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Abstract

Background: More accurate diagnostic methods are pressingly needed to diagnose breast cancer, the most

common malignant cancer in women worldwide. Blood-based metabolomics is a promising diagnostic method for
breast cancer. However, many metabolic biomarkers are difficult to replicate among studies.

Methods: We propose that higher-order functional representation of metabolomics data, such as pathway-based
metabolomic features, can be used as robust biomarkers for breast cancer. Towards this, we have developed a new
computational method that uses personalized pathway dysregulation scores for disease diagnosis. We applied this
method to predict breast cancer occurrence, in combination with correlation feature selection (CFS) and classification

methods.

Results: The resulting all-stage and early-stage diagnosis models are highly accurate in two sets of testing blood
samples, with average AUCs (Area Under the Curve, a receiver operating characteristic curve) of 0.968 and 0.934,
sensitivities of 0.946 and 0.954, and specificities of 0.934 and 0.918. These two metabolomics-based pathway models
are further validated by RNA-Seg-based TCGA (The Cancer Genome Atlas) breast cancer data, with AUCs of 0.995 and
0.993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine,
aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer.

Conclusions: We have successfully developed a new type of pathway-based model to study metabolomics data for
disease diagnosis. Applying this method to blood-based breast cancer metabolomics data, we have discovered crucial
metabolic pathway signatures for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach
may be generalized to other omics data types for disease diagnosis.

Background

Breast cancer is the most frequently diagnosed cancer in
women worldwide excluding skin cancer and it is ranked
second for deaths among cancer patients [1]. Early diag-
nosis of breast cancer is crucial for patient prognosis.
Currently, however, clinically diagnosed breast tumors
have a median size of 2 to 2.5 cm [2], which are likely to
be later stage (stage III) breast tumors that have already
metastasized to axillary lymph nodes. A highly accurate
diagnostic test for breast cancer is currently lacking. The
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standard mammography test has sensitivities of merely
54 to 77 % [3]. Other diagnostic tools such as ultra-
sound, computed tomography (CT), and magnetic res-
onance imaging (MRI) are slightly more sensitive but are
costly. There is a pressing need for more accurate, cost-
efficient, and non-invasive alternative methods for breast
cancer diagnosis.

Meeting these criteria, metabolomics has quickly risen
as a new method in the cancer biomarker field. As the
final products of various biological processes, metabo-
lites hold promise as accurate biomarkers that reflect
upstream biological events such as genetic mutations
and environmental changes [4]. Discovery of altered me-
tabolites and pathways will help us to gain better under-
standing of dysregulated metabolism in tumor initiation
and progression. Previous metabolomics studies have
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shown that certain metabolites can successfully differen-
tiate patients from normal controls or even classify sub-
populations of certain diseases, including breast cancer
[5-13]. For example, glutamate was found enriched in
breast cancer patients and the glutamate-to-glutamine
ratio was significantly correlated with estrogen receptor
status [12]. Serum profiles of breast cancer patients
showed that histidine, glucose, and lipids were strongly
correlated with breast cancer relapse with a predictive
accuracy of 75 % [13]. However, similar to other types of
biomarkers, metabolomics biomarker results are difficult
to replicate among different studies for a combination of
reasons, such as the heterogeneity of the populations
and study sizes, variability of the experimental protocols,
noise in the metabolomics data, as well as biological var-
iations in the turnover rates of metabolites.

Given the observation that metabolites and enzymes
involved in the same biological processes are often dys-
regulated together in cancer [14], we hypothesize that
higher-order quantitative representations of metabolomics
features, such as pathway-based metabolomics features,
are coherent surrogates of metabolomics biomarkers that
provide more information on biological functions. To our
knowledge, this idea had not been implemented in the
context of metabolomics data, although it had been pro-
posed before in other types of omics data analysis, such as
transcriptomics and genetics (genome-wide association
studies and exome-sequencing) data. Towards this, we
have developed a completely personalized, novel computa-
tional method for pathway-based metabolomics data ana-
lysis using the non-parametric principle curve approach
[15]. We integrate metabolite features as pathway features
and subject them to feature selection and machine-
learning classifications. This methodology is applied to
identify breast cancer diagnosis biomarkers, especially for
early pathological stages. The resulting classification
models are highly accurate for breast cancer all-stage diag-
nosis (area under the curve (AUC)=0.986) and early-
stage diagnosis (AUC =0.995) in the plasma training set.
Moreover, these models predict equally impressively in
plasma testing and serum validation samples, with AUCs
of 0.923 and 0.995, respectively, for the all-stage diagnosis
and 0.905 and 0.902, respectively, for early-stage diagnosis.
We have discovered several pathways critical for the early
diagnosis of breast cancer, including taurine and hypotaur-
ine metabolism and alanine, aspartate, and glutamate
metabolism.

