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Real-Time Trading Strategies of Proactive DISCO
with Heterogeneous DG Owners

Chunyu Zhang, Member, IEEE, Qi Wang, Member, IEEE, Jianhui Wang, Senior Member, IEEE,
Pierre Pinson, Senior Member, IEEE, and Jacob Østergaard, Senior Member, IEEE

Abstract—This paper presents a methodology to obtain the
optimal trading strategies between the proactive distribution
company (PDISCO), heterogeneous distributed generation own-
ers (DGOs) and wholesale market in a real-time trading frame-
work. In this framework, the PDISCO’s decisions cover the
power procurements from DGOs and the transactions within the
real-time market. A one-leader multi-follower-type bilevel model
is proposed to embody the PDISCO-DGO gaming structure.
The upper-level (UL) problem is to maximize the PDISCO’s
profit, while the lower-level (LL) problem indicates the profit
maximization per DGO. Since the UL problem is non-linear
and non-convex and the LL problems are linear and convex,
we reformulate the proposed model to a solvable mathematical
program with equilibrium constraints (MPEC) by an equivalent
primal-dual approach. The numerical results of the case studies
show the effectiveness and scalability of the proposed model.

Index Terms—Distributed generation (DG), proactive distribu-
tion company (PDISCO), distributed generation owner (DGO),
Bayesian game, bilevel model, multi-period AC power flow,
mathematical program with equilibrium constraints (MPEC).

NOMENCLATURE

Sets and Indices

i, j, B Index and set of distribution buses.
ij,Λ Index and set of distribution feeders.
d,D Index and set of demands.
g,G Index and set of stochastic DGs.
s, S Index and set of storage devices (SDs).
m,M Index and set of DGOs with stochastic DGs.
n,N Index and set of DGOs with only SDs.
k,K Index and set of DGOs with both stochastic

DGs and SDs.
t, T Index and set of time periods (e.g., hours per

day).
ω,Ω Index and set of scenarios.
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MD Mapping of the set of demands onto the set
of buses.

MG,MS Mapping of the set of DGs or SDs onto the
set of buses respectively.

MO Mapping of the set of DGs and SDs onto the
set of DGOs.

Variables
λ
B(1,2,3)

t(m,k,n)

P
B(1,2,3)

t(m,k,n)

Bidding price and generation quantity of re-

spective Type1,2,3 DGOs at time t .
P

TP (1,2,3)

t(m,k,n)ω

Q
TP (1,2,3)

t(m,k,n)ω

Active and reactive power generated by re-

spective Type1,2,3 DGOs at time t for sce-
nario ω.

P devtgω , Q
dev
tgω Active and reactive power bought from the

PDISCO for DG g by Type1 DGOs at time
t for scenario ω.

P sdtsω, Q
sd
tsω Active and reactive power discharged by SD

s at time t for scenario ω.
P sctsω, Q

sc
tsω Active and reactive power charged by SD s

at time t for scenario ω.
Etsω Residual energy of SD s at time interval t for

scenario ω.
PRTtω , QRTtω Active and reactive power exchanging in real-

time market at time t for scenario ω.
P shedtdω , Qshedtdω Active and reactive power of load-shedding

at demand d at time t for scenario ω.
QCtiω Reactive power supplied by the shunt com-

pensator at bus i at time t for scenario ω.
P ft,ij,ω, Q

f
t,ij,ωActive and reactive power flows through

feeder ij at time t for scenario ω.
etiω, δtiω Voltage magnitude and phase angle at bus i

at time t for scenario ω.

Parameters

PDGtgω , Q
DG
tgω Active and reactive power generation realiza-

tion of DG g at time t for scenario ω.
Cg Generating cost of DG g.
Csds , C

sc
s Discharging and charging cost of SD s.

P
DG

tg , Q
DG

tg Maximum active and reactive power genera-
tion bounds of stochastic DG g.

P
sd

s , Q
sd

s Maximum active and reactive power dis-
charging bounds of SD s.

P
sc

s , Q
sc

s Maximum active and reactive power charging
bounds of SD s.
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Es, Es Lower and upper bounds of residual energy
of SD s.

ηsds , η
sc
s Discharging and charging energy efficiencies

of SD s.
PDAt , QDAt Active and reactive power purchased from the

day-ahead market at time t.
PDtd , Q

D
td Active and reactive power of demand d at

time t.
λDAt Day-ahead market price at time t.
λRTt Real-time price at reference bus from the

real-time market at time t.
λDt Electricity sales price to the demands from

PDISCO at time t.
λshedt Load-shedding penalty price for PDISCO op-

eration at time t.
λpent Penalty price for stochastic DGs to purchase

power deviation at time t.
λsct Contract prices for SDs to buy charging

power from PDISCO at time t.
S, Sij Capacity limits of the main substation and

each feeder ij.
QC
i
, Q

C

i Reactive power limits of the shunt compen-
sator at bus i.

ei, ei Limits of voltage magnitude at bus i.
τi Transformer tap ratio at bus i.
Gij , Bij , bij Conductance, susceptance and charging sus-

ceptance of feeder ij.
Υ
TP (1,2,3)
t(m,k,n) Profit guarantee factor of the DGO of

Type1,2,3 respectively at time t.

I. INTRODUCTION

H IGH integration of DGs in the distribution network in-
spires a possible deregulated environment for the distri-

bution company (DISCO) directly procuring the DGs’ produc-
tions in the local area. In the U.S., one of the latest initiatives
is to make regulatory changes to establish a distribution-level
market for cost-effective utilization of DGs, as addressed in the
New York Reforming Energy Vision (NY REV) [1]. Such an
advisable insight can motivate the distributed generation owner
(DGO) to play an essential role as an emerging business entity
to trade with the DISCO. To this end, the DISCO has to make
optimal decisions about the wholesale market transactions and
the local power procurements.

