging is still not an option in50

Schneider et al. (2014), i.e., a vehicle must be fully recharged when leaving the recharging station. Hiermann et al. (2016)51

study the Electric Fleet Size and Mix VRPTW, where electric vehicles with different battery capacities, load capacities,52
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energy consumptions and recharging rates are used. In Goeke and Schneider (2015) a mixed fleet of electric vehicles53

and conventional vehicles is used. Desaulniers et al. (2014) further extend the E-VRPTW by allowing partial charging.54

They develop branch-price-and-cut-algorithms to solve different variants of the problem with single/multiple-recharge and55

full/partial-rechange. They test their algorithms on benchmark instances and demonstrate the benefit of multiple-recharge56

and partial-recharge.57

In this work, we consider the electric scheduling problem with partial recharging described in Section 2, and present a58

mathematical model (Section 3) as well as an Adaptive Large Neighborhood heuristic (Section 4) for solving this problem.59

The heuristic is tested on newly generated E-VSP instances. Computational results are provided in Section 5, followed by60

a conclusion and future work in Section 6.61

2. Problem description62

The input to the E-VSP includes a set of timetabled trips, a set of vehicles, a set of depots and a set of recharging63

stations. Each trip has a specific start time, end time, start location, end location and traveling distance. Each vehicle has64

a limited driving range, and should start from and end at its base depot. The vehicle’s fuel consumption is assumed to be65

a linear function of the traveling distance. The consumption rate. i.e, the amount of fuel consumed per unit distance, is66

given. The vehicles can visit any recharging station to recharge any amount up to the full battery capacity. The charging67

time is assumed to be a linear function of the battery charge gained and the charging rate, i.e., the time needed for charging68

one unit battery, is also given. The distance and the time for the deadheading traveling between any two timetabled trips69

and between any depot/station and any timetabled trip are known. The problem is to find a set of least-cost schedules for70

the vehicles to perform the timetabled trips. Each trip should be covered by exactly one schedule that is performed by one71

vehicle. The charge level of the vehicle must be non-negative at any time throughout the schedule. The cost consists of a72

relatively high pullout cost of using each vehicle and an operational traveling cost.73

To illustrate this problem, a small example consisting of two timetabled trips, one recharging station and one depot is74

given in Fig. 1. The start time, end time, start location and end location of the trips are given in Tab. 1. The travel time75

and the distance of each arc are assumed to be the same, and are given in the figure. The vehicle range is 30. Both the76

consumption rate and the charging rate are 1. The pullout cost is 1000 and the traveling cost is 1 per unit distance. The77

optimal solution to this example is to use a single vehicle to perform the schedule given in Tab. 2. After performing trip78

1, the vehicle visits the recharging station with a remaining battery of 5. According to the timetable, there is a surplus of79

time to recharge partially for extra 20 units, which prolongs its driving distance by 10 units and makes it possible for the80

vehicle to carry out the rest of the schedule without running out of battery.81

As can be noticed, for the same example, if recharging is not allowed or if only full charging is allowed, two vehicles82

will be needed and the total cost will be 2060. This illustrates the benefit of allowing partial charging in the scheduling83

problem for electric vehicles.84

85

86

87
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Figure 1: A small E-VSP example with single depot, two trips and one recharging station.

Table 1: The timetables associated with the two trips in the small example.

Trip Origin Time Destination Time

1 A 07:50 B 08:00

2 C 08:40 D 08:50

3. Mathematical formulation88

A mathematical model for the E-VSP can be derived from the model for the E-VRPTW presented in Schneider et al.89

(2014). In fact, if one does not need to model partial recharging and multiple depots then the E-VRPTW model by90

Schneider et al. (2014) is sufficient to model the E-VSP. Adding partial recharging and multiple depots to the model is no91

big feat. However, the resulting model is very difficult to solve just like the original E-VRPTW model. We implemented92

such a model and even instances with just 10 trips proved to be challenging.93

In this section we present an improved model that takes advantage of the fact that the start time of each trip in the94

E-VSP is fixed. By making copies of the recharging stations and assigning each copy to a specific trip it is possible to95

stipulate specific time windows on each recharging station copy that ensure that the underlying graph structure is close to96

a directed acyclic graph (DAG). Cycles only occur between nodes representing copies of recharging stations assigned to97

the same customer. The DAG-like structure ensures that the solution to the LP relaxation of the model does not contain98

paths from a later trip to an earlier trip. In the following, we make this clearer and show an example of the underlying99

graph for a simple example.100

The model is defined on a directed graph G = (V,A), where V is the set of nodes and A is the set of feasible arcs.101

Each timetabled bus trip is represented by a node in the graph. Let T ⊆ V denote the set of trip nodes, each of which is102

associated with a fixed start time ai, a service time si and a fixed battery consumption ei. Let D be the set of depots. Each103

depot β ∈ D is represented by two nodes in the graph: oβ (start node for depot β ) and dβ (end node for depot β ). Let104

D̄ ∈V be the set of all start and end depot nodes. Let R denote the set of recharging stations. The recharging stations are105

being represented by a set of duplicate nodes R̄ in the graph G, with cardinality R̄ = 2|R||T |. For each combination of a106

recharging station i ∈ R and trip j ∈ T two nodes are being created. One node denoted −→r i j can be visited just after trip107

j and one node ←−r i j can only be visited on the path from a depot to j if j is the first trip on its route. The only nodes108

that can be visited between node j and −→r i j are nodes from {−→r k j ∈ R̄ : k ∈ R \ {i}}. Each node in R̄ can be visited at109

most once. The cost, distance and the traveling time of each arc (i, j) ∈ A are given by ci j, di j and ti j, respectively. In the110

model we will often use the notation ta for an arc a = (i, j) instead of ti j and similar notation for c and d. It is assumed111

that tik ≤ ti j + t jk for all i ∈ T, j,k ∈ R̄ and for all i, j ∈ R̄,k ∈ T , and likewise for di j and ci j. This assumption is denoted112
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Table 2: The optimal solution to the small example.

