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ABSTRACT  

This study presents new group contribution (GC) models for the prediction of Lower and Upper 

Flammability Limits (LFL and UFL), Flash Point (FP) and Auto Ignition Temperature (AIT) of 

organic chemicals applying the Marrero/Gani (MG) method. Advanced methods for parameter 

estimation using robust regression and outlier treatment have been applied to achieve high 

accuracy. Furthermore, linear error propagation based on covariance matrix of estimated 

parameters was performed. Therefore, every estimated property value of the flammability-related 

properties is reported together with its corresponding 95%-confidence interval of the prediction. 

Compared to existing models the developed ones have a higher accuracy, are simple to apply and 

provide uncertainty information on the calculated prediction. The average relative error and 

correlation coefficient are 11.5% and 0.99 for LFL, 15.9% and 0.91 for UFL, 2.0% and 0.99 for 

FP as well as 6.4% and 0.76 for AIT. Moreover, the temperature-dependence of LFL property 

was studied. A compound specific proportionality constant ( ) between LFL and 

temperature is introduced and an MG GC model to estimate  is developed. Overall the 

ability to predict flammability-related properties including the corresponding uncertainty of the 

prediction can provide important information for a qualitative and quantitative safety-related risk 

assessment studies. 

 

Keywords: Group contribution, Uncertainty, Flammability limit, Flash point, Auto ignition 

temperature  
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1. Introduction 

The safety characteristics of hazardous substances provide indispensable information for the risk 

assessment of chemical products in industrial and domestic processes. In particular flammability-

related properties such as the lower and upper flammability limit (LFL and UFL), the flash point 

(FP) and the auto ignition temperature (AIT) are important to quantify the risk of fire and 

explosion. In the early design phase a large amount of alternative products and processes are 

generally analysed, compared and ranked. Whenever experimental values are unavailable 

property prediction models become a valuable tool [1]. 

Group contribution (GC) based property models try to estimate a chemical property based on 

structurally dependent parameters. GC methods are known to be advantageous compared to ab 

initio procedures, quantitative structure property relationship (QSPR) or prediction based on 

artificial neural networks (ANN), because they are easy to apply, computationally less 

demanding and have a wide application range [2]. Frutiger et al. [3] stressed the need for 

thorough parameter estimation and uncertainty analysis for GC models in order to obtain 

accurate and reliable property predictions. For safety-related properties the provision of 

uncertainty information (i.e. the upper and lower bound of the 95%-confidence interval) is of 

particular interest, because the statistical uncertainty should be taken into account, when risk 

calculations are being carried out [4]. However, there is still a lack of application of uncertainty 

analysis techniques for safety-related property prediction. 

The lower flammability limit (LFL) and the upper flammability limit (UFL) are defined as the 

lowest and the highest possible concentration of a substance in air at which a flammable mixture 

is formed. These concentrations are stated at a specific temperature (298K) and pressure (1 atm). 
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However, LFL and UFL change with increasing temperature [5]. The flash point (FP) is the 

lowest temperature where a liquid forms an ignitable vapour-air mixture. The auto ignition 

temperature (AIT) is the lowest possible temperature above which a substance will ignite in air 

without an external ignition source [6]. 

The review of Vidal et al. [7] provides an overview of the abundant literature, which is available 

on single point calculations of LFL and FP. Rowley et al. [8] compared extensively a large 

variety of the developed methods to estimate LFL at a predefined temperature of 298K (single 

point prediction). The comparison contains purely correlation-based, GC methods and also 

detailed mechanistic models. Among the GC based models for LFL and UFL prediction there are 

several methods suggested in the literature. Shimy [9] derived formulas for different classes of 

chemicals relating the number of carbon atoms with LFL. Solovev et al. [10] as well as Oehley 

[11] used atomic indices to calculate LFL. Shebeko et al. [12] used atom and bond connectivity 

indices in order to model LFL and UFL of pure compounds. Kondo et al. [13][14] developed a 

GC method to estimate the ratio  between LFL and UFL, which they called F-number. All of 

these methods are simple and easy to apply, but employ very little structural information on the 

molecules and a limited application range. Hence, the average relative error is high considering 

different classes of chemicals [8]. Seaton [15] developed a GC method for LFL and UFL of pure 

compounds. The application range of the latter method is limited by the relatively small number 

of functional groups. The methods of Shebeko and Seaton have been used to predict non-

experimental property values for LFL in the DIPPR 801 database [16]. Albahri [17] developed a 

structural GC method to predict LFL and LFL. A QSPR model for LFL has been developed by 

Gharagheizi [18]. Pan et al. [19][20] used topological, charge, and geometric descriptors to 

describe a QSPR model for LFL and UFL. Recently, Gharagheizi [21] as well as Albahri [22] 



 7 

calculated GC-factors for LFL using artificial neural networks (ANN). Furthermore, Gharagheizi 

[23] developed a QSPR model for UFL. In a similar approach using ANN, Lazzús [24] predicted 

the LFL and UFL of various organic compounds. Bagheri et al. [25] used a nonlinear machine 

learning model to develop a LFL QSPR method. However, the mathematical structure of the 

latter methods using ANN or machine learning approaches for LFL and UFL is very complex, 

making model building very tedious. High et al. [26] set up a simple GC model with a limited 

amount of groups for UFL and included estimations of the upper and lower bound of the 

confidence limits. Shu et al. [27] presented a method using the threshold temperature (e.g. the 

ignition temperature) to evaluate UFL of a hydrocarbon diluted within an inert gas. The same 

authors also presented a model to evaluate the flammable zones of hydrocarbon-air-CO2 

mixtures based on flame temperature theory [28].  Rowley et al. [8] provided a GC method that 

is based on the relationship between LFL, the respective enthalpies of the substance as well as air 

and the adiabatic flame temperature, obtaining high accuracy. Mendiburu et al. [29][30] 

developed semi empirical methods for determination of LFL and UFL of C-H compounds, which 

took into account the stoichiometry of combustion process and the estimation of the adiabatic 

flame temperature. Except to High et al., none of the above mentioned methods includes a 

thorough uncertainty analysis. Hence, no information about the respective 95% confidence 

interval for a specific prediction of LFL and UFL is provided. 