Traditionally, the DISCO purchases electricity from the
wholesale market and supplies the demands in a single-
direction. Currently, besides supplying the local demands,
the advanced smart grid technology enables the DISCO to
perform in a bi-direction power exchanging fashion, i.e. selling
or purchasing electricity with the transmission-level markets.
This provides an ambitious scheme for the DISCO to sell
the excess power (procured from DGOs) to the transmission-
level markets profitably, acting as an active electricity pro-
ducer. With the characteristics above, the proactive DISCO
(PDISCO) is so-defined in this paper.

As reviewed in [2], since the distribution-level DGs are
small-scale, diverse, and dispersed, the differing ownerships
of DGs can render heterogeneous DGOs. As profit-driven

entities, the DGOs with stochastic DGs have to consider
their production uncertainties, while the DGOs with SDs
have to consider their price-based discharging/charging. In
addition, with the superiority of DGs’ quick response and
low cost, the DGOs are more conducive to participate in
the real-time trading process. Thus, we propose a real-time
trading framework to capture a PDISCO’s trading strategies
interacting with various types of DGOs.

In order to obtain the real-time trading strategies, the
PDISCO trading with heterogeneous DGOs can be formulated
as a one-leader multi-follower-type Bayesian game model [3],
following a bilevel structure. At each time t: Categorized
in a certain follower type, a lower-level (LL) problem per
DGO is to maximize its own profit (minimizing minus-
profit) by behaving rationally on bidding prices and generation
quantities, in which the scenario-based uncertainty handling
method [4] can be adopted to characterize the DGs’ stochastic
productions. The upper-level (UL) problem represents the
minus-profit minimization of the PDISCO with the optimal
decisions on offering prices and power procurements.

Note that the UL problem is non-linear and non-convex,
while the LL problems are linear and thus convex. The pro-
posed bilevel model is complex, but solvable by reformulating
it to an MPEC with an alternative approach, such as a primal-
dual approach [5].

In the literature, to achieve a competitive circumstance,
a static day-head DISCO acquisition market model is pro-
posed in [6], including a Pool setup and bilateral contracts.
The energy providers are seen as the wholesale market,
independent/self-owned DGs, and load curtailment options.
However, the DGs are assumed to be dispatchable, which
is not realistic since the DGs’ outputs are intermittent and
uncontrollable. In [7], to address the competition between the
participants, a DISCO-ISO bilevel model is presented to deal
with the DGs and interruptible loads in a day-ahead market.
The UL problem seeks revenue maximization of the DISCO,
and the LL simulates the ISO’s market clearing problem.
The DGs are only considered as DISCO self-owned units,
which limits the liberty of the DGs’ ownership. Additionally,
the DGs’ output and load-shedding price are fixed, while the
network constraints are not accounted for. Taking the DGO’s
interests into account, the DGO-DISCO contract pricing is
also issued by a bilevel model in [8]. The UL problem is
to maximize one DGO’s profit equipped with the network
constraints listed in the LL problem, but the formulation is
simplified by only concerning the active power and voltage
value. At the distribution level, a market framework is pre-
sented in [9], interacting with the transmission-level markets,
the PDISCO’s procurement strategies between the distribution-
level aggregator-based demand responses (DRs) and wholesale
market transactions are derived through a proposed one-leader
multi-follower bilevel model [10]. As fully discussed in [11]–
[14], the bilevel modeling has been widely used to identify
the wholesale market outcomes with multiple game players
during the decision-making process.

To achieve the cost-effective use of distributed energy
resources (DERs), a cake cutting game is investegated in
[15] to price energy in a smart community. In [16], a hybrid
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stochastic/robust optimization model is proposed to render a
bidding strategy for a microgrid (MG) to participate in the day-
ahead market. At the real-time stage, a multiagent-based game-
theoretic reverse auction model is presented in [17] for MG
market operations. Considering the uncertainties of market
prices, the loss payment is minimized in [18] by scheduling
DR and energy storage system (ESS). To maximize the profit
of a commercial virtual power plant (CVPP), a three-stage
stochastic bilevel model is used to make offering strategies
on the basis of various DERs and storages [19]. From the
management perspective, a dual-horizon rolling scheduling
framework is presented in [20] to optimally operate a set of
DERs. An hourly electricity pricing scheme is reported in
[21] to build network tariffs for mobilizing price-responsive
customers. To exploit DG’s benefits, a multi-agent system-
based modeling of an active distribution network is studied in
[22] to enhance control strategies for decreasing energy cost.

Based on the context above, the contributions of this paper
are threefold:

1) A real-time framework for the PDISCO trading with
heterogeneous DGOs.

2) A bilevel model for the PDISCO to achieve optimal
trading strategies between real-time power exchanging and
various types of the DGOs’ bids.

3) A recast of the PDISCO’s game-theoretic model to
an MPEC through substituting the LL problems with an
equivalent primal-dual approach.

The remainder of this paper is organized as follows. The
real-time PDISCO-DGO trading framework is presented in
Section II. Section III proposes the bilevel game-theoretic
model of PDISCO trading with heterogeneous DGOs, and
details the primal-dual solution approach. The results of the
case studies are provided and discussed in Section IV. Finally,
Section V concludes the paper with some relevant remarks.

