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Abstract—Renewable energy forecasting is now of core interest
to both academics, who continuously propose new forecast
methodologies, and forecast users for optimal operations and
participation in electricity markets. In view of the increasing
amount of data being collected at power generation sites, thanks
to substantial deployment of generating capacities and increased
temporal resolution, it may now be possible to build large
models accounting for all space-time dependencies. This will
eventually allow to significantly improve the quality of short-term
renewable power forecasts. However, in practice, it is often the
case that operators of these generation sites do not want to share
their data due to competitive interests. Consequently, approaches
to privacy-preserving distributed learning are proposed and
investigated here. These permit to take advantage of all potential
data collected by others, without having to ever share any
data, by decomposing the original large learning problem into
a number of small learning problems that can be solved in
a decentralized manner. As an example, emphasis is placed
on Lasso-type estimation of autoregressive models with offsite
observations. Different applications on medium to large datasets
in Australia (22 wind farms) and France (85 wind farms) are
used to illustrate the interest and performance of our proposal.

Index Terms—Distributed optimization, time-series analysis,
vector autoregressive model, sparse estimation, short-term fore-
casting

I. INTRODUCTION

TO SUPPORT THE large-scale deployment of renewable
energy generation capacities, forecasting has received in-

creasing and substantial focus over the last few decades. Today,
one can find numerous approaches to wind and solar power
forecasting. These may be proposed in both deterministic and
probabilistic framework, while focused on very-short to longer
lead times. While most of these approaches are based on
limited input data, there is today a tendency in accounting for
more and more data as input (offsite information, exogenous
variables from remote sensing and weather forecasts, etc.). The
interested reader is referred to recent reviews on renewable
energy forecasting in, e.g., [1], [2]. Wind power forecasting
might be seen as more mature than for the case of solar
energy, owing to an earlier start and to the specifics of some of
the necessary developments, e.g., related to clear-sky models
and cloud passages for solar power. This hence justify our
preference to describe our proposal within the frame of wind
power forecasting. However, the most basic idea of distributed
learning may be readily translated to the case of solar power,
with similar aims and techniques.

Among the many modern challenges in wind power fore-
casting [3], a methodological one is that of considering an
ever-increasing number of sites. While most works have
looked at how to predict wind power generation at a given
site or for a given portfolio, only few have considered to
directly and jointly predict at multiple sites, by also accounting
for the spatio-temporal correlation in their power generation.
Notable recent examples include [4]–[6] (for both wind and
solar power, respectively). Eventually, one may want to ob-
tain forecasts for tens of sites for the example of portfolio
management, and possibly for 100s or 1000s of sites for
network management. A practical limitation relates to the
fact that owners and operators of all these sites may not be
keen on sharing their data, due to competitive commercial and
industrial interests. To jointly consider these methodological
and practical challenges, we describe here a first proposal
for privacy-preserving distributed learning in wind power
forecasting. In short, based on the obvious fact such that a
learning problem is formulated as an optimization problem,
we consider modern techniques of optimization based on
decomposition to split a large centralized learning problem
into a large set of distributed (and small) learning problems.
A direct advantage is that, by doing so, the data collected
at each and every site never has to be exchanged with other
wind farms and with the centralized operator. This is while
insuring that the solution of the distributed learning approach
is very close to that of a centralized learning problem for
which all information would be readily available. Another
advantage is that of dampening computational costs for the
centralized operator, since computation is also distributed at
all sites considered.

To introduce our distributed learning proposal, we limit
ourselves to very-short term forecasting (i.e., less than 1 hour
ahead), which only uses recent measurements at all locations
of interest. Extension and generalization to the case of further
lead times, with extra input from remote-sensing and weather
forecasts, may be considered in future works, within the
same methodological framework. Our general approach to
model ling and forecasting is firstly described in Section II.
Section III describes the proposed method for distributed
learning, which is directly inspired by the alternating direction
method of multipliers extensively described in [7], where
the overall learning problem is decomposed on a per-feature
basis. Application results are gathered in Section IV for two
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alternative setups in Australia (22 wind farms) and France (85
wind farms). The paper ends with a set of conclusions and
perspectives for future work in Section V.