The temperature-dependence of LFL and UFL of organic compounds is generally depicted by 

the modified Burgess-Wheeler law [31], that relates LFL, temperature, the heat capacity of the 

fuel-air mixture and the heat of combustion . Britton et al. [32][33] suggested correlations 

between LFL and the adiabatic flame temperature. Both methods assume that the adiabatic flame 

temperature is independent of the initial temperature, which was found to be only true for 
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experimental condition, where LFL was measured in a narrow tube [8][34]. A purely empirical 

correlation of LFL on a wide range of temperature has been proposed by Catoire et al. [35] 

taking into account the corresponding stoichiometric mixture of fuel and air mixture and the 

number of carbon atoms in the molecule. However, the model strongly depends on the data set 

itself. Rowley et al. [8] improved the modified Burgess-Wheeler law by taking into account the 

temperature-dependence of the adiabatic flame temperature and relating it to the number of 

carbon atoms. However, there is only limited amount of structural information of the molecules 

(i.e. the carbon number) taken into account.  

Hukkerikar et al. [36] developed a GC model using Marrero/Gani (MG) method for FP and AIT 

including an uncertainty analysis based on the parameter covariance matrix and performance 

criteria to assess the quality of parameter estimation. Frutiger et al. [3] developed a GC model for 

the heat of combustion  taking into account different parameter regression methods, 

optimization algorithms, alternative uncertainty analysis methods and advanced outlier 

treatment. The same authors also analyzed parameter identifiability issues as the source of 

prediction inaccuracy and uncertainty. Furthermore, they calculated and reported the 95% 

confidence interval of GC model predictions (prediction accuracy). This thorough and systematic 

methodology led to significant improvement of GC based model development. 

In this study, we therefore aim to provide a new set of improved group contribution models using 

Marrero/Gani (MG) method [37] to estimate LFL and UFL, FP and AIT at standard conditions 

using the systematic model development and analysis method of Frutiger et al. [3]. Furthermore, 

we suggest a GC method to include temperature-dependency in lower flammability limit 

calculation. The models include a thorough uncertainty analysis (i.e. estimation of the 95%-

confidence interval) of every prediction, in order to provide additional information on the 
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reliability of the estimated property. In that sense it is possible to obtain an overall picture of the 

different flammability properties of a chemical based on the same property prediction 

methodology. 

The paper is organized as follows: (i) the overall methodology for the GC model development 

and uncertainty analysis for single point LFL, UFL, FP and AIT is shown; (ii) the LFL model is 

extended to include temperature-dependence; (iii) the performances of the novel GC models are 

compared with that of existing models; (iv) an application example for 3-Hexanol to calculate 

LFL including 95% confidence interval is provided. 
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2. Method 

The procedure to develop the GC model for the single point LFL UFL, FP and AIT, to estimate 

its parameters and to perform the uncertainty analysis, follows the work of Frutiger et al. [3]. 

Robust regression method as well as the covariance based uncertainty analysis has been applied 

for this study. Frutiger et al. [3] suggested and compared also alternative methods for parameter 

estimation and uncertainty analysis, e.g. in order to take into account experimental uncertainties. 

GC MG factors for FP and AIT are re-estimated using robust regression and outlier treatment, 

aiming an improved parameter fit compared to the previous estimations [36]. 

2.1. GC model functions 

As a GC model structure the Marrero/Gani (MG) [37] method is chosen, which considers 

structural contributions on three levels. The MG method is written as 

 
 

(1) 

  (2) 

 

A specific functional group (1st order parameters j) is expressed by the factor Cj that occurs Nj 

times. Dk is the contribution factor of the polyfunctional (2nd order parameters k) that occurs Mk 

times in the molecular structure. Finally structural groups (3rd order parameters l) are taken into 

account by the contribution El that has Ol occurrences. The function f(X) needs to be specified for 

a certain property X. The factors can be determined for a specific molecule following the rules of 

Marrero et al. [37]. The GC parameters can be summarized in vector  with T being the 

occurrence matrix of the factors (see Eq. (2)). MG groups are shown for methacrylonitrile and 

adiponitrile in Figure 1. 
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Figure 1. Example of GC-factors of methacrylonitrile (left) and adiponitrile (right). 

 

By plotting various classes of pure components versus their increasing carbon number in 

homolog series one can obtain ideas regarding the property function f(X). Such a homologue 

series plot is shown for LFL in Figure 2. 

The following functions are suggested for LFL, UFL and FP for a specific compound. 