Arrival Departure Arrival fuel Departure fuel Accumulated

Location time time level level cost

Depot - 7:45 - 30 0

A 7:50 7:50 25 25 5

B 8:00 8:00 15 15 15

Recharging station 8:10 8:30 5 25 25

C 8:40 8:40 15 15 35

D 8:50 8:50 5 5 45

Depot 8:55 - 0 0 50

Figure 2: An illustration of the graph G used in the mathematical model for an instance with 1 depot, 2 recharging stations and 2 trips.

�

�

the partial triangle inequality assumption. One cannot assume that a triangle inequality holds for the travel times (or cost113

or distances) for all nodes in V since each trip node models driving a certain distance. Each depot and station i ∈ D∪R114

has a time window [ai,bi], within which the vehicle can visit. From the station time windows, we can derive tighter time115

windows for the nodes in R due to the partial triangle inequality assumption and since we know that each node in R̄ is116

visited before/after a certain trip. The set of arcs A is a subset of V ×V . Many arcs can be eliminated from A because of117

the fixed starting times for nodes in T and because of the rules for when each node in R̄ can be visited (outlined above).118

Figure 2 shows an example of the graph structure for an instance with two trips, two recharging points and a single depot.119

The circles represents the two trips, the squares represent the start and end depot. Triangles represent the nodes in R̄ with120

white nodes represent nodes←−r i j and grey nodes representing−→r i j. In the figure, it is assumed that the starting time of trip121

2 is later than that of trip 1.122

Let ∆+(i) and ∆−(i) denote the set of arcs that can originates in node i and that ends in node i, respectively. We assume123

that the vehicle fleet is homogeneous. Let Q denote the driving range, r the fuel consumption rate (the fuel units spent per124

unit distance) and g the recharging rate (the time for charging one unit battery). Let p be the pullout cost associated with125

a vehicle.126

Let binary decision variable xβ
a equal 1 if a vehicle from depot β ∈D traverses arc a ∈ A and let non-negative variable127
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hi be the amount of energy that the vehicle charges during the visit to station copy i∈ R̄. The charged amount hi depends on128

the remaining battery charge and the length of time that vehicle stays at station i. Hence two extra non-negative variables,129

zi and yi, are defined for tracking the time that a vehicle starts the service/charging at node i and the remaining battery130

charge of the vehicle when it arrives at node i. The model uses constants M1
i j,M

2
i j,M

3
i j and M4

i j in big-M constraints, the131

values for these constants will be explained toward the end of this section. The mathematical model can be formulated as132

follows:133

minimize ∑
β∈D

∑
a∈A

caxβ
a + p ∑

β∈D
∑

a∈∆+(ok)

xβ
a (3.1)

subject to134

∑
β∈D

∑
a∈∆+(i)

xβ
a = 1 ∀i ∈ T (3.2)

∑
a∈∆+(i)

xβ
a ≤ 1 ∀i ∈ R̄, β ∈ D (3.3)

∑
β ′∈D\{β}

∑
a∈∆+(oβ )

xβ ′
a = 0 ∀β ∈ D (3.4)

∑
β ′∈D\{β}

∑
a∈∆−(dβ )

xβ ′
a = 0 ∀β ∈ D (3.5)

∑
a∈∆+(i)

xβ
a − ∑

a∈∆−(i)
xβ

a = 0 ∀i ∈ T ∪ R̄, β ∈ D (3.6)

zi = ai ∀i ∈ T (3.7)

ai ≤ zi ≤ bi ∀i ∈ D̄∪ R̄ (3.8)

zi + si + ta−M1
i j(1− ∑

β∈D
xβ

a )≤ z j ∀i ∈ T,a = (i, j) ∈ ∆
+(i) (3.9)

zi + ta +g ·hi−M2
i j(1− ∑

β∈D
xβ

a )≤ z j ∀i ∈ R̄,a = (i, j) ∈ ∆
+(i) (3.10)

yi− ei− r ·da +M3
i j(1− ∑

β∈D
xβ

a )≥ y j ∀i ∈ T ∪{oβ : β ∈ D}, a = (i, j) ∈ ∆
+(i) (3.11)

yi +hi− r ·da +M4
i j(1− ∑

β∈D
xβ

a )≥ y j ∀i ∈ R̄, a = (i, j) ∈ ∆
+(i) (3.12)

0≤ hi ≤ Q− yi ∀i ∈ R̄ (3.13)

0≤ yi ≤ Q ∀i ∈V (3.14)

xβ
a ∈ {0,1} ∀a ∈ A, β ∈ D (3.15)

The objective is to minimize the total cost, including the traveling cost and vehicle cost. Constraints (3.2) enforce135

each trip to be covered exactly once. Constraints (3.3) make sure that each station node in R̄ is visited at most once by136

each vehicle. Constraints (3.4) and (3.5) ensure the compatibility between variable and depots and constraints (3.6) are137

flow conservation constraints. Constraints (3.7) and (3.8) are the time window constraints, enforcing that the depot and138

station nodes are visited within their service time window and the trip nodes are performed at their specific start times.139

Constraints (3.9) and (3.10) keep track of the visit time at each node. If a vehicle travels from i to j, then zi + si + ti j ≤ z j140
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for i ∈ T and zi + ti j +g ·hi ≤ z j for i ∈ R, where g ·hi is the time needed to recharge hi at station i. Similarly, constraints141

(3.11) and (3.12) keep track of the remaining battery of each vehicle when it arrives at any node. Constraints (3.13)142

impose that the battery cannot be recharged beyond its capacity. Constraints (3.14) are the battery capacity constraints143

and constraints (3.15) define the binary variables.144

For most of the other VSP variants, such as MD-VSP and VSP-RC, the visit time of each vehicle at each node is not145

modeled in their formulations because the infeasible arcs (i, j), where a j ≤ ai + si + ti j, are already removed from the146

graph. Hence, the solution will always be feasible with respect to time. However, in our problem, since we introduce the147

partial recharging, one has to model the visit time in order to determine how long a vehicle can stay at a station and how148

much it can recharge. Therefore, the model for the E-VSP is more complicated than the other VSP variants. The MD-VSP149

is a special case of the E-VSP, where there is no limit on the driving range (Q = ∞) and hence provides a lower bound to150

the E-VSP.151

There are several ways strengthening the inequalities (3.9)-(3.12) based on the methods proposed by Desrochers and152