II. MODELING AND FORECASTING FRAMEWORK

Let us place ourselves within a modeling and forecasting
framework similar to that used in [4], [8]. Wind power
generation data is being collected at a number m of power
generation sites. We use xj,t to denote the power measurement
at site sj , j = 1, . . . ,m and time t, t = 1, . . . , T , where
T is the number of time steps in the dataset. Write Ω the
overall set of wind farms, and Γ the set of time indices.
Power measurements at each and every site are normalized
by the nominal capacity of the respective wind farms, Pj ,
j = 1, . . . ,m. Besides, we assume that a given actor of the
power system, being the operator of a single wind farm or of
a portfolio of wind farms, or alternatively the system operator,
cares about the response variable yt at time t. For simplicity,
we will refer to him as the central agent in the following.
The response variable may readily be the power production at
a given site sj of interest for the single wind farm operator,
i.e., yt = xj,t,∀t. For the case of a portfolio Ωp of mp wind
farms, mp ≤ m, defined as

Ωp = {sp,1, sp,2, . . . , sp,mp
}, Ωp ∈ Ω (1)

the power generation yt at time t is given as a weighted
average of the power generation of the individual farms,

yt =
1∑

Sj∈Ωp
Pj

∑
sj∈Ωp

Pjxj,t, ∀t (2)

In the case of the system operator, the portfolio consists in
the full set of wind farms, i.e., Ωp = Ω. This is a special
case though, since we would assume that the system operator
does not have access and control over the data of these wind
farms. If considering the limiting case of a single wind farm,
Ωp includes that wind farm only.

In practice, the central agent may have direct access to
its own data (being only a portfolio average in the case
of the system operator), while having made agreements for
distributed learning with a set Ωa of ma wind farms, ma ≤ m,

Ωa = {sa,1, sa,2, . . . , sa,ma
}, Ωa ∈ Ω (3)

For a single wind farm or a portfolio operator, one has
Ωa ∈ Ω \Ωp, which is not the case if considering the system
operator, for which Ωa = Ωp. We refer to those wind farms
with whom distributed learning agreements are made as the
contracted agents. The overall architecture of the distributed
learning problem we are looking at is depicted in Figure 1.

Based on this organizational setup, short-term forecasting
is to be based on a time-series forecasting approach based on
recent measurements. For simplicity, and since it is often the
most relevant setup (see, e.g., [4], [8]), we restrict ourselves
to autoregressive models accounting for local and offsite
information. This reads

yt = β0+
∑
sj∈Ωp

l∑
τ=1

βj,τxj,t−τ+
∑
sj∈Ωa

l∑
τ=1

βj,τxj,t−τ+εt (4)

Fig. 1: Architecture of the distributed learning problem, with a
central agent and his response data {yt}, as well as a number
of contracted agents and their data {xj,t}.

where τ is a lag variable, between 1 and l the maximum lag of
the autoregressive model. Alternative versions of this model
may be considered, for instance with different lags for the
various sites, while possibly overlooking the constant term
β0. Since being linear, this model may be written in a more
compact form as

yt = βxt + εt (5)

where β is a vector gathering all model parameters and xt is
for the vector of ordered values for all corresponding explana-
tory variables at time t. In the form of (4), the dimension of
β is l(ma +mp) + 1.

Typically, one would obtain an estimate β̂ of the parameter
vector in a centralized fashion since gathering all information
and solving this learning problem as a large optimization
problem. Then, using that estimate β̂ and the latest information
on explanatory variables, a forecast issued at time t for time
t+ 1 is readily given by

ŷt+1|t = β̂xt+1 (6)

III. APPROACH TO DISTRIBUTED LEARNING

Assuming that one deals with a large number of wind
farms, the size of the parameter vector β will grow rapidly.
Consequently, it may be preferable to consider a Lasso-
type (for “least absolute shrinkage and selection operator”)
estimator instead of a more classical Least-Squares (LS) one.
An advantage is that it will force most values of β to be 0s,
hence allowing for some form of variable selection.