II. PDISCO-DGO REAL-TIME TRADING

A real-time trading framework between PDISCO and het-
erogeneous DGOs is proposed in this section, as shown in
Fig. 1. In the real-time trading process, at each time t, the
profit-driven PDISCO has to make trading strategies on the
procurements (λB(1,2,3)

t(m,k,n), P
B(1,2,3)
t(m,k,n)) from the DGOs and the

transactions (selling or purchasing by λRTt , PRTt ) with the
real-time market. When the PDISCO performs as an active
producer, its offering price λRTt in the real-time market can
be seen as the marginal price cleared from the transmission
level at the interconnection point (main substation), while its
offering volume PRTt is realized as the surplus of power pro-
curements after meeting the distribution network constraints.

Originated from the differing DGs’ ownerships, the hetero-
geneous DGOs can be categorized into three types respectively
indexed by m, k and n, i.e. DGO m with stochastic DGs,
DGO k with both stochastic DGs and SDs, and DGO n with
only SDs. The uncertainties of DGs can be represented by
the scenario-based method [4]. At each time t per scenario
ω: Individual DGOs have the thorough knowledge of the
cost (Cg , Csds , Cscs ) and the production (PDGtgω , P sdtsω , P sctsω)
pertaining to the related DGs. For profit maximization, each

PDISCO

RT

tP
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t
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DGO  m

DGO  n
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Storages
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Fig. 1. Real-time trading framework of PDISCO with heterogeneous DGOs.

DGO should behave rationally to submit the appropriate bids
to meet the PDISCO’s request, implying the heterogeneous
competition and peer pricing among the DGOs. For DGO m,
if the actual power production can not meet the committed
power generation, the power deviation P devtgω occurs. In this
case, DGO m has to purchase P devtgω from the PDISCO with a
high penalty price λpent . For DGO k, the self-owned SDs can
assist in dealing with this kind of contingency. For both DGO
k and DGO n, the PDISCO supplies the charging power P sctsω
for each affiliated SD with a contract price λsct .

III. PROBLEM FORMULATION

The PDISCO-DGO real-time trading problem can be for-
mulated as a bilevel one-leader multi-follower-type game-
theoretic model [3]. To embody the heterogeneous competition
and peer pricing between three types of DGOs, an LL problem
per DGO of a certain type indicates its rational bids to
minimize its own minus-profit, see these categorized in (1)-
(3), respectively. While the UL problem (4) represents the
PDISCO’s minus-profit minimization.

A. Assumptions

The proposed bilevel model involves the following assump-
tions:

1) The PDISCO is assumed to only own and operate the
network, and only one main substation is recognized as the
exclusive interconnection point to the transmission network.

2) The real-time trading strategies of a single PDISCO are
considered in this paper, including the power procurements
from heterogeneous DGOs and power exchanging with the
real-time market.

3) Only the active power is eligible to be traded between the
PDISCO, DGOs and the real-time market, since the uniform
reactive power market is not acknowledged.

4) Linking with λ
B(1,2,3)
t(m,k,n), a DGO of a certain type can

explicitly predict the impact of its bids (bidding prices and
generation quantities), versus the PDISCO’s offers (offering
prices and power procurements).

5) We assume the Pay-as-bid (PAB) pricing [2] is the
PDISCO-DGO trading mechanism, while the DGOs are fur-
ther imposed to only be involved in the real-time trading with
the PDISCO. One bid per DGO is allowed at each time t.
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B. DGO LL Problems

Note that the bidding prices and generation quantities, put
forward by the differing DGOs from the LL problems, vary
the PDISCO’s procurement strategies in the UL problem.
Therefore, the individual formulations for the three types of
DGOs are enumerated below.

1) Type1: DGOs with stochastic DGs.

Min
ΞDGO1

−
∑
t

λB1
tmP

B1
tm + E

[∑
t,g

(
CgP

DG
tgω + λpent P devtgω

)]
s.t. (1a)

PTP1
tmω =

∑
g

(
PDGtgω + P devtgω

)
,∀t,m, ω (1b)

QTP1
tmω =

∑
g

(
QDGtgω +Qdevtgω

)
,∀t,m, ω (1c)

PTP1
tmω ≤ PB1

tm ≤
∑
g

P
DG

tg ,∀t,m (1d)

0 ≤ PTP1
tmω ≤

∑
g

P
DG

tg ,∀t,m, ω (1e)

0 ≤ QTP1
tmω ≤

∑
g

Q
DG

tg ,∀t,m, ω (1f)

0 ≤ P devtgω ≤ P
DG

tg − PDGtgω ,∀t, g, ω (1g)

0 ≤ Qdevtgω ≤ Q
DG

tg −QDGtgω ,∀t, g, ω (1h)

where ΞDGO1 =
{
PB1
tm , P

TP1
tmω , Q

TP1
tmω , P

dev
tgω , Q

dev
tgω

}
(g:m)∈MO

is the variable set of the LL problem for DGO m pertaining
to Type1.

The objective function (1a) is to minimize the minus-profit
of DGO m, which consists of the minus-revenue of selling
the committed generation quantities with the bidding prices,
and the excepted cost of the stochastic DGs’ productions
plus power deviation penalties. At each time t per scenario
ω: Constraints (1b) and (1c) impose the total active/reactive
power generated by DGO m, which are further limited through
constraints (1e) and (1f). Constraints (1d) enforce the rational
bidding quantity to cover each plausible realization of the
DGs’ generation. Constraints (1g) and (1h) express the limits
of the power deviation caused by the generation uncertainty
per DG.

2) Type2: DGOs with both stochastic DGs and SDs.