Methods

Study population

Three data sets are used in this study: two metabolomics
data sets from our own group and one RNA-Seq data
set from The Cancer genome Atlas (TCGA) breast can-
cers. The first metabolomics cohort is composed of 132
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breast cancer and 76 control plasma samples and the
second independent set comprises 103 breast cancer and
31 control serum samples. All samples were obtained
from City of Hope Hospital (COH). This study was ap-
proved by the institutional review boards of the City of
Hope National Medical Center. All participants signed
an informed consent before they participated in the
study. Additionally, we downloaded TCGA breast cancer
RNA-Seq data from 1082 tumor and 98 tumour adjacent
normal controls [16] from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga/). Patient characteris-
tics, staging of disease, and other parameters are shown
in Table 1.

Data set configurations for diagnostic model training,
validation, and testing

For the all-stage diagnosis model, we used 80 % of the
plasma (106) and 80 % of the control (61) samples as the
training data. We employed three testing data sets, in-
cluding: (1) the remaining 20 % of the plasma (26) and
20 % of the control (15) samples as the first hold-out
testing data; (2) the entire 103 breast cancer and 31 con-
trol serum samples; (3) a cohort of 98 pairs of age-
matched breast cancer TCGA RNA-Seq data. There is
no sample overlap between the training and test sets. To
train the early stage diagnosis model, we used the stage I
(15 samples) and II (37 samples) subsets of the training
data in the all-stage diagnosis model described above, in
combination with the 61 healthy control samples.

Collection and storage of blood serum and plasma
Fasting serum and plasma specimens were collected in
the morning before breakfast from all the participants.
The samples from controls were obtained from healthy
volunteers. The breast cancer patients were newly diag-
nosed and were not recurrent or on any medication
prior to sample collection. All samples were placed into
clean tubes and immediately stored within 2 h of collec-
tion at —80 °C until analysis.

Metabolic profiling

Liquid chromatography/time-of-flight mass spectrom-
etry (LC-TOFMS) and gas chromatography/time-of-
flight mass spectrometry (GC-TOFMS) were used for
the metabolomics profiling of all blood samples in the
study. The profiling procedure included sample prepar-
ation, metabolite separation and detection, metabolo-
mics data pre-processing, metabolite annotation, and,
finally, statistical analysis for biomarker identification.
To eliminate batch effects, all of the plasma samples
were processed in one batch, as were all of the serum
samples. All annotated metabolites from GC-TOFMS
and LC-TOFMS data sets were combined and exported
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Table 1 Summary of patient and clinical characteristics
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COH plasma COH serum TCGA paired RNA-Seq
Training set Test set Test set Test set
Characteristics Breast Healthy Breast Healthy Breast Healthy Breast Healthy
cancer control cancer control cancer control cancer control
Number of samples 106 61 26 15 103 31 98 98
Age (years; median, range) 53,31-73 34, 21-40 54.5,36-72 37,21-40 52,32-72 36, 18-49 56, 30-90 56, 30-90
Stage (number of patients)
| 16 3 18 16
Il 40 9 49 60
Il 38 8 54 21
v " 6 19 1
Race (number of patients)
Asian 14 3 14 1 1
Black 5 12 4 1 6 5 6 6
White 76 28 18 9 69 21 90 90
Latino 21 5 5
Native 1
Other 10 1 13 1 1

to SIMCA-P+ 12.0 software (Umetrics, Umed, Sweden)
for multivariate statistical analysis.

Pathway mapping of metabolites

The names of metabolites are standardized by linking
them to Human Metabolome Database (HMDB) IDs,
with consideration of synonyms. A comprehensive mas-
ter file was created which contains the mapping infor-
mation between 310 human metabolic pathways and
affiliated metabolites. Pathway and metabolite informa-
tion were extracted from HMDB [17], Small Molecule
Pathway Database (SMPDB) [18], Kyoto Encyclopedia of
Genes and Genomes (KEGG) [19], Recon 2 [20], IPA
(QIAGEN's Ingenuity® Pathway Analysis, IPA°, QIAGEN,
Redwood City, http://www.ingenuity.com/), FLink
(Frequency weighted Links, http://ncbi.nlm.nih.gov/
Structure/flink/flink.cgi) and PubChem [21]. Most of
the metabolites could be mapped to pathways by the
master file. The remaining unmapped metabolites were
manually searched for in the literature.

Pathifier algorithm

We used the R package pathifier [22] to perform
pathway-based metabolite sets analysis. Details about
pathifier are described elsewhere [22, 23]. Briefly, this al-
gorithm transfers information from the metabolite level
to pathway level by inferring the pathway dysregulation
score (PDS) for each sample in each pathway. This PDS
is an individualized pathway-level measurement of ab-
normality. The normal condition samples are utilized to
construct a principal curve, which is then smoothed.

Every sample is projected onto the smoothed principal
curve and the PDS is the normalized projection distance
for each pathway of each sample. If the sample deviates
further from others in a particular pathway, then the
projection distance to the curve is larger and leads to a
higher PDS for this pathway.