  (3) 

  (4) 

 
 

(5) 

 

In Eq. (3) to (5) LFLconst, UFLconst, and FPconst are universal constants that need to be determined 

by the parameter regression. For AIT data on the homolog series suggest a more complex 

structure involving two summations: 
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(6) 

 

Eq. (5) and Eq. (6) has already been proposed by Hukkerikar et al. [36]. Here more experimental 

data points are taken into account and a comprehensive methodology for parameter estimation 

and uncertainty analysis is applied to estimate the GC factors in this study. Eq (4) was first 

suggested by Frutiger et al. [38], but no thorough parameter estimation and uncertainty analysis 

has been performed. 

 

Figure 2. Graphical representation of number of carbon atoms versus property for logarithm of 

LFL for a selection of groups of pure components. 
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In order to account for the temperature-dependence of LFL the approach of Rowley et al. [8] is 

used as a basis to derive a new MG GC method. The latter authors also provided a detailed 

derivation and explanation of the following equations.  

The temperature-dependent LFL of Rowley et al. is based on the following energy balance of the 

combustion process:  

  (7) 

where  is the heat of combustion,  is the heat capacity of the compound and air 

 is the heat capacity of the combustion products and  is the adiabatic flame 

temperature. Rowley et al. further assumed:  

1)  to be roughly equal to  2) the adiabatic flame temperature  as linearly 

decreasing with increasing initial temperature [34].  

This leads to the following generalization of the Burgess-Wheeler law [8]: 

  (8) 

where  is assumed to be 

  (9) 

 is the compound specific linear constant of ,  is the heat capacity of a specific 

compound at the reference temperature  and  is the heat capacity of air at the reference 

temperature . 

Comparing experimental flammability data for different temperatures and various compounds, 

usually a linear dependence between LFL and the temperature T is reported by [5][34][39]. 

Based on this premise, we present a simplified model as follows: 
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  (10) 

where  is the proportionality constant between LFL and T for a specific compound i.  

could be determined for a certain compound i by analyzing the experimental work of Coward et 

al. [39] and Rowley et al. [34]. Plotting  versus the corresponding carbon number of the 

compounds implies the possibility of describing this constant by GC models using a reciprocal 

model function (see Figure 3). Therefore, we propose the following Marrero/Gani GC model to 

estimate  for a specific compound: 

  (11) 

with  as the universal correlation constant and Cj the first order parameters that occurs Nj 

times. 

Comparison with the generalized Burgess-Wheeler law in Eq. (8) with Eq. (10), shows that our 

proposed proportionality constant can be considered as a lumped parameter of several properties: 

  (12) 

 

Calculating  directly from GC factors reduces the amount of parameters in the model 

which makes it easier to apply. Furthermore, it lumps properties that showed to be correlated 

with increasing carbon number or structurally-dependent group contribution factors in previous 

studies:  is linearly depending on the heat capacities  and . Joback and 

Reid depicted the dependence of the heat capacity on the structurally dependent parameters [40]. 

 is strongly depending on the carbon numbers and a MG GC method has been developed by 

Frutiger et al. [3]. Rowley et al. [8] showed dependence of  on the carbon numbers. If for a 
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compound, no experimental value for the mentioned properties exist, then GC models would be 

used in order to estimate ,  and  by Eq. (8). In that sense the introduction of 

 summarizes structural dependence on the temperature-dependent flammability for a 

specific compound in one single parameter and provides one single model GC model to estimate 

it. 

 

 

Figure 3. Graphical representation of number of carbon atoms versus . 

 

2.2. GC parameter estimation and uncertainty analysis 

Experimental data for LFL, UFL, FP and AIT are taken from AIChE DIPPR 801 Database [16]. 

We only considered data points that are classified by DIPPR as “experimental” and “accepted” 

values. Table 1 shows the number of experimental data points. Data for the temperature-
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dependence of LFL have been collected from different sources [34][5][39]. 

Table 1. Number of compounds per property. 

  
No. compounds 

LFL 443 

UFL 351 

FP 927 

AIT 513 

 23 

 

In order to estimate the GC parameters robust regression is chosen, in which the residuals are 

assigned a certain weight factor , decreasing the influence of experimental data points giving 

large residuals (not following the model), i.e. potential outliers [41]. Robust regression has been 

shown to be advantageous over standard non-linear regression for the estimation of GC factors 

[3]. 

  (13) 

  (14) 

  (15) 
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 is the parameter (1
st
, 2

nd
 and 3

rd
 order group contributions) estimates and  is the 

prediction of compound i according to Eq. (3) to (6) and  its corresponding experimental 

value. 

Outliers are identified using the empirical cumulative distribution function (CDF) of the 

residuals between experimental and predicted values, which has been described for GC models 

by Frutiger et al.[38]. The empirical CDF is defined as a step function increasing by 1/n in every 

data point. The major advantage of this methodology is that the distribution of the residuals is 

estimated from the data themselves, not a priori assuming normal distribution. Outliers are 

considered as data points that that lie below the 2.5% or above the 97.5% probability levels. 

The Uncertainty analysis is based on linear error propagation using parameter covariance matrix 

[3][36]. 

The covariance matrix,  of parameter estimators is asymptotically estimated as follows 

  (16) 

where p is the number of parameters, SSE is the minimum sum of squared errors given by the 

regression model, n is the number of data points and, J is the Jacobian of the model function f 

with respect to the parameter values 
* . Linear error propagation allows estimating the 

uncertainty of the property predictions. The covariance matrix of the predictions  can 

be approximated using the Jacobian and the covariance of the parameter estimates as shown in 

Eq. (16), 

  (17) 
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A student t-distribution  (with  percentile) can be used to calculate the 

confidence intervals of the property predictions 

  (18) 

where  are the diagonal elements of  and  

the diagonal elements of . 