First of all, the autoregressive model in (4) is reformulated
as

yt =
∑
sj∈Ωp

(
βj,0 +

l∑
τ=1

βj,τxj,t−τ

)
(7)

+
∑
sj∈Ωa

(
βj,0 +

l∑
τ=1

βj,τxj,t−τ

)
+ εt

so that the original intercept terms is shared among all
sites, which will simplify some of the derivations below. The
dimension of β hence increases to (l + 1)(ma +mp).

The Lasso estimator is defined as

β̂ = argmin
β

1

2
‖y −Aβ‖22 + λ‖β‖1 (8)
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where y is a vector containing all response variable values over
the time indices in Γ, while A is the design matrix, where its
ith line is defined by xi (as in (5)). λ serves as a weight to
control the trade off between LS fitting and shrinkage of β.

This problem could be solved in a centralized manner, by
gathering data for all explanatory variables and lags. This
would translate to a necessary data exchange between the
central agent and the contracted agents. This is what we aim
to avoid though, since contracted agents may be happy to help
with distributed learning, but only under the condition of never
sharing data. In view of that basic, but crucial, characteristics
of our learning problem, we proceed by decomposing the
global learning problem in (8), so as to obtain a number of
distributed learning problems which could be shared among
contracted agents. For that, we follow the approach referred
to as the alternating direction method of multipliers (ADMM,
[7]), which is a widely used decomposition approach based on
Lagrangian relaxation that allows to split a learning problem
among features. Here in practice, this would translate to
decomposing the learning problem among contracted agents.
Following the reasoning in [7], let us first relax the learning
problem in (8) such that it becomes

min
1

2
‖y −Aβ‖22 + λ‖z‖1 (9)

s.t. β − z = 0 (10)

Following the ADMM approach, the learning problem is
then decomposed among the contracted agents, by setting

β = [β1,β2, . . . ,βma+mp
] (11)

A = [A1 A2 . . . Ama+mp
] (12)

so that each contracted agent j is focused on estimating its
own share βj of the parameter vector based on his local data
in the form of the design matrix Aj .

ADMM is an iterative approach where one alternates
between the contracted agents solving their learning sub-
problems, the solution of which is transmitted back to the
central agent, who solves a master learning problem. At
iteration k, this writes

βkj = argmin
βj

(
‖Ajβj − yk−1

j ‖22 +
2λ

ρ
‖βj‖1

)
(13)

zk =
1

(l + 1)(ma +mp) + ρ

(
y + Aβ

k
ρuk−1

)
(14)

uk = ρuk−1 + Aβ
k − zk (15)

where

yk−1
j =Ajβ

k−1
j −Aβ

k−1
+ zk−1 − uk−1 (16)

Aβ
k

=

ma+mp∑
j=1

Ajβj (17)

In the above algorithm, the updates in (13) are local updates
for the partial local estimates, while the z-update in (14) is
for the central agent to iterate on its full set of parameters, to
obtain β, eventually.

A number of convergence criteria for this algorithm are
proposed in [7]. In a straightforward manner, one may monitor

the norm of the increment βk − βk−1 and stop when this
norm gets small, say, 10−3. Similarly, a maximum number of
iterations should be defined, e.g., such that k ≤ 500. The final
parameter vector estimate β̂ is then obtained by assembling
the local estimates βkj at convergence (as in (11)). The ADMM
algorithm may be initialized by setting all relevant variables
to 0. Besides the structure of the underlying autoregressive
model originally chosen, this algorithm has two parameters λ
and ρ, which may be selected through cross-validation. ρ is an
augmented Lagrangian parameter that controls the step size in
the iterative optimization performed by the ADMM approach.