Feature selection and evaluation of classification models
For feature selection from the training data, we used the
correlation feature selection (CFS) method implemented
in Weka [24] with tenfold cross-validation. CFS is a
machine-learning method that selects features with the
highest correlation to responses and lowest correlation
with other selected features [25]. In the tenfold cross-
validation step, training data were split into ten parts,
nine of which were used as the actual training set while
the remaining part was used as the validation set, such
that a set of features were selected by CFS. We repeated
this process ten times among different parts and kept
the features that were selected ten out of ten times
(100 %). To select the best-suited classifier, we evaluated
the performance of three classification methods (logistic
regression, support vector machine (SVM), and random
forest) on the training data set for the same set of CFS-
selected features. We used a comprehensive list of met-
rics that include AUC, sensitivity, specificity, Matthew’s
correlation coefficient (MCC), and F1-statistic.

TCGA RNA-Seq analysis
Breast cancer TCGA RNA-Seq data were downloaded
from the data portal (https://tcga-data.ncinih.gov/tcga/)
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on 23 October 2015 [16]. We included 1082 breast can-
cer samples with 98 control samples. For pathway level
analysis, we implemented the pathifier algorithm on the
RNA-Seq data and applied limma’s differential ¢-test to
compare the pathway level results with our study. For
metabolite level analysis, the enzyme (gene) information
for featured metabolites was extracted from KEGG and
SMPDB. Limma’s differential ¢-tests were used for calcu-
lation of the p values for each enzyme (gene). Barplots
were used for comparison between metabolites and the
related enzyme (gene) in breast cancer and normal
samples.

Metabolite-based model comparison

We built the metabolite-based model on the same
plasma training data set. We conducted feature selection
and classification the same way as for pathway-based
models so that the results are comparable. Specifically,
we used the CFS method implemented in Weka with a
tenfold cross-validation for feature selection. We imple-
mented logistic regression models for all-stage and
early-stage classification to compare with pathway-based
models.

Power analysis of the diagnosis model

To ensure the adequacy of our pathway-based metabolo-
mics model, we calculated the sample size and statistical
power using the module implemented in MetaboAnalyst
[26], where the implementation was described by van
Iterson et al. [27].

Data availability

All the input metabolomics data used for this study have
been deposited in Metabolomics Workbench (http://
metabolomicsworkbench.org/; project ID PR000284).
Additionally, the metabolites mapped to pathways are
included in Additional file 1. The R scripts for pathway
mapping, PDS matrix generation, and logistic regression
are available at http://www2.hawaii.edu/~Igarmire/
MetaboloPathwayModel.html.

Results

Data sets and the analysis workflow

Three data sets are used in this study: two of them are
our own metabolomics profiling data sets from inde-
pendent plasma and serum samples and the third is the
TCGA breast cancer RNA-Seq data set (to test the
generalization of the pathway-based model across data
types). The metabolomics data include newly diagnosed
pre-treatment samples comprising (1) 132 breast cancer
and 76 control plasma samples and (2) 103 breast cancer
and 31 control serum samples. For the two plasma and
serum sample data sets, we conducted metabolomics ex-
periments by both liquid chromatography time-of-flight
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mass spectrometry (LC-TOFMS) and gas chromatog-
raphy time-of-flight mass spectrometry (GC-TOEMS).
According to the power analysis tool in MetaboAnalyst
[26], the study achieves a power of 0.84 (Additional file 2:
Figure S1), supporting the adequacy of the metabolomics
data. Physiological and clinical information, such as age,
ethnicity, and tumor stage for the plasma, serum data, and
TCGA sets are summarized in Table 1.

To analyze the metabolomics data, we have developed
a novel computational pipeline that identifies pathway-
based biomarkers for blood-based breast cancer diagno-
sis (Fig. 1). The essence of the approach is to transform
metabolite-level information to completely personalized
pathway-level information. The overall workflow of the
pathway-based model and the analysis process is as
follows.

First, metabolites are mapped to their standardized
Human Metabolome Database (HMDB) IDs and the
pathway—metabolite relationships are summarized in a
master file from multiple resources, including HMDB,
Kyoto Encyclopedia of Genes and Genomes (KEGG),
Small Molecule Pathway Database (SMPDB), IPA, FLink,
Recon 2, and PubChem. Next, we used the pathifier
algorithm to convert the raw metabolite-based data
matrix to the pathway-based matrix that contains path-
way dysregulation scores (PDS). Pathifier is a non-
parametric method for dimension reduction, where a
one-dimensional principle curve is derived from a cloud
of data points in the high-dimensional space. The PDS is
a metric for the degree of pathway abnormality per pa-
tient and it is the distance on the principle curve from
the starting point to the point projected by a particular
and individualized pathway [15, 22]. A PDS ranges from
0 to 1, where a score closer to 1 indicates a more aber-
rant pathway. Then, we used the PDS matrix from 80 %
of the qualified plasma set to train classification models.
We selected the plasma set to train the classification
models as it has a larger sample size and more complete
information of tumor stages. The details of feature selec-
tion and classification to train the models and model
testing with three different data sets are described in the
following sections.