In order to quantify and compare the performance of the parameter estimates the following 

statistics are calculated: the Pearson correlation coefficient R
2
 and the average relative error 

ARE: 

 
 

(19) 

  (20) 

with  the prediction of compound j,  the experimental value and  the mean value. 

In order to compare the newly developed temperature-dependent GC model for LFL with the 

model developed by Rowley et al. [8] Akaike information criterion (AIC) [42] is used. AIC is a 

way of model selection based on information theory, which tries to account for both the 

goodness of the model fitting and the complexity of the model. Akaike information criterion 

(AIC) is given by Eq. (21). 

  (21) 
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SSE is the sum of squared errors, n the number of data points and p the number of parameters 

[42].  
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3. Results and Discussion 

3.1. Results of the GC parameter estimation and uncertainty analysis 

The results of the parameter estimation using robust regression are shown in Table 2 and Table 

3. R
2
 is the Pearson correlation coefficient, ARE is the average relative error, SSE is the sum of 

squared errors between the experimental and predicted property values and SD is the standard 

deviation. Prc25 represents the percentage of the experimental data points found within ± 25% 

relative error range respectively. The performance statistics show that the GC parameter fits for 

LFL, UFL and  are very good. For FP and AIT the performance statistics of the re-

estimated parameters can be compared to the estimation of Hukkerikar et al. [36], who used a 

standard non-linear regression. As it can be seen in Table 3, robust regression and systematic 

outlier removal gives a much better parameter fit. Figure 4 depicts the prediction based on the 

model of versus the experimental values used for the GC parameter estimation of LFL, UFL, FP 

and AIT. The GC factors of all of the developed models can be found in the supplementary 

material. 

Table 2. Regression model performance statistics for LFL, UFL and . 

 
R

2
 

ARE 

[%] 
SD SSE 

Prc25 

[%] 

LFL 0.99 11.5 0.24 23 88 

UFL 0.91 15.9 2.74 77 82 

 

0.89 14.7 6.01 10
-4

 7.7 10
-6

 76 
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Table 3. Regression model performance statistics for FP and AIT. 

 

 

 

 

Figure 4. Prediction versus experimental value for LFL, UFL, FP and AIT. 

 
R

2
 

ARE 

[%] 
SD SSE 

Prc25 

[%] 

FP 0.99 2.0 9.99 4.73 10
5
 100 

FP (Hukkerikar et al.) 0.80 3.2 14.30 - 98 

AIT 0.76 6.4 41.35 4.48 10
6
 97 

AIT (Hukkerikar et al.) 0.72 6.8 56.74 - 96 
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The average relative error ARE and the number of data included in this study for the LFL and 

UFL model are compared to other property prediction models in Table 4 and Table 5. 

Table 4. Comparison of developed LFL model with existing GC models. Abbreviations: average 

relative error (ARE), Marrero/Gani (MG), group contribution (GC), atom and bond connectivity 

(AC), quantitative structure property relationship (QSPR), artificial neural networks (ANN). 

 

Model structure ARE [%] No. of data 

Current study MG GC 12 443 

Oehley, 1953 [11] AC 27 - 

Solovev et al., 1960 [10] GC 25 - 

Shimy, 1970 [9] CN 24 9 

Shebeko et al., 1983 [12] AC 21 70 

Seaton, 1991 [15] GC 16 152 

Kondo et al., 2001 [13] GC 24 238 

Albahri, 2003 [43] structural GC 10 109 

Gharagheizi, 2008 [18] QSPR 8 1056* 

Pan et al., 2009 [19] QSPR 5 1038* 

Gharagheizi, 2009 [23] ANN 4 1056* 

Lazzús, 2011 [24]  ANN 9 328 

Rowley et al., 2011 [8] GC 11 509 

Bagheri et al., 2012 [25] QSPR 1 1615* 

Mendiburu et al., 2015 [29] semi empirical 9 120 

*included experimental and predicted property values hence it is not an objective performance 

evaluation of a model. 
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Table 5. Comparison of developed UFL model with existing GC models. Abbreviations: average 

relative error (ARE), Marrero/Gani (MG), group contribution (GC), atom and bond connectivity 

(AC), quantitative structure property relationship (QSPR), artificial neural networks (ANN). 

 

Model structure ARE [%] No. of data 

Current study MG GC 16 351 

Shebeko et al., 1983 [12] AC 25 70 

High et al., 1987 [26] GC 26 181 

Seaton, 1991 [15] GC 20 152 

Albahri, 2003 [17] structural GC 12 109 

Pan et al., 2009 [20] QSPR 19 588* 

Gharagheizi, 2009 [23] QSPR 10 1057* 

Lazzús, 2011 [24] ANN 7 328 

Mendiburu et al., 2016 [30] semi empirical 8 115 

*included experimental and predicted property values hence it is biased. 

The comparison could only be made according to the average relative error ARE, due to the fact 

that no uncertainty analysis has been performed by the other authors. The current model provides 

for every predicted value the corresponding uncertainty, which is lacking in the other models 

(with the exception of High et al. [26]). 

Considering the ARE of LFL, the model developed in this study performs better than the 

previous LFL models of Oehley, Solovev et al., Shimy, Shebeko et al., Seaton and Kondo et al.. 