Min
ΞDGO2

−
∑
t

λB2
tk P

B2
tk + E

[∑
t,g

CgP
DG
tgω

+
∑
t,s

(
Csds P

sd
tsω + (Cscs + λsct )P sctsω

)]
(2a)

s.t.
PTP2
tkω =

∑
g

PDGtgω +
∑
s

(
P sdtsω − P sctsω

)
,

∀t, k, ω : αtkω (2b)

QTP2
tkω =

∑
g

QDGtgω +
∑
s

(
Qsdtsω −Qsctsω

)
,

∀t, k, ω : βtkω (2c)
PB2
tk ≥ PTP2

tkω ,∀t, k, ω : γtkω (2d)

0 ≤ PB2
tk ≤

∑
g

P
DG

tg +
∑
s

P
sd

s ,∀t, k : µ−tk, µ
+
tk (2e)∑

g

P
DG

tg −
∑
s

P
sc

s ≤ PTP2
tkω ≤

∑
g

P
DG

tg +
∑
s

P
sd

s ,

∀t, k, ω : ψ−tkω, ψ
+
tkω (2f)∑

g

Q
DG

tg −
∑
s

Q
sc

s ≤ QTP2
tkω ≤

∑
g

Q
DG

tg +
∑
s

Q
sd

s ,

∀t, k, ω : ρ−tkω, ρ
+
tkω (2g)

Et+1,s,ω = Et,s,ω + ∆tP sctsωη
sc
s −∆tP sdtsω/η

sd
s ,

∀t, s, ω : ζtsω (2h)
Es ≤ Etsω ≤ Es,∀t, s, ω : ε−tsω, ε

+
tsω (2i)

0 ≤ P sdtsω ≤ P
sd

s ,∀t, s, ω : θ−tsω, θ
+
tsω (2j)

0 ≤ P sctsω ≤ P
sc

s ,∀t, s, ω : φ−tsω, φ
+
tsω (2k)

0 ≤ Qsdtsω ≤ Q
sd

s ,∀t, s, ω : σ−tsω, σ
+
tsω (2l)

0 ≤ Qsctsω ≤ Q
sc

s ,∀t, s, ω : ν−tsω, ν
+
tsω (2m)

where ΞDGO2 =
{
PB2
tk , P

TP2
tkω , QTP2

tkω , P
sd
tsω, Q

sd
tsω, P

sc
tsω, Q

sc
tsω,

Etsω}(g:k,s:k)∈MO
is the variable set of the LL problem for

DGO k regarding Type2.
The objective (2a) indicates the minus-profit minimization

of DGO k, i.e., the minus-revenue of selling the committed
supplies to the PDISCO plus the excepted cost of the DGs’ and
SDs’ productions. At each time t per scenario ω: Constraints
(2b), (2c), (2f) and (2g) identify the active/reactive power
availability of DGO k. To cover each plausible realization
of the DGs’ generation, constraints (2d) impose the bidding
quantity PB2

tk towards a rational bid. Considering only positive
bids have the possibility to be accepted by the PDISCO, the
bidding quantity bounds are further restricted by (2e). The
residual energy of each SD s is enforced by constraints (2h)
and bounded by constraints (2i), while the capabilities of
the discharged/charged active/reactive power are constrained
via (2j),(2k), (2l) and (2m). Furthermore, the dual variables
for each group of constraints are indicated correspondingly,
separated by a colon.

3) Type3: DGOs with only SDs.

Min
ΞDGO3

−
∑
t

λB3
tn P

B3
tn

+E

[∑
t,s

(
Csds P

sd
tsω + (Cscs + λsct )P sctsω

)]
(3a)

s.t.
PTP3
tnω =

∑
s

(
P sdtsω − P sctsω

)
,∀t, n, ω (3b)

QTP3
tnω =

∑
s

(
Qsdtsω −Qsctsω

)
,∀t, n, ω (3c)

PB3
tn ≥ PTP3

tnω ,∀t, n, ω (3d)

0 ≤ PB3
tn ≤

∑
s

P
sd

s ,∀t, n (3e)

−
∑
s

P
sc

s ≤ PTP3
tnω ≤

∑
s

P
sd

s ,∀t, n, ω (3f)

−
∑
s

Q
sc

s ≤ QTP2
tnω ≤

∑
s

Q
sd

s ,∀t, n, ω (3g)

Et+1,s,ω = Et,s,ω + ∆tP sctsωη
sc
s −∆tP sdtsω/η

sd
s ,
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∀t, s, ω (3h)
Es ≤ Etsω ≤ Es,∀t, s, ω (3i)

0 ≤ P sdtsω ≤ P
sd

s ,∀t, s, ω (3j)
0 ≤ P sctsω ≤ P

sc

s ,∀t, s, ω (3k)

0 ≤ Qsdtsω ≤ Q
sd

s ,∀t, s, ω (3l)
0 ≤ Qsctsω ≤ Q

sc

s ,∀t, s, ω (3m)

where ΞDGO3 =
{
PB3
tn , P

TP3
tnω , QTP3

tnω , P
sd
tsω, Q

sd
tsω, P

sc
tsω, Q

sc
tsω,

Etsω}(s:n)∈MO
is the variable set of the LL problem for

DGO n corresponding to Type3.
Excluding the DGs’ stochastic productions given in (2), we

can obtain the constraints (3b)-(3m) for DGO n with only SDs
and the objective (3a) to minimize its minus-profit.

C. PDISCO UL Problem
Note that the UL problem and the LL problems are in-

terrelated with each other. The decisions (offering prices and
power procurements) made by the UL problem directly impact
the DGOs’ profit in the LL problems. Thus, the formulation
of the UL problem constitutes the PDISCO’s offer strategies
and physical network constraints, as well as the bid arguments
from the heterogeneous DGOs.