Metabolic pathway-based all-stage diagnostic model for
breast cancer

We first investigated the metabolomics-based pathways
as biomarkers to predict breast cancers composed of all
stages of tumors (Fig. 2). To select the best set of fea-
tures that are maximally relevant and minimally redun-
dant, we used CFS with tenfold cross-validation on the
plasma training data set, which is composed of 80 % of
the breast cancer and 80 % of the healthy control samples.
With these selected features (Fig. 2c), we evaluated three
widely used classification methods (logistic regression,
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metrics, including AUC, MCC, sensitivity, specificity, and F1-statistic

Fig. 1 The workflow of the pathway-based metabolomics data analysis. Step 1: conversion from metabolite- to pathway-based metabolomics
data. The input data include the master file containing pathway-metabolite mapping information, the metabolomics profiling data, and the
normal/tumor classification vector. The metabolomics-level data are transformed to pathway-level data by the pathifier algorithm. The output file
of pathifier is the pathway dysregulation score matrix, within which each score measures the deregulation of a specific pathway for a specific
sample. Step 2: model construction. Qualified COH plasma samples are split by 80/20 for training and holdout testing data. Correlation feature
selection (CFS) is used for feature selection and the logistic regression model is used for classification. Tenfold cross-validation (10-fold CV) is
applied with CFS feature selection in the plasma training data set. Two models are constructed: an all-stage diagnostic model and an early-stage
diagnostic model. Step 3: model evaluation. The model performance is assessed using receiver operating characteristic (ROC) curves and various

SVM, and random forest) on the plasma training data set.
The resulting performance metric AUC (0.986) shows that
logistic regression performs the best among the three
methods (Additional file 3: Table S1). We thus used the
logistic model as the model of choice to evaluate three
other testing data sets: the 20 % hold-out plasma testing
samples, the entire serum sample set, and a cohort of 98
pairs of age-matched breast cancer RNA-Seq data from
TCGA. Note for TCGA data that we generated the PDS
and extracted the values for the same features as the train-
ing data set. Although these three data sets are generated
from different populations and technology platforms, our
hypothesis is that pathway-based features should represent
true biology and the model based on metabolomics data
should, therefore, be generally predictive.

The resulting metabolic pathway-based diagnostic
model performs very well on all three testing data sets,
with AUCs of 0.923, 0.995, and 0.9946 in the hold-out
plasma testing samples, serum samples, and TCGA
RNA-Seq set, respectively (Fig. 2a). Moreover, other stat-
istical metrics, such as the sensitivity, specificity, MCC,
and F1-statistic, are also outstanding, confirming the ro-
bustness and generality of the pathway-based model
(Fig. 2b). The superior performance of the model on the
serum metabolomics and TCGA RNA-Seq data sets is
surprising. This may be due to the more complete lists
of metabolites in the serum data set and genes in the
RNA-Seq data set compared with the plasma samples.

The good AUC obtained from the age-matched TCGA
RNA-Seq data suggests that age is unlikely to be a driv-
ing factor leading to the accuracy of the classification
from the metabolomics-based pathway-model. Neverthe-
less, we further examined if age is a dominant confound-
ing factor in the metabolomics training data. For this, we
divided the plasma data into two subsets: subset 1 with 35
pairs of age-comparable samples and subset 2 with 97
breast cancer and 41 age-incomparable controls. If diag-
nosis signals were driven by age, then a model trained on
age-incomparable subset 2 would have very poor predic-
tion on subset 1, where the ages among these samples are
comparable. However, a new model on age-incomparable
subset 2 still achieves a very high AUC of 0.913 on age-
comparable subset 1. Thus, the pathway features (Fig. 2c)
in the earlier model are predictive of breast cancer
diagnosis.

These eight pathway features are listed in the following
in descending order with regard to their relevance, as
measured by Mutual Information (MI), for diagnosis:
taurine and hypotaurine metabolism; glutathione metab-
olism; methionine metabolism; glycine, serine, and
threonine metabolism; phospholipid biosynthesis; pro-
panoate metabolism; cAMP signaling pathway; and
mitochondrial beta-oxidation of medium chain saturated
fatty acids. Interestingly, none of the pathways has an
MI greater than 0.5, indicating the complexity of the dis-
ease and the significance of pathways collectively.
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Fig. 2 The performance of the all-stage diagnosis model for breast cancer. We used 80 % of the controls and cases in the COH plasma data set
to train the model. The remaining COH plasma data (20 %) and the COH serum data set were used as the test set and validation set. a Receiver
operating characteristic (ROC) curves for the all-stage breast cancer diagnosis from different data sets. b AUC, MCC, sensitivity, specificity, and
F1-statistic to measure the performance of the all-stage diagnosis model. ¢ Mutual information for pathway features selected by the all-stage
diagnosis model. d. Log fold change of metabolites associated with the selected pathway features determined by comparing cases and controls
across different data sets