Furthermore, the amount of data that are taken into account is much higher for the present model. 

This increases the application range of the model, since more chemicals from different classes of 

molecules have been used in the model development. The current LFL model performs similar in 

comparison to the recent GC prediction method of Rowley et al. and the best performing model 

of Albahri. The work of Mendiburu et al. took only C-H compounds into account and can 
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therefore not be compared directly to the model of this study. The ANN methods of Lazzús and 

Albahri shows better performance statistics as well. However, these authors took a lower amount 

of experimental data points into account for the fitting of their model. Hence, the application 

range is narrower. Furthermore, the ANN structure is very complex for even a relatively small 

number of fitted data. In that sense its applicability is more difficult and its application range is 

smaller. Similar conclusions can be made for UFL, where the developed model is superior to 

Shebeko, High et al., Seaton and Pan et al.. Albahri and Lazzús perform slightly better, but they 

used a smaller amount of data points, which leads to a smaller application range.  

The ANN and QSPR models of Gharagheizi, Pan et al. and Bagheri et al. for LFL and UFL have 

a lower ARE and more data points. However, the amount of data consist of all experimental data 

and predicted values available in the DIPPR database which is not a scientifically accepted way 

to compare model performance statistics. A parameter estimation should solely be based on 

experimental data points only [44]. While comparing ANN or QSPR with GC models for 

flammability, it is important to state that ANN/QSPR and are fundamentally different to GC 

methods in the sense that the aim is to build the best possible model structure (i.e. considering 

variables and descriptors). However, the model structure is fixed in GC methods and its goal is to 

estimate the parameters in the best possible way given a certain available set of experimental 

data. The structure of the MG GC model is much simpler compared to ANN and easier to apply 

in practice. Furthermore, whereas the reliability of the GC model predictions have been 

statistically demonstrated and verified against application in practice, establishing the reliability 

and confidence of parameter estimation in ANN or QSPR remains to be demonstrated. 

Furthermore, GC models allow adding new experimental values to the parameter estimation 



 25 

without changing the model structure. In QSPR and ANN model building need to be performed 

all over again [3]. 

GC factors for the LFL, UFL, AIT, and  of a selection of functional groups are depicted in 

Table 6. The complete list of the GC factors can be found in the supplementary material. 

Table 6. Selection of commonly used GC factors for the LFL, UFL, FP, AIT and  model. 

The complete list of all GC factors can be found in the supplementary material. 

    LFL UFL FP [K] AIT [K]  

  

[Vol-%]  [Vol-%]    

Factor 

(linear) 

Factor 

(10^)   

Type Constant 4.53 129.96 195.22 561.19 55.19 -0.0036 

1st CH3 -0.24 -1.15 8.32 -74.66 -0.38 1.87 

1st CH2 -0.23 -0.14 12.49 2.19 0.14 -0.20 

1st CH -0.23 0.89 7.18 94.93 0.61 -1.09 

1st CH2=CH -0.49 -0.68 18.47 -98.80 -0.31 -0.58 

1st aromaticCH -0.22 -0.46 13.19 -9.84 -0.13 0.40 

1st aromaticC 0.05 0.20 18.25 -46.00 -34.79 -0.58 

1st OH 0.06 -0.76 69.04 16.20 -0.19 -0.88 

1st COOH 0.00 -1.03 118.40 98.45 -0.03 -1.01 

1st aromaticC-CO -0.94 0.25 83.76 302.15 8.48 2.14 

1st aromaticC-CHO -0.07 -0.40 71.33 -46.26 6.07 -1.62 

1st CHNH2 -0.33 -0.19 30.68 235.16 50.42 - 

1st NH2 0.02 -0.13 58.96 -38.58 -0.04 - 

1st -Br 1.00 -1.23 47.63 -94.63 -0.48 - 

1st -F 1.15 -0.56 -9.22 -221.62 -0.69 - 

1st -Cl 0.80 -1.20 21.42 -143.08 -0.58 - 

1st Si -2.08 3.34 12.06 27.78 0.02 - 

2nd CO-O-CO 0.07 -0.10 5.35 -57.25 -0.25 - 

2nd aromaticC-CH(CH3)2 -0.24 -0.27 4.54 29.19 0.23 - 

2nd aromaticC-C(CH3)3 0.01 0.30 13.22 21.31 -0.71 - 

2nd 

(CHn=C)(cyclic)-

CHO (n in 0..2) 

-0.14 

-0.10 16.51 -15.50 0.00 - 

2nd 

(CHn=C)cyclic-CH2 

(n in 0..2) 

-0.25 

0.08 -5.14 -41.08 -0.06 - 

2nd CHcyclic-CH3 0.00 -1.72 1.64 1.43 -0.34 - 

2nd CHcyclic-CH2 -0.02 -2.25 4.37 14.03 2.23 - 

2nd >Ncyclic-CH3 0.01 0.05 -23.86 60.15 0.17 - 
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3rd aromaticRINGs1s2 0.12 -0.01 -15.44 134.03 0.22 - 

3rd aromaticRINGs1s3 -0.01 -0.07 -6.41 122.77 0.21 - 

3rd PYRIDINEs2 -0.15 -0.32 -8.10 54.16 0.04 - 

3rd aromatic.FUSED[2] 0.02 0.12 13.03 -16.38 69.66 - 

3rd aromatic.FUSED[2]s1 -0.13 0.23 1.01 4.36 34.82 - 
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Table 7 gives an example of predicted values for a variety of organic compounds. The large variety of compounds from different 

chemical classes illustrates the wide application range of the developed models. More predicted values for different compounds can be 

found in the supplementary material. 