Min
ΞDGO1∪ΞDGO2∪ΞDGO3

∪ΞPDISCO∪ΞDual

∑
t

λDAt PDAt +
∑
t,m

λB1
tmP

B1
tm

+
∑
t,k

λB2
tk P

B2
tk +

∑
t,n

λB3
tn P

B3
tn + E

[∑
t

λRTt PRTtω

+
∑
t,d

λshedt P shedtdω −
∑
t,g

λpent P devtgω −
∑
t,s

λsct P
sc
tsω

−
∑
t,d

λDt
(
PDtd − PShedtdω

) (4a)

s.t.
ΥTP1
tm

∑
(g:m)∈MO

Cg ≤ λB1
tm ≤ λRTt ,∀t,m (4b)

ΥTP2
tk

 ∑
(g:k)∈MO

Cg +
∑

(s:k)∈MO

(
Csds + Cscs + λsct

)
≤ λB2

tk ≤ λRTt ,∀t, k (4c)

ΥTP3
tn

∑
(s:n)∈MO

(
Csds + Cscs + λsct

)
≤ λB3

tn ≤ λRTt ,∀t, n (4d)
For the main substation (reference bus 1):∑
(g:1)∈MG

(
PDGt1ω − P devt1ω

)
+

∑
(s:1)∈MS

(
P sdt1ω − P sct1ω

)
+PDAt + PRTtω + P shedt1ω − PDt1 =

∑
1j∈Λ

P ft,1j,ω,∀t, ω (4e)∑
(g:1)∈MG

(
QDGt1ω −Qdevt1ω

)
+

∑
(s:1)∈MS

(
Qsdt1ω −Qsct1ω

)
+QDAt +QRTtω +Qshedt1ω −QDt1 +QCt1ω

=
∑
1j∈Λ

Qft,1j,ω,∀t, ω (4f)

et1ω = 1,∀t, ω (4g)
δt1ω = 0,∀t, ω (4h)(
PDAt + PRTtω

)2
+
(
QDAt +QRTtω

)2 ≤ S2
,∀t, ω (4i)

For the other buses:∑
(g:i)∈MG

(
PDGtgω − P devtgω

)
+

∑
(s:i)∈MS

(
P sdtsω − P sctsω

)
+P shedtdω − PDtd =

∑
ij∈Λ

P ft,ij,ω,∀t, i(d:i)∈MD
, ω (4j)∑

(g:i)∈MG

(
QDGtgω −Qdevtgω

)
+

∑
(s:i)∈MS

(
Qsdtdω −Qsctdω

)
+Qshedtdω −QDtd +QCtiω =

∑
ij∈Λ

Qft,ij,ω,∀t, i(d:i)∈MD
, ω

(4k)
P ft,ij,ω = −τie2

tiωGij + etiωetjω [Gijcos (δtiω − δtjω)

+Bijsin (δtiω − δtjω)] ,∀t, ij ∈ Λ, ω (4l)

Qft,ij,ω = τie
2
tiωBij + etiωetjω [Gijsin (δtiω − δtjω)

−Bijcos (δtiω − δtjω)]− 0.5bij ,∀t, ij ∈ Λ, ω (4m)
−π ≤ δtiω ≤ π,∀t, i, ω (4n)
ei ≤ etiω ≤ ei,∀t, i, ω (4o)(
P ft,ij,ω

)2

+
(
Qft,ij,ω

)2

≤
(
Sij
)2
,∀t, ij ∈ Λ, ω (4p)

0 ≤ P shedtdω ≤ PDtd ,∀t, d, ω (4q)
0 ≤ Qshedtdω ≤ QDtd,∀t, d, ω (4r)

QC
i
≤ QCtiω ≤ Q

C

i ,∀t, i, ω (4s)

PDtdQ
shed
tdω − P shedtdω QDtd = 0,∀t, d, ω (4t)

PDtdQ
dev
tdω − P devtdωQ

D
td = 0,∀t, d, ω (4u)

PB1
tm , P

dev
tgω , Q

dev
tgω ∈ arg (1)(g:m)∈MO

(4v)

PB2
tk , P

sd
tsω, Q

sd
tsω, P

sc
tsω, Q

sc
tsω ∈ arg (2)(g:k,s:k)∈MO

(4w)

PB3
tn , P

sd
tsω, Q

sd
tsω, P

sc
tsω, Q

sc
tsω ∈ arg (3)(s:n)∈MO

(4x)

where ΞPDISCO =
{
λB1
tm, λ

B2
tk , λ

B3
tn , P

RT
tω , QRTtω , Q

C
tiω, P

shed
tdω ,

Qshedtdω , P ft,ij,ω, Q
f
t,ij,ω, δtiω, etiω

}
is the variable set of the

UL PDISCO problem. ΞDUAL is the set of dual variables.
The objective (4a) of the UL problem is to minimize the

PDISCO’s minus-profit, which consists of two aspects. The
first aspect contains the purchases from the day-ahead market
and the procurements from the various types of DGOs. The
second aspect is the expected minus-profit according to the
power exchanging from the real-time market, the penalty of
load-shedding, the DGOs’ payment of DGs’ power deviation
and SDs’ power charging, and the minus-revenue of electricity
sales to the demands. At each time t: The bidding prices
submitted by various DGOs include their own profit guarantee
scheme, and these prices are considered as the lower bounds
from the PDISCO perspective in constraints (4b)-(4d), while
the upper bounds are imposed as the real-time market price.
AC power flow is yielded to formulate the PDISCO’s real-
time operation model. Constraints (4e) and (4f) represent the
AC power balance at the reference bus (main substation),
which maintains the voltage value and voltage angle at a
constant level through constraints (4g) and (4h). The capacity
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limit of the main substation is identified by constraints (4i).
Constraints (4j) and (4k) enforce the AC power balance at
the other buses, in which the voltage angle and voltage
value are bounded by constraints (4n) and (4o). Constraints
(4l) and (4m) identify the AC power flow through feeder i-
j. Constraints (4p) specify the capacity limits of individual
feeders. Constraints (4q) and (4r) indicate the load-shedding
limits. Constraints (4s) depict the capacity bounds of each
compensator. Constraints (4t) maintain a constant demand
power factor, if load-shedding occurs. Constraints (4u) keep
the generation power factor stable when the power deviation
of a stochastic DG arises. Observe that the PDISCO offering
prices, i.e., λB(1,2,3)

t(m,k,n), are UL decision variables treated as
parameters in the LL problems. Concerning the formulations
categorized in Section III-B, constraints (4v), (4w) and (4x)
indicate the heterogeneous DGOs within Types1-3 intend to
maximize their own profits, individually.