Laporte (1991). We have attempted the following inequalities:153

z j ≥ a j + ∑
a=(i, j)∈A

(
max{0,ai−a j + ta + si} ∑

β∈D
xβ

a

)
∀ j ∈ R̄ (3.16)

and154

zi ≤ bi− ∑
a=(i, j)∈A

(
max{0,bi−b j + ta + si} ∑

β∈D
xβ

a

)
∀i ∈ R̄ (3.17)

which are straightforward adaptations of inequalities (28) and (29) in Desrochers and Laporte (1991).155

It is possible to enforce tighter limits on the remaining battery charge yi compared to the limits given by (3.14). In156

general we can compute a lower γi and upper bound δi on the yi for each node i ∈ R̄∪T and exchange (3.14) by157

γi ≤ yi ≤ δi

The lower bound γi is based on a minimum driving that needs to be carried out after visiting node i before reaching158

a recharging station or end depot while the upper bound δi is based on the minimum driving from the last recharging159

station/depot before reaching node i. With these bounds a valid inequalities involving yi can again be derived from (28)160

and (29) in Desrochers and Laporte (1991):161

yi ≥ γi + ∑
a=(i, j)∈A

(
max{0,γ j− γi + rda + ei} ∑

β∈D
xβ

a

)
∀i ∈ T

162

y j ≤ δ j− ∑

a = (i, j) ∈ A

i ∈ T

(
max{0,δ j−δi + rda + ei} ∑

β∈D
xβ

a

)
+

∑

a = (i, j) ∈ A

i ∈ R̄∪{o1, . . . ,o|D|}

(
max{0,δ j−δi + rda} ∑

β∈D
xβ

a

)
∀ j ∈ R̄∪T

What is left to describe are the values for M1
i j,M

2
i j,M

3
i j and M4

i j in constraints (3.9) -(3.12): we use M1
i j = bi + si + ti j−a j,163

M2
i j = bi + ti j +gQ−a j, M3

i j = δ j− (γi− ei− r ·di j) and M4
i j = δ j− (γi− r ·di j).164
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4. Adaptive Large Neighborhood Search165

As the E-VSP is an NP hard problem and the goal of this work is to solve large instances, we developed an Adaptive166

Large Neighborhood Search (ALNS) heuristic to solve the E-VSP. ALNS, firstly proposed by Ropke and Pisinger (2006),167

has been successfully applied to VRPTW and various VRP extensions. The trips in our E-VSP are similar to the customers168

in a VRPTW. A trip with a fixed start time is treated as a customer with a very tight time window, where the earliest start169

time coincides with the latest start time. Since the start time is fixed, the graph of an E-VSP can be reduced significantly170

compared to a VRPTW with wide TWs (Haghani and Banihashemi (2002)). In the E-VSP, there are extra inputs, including171

the traveling distance and fuel consumption associated with each trip , and the extra set of stations that can be visited when172

necessary.173

ALNS is an extension of Large Neighborhood Search (LNS) originally proposed by Shaw (1998). The basic idea174

of LNS is to search in large neighborhoods, which may contain more and potentially better solutions compared to small175

neighborhoods. The neighborhood of a solution is defined implicitly by a destroy method and a repair method. A176

destroy method disrupts part of the current solution while a repair method rebuilds the destroyed solution. In ALNS, a177

series of destroy and repair methods are employed. In each iteration, the destroy/repair methods to be applied on the178

current solution are selected according to their weights, which are adaptively adjusted based on the performance of the179

destroy/repair methods in the previous iterations. The destroy/repair methods that have performed well in the previous180

iterations are more likely to be chosen for the current iteration. The resultant solution is accepted based on a user defined181

acceptance criterion, and the heuristic stops when the stop criterion is met.182

In our implementation, ALNS is run for multiple restarts. In each restart ALNS stops when a predefined maximum183

iteration, Nmax, is reached. In each iteration, if the new solution is better than the current one, it is always accepted;184

otherwise, it is accepted with a probability e(( f (x)− f (x
′
))/T ) , where the temperature T is initialized by T0 and decreased185

over time to T1. This makes it less likely to accept poor solutions towards the end of the search. Additionally, we have186

introduced a diversification phase applied occasionally to further diversify the search. At the end of the heuristic, a post187

optimization is used to further improve the solution. The entire framework of our ALNS is described in Alg. 1. The188

constructive heuristic for generating the initial solution, the destroy/repair methods, the diversification phase and the post189

optimization phase are elaborated in Sections 4.1–4.4.190

191

4.1. Initialization and diversification192

The initial solution of for ALNS is generated by a greedy constructive heuristic, similar to the Concurrent Scheduler193

Algorithm for the AF-VSP proposed by Adler (2014) and originally designed by Bodin et al. (1978). The trips are first194

sorted in a non-decreasing order of their start times and iteratively added to the solution. In each iteration, we try to insert195

the selected trip to the end of an existing schedule that leads to the minimum increase in the objective value. If it is not196

feasible to be added to any existing schedule, a new schedule will be created for the trip. The procedure stops until all the197

trips are served.198

A diversification phase, which modifies a larger part of a solution, is applied occasionally in the ALNS framework to199

diversify the search into different parts of the solution space. A solution is modified by firstly removing a large number of200
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Algorithm 1 Adaptive Large Neighborhood Search.