Among them, taurine and hypotaurine metabolism
stands out as the most important pathway (MI = 0.386).
Hypotaurine is a product of the enzyme cysteamine
dioxygenase, which is involved in protecting against oxi-
dative stress and cancer-induced membrane damage
[28, 29]. The taurine and hypotaurine metabolic path-
way has been shown to be relevant to multiple types of
cancers, such as ovarian, lung, colon, and renal cancers
[30-33]. Here, for the first time, we have discovered that

taurine and hypotaurine metabolism is also dysregulated
in the blood samples of breast cancer. In order to con-
firm the significance of each pathway at the transcrip-
tome level, we crosschecked pathway-level expression
results using TCGA RNA-Seq data. The pathway level
results of two data types are consistent overall, as ex-
pected (Additional file 3: Table S2). For example, the
taurine and hypotaurine metabolism pathway has a sig-
nificant p value of 1.01E-25 for the differential test in
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the metabolomics data and it is also a top-ranked path-
way with a p value of 7.40E-9 in the RNA-Seq data.

Next, we identified the measurable metabolites in
these selected pathways from both plasma and serum
samples and measured their average log fold changes in
tumor versus control samples (Fig. 2d; Additional file 3:
Table S3a). Hypotaurine is the primary metabolite in the
leading significant taurine and hypotaurine pathway, and
it is increased by 2.41-fold (0.0086 vs. 0.0025) in the
tumor sample compared with the normal plasma sam-
ple. Pyruvate, the most central metabolite in the cell and
a common component of glycine, serine, and threonine
metabolism and taurine and hypotaurine metabolism
pathways, is consistently present at higher levels in
breast cancer blood samples (Fig. 2d; Additional file 3:
Table S3a): it is increased by 1.82-fold in the plasma
sample and 2.89-fold in the serum sample compared
with control (Fig. 2d; Additional file 3: Table S3a). Inter-
estingly, several amino acids are present at lower levels
in cancer samples compared with controls, including
succinate (1.69-fold decrease in plasma, 4.58-fold de-
crease in serum), choline (1.23-fold decrease in plasma,
4.58-fold decrease in serum), serine (2.72-fold decrease
in plasma, 1.13-fold decrease in serum), glycine (1.25-
fold decrease in plasma, 1.83-fold decrease in serum)
and alanine (1.11-fold decrease in plasma, 1.62-fold in
serum) (Additional file 3: Table S3a). Decreased levels of
glycine and alanine in plasma and serum of breast can-
cer patients have been reported before [34, 35]. Choline,
serine, and glycine are the major components of glycine,
serine, and threonine metabolism, glutathione metabol-
ism, and methionine metabolism, whereas succinate is
the major component of propanoate metabolism and the
cAMP signaling pathway. Similarly, levels of glycerol-3-
phosphate in phospholipid biosynthesis are significantly
lower in the cancer samples, with a sixfold decrease in
plasma. The comparisons between some key metabolites
in our metabolomics study and the corresponding
enzymes from TCGA RNA-Seq data are shown in
Additional file 2: Figure S2. Overall, the directions of
change in metabolite levels are consistent with those
of corresponding enzymes.

Metabolic pathway-based early-stage diagnostic model
for breast cancer

Early detection of breast cancer is critical to improve
survival. Due to the small sample size (n =16) of stage I
tumors, we combined the samples in stages I and II as
early-stage cancers and constructed a sub-model to diag-
nose early-stage breast cancer, similar to the previous
all-stage diagnosis model. As expected, the pathway-
based early-stage diagnostic model performs very well
on the training data set, with an AUC of 0.995. More-
over, it also predicts very well on the three testing data
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sets, with AUCs of 0.905, 0.902, and 0.999 in the 20 %
hold-out plasma testing, serum, and TCGA breast can-
cer samples (Fig. 3a). Other model performance metrics
also vyield satisfactory results in both data sets, support-
ing the excellence of the early diagnostic model (Fig. 3b).

Eight key pathways are identified as diagnostic features
for early-stage breast cancer detection (Fig. 3a), namely
taurine and hypotaurine metabolism, alanine, aspartate,
and glutamate metabolism, protein digestion and ab-
sorption, purine metabolism, malate-aspartate shuttle,
cAMP signaling pathway, propanoate metabolism, and
biosynthesis of unsaturated fatty acids (listed in descend-
ing order of significance). Similar to the all-stage diagno-
sis model, taurine and hypotaurine metabolism is again
the top-ranked pathway (MI = 0.414; Fig. 3c), indicating
its significance as a new signature for early-stage breast
cancer detection. Alanine, aspartate, and glutamate me-
tabolism is a new pathway feature selected by the early-
stage diagnosis model, largely due to the increase of the
intensity of aspartate from 0.063 to 0.182 and decrease
of the intensity of asparagine from 0.091 to 0.038 in the
cancer and control plasma samples, respectively. This
implies a transformational relationship from aspartate to
asparagine in cancer. The cAMP signaling pathway has
been intrinsically linked to a variety of pathways, such as
the PI3K pathway, and antibodies directed against the
soluble adenylyl cyclase that catalyzes cAMP production
have been shown to be highly specific markers for mel-
anoma [36, 37]. To further confirm the significance of our
finding, we calculated the differences in the above eight
feature pathways between tumor and control samples using
the metabolomics data and TCGA RNA-Seq data. The
pathway-level results are significant for both metabolomics
and RNA-Seq data sets (Additional file 3: Table S2).