D. MPEC

Note that the UL PDISCO problem is nonlinear and non-
convex, while the LL DGOs’ problems are linear and thus
convex. To transform the proposed bilevel model into a single-
level optimization problem, the varied DGOs’ problems can
be replaced by their first-order optimality conditions, which
renders an MPEC. Here, two alternative approaches are avail-
able for the reformulation of this problem, i.e., Karush-Kuhn-
Tucker (KKT) conditions and primal-dual approach.

In general, the primal-dual approach renders a mathematical
program with primal and dual constraints (MPPDC), which
is more tractable and efficient for off-the-shelf branch-and-
cut software than its associated KKT conditions [5] [23].
Thus, the primal-dual approach is employed in this paper.
For brevity, the DGO k within Type2 of the LL problems
is taken as an illustrative example to carry out the MPPDC
transformation, as shown in (5). Constraints (5a)-(5h) are the
dual constraints of the primal constraints (2b)-(2m). Constraint
(5i) is the associated strong duality equality, which ensures
the equality of the primal and dual objective values, one per
DGO k. Subsequently, the similar MPPDC transformations
can be applied to the DGOs characterized in Type1 and Type3,
respectively.

−λB2
tk − γtkω + µ+

tk − µ
−
tk = 0,∀t, k (5a)

αtkω + γtkω + ψ+
tkω − ψ

−
tkω = 0,∀t, k, ω (5b)

βtkω + ρ+
tkω − ρ

−
tkω = 0,∀t, k, ω (5c)

Csds − αtkω + ∆tζtsω/η
sd
s + θ+

tsω − θ−tsω = 0,

∀t, s(s:k)∈MO
, ω (5d)

−βtkω + σ+
tsω − σ−tsω = 0,∀t, s(s:k)∈MO

, ω (5e)

Cscs + λsct + αtkω −∆tζtsωη
sc
s + φ+

tsω − φ−tsω = 0,

∀t, s(s:k)∈MO
, ω (5f)

βtkω + ν+
tsω − ν−tsω = 0,∀t, s(s:k)∈MO

, ω (5g)

ζtsω − ζt−1,s,ω + ε+tsω − ε−tsω = 0,∀t, s(s:k)∈MO
, ω (5h)∑

t

λB2
tk P

B2
tk +

∑
t

µtk

(∑
g

P
DG

tg +
∑
s

P
sd

s

)
+

E

[
−
∑
t,g

CgP
DG
tgω −

∑
t,s

(
Csds P

sd
tsω + (Cscs + λsct )P sctsω

)
+
∑
t

αtkω
∑
g

PDGtgω +
∑
t

βtkω
∑
g

QDGtgω

+
∑
t

ψ+
tkω

(∑
g

P
DG

tg +
∑
s

P
sd

s

)
+
∑
t,s

θ+
tsωP

sd

s

+
∑
t

ψ−tkω

(∑
g

P
DG

tg −
∑
s

P
sc

s

)
+
∑
t,s

φ+
tsωP

sc

s

+
∑
t

ρ+
tkω

(∑
g

Q
DG

tg +
∑
s

Q
sd

s

)
+
∑
t,s

σ+
tsωQ

sd

s

+
∑
t

ρ−tkω

(∑
g

Q
DG

tg −
∑
s

Q
sc

s

)
+
∑
t,s

ν+
tsωQ

sc

s

+
∑
t,s

(
ε+tsωEs − ε−tsωEs

)]
= 0,∀k(g:k,s:k)∈MO

(5i)

Replacing the heterogeneous LL DGOs’ problems with the
corresponding MPPDC, the proposed bilevel problem finally
results in a single-level model structured with the PDISCO’s
objective, subject to the PDISCO’s constraints and individual
DGOs’ MPPDC constraints, as shown in (6). The final non-
linear model can be solved by the commercial off-the-shelf
large-scale non-linear optimization solver CONOPT3 [24].

Min
ΞDGO1∪ΞDGO2∪ΞDGO3

∪ΞPDISCO∪ΞDual

(4a) (6)

s.t.
PDISCO’s problem constraints: (4b)− (4x)

Type1 DGOs’ problems MPPDC constraints;
Type2 DGOs’ problems MPPDC constraints:
(2b)− (2m) and (5a)− (5i)

Type3 DGOs’ problems MPPDC constraints.

IV. CASE STUDIES

To validate the effectiveness of the methodology presented
in Section III, a modified 33-bus distribution network [25]
is used to identify the PDISCO-DGO trading decisions and
individual participants’ profits. A 119-bus distribution network
[26], [27] is used to verify the scalability of this approach.
Applying the uncertainty handling method [4], 1000 scenarios
are generated and reduced to 15 scenarios in these cases.