Table 7. Predicted values including the respective 95% confidence interval for a variety of selected number of chemical compounds. 

In all cases experimental data (not shown) falls within 95% confidence interval.  

 

LFL [Vol-%] UFL [Vol-%] FP [K] AIT [K] 

 

Pred. 95% conf.int. Pred. 95% conf. int. Pred. 95% conf. int. Pred. 95% conf. int. 

n-Heptane 0.75 0.63 0.87 6.28 5.10 7.46 274.30 271.41 277.18 611.41 598.42 624.40 

2-Methylhexane 0.71 0.59 0.82 6.21 4.84 7.57 266.46 263.26 269.65 607.46 591.98 622.95 

3,3-Diethylpentane 0.44 0.25 0.62 4.67 2.61 6.73 282.92 275.80 290.04 657.55 619.25 695.84 

Cycloheptane 0.98 0.60 1.37 5.96 4.26 7.67 283.90 276.92 290.88 559.04 523.08 595.00 

1-Pentene 1.14 0.97 1.31 9.98 8.20 11.76 246.78 242.92 250.63 601.48 583.79 619.17 

1-Octene 0.51 0.42 0.61 6.47 4.91 8.03 284.25 280.49 288.01 599.36 582.47 616.24 

Benzene 1.20 0.06 2.34 8.00 0.78 15.22 274.35 267.50 281.21 770.73 730.92 810.55 

Toluene 1.09 0.64 1.54 7.87 3.78 11.95 293.78 288.77 298.79 765.55 738.31 792.79 

Ethylbenzene 1.04 0.51 1.57 7.25 3.70 10.79 305.57 300.91 310.24 720.08 693.02 747.13 

o-Xylene 1.11 0.54 1.68 7.64 2.49 12.78 297.75 291.30 304.21 754.03 715.95 792.12 

Propanal 3.12 2.65 3.59 20.42 17.21 23.63 260.91 254.59 267.23 536.40 506.65 566.16 

Butanal 2.40 2.00 2.80 17.67 14.68 20.66 273.40 267.15 279.64 536.33 506.71 565.94 

Acrolein 2.80 2.06 3.54 29.22 22.91 35.53 259.44 247.96 270.91 517.71 448.45 586.96 

Benzaldehyde 1.40 0.26 2.54 8.50 1.25 15.75 332.49 320.44 344.54 556.89 499.89 613.90 

2-Heptanone 0.97 0.67 1.28 6.97 4.59 9.35 313.93 307.13 320.73 668.05 633.43 702.66 

Ethanol 3.33 2.98 3.68 16.63 14.31 18.96 285.07 281.55 288.59 637.56 619.58 655.54 

1-Propanol 2.55 2.28 2.83 14.40 12.44 16.36 297.56 294.19 300.92 636.24 618.67 653.81 
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Isopropanol 2.08 1.43 2.73 11.26 7.21 15.31 283.21 277.34 289.09 646.61 612.04 681.18 

1-Butanol 1.96 1.72 2.20 12.46 10.65 14.27 310.05 306.79 313.30 635.02 617.80 652.24 

1-Pentanol 1.50 1.28 1.72 10.78 9.02 12.55 322.54 319.35 325.73 633.89 616.95 650.83 

n-Butyric acid 2.21 1.77 2.65 10.94 7.65 14.24 346.91 341.55 352.28 634.80 611.79 657.80 

n-Pentanoic acid 1.70 1.35 2.04 9.47 6.56 12.38 359.40 354.09 364.71 633.46 610.76 656.17 

Methyl tert-butyl 

ether 
1.42 0.91 1.94 6.90 4.90 8.90 253.62 247.77 259.47 630.16 603.54 656.78 

Methyl ethyl ether 2.31 2.00 2.61 15.08 13.20 16.95 245.01 240.91 249.11 578.60 558.38 598.82 

Divinyl ether 1.70 0.56 2.84 27.00 19.75 34.25 226.15 203.21 249.09 623.23 492.98 753.48 

1,4-Dioxane 2.36 1.87 2.84 21.06 16.18 25.93 284.78 275.73 293.83 538.61 496.87 580.36 

tert-Butyl ethyl ether 1.15 0.72 1.57 6.32 4.19 8.44 263.03 257.54 268.51 616.04 592.70 639.37 

1,2-Dichloroethane 4.93 4.30 5.56 19.11 13.60 24.62 299.20 292.07 306.32 701.28 651.93 750.64 

1,2-Dichloropropane 3.57 2.69 4.45 14.50 7.25 21.75 288.60 281.12 296.08 735.08 663.66 806.51 

Isopropyl chloride 2.65 1.92 3.38 18.88 13.59 24.18 246.57 238.40 254.73 712.43 635.55 789.30 

1-Chloropentane 1.69 1.48 1.90 8.57 6.94 10.20 292.99 288.99 297.00 653.07 627.34 678.80 

Dimethylamine 2.80 1.66 3.94 14.40 7.15 21.65 223.15 200.21 246.09 599.55 457.37 741.73 

Triethylamine 1.29 0.24 2.33 8.69 2.88 14.50 264.68 256.03 273.34 554.89 482.22 627.56 

Pyridine 1.80 0.66 2.94 12.00 4.75 19.25 287.83 277.45 298.21 735.61 662.44 808.78 