1: Input: A feasible solution x

2: x∗← x

3: T ← T0

4: repeat

5: if apply diversification then

6: x←diversify(x)

7: choose a destroy method and a repair method based on their weights

8: x
′ ← the resulting solution after applying the selected destroy and repair methods

9: if accept(x
′
,x) then

10: x← x
′

11: if f (x
′
)< f (x∗) then

12: x∗← x

13: Adjust the weights of the destroy/repair mehtods if necessary

14: T ← αT

15: until Iteration Nmax is reached

16: x∗← post-optimization() return x∗

random trips from the existing solution and later iteratively inserting a random trip back one by one to the solution at the201

best position.202

4.2. Destroy Methods203

A selection of destroy methods are implemented in our ALNS, including a random destroy, a time- related removal204

and a neighboring schedule based removal. The random destroy method simply removes a number of trips randomly205

from the solution. The time-related removal removes the trips having similar start/end times. It first removes a random206

trip, and then repeatedly removes the trip that has the closest start/end time to any of the selected trips. The procedure207

stops until a given number of trips are removed. The neighboring schedule based removal aims at removing similar and208

closely located schedules. A schedule s′ is a neighboring schedule of another schedule s, if s′ = argmins̃∈Ω̄
c(s, s̃), where209

c(s, s̃) = (∑ j∈s̃ ∑i∈s di j)/(|s| · |s̃|) is the average distance between the trips in s and in s̃, and Ω̄ is the set of the schedules210

excluding s in the current solution. The removal method removes a random schedule and its neighboring schedule.211

At the end of all the abovementioned removal methods, single-trip schedules are additionally removed from the solu-212

tion.213

4.3. Repair Methods214

When a solution is destroyed, a repair method is applied to rebuild it. We have implemented a class of regret insertion215

heuristics (Potvin and Rousseau (1993)). These methods inserts one trip to the best position at a time. They differ in their216

ways of selecting the trip to be inserted.217
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Let Nr denote the set of trips to be inserted, and ∆ fi,p the cost of inserting trip i∈Nr to position p in the current partial218

solution. If inserting i to position p is feasible with respect to the driving range constraints (referred to as fuel feasible)219

and timetable constraints (referred to as time feasible), ∆ fi,p = dpre(p),i +di,suc(p)−dpre(p),suc(p), where pre(p) and suc(p)220

are the predecessor trip and successor trip corresponding to position p respectively. If the insertion leads to an infeasible221

solution with respect to the timetable constraints, we set ∆ fi,p =∞. If the insertion is time feasible but not fuel feasible, we222

try to insert a station before or after trip i to resolve the fuel infeasibility. If such a station exists, the best station s∗ that leads223

to the minimum increase in the objective function is selected, and ∆ fi,p is set to dpre(p),s∗ +ds∗,i +di,suc(p)−dpre(p),suc(p)224

if s∗ is inserted before trip i and to dpre(p),i +di,s∗ +ds∗,suc(p)−dpre(p),suc(p) if s∗ is inserted after trip i.225

Let c1
i denote the insertion cost of trip i at its best position, c1

i = minp∈Pcip, where P is the set of all the positions; and226

ck
i the insertion cost at the kth best position. In a regret-k heuristic, the trip i∗ = argmaxi∈Nr(∑

j=k
j=1(c

j
i − c1

i )) is selected as227

the next trip to be inserted.228

Our ALNS uses regret-2, regret-3 and regret-4. All the heuristics are implemented in both deterministic version and229

stochastic version. In the deterministic version, the best trip is selected; whereas, in the stochastic version, a random trip230

from the l best trips is selected. We set l to |Nr| ·Rβ , where R is a random number between [0,1], and β > 1 is a user231

defined parameter.232

4.4. Post optimization233

Finally, a post optimization phase is implemented. The schedules in all the feasible solutions found by ALNS are234

stored and in the end given as the input to the following set partitioning model:235

236

minimize ∑
s∈Ω

csxs (4.1)

237

subject to:238

∑
s∈Ω

ai
sxs = 1 ∀i ∈ T (4.2)

∑
s∈Ω

bd
s xs ≤ nd ∀d ∈ D (4.3)

xs ∈ {0,1} ∀s ∈Ω (4.4)

239

where Ω denotes the set of input schedules found by ALNS, cs is the cost of schedule s ∈ Ω, ai
s is a binary variable240

indicating if trip i ∈ T is covered by schedule s, bd
s is a binary variable indicating if schedule s is associated with depot241

d, nd is the maximum number of vehicles from depot d, and the binary variable xs equals 1 if schedule s is selected. The242

objective (4.1) is to minimize the total cost of chosen schedules. Constraints (4.2) make sure that each trip is covered243

by exactly one schedule. Constraints (4.3) enforce that the number of vehicle used at a depot does not exceed the limit244

and (4.4) defines the binary decision variable. The set partitioning model is solved by CPLEX 12.6. The solution to this245

model is at least as good as the best solution found by ALNS.246
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5. Computational results247

The ALNS heuristic is implemented in a single thread Java environment and run on a PC with Windows 7, Intel Core248

i7-3520M, 2.9GHz, 8 GB RAM. The mathematical model is solved by CPLEX 12.6.249

5.1. Data250

A set of E-VSP benchmark instances are generated in a way similar to the generation of the MD-VSP instances in251

Carpaneto et al. (1989) and inspired by Pepin et al. (2009). The depots and the two ending points of the trips are uniformly252

distributed in a 60km× 60km Euclidean plane. The start time of a trip is a random integer uniformly distributed with a253

probability of 15% in [420, 480], 70% in [480, 1020], and 15% in [1020, 1080]. The end time of a trip is a random integer254

uniformly distributed in (the trip’s start time+the trip’s distance+5, the trip’s start time+the trip’s distance+40). A set of255

recharging stations are uniformly distributed in the plane, and one recharging station is placed at every depot. The vehicle256

driving range is set to 150 km, which seems reasonable compared to the spatial distribution of the trips. The charging rate257

is 0.8 minute/km, which means that a complete charging from zero to full takes two hours. The generated instances are258

of different sizes.259

Tab. 3 describes the 14 classes of instances that were generated. For each class we list the number of trips, the number260

of depots, the number of stations as well as the number of instances generated. The small instances with up to 30 trips261

are solved by both ALNS and CPLEX, whereas the large instances only are solved by ALNS. All instances are available262

on-line as supplementary material.263

Table 3: The E-VSP instances.