A. 33-bus Distribution Network

The 33-bus network is assumed to be owned and operated
by the PDISCO. The capacity of the main substation S
and each feeder Sij are respectively set to 20 MVA and
10 MVA. The voltage is 1 p.u. at the reference bus, while
it ranges from 0.9 to 1.1 p.u. at the other buses. The tap
ratio τi of each transformer is imposed to 1. 0-200 kVar
is the capacity per compensator. The wind turbines (WTs)
and PVs are selected to represent the stochastic DGs. Two
DGOs per type per hour are considered to be engaged in
the real-time trading with the PDISCO, i.e. 24 times per
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day. The related mappings and parameters of the assorted
DGOs with DGs are described in Table I. For simplicity, the
SDs’ discharging/charging limits and costs are identical with a
unified efficiency 0.9, while the contracted charging price λsct
can be assumed as half the price of the day-ahead prices. The
profit guarantee factors Υ

TP (1,2,3)
t(m,n,k) follow the rate of change

of the real-time prices with the individual base-values 14, 6
and 7. The power factors are recognized as 0.90/WT, 0.95/PV,
and 0.99/SD. For the PDISCO, the real-time demand PDtd and
day-head purchases PDAt are shown in Table II, in which the
prices λDAt , λRTt and λDt are estimated by the NordPool [28]
prices. The penalty price λpent is also claimed for the potential
power deviation caused by the DGOs’ output mismatching the
committed capacity. In addition, the load-shedding price λshedt

is considered as 200 times as λRTt . The other parameters can
be found in [25].

TABLE I
INPUT PARAMETERS OF DGOS AND DGS

Type DGO
(m, k, n)

MG,MS

(g : i, s : i)

P
DG
tg ,

P
sd
s , P

sc
s

[kW]

Es, Es

[kWh]

Cg ,
Csd

s , Csc
s

[10−2e/kW]

Type1

m=1
WT1:21 300 - 1.33
WT2:7 300 - 1.47

m=2
WT3:12 300 - 1.60
PV1:7 300 - 1.87

Type2

k=1
WT4:25 300 - 1.73
SD1:30 300 50,400 2.27

k=2
PV2:19 300 - 2.00
SD2:8 300 50,400 2.33

Type3

n=1
SD3:24 600 100,800 2.00
SD4:29 300 50,400 2.07

n=2
SD5:32 300 50,400 2.13
SD6:14 300 50,400 2.20

TABLE II
ESSENTIAL INPUT PARAMETERS FOR PDISCO-DGO TRADING MODEL

t λDA
t PDA

t λRT
t λD

t PD
td λpen

t

[Hour] [e/kW] [kW] [e/kW] [e/kW] [ kW] [e/kW]
1 0.10 1057.63 0.16 0.20 1114.50 0.28
2 0.11 1270.13 0.17 0.21 1188.80 0.30
3 0.12 1401.27 0.19 0.23 1300.25 0.33
4 0.10 1057.63 0.16 0.20 1114.50 0.28
5 0.13 1258.24 0.21 0.27 1486.00 0.37
6 0.14 1320.65 0.22 0.28 1560.30 0.39
7 0.16 2114.18 0.26 0.32 1783.20 0.45
8 0.17 2283.58 0.27 0.34 1894.65 0.48
9 0.22 2907.70 0.35 0.43 2414.75 0.61

10 0.24 2586.35 0.39 0.49 2711.95 0.68
11 0.33 3213.82 0.52 0.65 3640.70 0.91
12 0.37 3646.99 0.59 0.73 4086.50 1.03
13 0.37 3606.12 0.59 0.73 4086.50 1.03
14 0.30 3888.46 0.48 0.60 3343.50 0.84
15 0.27 3487.24 0.43 0.53 2972.00 0.75
16 0.24 3086.02 0.38 0.48 2674.80 0.67
17 0.28 3799.30 0.45 0.57 3157.75 0.79
18 0.30 3788.16 0.48 0.60 3343.50 0.84
19 0.35 4495.86 0.56 0.70 3900.75 0.98
20 0.37 3687.85 0.59 0.73 4086.50 1.03
21 0.37 3442.66 0.59 0.73 4086.50 1.03
22 0.27 3457.52 0.43 0.53 2972.00 0.75
23 0.17 2053.25 0.27 0.33 1857.50 0.47
24 0.13 1614.88 0.21 0.27 1486.00 0.37

The results of power exchanging in the real-time market
are shown in Fig. 2. As expected, the PDISCO behaves as an
active producer to provide productions at certain periods, e.g.,
scenario-based (ω=1) power exchanging in hours 8-9, 14-15,

and 17-19. Hours (8-9, 14-15) reflect that the PDISCO has the
ability to sell the excess power reversely to the transmission
level in medium-price areas. Observe that two peaks appear
at hours 11-13 and 19-21, while the results of the power
transactions are distinct. During hours 11-13, the PDISCO
acquires only a little power, implying the PDISCO executes
the proper strategy to avoid the volatile real-time prices and
insufficient day-ahead purchases with the DGOs’ bids. Hour
19 overlaps with the system’s peak and the PDISCO’s active
performance, indicating the PDISCO’s arbitrage capability to
facilitate the sales strategy in a profitable high-price time
slot with abundant generation from DGOs and sufficient
day-ahead dealings. Running through the low-price intervals,
e.g., hours 1-7 and 23-24, the PDISCO strategically launches
large-volume procurements to increase the revenue by selling
charging power to the SD-equipped DGOs.
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Fig. 2. Power exchanging in the real-time market.