This ADMM approach permits to coordinate distributed
learning by this iterative exchange between the master problem
of the central agent and the sub-problems of the contracted
agents. Though, the contracted agents still need to locally solve
the Lasso estimation problem (13) at each iteration k. There,
we propose to use an efficient and simple approach nicknamed
“shooting” [9]. Shooting is also an iterative procedure, which
combines simplicity in terms of the iterative procedure it
implements and suitable convergence to the Lasso estimate,
in comparison to alternative approaches, e.g., quadrative pro-
gramming variants, interior-point methods, etc. Considering
we want to compute βkj , the shooting algorithm is to be
initialized with the ridge regression estimator corresponding
to the Lasso estimator in (13). It is given by

β̃
k

j =

(
A>j Aj +

2λ

ρ
I

)−1

A>j y
k−1
j (18)

Subsequently, starting from this estimate, one loops over its
element i = 1, . . . , l + 1, by first calculating

Si = −A>j,iyk−1
j +

∑
n 6=i

A>j,iAj,nβi (19)

where A>j,i denotes the ith column of the design matrix A>j ,
and then update the variable βi such that

βi =
1

A>j,iAj,i

(
2λ

ρ
− Si

)
, Si >

2λ

ρ
(20)

βi = − 1

A>j,iAj,i

(
2λ

ρ
− Si

)
, Si < −

2λ

ρ
(21)

βi = 0, |Si| ≤
2λ

ρ
(22)

This looping over the elements is repeated until a convergence
criterion is met (e.g., related to increment norm, or maximum
number of iterations). The local estimate βkj for the ADMM
algorithm at iteration k is then given by βi, i = 1, . . . , l + 1.

IV. APPLICATION RESULTS

The distributed learning approach presented in the above is
applied and analyzed here based on 2 datasets in France and
Australia. Results are given for all different application cases
discussed in the above, i.e., for the case of single wind farm
operators getting support from other wind farms, for the case
of portfolios of wind farms that contract others to improve
their forecasts, as well as the case of a system operator that
would distribute his learning problem to all wind farms in
his system. Only one-step ahead forecasts are considered here
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for illustration, also since emphasis is placed on models for
very-short-term forecasting.

A. Australian and French Datasets

The Australian dataset was originally constructed based
on data made publicly available by the Australian Electricity
Market Operator (AEMO). The temporal resolution of the data
is of 5 minutes, for a set of 22 wind farms in South Australia,
over a period of nearly 2 years. All power measurements are
normalized by the nominal capacity of the wind farm they
relate to. No meteorological measurement (e.g., wind speed
and direction) is available. A link to this data is given in [4].
The temporal resolution of the data was coarsened to time
steps of 30 minutes, by averaging the 6 5-minute values in
each and every 30-minute interval. This allows to have a lighter
dataset to run many test cases examples to be reported here.

A similar dataset from France is used. Power measurements
with a temporal resolution of 10 minutes were originally
collected at 187 wind farms over a period of 3 years and 5
months. For confidentiality reasons, locations and characteris-
tics of the wind farms cannot be communicated here. Power
measurements are also normalized, while no meteorological
measurement is associated to this power data. After quality
checking of these power observations, and coarsening to a
hourly resolution (by an averaging procedure similar to the
Australian data case), one is left with power measurements
for 85 wind farms over the whole period.

B. Evaluation Framework

As is commonly done in wind power forecasting, we split
our datasets between a learning/cross-validation set Γl and an
evaluation set Γe. The former dataset is used to make decisions
on model structure, the penalization λ for the Lasso estimator,
the step size ρ for the distributed learning approach, etc. Cross-
validation is employed to decide upon these parameters while
aiming to maximize the generalization ability of the model
for forecasting. Over the evaluation set Γe, the models are
readily applied to predict power generation as if in operational
conditions.