At the metabolite level, some key metabolites are pre-
served in the early-stage diagnosis sub-model (Fig. 3d)
compared with the all-stage model (Fig. 2d). These in-
clude cysteine, glutamine, and asparagine, which are
present at higher concentrations in early-stage tumor
samples, as well as alanine and aspartate, which are
decreased during early tumorigenesis. The finding that
aspartate, the precursor of beta-alanine [38], is signifi-
cantly and robustly lower even in early-stage breast can-
cers is very interesting and further confirms that
dysregulations of amino acid metabolism and metabolites
are early events associated with breast cancer tumorigen-
esis [35]. We summarize the average expression of the key
metabolites and the differential test p values in Additional
file 3: Table S3b. We also compare the relationship be-
tween the expression of key metabolites from our study
and the expression of genes encoding the enzymes that
transform those metabolites from the TCGA RNA-Seq
data in Additional file 2: Figure S3. Both sets of results
show consistent trends in general.
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Fig. 3 The performance of the early-stage diagnosis model for breast cancer. We used 80 % of the controls and early-stage (stage | and Il) cases
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early stage cases in the COH serum data set, were used as the testing and validation set. a Receiver operating characteristic (ROC) curves for the
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Integrative analysis of key pathways and metabolites

Metabolic regulation is elaborately linked to cancer initi-
ation and progression as proliferating cells demand nutri-
ents for energy production as well as synthesis of genetic
materials, proteins, and lipids [4, 14]. Although the feature
pathways identified by the diagnostic and early diagnostic
models are different, they are nevertheless interconnected
in the cellular context (Fig. 4). Alanine, glutamine, and
aspartate metabolism are interconnected and we observe

consistent trends of decreasing alanine, glutamine, and as-
partate levels in cancer vs. normal samples. Moreover,
amino acid, glucose, and phospholipid metabolism can be
interconnected through glutaminolysis, a process that
supplies carbon and nitrogen resources to the growing
and proliferating cancer cells [39]. We also summarize the
overlap between metabolites from the pathways featured
in the all-stage diagnosis and early-stage diagnosis models.
Common metabolites important to the two models are



Huang et al. Genome Medicine (2016) 8:34

Page 9 of 14

Glycolysis

Sufoacetaidehyde

Taurine and Hypotaurine
T Metabolism

Glycine, Serine and Threonine Metabolism

Methionine Metabolism

Phospholipid Biosynthesis

Fig. 4 Integrative analysis of pathway features and the associated metabolites. The key pathways and their intersections crucial for breast cancer
diagnosis. Metabolites and enzymes are represented with nodes of different shapes and colors, and their relationships are represented by edges

Acetyicholine

— —Intermediate Steps. —>

Mitochondrial Beta-Oxidation of
i Medium-Chained Fatty Acids

- Nonfunctional - =

beta-alanine, glycine, serine, lactate, succinate, oxoglu-
tarate, alanine, 3-hydroxybutyrate, methionine, valine,
cadaverine, and pyruvate, all functionally linked to glu-
taminolysis (Additional file 2: Figure S4).

Comparison of pathway-based and metabolite-based
metabolomics models

To evaluate the pathway-based metabolomics diagnosis
modeling approach compared with the commonly used
metabolite-based approach, we constructed a “baseline”
metabolite-based model using exactly the same CFS fea-
ture selection and logistic regression steps used in our
pathway-based method. Since the AUC values indicate
that the early-stage model is less likely to have over-
fitting, we used the early-stage breast cancer data to
compare the pathway-based and metabolite-based diag-
nosis models. In the training data set, the pathway-based
approach performs slighter better, with an AUC of 0.995
compared with 0.988 in the metabolite-based approach
(Fig. 5). A similar trend also exists in the testing data
set, where the pathway-based model yields an AUC of
0.905 and the metabolite-based model has an AUC of
0.888 (Fig. 5).

US Food and Drug Administration approval of bio-
markers requires the demonstration of the biomarker
candidate functions [40]. We thus built single-variate
logistic models to show the diagnostic potential of the
individual pathway or metabolite features selected by the

models. Comparatively, the top pathway features show
better disease association than the top metabolite fea-
tures (Additional file 3: Table S4). In the pathway-based
model, taurine and hypotaurine metabolism is the most
statistically significant (p < 2E-16, t-test) followed by the
protein digestion and absorption pathway (p =3.5E-10,
t-test). On the other hand, in the metabolite-based
model, the most significant metabolite, cysteine
(HMDBO00192), has a significant p value of 2.22E-9.
These results indicate that the top individual pathway
feature may have better diagnostic performance than
metabolites.