Aniline 1.37 0.82 1.91 10.25 3.86 16.65 345.81 339.13 352.48 768.19 724.24 812.13 

Thiophene 1.29 0.45 2.13 7.96 3.50 12.41 281.11 268.08 294.14 640.15 569.30 710.99 

Dimethyl sulfoxide 2.60 1.46 3.74 28.50 21.25 35.75 361.00 338.06 383.94 492.34 350.16 634.52 

n,n-Dimethylacet-

amide 
1.80 0.66 2.94 11.50 4.25 18.75 336.15 313.21 359.09 631.70 489.52 773.88 

2-Methoxyethanol 2.20 1.64 2.76 19.60 15.90 23.30 304.56 299.42 309.70 578.47 547.32 609.63 

n-Ethylaniline 1.60 0.46 2.74 9.50 2.25 16.75 360.82 344.60 377.04 697.72 643.08 752.35 

Vinyltrichlorosilane 3.71 2.82 4.60 50.72 43.55 57.90 290.02 278.46 301.57 628.90 559.44 698.37 

Ethylene glycol 

monopropyl ether 
1.30 0.99 1.60 14.68 12.10 17.26 329.54 324.57 334.52 577.20 546.36 608.04 

1-Chloro-2,4- 2.19 1.13 3.25 22.00 14.75 29.25 462.69 451.75 473.64 677.46 593.67 761.26 
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dinitrobenzene 

Ethyl lactate 1.69 1.01 2.37 11.40 4.15 18.65 331.00 308.06 353.94 718.18 650.12 786.23 

2-Ethoxyethyl 

acetate 
1.56 1.19 1.93 11.06 8.55 13.57 320.36 314.75 325.97 654.40 619.29 689.51 
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Figure 5 shows the results of the covariance-based uncertainty analysis, exemplified for the case 

of LFL. The experimental and the predicted values of LFL with the respective 95%-confidence 

interval of the prediction highest value and for every substance are shown. The compounds are 

ordered from lowest to highest given an index number respectively. The 95%-confidence interval 

is a narrow band that includes the experimental values. The detailed covariance-based 

uncertainty analysis is another advantage of the developed GC models. Whereas the majority of 

the other authors define the quality of their model only with ARE, we can provide the 95%-

confidence interval for every prediction. This additional information, i.e. the reliability of the 

prediction, can be vital in the context of a quantitative safety-related risk analysis. For example it 

is possible to use the lower-bound value of the confidence interval in a conservative analysis 

approach. In fact, the lower bound of the confidence interval for LFL, is approximately 20% of 

the LFL values. The latter is commonly used as a rule of thumb in quantitative risk analysis 

(QRA) studies [45].  

Although the extension to mixtures lies far beyond the scope of this work, users can calculate the 

properties of mixtures from the current pure component model by applying simple mixing rules 

(e.g. le Chatelier's mixing rule for flammability limit [46]). 
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Figure 5. Experimental as well as predicted value of LFL for every compound with 95%-

confidence intervals generated by covariance-based uncertainty analysis. A section of the plot is 

enlarged to show the distribution of the experimental values around the prediction. 

The results of the calculation of the Akaika information criterion (AIC) for small sample for the 

developed temperature-dependent model compared to the one developed by Rowley et al. [8] is 

shown Table 8. The temperature-dependent LFL model developed in this study has been 

evaluated for different temperatures. These were used to calculate the sum of squared errors and 

subsequently AIC.  
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Table 8. Akaika information criterion (AIC) for small sample with SSE (sum of squared errors of 

the fit), n (number of experimental data points), p (total number of parameters. 

  
SSE n p AIC 

Current model 3.39 16 22 45.6 

Rowley et al.  0.45 16 32 67.3 

 

For the developed model in this study the total number of parameters p is consisting of the 21 

GC factors, and LFL(T=298K). For the study of Rowley et al. the number of parameters p is 

assumed under assumption that the heat capacity and the heat of combustion needs to be 

predicted, which is needed if the temperature-dependent LFL is calculated from predicted values 

only (according to Eq. (8)). The simplest GC based model for the prediction of the heat capacity 

is Joback and Reid´s method with 20 parameters. The easiest way to predict the heat of 

combustion is deriving it from the heat of formation using Benson´s method with approximately 

12 parameters. 

AIC is lower for the newly developed model in this study, although the model of Rowley et al. 

shows a better fitting to the experimental data. The AIC calculation enforces the fact that the 

newly developed model using the lumped parameter is a sparse model and should therefore be 

selected.  
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3.2. Demonstration of model application 

The developed models allow calculating the safety-properties from the molecular structure only 

and include an uncertainty analysis. Figure 6 depicts the result of example calculations with the 

developed GC MG models for 3-Hexanol. It provides an overall picture of the major 

flammability property predictions including the corresponding 95% confidence interval. 

Figure 6. Overview of the generated flammability-related properties by the developed GC MG 

models including 95% confidence interval: LFL0 (lower flammability limit at T= 298K), UFL0 

(upper flammability limit T= 298K), FP (flash point), AIT (auto ignition temperature) and 

Temperature-dependent LFL (without uncertainty). 

In order to demonstrate the simplicity of the model application, the prediction of LFL at 298K 

(single point) including uncertainty and at a different temperature (350K) point and using the 

temperature-dependence is shown by the example of 3-Hexanol. The calculation procedure for 

UFL, FP and AIT is analogous. The respective parameter values, covariance matrices and 
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jacobians for the model are given in the supplementary material. Further information (e.g. on the 

identification of the GC factor for a new molecule) can also be provided by the authors upon 

request. 