Interacting with the PDISCO, as profit-driven entities, the
individual DGOs perform rationally to submit bids (λB(1,2,3)

t(m,k,n),

P
B(1,2,3)
t(m,k,n)), resulting in the PDISCO’s offering prices and

power procurements, as shown in Fig. 3 in detail. As observed,
in Fig. 3 (a), the DGOs with only stochastic DGs continuously
obtain offers with lower prices, versus large amounts. Since
the DGs’ power deviation against committed generation is
inevitable, the DGOs’ repurchases negatively accompany the
offers per hour, e.g., scenario-based (ω=1) power deviations.
The minor difference between the WT-PV and the WT-WT
DGOs is that the later bids are at lower prices with higher
quantities. In contrast, the WT-SD and PV-SD DGOs generally
bid at higher prices, as shown in Fig. 3 (b). However, the
generation quantities are not comparable, reduced critically
for WT-SD DGO, and even declined in some periods for
PV-SD DGO, although the SDs are functional to cover the
hourly power deviation. Fig. 3 (c) reveals that the two SD-SD
DGOs take similar actions to respond the DISCO’s request
with the highest bidding prices only at the peaks. Note that the
generation quantities are quite limited, the DGO with higher
capacity leads to a higher competitiveness.

In other words, the characteristics of heterogeneous com-
petition and peer pricing among DGOs have been achieved
in the proposed methodology. Accordingly, the profits of each
participant per hour are obtained and shown in Fig. 4, and the
daily profits are summarized in Profit1 of Table III.

Considering each Type1 DGO’s profit mainly depends on
the owned DGs’ total capacity, while the stochastic outputs are
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Fig. 3. The PDISCO’s hourly offers for the heterogeneous DGOs.

uncontrollable and formulated as scenario-based parameters,
we further focus on the SD’s impacts for the PDISCO-DGO
trading decisions by resetting the SDs’ bounds of discharg-
ing/charging power and residual energy in the other cases.
Thus, the discussions above are seen as Case 1.

Keeping the other parameters’ settings above, the additional
cases are regarded as follows: Case 2 reduces each SD’s P

sd

s

and P
sc

s six times as Case 1, while these are increased two
times in Case 3. Furthermore, on the basis of Case 1, the
respective SDs’ Es, Es are with five times increment in Case
4 and two times decrement in Case 5. The relevant profits are
listed as Profit2-5 in Table III.

Observe that the SDs with higher residual energy can bring
more profit to the owners, compared with Profi4 and Profit5,
but provide quite limited effort for the PDISCO and other
DGOs. The variance between Profit2 and Profit3 indicates
that higher capacity of DGs renders a dramatic profit incre-
ment for the PDISCO. The DGOs within Type1,2 are more
competitive than the SDs’ owners, who perform in a steady
mode. However, it is quite profitable for the Type2 DGOs by
eliminating trading uncertainties with SDs. Thus, to improve
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Fig. 4. Hourly profit of the PDISCO and individual DGOs.

the profitability for any type of DGO, SDs with higher residue
and high capacity are the best option.

TABLE III
DAILY PROFIT OF THE PDISCO AND INDIVIDUAL DGOS

Parti-
cipant

Profit1
[e]

Profit2
[e]

Profit3
[e]

Profit4
[e]

Profit5
[e]

Profit6
[e]

PDISCO 7125.45 3253.33 11750.62 7484.41 6136.00 37566.29
WT-WT 2589.67 475.77 5716.36 2588.96 2547.32 2576.13
WT-PV 2493.79 460.87 5432.55 2438.55 2461.55 2421.52
WT-SD 1848.77 399.80 3272.46 2030.27 1773.29 1822.10
PV-SD 1108.76 283.51 2597.36 1315.85 1054.24 1110.28

SD-SD1 348.49 341.24 351.49 1040.67 186.95 410.36
SD-SD2 203.76 198.19 209.16 612.87 109.04 276.88

B. 119-bus Distribution Network

The 119-bus network [26], [27] is modified to further test
the scalability of the proposed approach. The parameters are
set as Case 6. Particularly, individual demands are propor-
tionately adjusted to follow the variation of the corresponding
data in Section IV-A Case 1. The mappings of DGs and buses
are WT1:7, WT2:19, WT3:66, WT4:110, PV1:33, PV2:89,
SD1:40, SD2:78, SD3:10, SD4:116, SD5:29, and SD6:103.
The other system-wide parameters remain the same as in
Section IV-A.

The profit results are enumerated as Profit6 in Table III.
Each DGO’s profit is nearly consistent as in Case 1, whereas
the minor differences can be caused by the differing layout of
the physical network. The PDISCO’s daily profit is increased
by 427%, primarily from sales revenue, since the demand is
considerably high.
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C. Computational Issue

All cases are carried out on a 3.6 GHz Intel Core i7
processor with 16 GB of RAM and 64-bit Windows 7 system,
and solved by CONOPT3 with GAMS 24.4.1 [24].

Table IV summarizes the computational time for solving
the problem corresponding to each case. Note that the com-
putational burden increases significantly with the scale and
complexity of the distribution network. However, it is also
worth noting that the computational performance is acceptable
for a hourly-based trading.

TABLE IV
COMPUTATIONAL TIME OF EACH CASE

Case CPU time (s) Case CPU time (s)
Case 1 498.63 Case 4 499.70
Case 2 489.35 Case 5 500.38
Case 3 503.22 Case 6 2761.03

V. CONCLUSION

This paper proposes a bilevel game-theoretic model to
investigate the PDISCO’s real-time trading strategies between
the type-oriented DGOs and the transmission-level market.
Three types of DGOs and a real-time trading framework are
well defined to enhance competitiveness, as in the distribution-
level market environment. Accompanying the UL PDISCO’s
optimal decisions, an LL DGO’s problem also achieves its
goal for profit maximization with the rational multi-period
bids. With the primal-dual approach, the proposed model
is reformulated to a solvable MPEC. The numerical results
of the case studies successfully illustrate the heterogeneous
competition and peer pricing characteristics of the DGOs, also
demonstrate the PDISCO’s trading strategies are suitable and
effective.
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