Name # Depots # station # trips # instances

D2 S2 C10 2 2 10 5

D2 S4 C10 2 4 10 5

D2 S2 C15 2 2 15 5

D2 S4 C15 2 4 15 5

D2 S2 C20 2 2 20 5

D2 S4 C20 2 4 20 5

D2 S2 C25 2 2 25 5

D2 S4 C25 2 4 25 5

D2 S2 C30 2 2 30 5

D2 S4 C30 2 4 30 5

D2 S4 C100 2 4 100 5

D4 S8 C100 4 8 100 5

D4 S8 C500 4 8 500 5

D8 S16 C500 8 16 500 5

264

5.2. ALNS parameter setting265

A single run of the algorithm consists of five restarts of the ALNS heuristic. In each restart, ALNS executes 50,000266

iterations. A simple parameter tuning process has been carried out using a small set of instances including D2 S4 C100 1,267

D4 S8 C100 1, D4 S8 C500 1, D4 S8 C500 2, D8 S16 C500 1 and D8 S16 C500 2. This leads to the following pa-268

rameter configuration: The initial temperature at the first iteration is 50 and the end temperature at the last iteration is 0.5.269
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Therefore the cooling rate α is set to 0.99991. In the random removal and time–related removal, the number of trips to be270

removed from the current solution is chosen randomly between 1 and 20. When the repair method involves a stochastic271

element, the parameter β is chosen to be 2. The solution is diversified every 2400 iterations. In each diversification, 50%272

of all the trips are removed from the solution. The time limit given to the post optimization is 150 seconds in each ALNS273

restart. To show the effect of the destroy/repair methods, we have presented the relative changes in the objective value274

when one destroy/repair method is excluded from the algorithm in Table 4. Results show that the random trip removal275

and neighboring schedule based removal are the two methods contributed the most to the solution quality. Excluding a276

repairing method in general does not lead to a much different solution. However, we chose to keep all of them.277

Table 4: Relative changes in the objective value when one destroy/repair method is excluded.

Excluded destroy/repairing method Change in the objective value

time-related removal +0.84%
random trip removal +2.01%
random neighboring schedule removal +3.16%
regret-2 insertion +0.17%
regret-3 insertion +0.07%
regret-4 insertion +0.04%

5.3. Results on the small instances278

Tables 5 and 6 present the E-VSP solutions given by the ALNS and CPLEX (using the model presented in Section 3),279

and the corresponding MD-VSP lower bound computed by CPLEX. The difference between the E-VSP and the MD-VSP280

is that the driving range is 150 km in the former and unlimited in the latter. The E-VSP model was solved on a Intel Core281

I7-2620M CPU running at 2.70 GHz and having two cores (4 virtual cores through hyper-threading). CPLEX version282

12.6 was used and CPLEX was allowed to take advantage of parallel processing and a time limit of 1 hour was enforced.283

For the E-VSP MIP model we report the solution obtained (UB), this solution is optimal as long as the time limit was284

not reached. The best lower bound (LB) obtained is reported when the instance is not solved to optimality, the number of285

vehicles used in the solution (v), the dead heading distance (d.h) and the time spent in seconds (t (s)). A dash in the time286

column indicate that the instance was not solved to optimality within the time limit.287

For the ALNS heuristic and MDVSP lower bound we report similar information. The second to last column in the

tables reports the percentage gap between best MIP solution (zMIP) and best ALNS solution (zALNS), this number is

calculated as
zALNS− zMIP

zMIP ·100.

Similarly the last column compares the ALNS solution to the lower bound obtained by solving the MD-VSP (zMDV SP).

This number is calculated as follows
zALNS− zMDV SP

zMDV SP ·100.

As can be seen from the table, ALNS is able to find high quality solutions to the small instances containing up to 30288

trips. The computational time of ALNS is just a fraction of the time needed CPLEX for the more challenging instances.289

The comparison to the MD-VSP results shows that solving the MD-VSP often does not provide a tight lower bound to290

the E-VSP. This is caused by the restricted driving range in the E-VSP that forces vehicles to recharge which increases291

deadheading and decreases utilization.292
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E-VSP MIP E-VSP ALNS MDVSP MIP gap LB gap