1) The MG GC parameters of the compound have to be identified according to the rules set by 

Marrero and Gani [37]. These rules state how to identify 1st, 2nd and 3rd order parameters from 

Simplified Molecular Input Line Entry Specification (SMILES). The structure of 3-Hexanol is 

depicted in Figure 7 and the corresponding Marrero Gani GC factors collected from the 

supplementary material in Table 9. The structure of 3-Hexanol is relatively simple, hence it does 

not contain 3rd order groups. The universal constant from robust regression is LFLconst=4.53 Vol-

%. 

 

Figure 7. Structure of 3-Hexanol [47]. 

 

Table 9. Group contribution factors of 3-Hexanol, obtained from GC factor sheet. 

1st order groups j Nj Cj 

CH3 

 

2 -0.24 

CH2 

 

3 -0.23 

CH 

 

1 -0.23 

OH 

 

1 0.06 

2nd order group k Mk Dk 
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CHOH 

 

1 -0.11 

 

2) The overall model equation according to Eq. (3) can be simplified. The GC factors are taken 

from Table 9 and can be inserted into Eq. (23). Hence, LFL of 3-Hexanol can be calculated 

according in Eq. (24). The unit of LFL is Volume-% (Vol.%) of the chemical in air. 

 
 

(22) 

 
 

(23) 

 

 

(24) 

 

3) Using the parameter covariance matrix  and the sensitivity matrix J that can be 

found in the supplementary material for the respective groups (see Table 10), it is possible to 

compute the respective confidence interval for the prediction as depicted in Eq. (25) and (26). 

Table 10. Parameter covariance matrix  and local sensitivity matrix J. 

 LFLconst CH3 CH2 CH OH CHOH 

LFLconst 0.99 

   

  

CH3 -0.11 0.012 

  

  

CH2 -3.1 10
-4 

-1.5 10
-4

 5.1 10
-4

 

 

  

CH -0.11 -0.012 1.6 10
-4

 0.025   
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OH -0.093 -9.6 *10
-3

 -3.4 10
-5

 -9.8 10
-3

 0.58  

CHOH 2.9 10
-3

 -5.3 10
-5

 -3.3 10
-4

 -2.6 10
-4

 -3.4 10
-3

 0.042 

      

      

0.43 1.5 0.97 0.15 -1.7*10
-3

 0.014 

 

  (25) 

  (26) 

The above can be compared to the method of Gmehling et al. [48], who predicted LFL for 3-

Hexanol to be 1.29 Vol.% [16]. Hence, this value falls squarely within the predicted 95%-

confidence interval of the model verifying the reliability of the model for this particular point. 

4) In order to account for the temperature-dependency it is necessary to calculate  with the 

developed MG GC models. LFL of 3-Hexanol should be calculated at a temperature of 320K 

following Eq. (8) and (9). The value calculated under point 3 can be taken as the reference value 

. 

 according to the developed model in Eq. (11) is given by: 

 
 

(27) 

 

Using the above values, LFL of 3-Hexanol at the specific temperature of 320K is given by: 
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  (28) 

  (29) 

 

The uncertainty of the temperature-dependent LFL calculation is huge, around 100% of the 

estimate value (not shown Eq. (29) and in Figure 6). The reason for this high uncertainty is the 

limited number of compounds with temperature-dependent LFL data, hence the term 

 becomes very large for . Higher reliability of the prediction can only be 

achieved by using more experimental data for the parameter estimation. However, the new GC 

based temperature-dependent model demonstrated above provides an approximation where the 

true value of the LFL is most likely to be found. The latter is useful for performing safety 

analysis under lack of experimental data, which is the second best alternative. 
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4. Conclusion 

In this study, a new GC method has been developed for the calculation of LFL and UFL as well 

as a new model for estimating temperature dependence of LFL. Furthermore, the parameters for 

the previous model of FP and AIT have been improved thanks to expanded data sets and a 

comprehensive parameter estimation methodology. The systematic parameter estimation and 

uncertainty analysis provides uncertainty information for the single point predictions. 

 The developed LFL and UFL model has a higher accuracy than existing GC models and 

is much simpler to apply than current ANN or QSPR models.  

 A temperature-dependent LFL model based on a GC model for a lumped parameter has 

been developed. 

 The advanced parameter estimation using (robust regression) and the systematic outlier 

treatment using the empirical CDF together with additional experimental data could 

improve the existing GC MG model for FP and AIT. 

 The report of the 95%-confidence interval of the predicted value for the safety-related 

properties provided important information on the uncertainty (reliability) of the predicted 

values. The latter is crucial in a quantitative risk assessment as it provides a safety factor 

for LFL analysis. 

 The simplicity of the model application has been demonstrated for the 3-Hexanol as a 

motivating example. 
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 The availability of a class of GC models for predicting flammability related properties of 

chemicals is expected to facilitate the quantitative risk assessment as part of process 

safety analysis. 
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Supporting information 

The Supporting Information is available on the website: 

Group contribution factors for and formulas for all developed models are shown in tabular form. 

Furthermore, examples of predicted values including 95% confidence interval for a variety of 

chemical compounds are given. 

The authors developed a software tool where the developed models are implemented. Please 

contact the corresponding author for more information. 
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