To investigate the effect of the number of pathways on
the performance of the pathway-based model, we con-
ducted sensitivity analysis as exemplified by the early-
stage diagnosis model. We randomly selected half (51)
of the initial 101 pathways within exactly the same train-
ing sample sets and applied the same CEFS feature selec-
tion criteria with tenfold cross-validation. CFS selects six
pathways for the early-stage model (Additional file 3:
Table S5). We imposed logistic regressions on these se-
lected features and compared the changes in AUCs due
to changes in pathways. Reducing the initial number of
pathways decreases the performance of the models, as
expected. In the training data, the half-size pathway-
based early stage diagnosis model has a slight decrease
of AUC from 0.995 to 0.948. Such a decrease is more
pronounced in the serum testing data, from 0.903 to
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0.753. Similar trends are observed for the all-stage diag-
nosis model.

Discussion

Summary of discoveries

Metabolomics provides the most direct measurement of
phenotypic changes because it reflects the final molecu-
lar result of the combination of all upstream genetic,
transcriptomic, and proteomic changes [41]. The relative
incomplete coverage of metabolomic measurements has
been a challenge for their use as diagnostic classifiers. In
this study, we address this challenge by using a new
metric of personalized pathway dysregulation score
(PDS). This score can interpret the metabolomics data
in the context of the metabolic pathways on the individual
patient level, thereby enabling us to discriminate the dif-
ferences in specific pathways between cancer and normal
samples. This approach accurately predicted all-stage
breast cancer patients from normal controls (AUC =
0.968). It even detected early-stage (stage I and II) breast
cancers with excellent accuracy (averaged AUC = 0.904 in
two test sets). In addition to the increased power achieved
by integrating concerted metabolic changes as described
in this paper, our pathway-based classifiers can potentially
offer deeper biological insights into which cellular pro-
cesses are dysregulated in breast cancer. We have discov-
ered novel critical pathways, such as taurine and
hypotaurine metabolism and alanine, aspartate, and glu-
tamate metabolism related to glutaminolysis, for the early
diagnosis of breast cancer.

A new paradigm to use pathways as features of
biomarker classification models

Conventionally, almost all metabolomics studies aim to
identify metabolites as biomarkers. Even among the few
studies that involve the systematic pathway approach
[42-45], none have developed a computational method-
ology to employ pathways as input features for the
downstream statistical or machine learning modeling of
biomarker diagnosis or prognosis.

The disadvantage of using metabolites as predictors of
biomarker diagnosis or prognosis models are obvious:
low reproducibility. This could be due to various rea-
sons, such as the heterogeneity of the populations and
small study sizes, variability of the experimental proto-
cols, and technical noise in the metabolomics data. In
fact, we compared the multiple studies that had
attempted to identify metabolites in blood as biomarkers
for breast cancer previously [34, 46—48] and found little
overlap or even controversies among them (Additional
file 2: Figure S5) [13, 34, 35, 47-52]. On the contrary,
many metabolites in the featured pathways that we have
found with our method coincide with previous reports,
such as increases in alanine, pyruvate, and lactate as well
as decreases in choline in cancer samples. Thus, the
pathway-based method is more tolerant of heterogeneity
in populations compared with the metabolite-based bio-
marker approach. The tolerance of the pathway-based
method for population heterogeneity is also manifested
through the pathway features being able to accommo-
date age differences. The models predict fairly well on
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three different sets of test data, even when the ages are
matched. Moreover, the biologically motivated feature
selection approach offers systems level and biological
level insights, which the metabolite-based models lack.
Such system-level knowledge is very critical as we move
forward towards developing intervention strategies for
cancer prevention or therapeutic strategies for cancer
treatment. Biological systems are highly robust with re-
dundant components and attacking the higher-level
structures such as pathways offers a better strategy than
changing the expression of lower-level components such
as genes or metabolites.

The workflow that we propose here is a fully personal-
ized pathway-based diagnostic modeling framework for
metabolomics data. Moreover, it is compatible with the
conventional metabolite-based predictive modeling ap-
proach after the step of input matrix transformation.
This methodology represents generalization of the
pathway-based predictive modeling philosophy, which
we had exemplified earlier using transcriptomics and
clinical data to predict breast cancer prognosis [23]. The
most distinguished characteristic of our method is that it
summarizes the contribution of potentially correlated
metabolites in the same pathway into a single metric,
the PDS, on a patient by patient basis. Our method not
only preserves the individual patient information before
classification but also gives a direct numerical value
(rather than the rank) per pathway per patient. Doing so
provides great flexibility for using pathways as features
for various downstream analyses, exemplified here as
diagnosis biomarker modeling. The applications go far
beyond disease diagnosis though. For example, one
could also use the new data matrix of PDSs to perform
clustering or survival analysis. On the other hand, other
bioinformatics tools for metabolomics analysis, such as
MetaboAnalyst [26] and Metabolite Set Enrichment
Analysis [53], either use pathway enrichment post hoc
or lose individual patients’ values during the set enrich-
ment analysis.