The lead score we use to compare forecasts is the Root
Mean Square Error (RMSE). Based on the forecast error

εt+1|1 = yt+1 − ŷt+1|t, ∀t ∈ Γe (23)

calculated for each time instance in the evaluation set, the
RMSE is readily given by

RMSE =

(
1

Te

∑
t∈Γe

ε2t+1|1

) 1
2

(24)

where Te is the number of forecast-observation pairs in the
evaluation set Γe. RMSE is one of the relevant criteria to
evaluate point forecasts of wind power generation, especially
since forecasts are defined as conditional expectation of wind
power generation at time t+ 1 given information, model and
parameters estimated at time t. For an extensive overview of
approaches to wind power forecast verification, the reader is
referred to [10].

Finally, as a basis for comparison, a number of common
benchmark models are used. Since the premise of our work
is that the central agent only have access to limited amount
of data, relevant benchmark models include persistence and
autoregressive (AR) models. For the former, no decision upon
model structure or estimation is to be carried out, while this is
not the case for the latter. A Lasso estimator is also used here
for the AR models, hence allowing for automatic selection of
relevant lags.

C. Illustration for a Single Wind Farm

To first illustrate the application and interest of our dis-
tributed learning framework, we place emphasis on the case
of a single wind farm operator, who aims at predicting power
generation at his site of interest, though potentially profiting of
potentialoffsite information to improve his forecasts. For that
illustration, we consider wind farm 8 in the Australian dataset,
following the wind farm numbering proposed in [4]. Even
though the wind farm operator may restrict itself to contracting
the closest wind farms for distributed learning, since being
of most relevance anyway, we assume here that contracts are
made with the other 21 wind farms. In practice with this set-
up, the actual model to be estimated is an ARX model (AR
with exogenous input) since having an AR part as well as
offsite information. A number of maximum 5 lags is used (plus
intercept term), while the Lasso estimator allows to shrink the
model and only select those lags that are relevant. 2.000 times
steps (hence covering 1.000 hours) are used for estimating the
models, while the following 10.000 are employed for genuine
forecast verification. The forecasting results are collated in
Table I.

TABLE I: Comparative results for distributed learning (ARX
model), as well as persistence and AR benchmarks, at an
Australian wind farm (wind farm no. 8) for 30-min ahead
forecasting.

Persistence AR ARX (dist. learning)
RMSE [% nom. capacity] 3.60 3.57 3.52

Improvement [%] - 0.8 2.2

For this wind farm (and for this whole dataset in general,
as shown in [4]), it may be very difficult to outperform
persistence with such noisy response data while considering
very short lead times. In the present example, an AR model
with parameters obtained through application of a Lasso-type
estimator allows selecting the 2 closest lags as input variables,
while yielding a RMSE improvement of 1%. In comparison,
applying a distributed learning approach, hence aiming to
improve forecasts by capturing space-time dependencies while
never sharing data at the various sites, the RMSE is further
improved (reduction of 2.2%). Out of the 22×6 variables
(5 lags and the intercept term) that could be selected as
input, only 3 were selected as relevant explanatory variables.
This approach therefore allows obtaining very sparse models
combining local and offsite information. It is to be noted that
owing to the nonstationary nature of wind power dynamics,
it may actually be that relevant explanatory variables change
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Fig. 2: Box-plot representing the distribution of RMSE im-
provements (in %) for all 85 wind farms, when comparing
results obtained with local information only (AR model) and
with offsite information through distributed learning (hence,
with ARX models).

with time, being different lags and corresponding to different
locations.

D. Results for Wind Farms and Portfolios

Let us now consider a more complete setup with the French
dataset. With this dataset, we aim at looking at a broader range
of relevant application of this distributed learning approach.
First of all, it allows us to verify how general benefits from
distributed learning may be, for a large number of wind farms.
For that purpose, we repeat an experiment similar to that in
the above, by looking at the case of each and every wind farms
individually, comparing cases where they use local data only
and where they would use a distributed learning approach.
Forecasts are all issued for a 1-hour lead time. A period
is randomly chosen within the dataset, with training over
5000 consecutive hours, and then forecast evaluation over the
following 10.000 hours. Models are built with up to 3 lags
and an intercept term for each and every wind farm. In the
distributed learning case, this translates to models with up to
85×4 non-zeros parameters. Results are presented in the form
of a box-plot in Figure 2.