name UB LB #v. d.h. t (s) UB #v. d.h. t (s) Opt #v. d.h t (s) % %

D2 S2 C10 0 40373.8 - 4 373.8 0.4 40373.8 4 373.8 4.2 30336.1 3 336.1 0.1 0.00 33.09

D2 S2 C10 1 40321.2 - 4 321.2 0.2 40321.2 4 321.2 3.8 40276.5 4 276.5 0.1 0.00 0.11

D2 S2 C10 2 50435.1 - 5 435.1 0.6 50435.1 5 435.1 3.6 40386.3 4 386.3 0.1 0.00 24.88

D2 S2 C10 3 30331.3 - 3 331.3 0.3 30331.3 3 331.3 3.8 30267.9 3 267.9 0.1 0.00 0.21

D2 S2 C10 4 30316.0 - 3 316 0.2 30316.0 3 316.0 3.7 30270.6 3 270.6 0.1 0.00 0.15

D2 S4 C10 0 30326.6 - 3 326.6 0.5 30326.6 3 326.6 3.8 30314.3 3 314.3 0.1 0.00 0.04

D2 S4 C10 1 40346.4 - 4 346.4 3.5 40346.4 4 346.4 3.4 30328.5 3 328.5 0.1 0.00 33.03

D2 S4 C10 2 30383.1 - 3 383.1 0.5 30383.1 3 383.1 3.8 30351.2 3 351.2 0.1 0.00 0.11

D2 S4 C10 3 40241.5 - 4 241.5 0.4 40241.5 4 241.5 3.0 40235.5 4 235.5 0.1 0.00 0.01

D2 S4 C10 4 40335.1 - 4 335.1 0.5 40335.1 4 335.1 3.2 40302.9 4 302.9 0.1 0.00 0.08

D2 S2 C15 0 40484.6 - 4 484.6 0.6 40484.6 4 484.6 5.7 40418.6 4 418.6 0.1 0.00 0.16

D2 S2 C15 1 50465.4 - 5 465.4 0.3 50465.4 5 465.4 5.4 50399.8 5 399.8 0.1 0.00 0.13

D2 S2 C15 2 50730.5 - 5 730.5 1.0 50730.5 5 730.5 5.7 50488.5 5 488.5 0.1 0.00 0.48

D2 S2 C15 3 50367.3 - 5 367.3 0.5 50367.3 5 367.3 5.1 50318.4 5 318.4 0.1 0.00 0.10

D2 S2 C15 4 50441.7 - 5 441.7 0.5 50441.7 5 441.7 5.2 50375.4 5 375.4 0.1 0.00 0.13

D2 S4 C15 0 50500.0 - 5 500 8.6 50500.0 5 500.0 4.6 50438.1 5 438.1 0.1 0.00 0.12

D2 S4 C15 1 60478.1 - 6 478.1 6.6 60478.1 6 478.1 5.2 50480.2 5 480.2 0.1 0.00 19.81

D2 S4 C15 2 40521.1 - 4 521.1 1.0 40521.1 4 521.1 5.6 40493.3 4 493.3 0.1 0.00 0.07

D2 S4 C15 3 60403.0 - 6 403 0.9 60403.4 6 403.4 5.1 60386.1 6 386.1 0.2 0.00 0.03

D2 S4 C15 4 50396.2 - 5 396.2 8.6 50396.2 5 396.2 4.7 50368.5 5 368.5 0.1 0.00 0.06

D2 S2 C20 0 60681.0 - 6 681 0.5 60681.0 6 681.0 6.1 60536.6 6 536.6 0.1 0.00 0.24

D2 S2 C20 1 60580.2 - 6 580.2 0.6 60580.2 6 580.2 7.1 60506.5 6 506.5 0.1 0.00 0.12

D2 S2 C20 2 60832.4 - 6 832.4 13.9 60832.4 6 832.4 7.7 50650.5 5 650.5 0.1 0.00 20.10

D2 S2 C20 3 70429.9 - 7 429.9 0.7 70429.9 7 429.9 7.4 70401.4 7 401.4 0.1 0.00 0.04

D2 S2 C20 4 70535.3 - 7 535.3 0.7 70535.3 7 535.3 7.3 70472.2 7 472.2 0.1 0.00 0.09

D2 S4 C20 0 50614.7 - 5 614.7 23.4 50614.7 5 614.7 7.3 50539.8 5 539.8 0.1 0.00 0.15

D2 S4 C20 1 60511.7 - 6 511.7 18.3 60511.7 6 511.7 7.0 50513.3 5 513.3 0.1 0.00 19.79

D2 S4 C20 2 50672.9 - 5 672.9 5.4 50674.3 5 674.3 7.5 50627.2 5 627.2 0.1 0.00 0.09

D2 S4 C20 3 60487.1 - 6 487.1 1.6 60487.1 6 487.1 6.7 60453.2 6 453.2 0.2 0.00 0.06

D2 S4 C20 4 70503.3 - 7 503.3 13.2 70503.3 7 503.3 8.1 70483 7 483.0 0.1 0.00 0.03

Table 5: Results on E-VSP instances containing 10 to 20 trips.
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E-VSP MIP E-VSP ALNS MDVSP MIP gap LB gap

name UB LB #v. d.h. t (s) UB #v. d.h. t (s) Opt #v. d.h t (s) % %

D2 S2 C25 0 70833.6 - 7 833.6 1.3 70833.6 7 833.6 9.8 70639.5 7 639.5 0.2 0.00 0.27

D2 S2 C25 1 60695.6 - 6 695.6 11.9 60695.6 6 695.6 7.3 60537.1 6 537.1 0.1 0.00 0.26

D2 S2 C25 2 70934.7 - 7 934.7 40.7 70934.7 7 934.7 7.9 60754 6 754.0 0.1 0.00 16.76

D2 S2 C25 3 70621.5 - 7 621.5 13.6 70625.9 7 625.9 8.6 70516.7 7 516.7 0.2 0.01 0.15

D2 S2 C25 4 80623.6 - 8 623.6 1.1 80623.6 8 623.6 10.1 80521.3 8 521.3 0.2 0.00 0.13

D2 S4 C25 0 70683.1 - 7 683.1 62.9 70683.2 7 683.2 8.5 70629 7 629.0 0.2 0.00 0.08

D2 S4 C25 1 70601.0 - 7 601 3165.6 70601.0 7 601.0 10.0 60518.5 6 518.5 0.1 0.00 16.66

D2 S4 C25 2 70769.4 - 7 769.4 4.5 70769.4 7 769.4 9.6 70715.2 7 715.2 0.1 0.00 0.08

D2 S4 C25 3 70696.6 - 7 696.6 154.6 70701.8 7 701.8 8.5 70600.9 7 600.9 0.1 0.01 0.14

D2 S4 C25 4 80606.9 - 8 606.9 23.7 80610.3 8 610.3 9.8 80563.5 8 563.5 0.1 0.00 0.06

D2 S2 C30 0 90974.1 - 9 974.1 2.4 90980.7 9 980.7 13.2 90733.7 9 733.7 0.3 0.01 0.27

D2 S2 C30 1 70725.3 - 7 725.3 38.6 70725.3 7 725.3 13.2 60555.5 6 555.5 0.3 0.00 16.79

D2 S2 C30 2 81054.0 71374.4 8 1054 - 81083.1 8 1083.1 14.1 70824.8 7 824.8 0.2 0.04 14.48

D2 S2 C30 3 80898.6 - 8 898.6 232.3 80898.6 8 898.6 13.1 80673.8 8 673.8 0.1 0.00 0.28

D2 S2 C30 4 90758.0 - 9 758 7.8 90776.0 9 776.0 10.2 90634 9 634.0 0.2 0.02 0.16

D2 S4 C30 0 90841.8 80927.0 9 841.8 - 90847.9 9 847.9 13.7 90780.2 9 780.2 0.2 0.01 0.07

D2 S4 C30 1 70803.6 - 7 803.6 1107.1 70814.1 7 814.1 11.4 70604.2 7 604.2 0.2 0.01 0.30

D2 S4 C30 2 70904.3 - 7 904.3 107.9 70911.4 7 911.4 15.4 70808.4 7 808.4 0.1 0.01 0.15

D2 S4 C30 3 80838.8 80818.6 8 838.8 - 80838.8 8 838.8 12.2 80725.6 8 725.6 0.2 0.00 0.14

D2 S4 C30 4 100765.0 - 10 765 24.5 100810.1 10 810.1 9.1 100715 10 715.0 0.1 0.04 0.09

Table 6: Results on E-VSP instances containing 25 to 30 trips.