Perhaps the most powerful feature of this modeling
approach is that the pathway features may be general-
ized to other omics platforms despite the differences
in experimental protocols, what is measured (metabo-
lites, mRNAs, proteins, etc.), and their units. Here we
have demonstrated that the pathway features obtained
from metabolomics data have excellent predictive per-
formance in TCGA breast cancer RNA-Seq data,
where both the sample sources and technical platform
are different from the metabolomics data sets. More-
over, by projecting metabolite profiles onto pathway
profiles, metabolomics data can be integrated with
other types of omics data, such as RNA-Seq gene ex-
pression, DNA methylation, and copy number vari-
ation data.
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Important discoveries of altered pathways during
carcinogenesis

Our results demonstrate that taurine and hypotaurine
metabolism is the most indicative pathway for breast
cancer diagnosis. Taurine, converted from hypotaurine
by hypotaurine dehydrogenase, is intricately linked with
alanine and glutamate metabolism (Fig. 4). Although this
is the first report of the possible importance of this sig-
nificant pathway in breast cancer early diagnosis, many
lines of evidence suggest this is a critical pathway in
tumor development. Hypotaurine is known to modify
the indices of oxidative stress and membrane damage,
both of which are associated with cancer [28, 54]. Add-
itionally, others have linked this pathway to worse progno-
sis in ovarian, kidney, colon, and lung adenocarcinoma
[30, 32, 33, 55]. Moreover, glutamate decarboxylase 1, a
key enzyme in taurine and hypotaurine metabolism, has
been identified as a tissue biomarker for benign and ma-
lignant prostate cancer [56].

We also found alanine, aspartate, and glutamate metab-
olism together with the malate-aspartate shuttle to be sig-
nificant pathways in the early-stage diagnosis model.
Aspartate is the key metabolite that shows significantly
lowered levels in breast cancer blood samples (Additional
file 3: Table S3b). It is produced from oxaloacetate by a
transamination process. and participates in the urea cycle
to facilitate the removal of ammonia as well as acting in
the biosynthesis of pyrimidine for translocation of NADH
into mitochondria. Interestingly, the lower level of aspar-
tate in the blood is conversely associated with increased
aspartate in breast cancer tissues and cell lines [57], sug-
gesting that the aspartate pool in the blood is utilized to
supply more aspartate in breast cancer cells. Consistent
with this hypothesis, asparagine synthetase, the enzyme
that generates asparagine from aspartate, was overex-
pressed under glucose deprivation in pancreatic cancer
cells to protect against apoptosis [58].

Perspectives and future work

In this study, we have proposed a new and personalized
pathway-based approach to integrate metabolite-level
metabolomics data in the diagnosis of breast cancer.
The success of this type of pathway model first relies on
data obtained through a profiling (rather than targeted)
approach where as many metabolites/genes as pos-
sible are recorded. Compared with other omics data
types, metabolomics data are much less standardized
across different studies and data repositories are lack-
ing [59, 60]. A community effort needs to be made to
improve data sharing in order to accumulate statistically
well-powered data sets to predict disease diagnosis and
prognosis. To drive our modeling approach towards clin-
ical diagnosis, we are planning to build a large database to
store the metabolomics profiles as references. In the
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model construction step, samples will be labeled as
cancer/normal classes are used and their individual path-
way scores (normalized scores between 0 and 1) will be
calculated as inputs subject to feature selection and classi-
fication step. When a new sample arrives, the metabolite
profile will be normalized relative to the database and a
new vector of PDSs will be calculated after the same
metabolite-to-pathway transformation. The classification
model can then call for the probability of this new sample
being normal or cancerous. Depending on the accuracy of
prediction in the new sample, we can elect to incorporate
it into the training data set and re-train the model,
thus improving the predictive power of the model
over time. Moreover, from the new patient’s PDS pro-
file we can also infer the aberrant pathways and iden-
tify problematic metabolites (and associated enzymes)
for this specific patient. Therefore, the discoveries could
be used for not only diagnosis prediction but also preci-
sion medicine.

Conclusions

We have successfully developed a new type of pathway-
based model that uses metabolomics data for disease
diagnosis. Applying this method to blood-based breast
cancer metabolomics data, we were able to discover cru-
cial metabolic pathway signatures for breast cancer diag-
nosis, which may be valuable for diagnostic tests and
therapeutic interventions [61, 62]. Further, this modeling
approach can be broadly applicable to other omics data
types for disease diagnosis.
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diagnosis). Figure S5. Metabolites detected as biomarkers for breast
cancers by different studies. Study1 (serum), Jobard et al. [46]. Study?2
(serum), de Leoz et al. [49]. Study3 (serum), Oakman et al. [48]. Study4
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