Improvements in RMSE values exist for nearly all wind
farms, with a 4.08% average and a range between -3.2 and
9.6%. In all cases, improvements over persistence are highly
significant, one order of magnitude larger than for the Aus-
tralian dataset. Here, we believe that such negative values in
RMSE improvements, which are there for a minority of wind
farms, may be explained by the nonstationarity of the wind
power dynamics, since the model is estimated on a certain
period in the past, and then assumed to be valid for the follow-
ing 10.000 hours. Remedies to that issue would include batch
estimation on sliding windows, or online distributed learning
approach, hence with recursive and adaptive estimation of the
parameters in a distributed learning environment. The latter
solution should be preferred, since batch re-estimation would
be heavier from a computational point of view while not

necessary yielding better forecasting results. Through the use
of a Lasso-type estimator, very few of the possible 370 model
parameters ended up to be non-zeros, and this for all wind
farms.

We now look at the more general case of a portfolio
manager who aims at improving forecasts for his whole
portfolio, possibly profiting of distributed learning to gain
from offsite without actually seeing the data from these other
sites. For illustration, we use a set-up similar to the case
above (time periods, model structures, etc.), though having
assembled randomly a portfolio composed by 8 wind farms
from this French datasets. Results are gathered in Table II.
Profiting of smoothing effects, forecast errors are lower in
general. In addition, improvements over persistence are more
significant. The benefits from distributed learning appear to
be more significant too, most likely since for a geographically
distributed portfolio they may be even more to learn from all
offsite locations.

TABLE II: Comparative results for distributed learning (ARX
model), as well as persistence and AR benchmarks, for a
portfolio of 8 wind farms of the French dataset (randomly
chosen) for 1-hour ahead forecasting.

Persistence AR ARX (dist. learning)
RMSE [% nom. capacity] 3.99 3.67 3.38

Improvement [%] - 8.2 15.3

Finally considering the case of the system operator, we
envisage here the situation where the forecasting problem for
the aggregate power of the 85 wind farms is fully distributed
among all sites, meaning that this system operator does not
even have to know about the individual production data at
each and every site. The set-up is here again similar to the
previous forecasting experiments. Results are summarized in
Table III. RMSE values are even lower here, while there is
not really relevant offsite information when considering the
aggregate of all wind farms. However, one sees that there is
still a little benefit from considering all individual sites, with
a few additional percent decrease in RMSE values.

TABLE III: Comparative results for distributed learning (ARX
model), as well as persistence and AR benchmarks, for the
aggregate of all 85 French wind farms for 1-hour ahead
forecasting.

Persistence AR ARX (dist. learning)
RMSE [% nom. capacity] 2.88 2.10 2.05

Improvement [%] - 27.1 28.8

V. CONCLUSIONS

We have proposed and studied a distributed learning ap-
proach for wind power forecasting, which offers a flexible
framework for estimating models that may allow to account
for information at a large number of sites without having to
exchange actual production data at these sites. There is a wide
range of applications for forecast improvement, for single sites
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to portfolios wind farm operators and portfolio manager, and
to whole aggregate of wind farms for system operators.

This distributed learning approach may be extended and
generalized in many ways. First of all, one may consider using
additional input information, e.g., weather forecasts, if looking
at further lead times. Then, from a more methodological
point of view, other estimators than Lasso-type ones may be
implemented and studied. Online learning approaches would
allow to lighten the computational burden while adapting to
the nonstationary dynamic behavior of wind power generation.
Eventually, distributed learning can be used to generate prob-
abilistic forecasts, instead of the deterministic ones considered
here.

On a side note, this concept of distributed learning allows
envisaging the development of a market place for data sharing
that would benefit forecast quality while rewarding monetarily
those ready to contribute to forecast improvement. Pricing
information sharing may be challenging, though possibly
naturally formulated in a game-theoretic framework.
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