5.4. Results on the large instances293

The ALNS solutions to the large instances with up to 8 depots, 16 stations and 500 trips are presented in Tab. 7. For294

each instance, we present the best solutions out of five random runs, the average solution of five random runs and the295

computational time in seconds for the algorithm where post optimization phase are presented . The last column shows296

the relative changes of the objective values when the post optimization is include. As can be seen from the table, the post297

optimization helps to improve the solution values by 3.1% on average.298

A comparison between the E-VSP solution and the MD-VSP lower bound is given in Tab. 8. For the E-VSP solutions,299

we present the statistics for the best solution found in five random runs, including the solution value (Best sol.), the number300

of used vehicles (m), the total deadheading distance (d), the average per trip deadheading distance ( dLB

#trips ), the total number301

of recharges (r), the total number of partial recharges (rp), the average remaining battery level before recharge ( fa) and302

the average remaining battery level after recharge ( fb). For the MD-VSP solutions, we present the optimal solution value303

(Opt sol.), the number of used vehicles (m), the total deadheading distance (d), the average per trip deadheading distance304

( dLB

#trips ). The gaps between the two solutions are provided in the last column, calculated as zE−V SP−zMD−V SP
zMD−V SP

· 100. The305

average values over each instance size are also given.306

In the E-VSP solutions, the instances with 100 trips use 19.4 vehicles on average. Each vehicle takes 5.1 trips and307

recharges 1.5 times on average. For the instances with 500 trips, each vehicle carries out slightly more trips, 5.6, and also308

visits the recharging stations more often, 2.2 times, on average. Among all the recharging operations, nearly half of them309

are partial charging.310
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Comparing the E-VSP solutions with the MD-VSP lower bound, we can see that, for most of the instances with 100311

trips, the E-VSP solution uses the same number of vehicles as the MD-VSP lower bound. The gap in the objective value312

is consistently below 7%. The total deadheading distance, is on average around 30% longer in the E-VSP solution than in313

the MD-VSP solution. This relatively high percentage is within our expectation because the total deadheading distance is314

only treated as the secondary objective, and because the deadheading in the E-VSP consists of not only the deadheading315

between the timetabled trips but also the deadheading to and from the recharging stations due to the highly constrained316

driving range.317

As the number of trips increases from 100 to 500, the difference in the total deadheading distance between the two318

solutions increases significantly. This is because it becomes easier to find a more compact schedule for the MD-VSP when319

the number of trips is very high. For example, the average deadheading per trip (column dLB

#trips ) in the MD-VSP solution is320

decreased from 13.6 km to 9.2 km when the number of trips is increased from 100 to 500 in the D4 S8 CX instances. The321

results also show that the E-VSP solution can be improved by providing more depots and stations. For a fixed number of322

trips, the difference between the E-VSP solution and the MD-VSP solution decreases as the number of stations increases.323

In the E-VSP, the tendency of the average trip deadheading is hard to predict due to the restricted driving range, and324

heavily depends on the location of the stations. Fig. 3 depicts two different cases given by instance D4 S8 C500 2 and325

D4 S8 C500 5. In the former instance, the set of stations and depots are relatively well-spread, and the number of electric326

vehicles needed in the E-VSP is almost the same as that in the MD-VSP; whereas, in the latter instance, almost all the327

stations and depots are located in the left half of the plane, and moreover, four out of eight are clustered in the left bottom328

corner.329

To further investigate how the distribution of the recharging station affects the solution, we have tested instance330

D4 S8 C500 2 and D4 S8 C500 5 with four stations distributed in four different ways: 1) even distribution, where the331

plane is divided into four equal sub-regions and one station is located in each sub-region; 2) random distribution, where332

the stations are randomly distributed in the plane; c) corner distribution, where the four stations are located at the four333

corners of the plane; d) quarter distribution, where the plane is divided into four equal sub-regions and four stations are334

located evenly within one sub-region. These distributions are illustrated in Fig. 4. The results are given in Tab. 9. For335

each instance and each station distribution, five random runs are performed. The average solution value, average number336

of used vehicles and average deadheading distances are presented in the table. Even distributed stations leads to the best337

solution as expected. The largest difference between two different distributions is more than 10%, as given by the even338

distribution and corner distribution for instance D4 S8 C500 5.339

5.5. Sensitivity to the driving range and charging rate340

To show the effect of driving range and charging rate on the E-VSP solution, we have tested the instance D2 S4 C100 1341

with different battery capacities ranging from 135 km to 300 km, and with different charging rates from 0.2 minute to 2.4342

minute charging per unit distance. The results are shown in Fig.5. As can be seen from the two plots in the top of Fig.5,343

the deadheading distance is reduced by nearly 30% when the driving range is increased from 135 km to 300 km, which344

shows that the driving range has a large effect on the total deadheading distance. The total number of performed charging345

operations as well as the number of performed partial charging operations reduces when the driving range approaches to346

300 km.347
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Table 7: ALNS results on the large E-VSP instances.

with Post Opt. without Post Opt.

Instance best solution Average solution T (sec) Average solution T (sec) Gap (%)

D2 S4 C100 1 211775 211784 252 211962 89 -0.1
D2 S4 C100 2 182178 188035 890 205957 102 -8.7
D2 S4 C100 3 192230 192270 998 212195 103 -9.4
D2 S4 C100 4 212231 212243 319 232322 107 -8.6
D2 S4 C100 5 181882 181892 381 201919 97 -9.9
D4 S8 C100 1 191600 191615 281 201770 91 -5.0
D4 S8 C100 2 192097 192112 500 202283 104 -5.0
D4 S8 C100 3 191510 191514 325 193863 101 -1.2
D4 S8 C100 4 211612 211629 306 221771 105 -4.6
D4 S8 C100 5 191704 191714 311 191983 105 -0.1
D4 S8 C500 1 878650 883592 1233 894326 483 -1.2
D4 S8 C500 2 940142 946231 1256 946231 506 0.0
D4 S8 C500 3 859788 869651 1187 878565 437 -1.0
D4 S8 C500 4 870033 883185 1187 888664 437 -0.6
D4 S8 C500 5 880386 898437 1198 922678 448 -2.6
D8 S16 C500 1 869530 881216 1255 890213 505 -1.0
D8 S16 C500 2 869282 877456 1259 886016 509 -1.0
D8 S16 C500 3 877456 877657 1178 881609 428 -0.4
D8 S16 C500 4 828538 839913 1189 847429 439 -0.9
D8 S16 C500 5 858816 874741 1183 885909 433 -1.3

Average 534572.1 539844.4 834.4 549883.3 281.4 -3.1

The charging rate also affects the solution significantly as shown in the two plots in the bottom of Fig. 5. Before348

the charging rate reaches 2 min/km, the number of used vehicles remains the same and the total deadheading distance349

increases. When it reaches 2 min/km, the total deadheading distance drops due to the use of an extra vehicle. The350

objective value consistently increases as the charging rate increases. The number of charging operations increases in351

general as the charging rate increases. The number of partial charging also increases because it takes long to charge fully352

when the charging rate is high.353

6. Conclusion and future work354

In this paper, we have considered a new vehicle scheduling problem, the Electric Vehicle Scheduling Problem with355

Partial Charging, in which a set of electric vehicles with limited driving range are scheduled to perform a set of timetabled356

trips and allowed to be recharged fully or partially at any given recharging station. The charging time is assumed to be a357

linear function of the charged amount. We have presented a mixed integer programming formulation for the problem, and358

developed an ALNS heuristic to solve the problem. In ALNS, a wide range of repair- and destroy-methods are adopted, a359

diversification phase is applied occasionally, and a post optimization phase is implemented to further improve the solution.360

This work can be extended in a few directions in the future. Firstly, a better lower bound for the E-VSP can be361

investigated, which is not trivial due to a high complexity introduced by the partial charging. Secondly, the linear function362

used in this work could be replaced by a more realistic function to better describe the relation among charging time,363

charged amount and remaining battery level. Thirdly, it would be very helpful to study a combined recharging station364

location and vehicle scheduling problem in order to determine the locations of the recharging stations at a strategic365

planning level. It is also interesting to investigate how much operational cost and how many electric vehicles can be saved366

by allowing slight modifications of the timetables in the E-VSP.367

16



Table 8: Comparison between E-VSP and MD-VSP on the large E-VSP instances.

E-VSP MD-VSP

Instance Best sol. m d d
#trips r rp fa fb Opt sol. m d d

#trips Gap (%)

D2 S4 C100 1 211775 21 1775 17.8 19 5 0.33 0.98 211460 21 1460 14.6 0.1
D2 S4 C100 2 182178 18 2178 21.8 38 23 0.28 0.83 171530 17 1530 15 6.2
D2 S4 C100 3 192230 19 2230 22.3 33 17 0.34 0.94 181637 18 1637 16.4 5.8
D2 S4 C100 4 212231 21 2231 22.3 31 7 0.32 0.88 211550 21 1550 15.5 0.3
D2 S4 C100 5 181882 18 1882 18.8 33 14 0.33 0.86 181368 18 1368 13.7 0.3

Average 196059 19.4 2059 20.6 30.8 13.2 0.32 0.90 191509 19 1509 15.1 2.4

D4 S8 C100 1 191600 19 1600 16.0 28 13 0.33 0.90 191270 19 1270 12.7 0.2
D4 S8 C100 2 192097 19 2097 21.0 37 11 0.34 0.93 191694 19 1694 17 0.2
D4 S8 C100 3 191510 19 1510 15.1 24 10 0.41 0.96 191209 19 1209 12.1 0.2
D4 S8 C100 4 211612 21 1612 16.1 28 9 0.42 0.93 211245 21 1245 12.5 0.2
D4 S8 C100 5 191704 19 1704 17.0 25 5 0.35 0.93 191375 19 1375 13.8 0.2

Average 195705 19.4 1705 17.0 28.4 9.6 0.37 0.93 195358.6 19.4 1358.6 13.6 0.2

D4 S8 C500 1 878650 87 8650 17.3 185 101 0.34 0.79 834311 83 4311 8.6 5.3
D4 S8 C500 2 940142 93 10142 20.3 185 120 0.23 0.76 924742 92 4742 9.5 1.7
D4 S8 C500 3 859788 85 9788 19.6 194 74 0.38 0.89 764554 76 4554 9.1 12.5
D4 S8 C500 4 870033 86 10033 20.1 186 77 0.37 0.92 824795 82 4795 9.6 5.5
D4 S8 C500 5 880386 87 10386 20.8 196 84 0.36 0.91 784672 78 4672 9.3 12.2

Average 885800 87.6 9800 19.6 189.2 91.2 0.34 0.85 826614.8 82.2 4614.8 9.2 7.2

D8 S16 C500 1 869530 86 9530 19.1 242 109 0.44 0.86 814162 81 4162 8.3 6.8
D8 S16 C500 2 869282 86 9282 18.6 188 61 0.39 0.88 824310 82 4310 8.6 5.5
D8 S16 C500 3 877456 87 7456 14.9 167 71 0.38 0.82 874279 87 4279 8.5 0.4
D8 S16 C500 4 828538 82 8538 17.1 195 106 0.37 0.88 783862 78 3862 7.7 5.7
D8 S16 C500 5 858816 85 8816 17.6 191 85 0.35 0.88 824290 82 4290 8.6 4.2

Average 860725 85.2 8725 17.4 196.6 86.4 0.38 0.86 824180.6 82 4180.6 8.4 4.4

Table 9: Results of different location distribution scenarios.

Instance D4 S8 C500 2 Instance D4 S8 C500 5

Station distribution solution value m d solution value m d

Even distribution 948710.7 93.8 10710.7 896651.8 88.6 10651.8
Random distribution 957596.5 94.8 9596.5 935726.4 92.4 11726.4
Corner distribution 999205.4 98.6 13205.4 986614.1 97.4 12614.1
Quarter distribution 986029.7 97.4 12029.7 945256.5 93.4 11256.5
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Figure 3: The locations of the stations (rectangle and triangle), the depots (rectangle), and trip start and end points (circle) in instance D4 S8 C500 2

(left) and D4 S8 C500 5 (right).
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Figure 4: Four different types of station locations.

(a) Evenly distributed locations (b) Randomly distributed locations

(c) Locations at the corners (d) Locations within one quater
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Figure 5: Sensitivity to the driving range and charging rate.
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