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ABSTRACT 

The ability of human listeners to detect and discriminate spectro-temporal ripples in sound has been shown to 

be correlated with speech intelligibility performance in several conditions. Thus, if a model would be able to 

account for the spectro-temporal processing limits in the auditory system, such a framework could be used to 

analyze the auditory processes contributing to and limiting speech intelligibility. Here, a model is presented 

that combines the concepts of the power spectrum model of masking (PSM; Patterson and Moore, 1986) with 

those of the speech based envelope power spectral model of masking (EPSM; Jørgensen and Dau, 2011). 

Effects of masking and changes in the signal-to-noise ratio in both domains are considered in the decision 

device of the model. The model was evaluated in experimental conditions of temporal, spectral and combined 

spectro-temporal modulation detection and discrimination using identical stimuli as input to the model as to 

the human listeners. The predictions were compared to the measured data obtained with 15 normal-hearing 

listeners. The model could account for the mean data in most of the considered conditions and might provide 

a valuable framework for investigating effects of hearing impairment both on spectro-temporal perception as 

well as speech intelligibility. 
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1. INTRODUCTION 

Speech signals are quite dynamic in that they exhibit spectral and temporal modulations. The  

ability of human listeners to detect and discriminate these spectro-temporal ripples in sound has been 

shown to be correlated with speech intelligibility performance in several conditions (1–3). Speech 

prediction models based on  spectro-temporal properties of speech provided accurate results (4–6), 

reproducing normal-hearing listeners data from speech-in-noise tests. Recently, Bernstein et al. (1) 

and Mehraei et al. (7) showed significant differences between normal and hearing impaired listeners in 

spectro-temporal modulation (STM) detection and its relation to speech in telligibility in noise. Thus, 

further investigation in terms of the limitations of STM perception could be interesting for 

audiological applications. Furthermore, if a model would be able to account for the spectro -temporal 

processing limits in the auditory system, such a framework could be used to analyze the auditory 

processes contributing to and limiting speech intelligibility.  

 

The sensitivity to modulations has been studied in normal-hearing listeners (NH) using broadband 

noise, yielding temporal (T-MTFs), spectral (S-MTFs) and spectro-temporal modulation transfer 

functions (ST-MTFs) (8–10). T-MTFs have been characterized by a low-pass behavior where at low 

modulation frequencies (fm), the detection threshold remains fairly constant and increases with a 

cutoff frequency of fm = 64 Hz (8). In contrast, S-MTFs showed a band-pass characteristic, with a 

minimum located at specific spectral densities (number of spectral ripples per octave) that occurs at 2 

to 4 cycles per octave, which means that the sensitivy is higher at these spectral densities. In the case 

of the spectro-temporal modulations, NH listeners were more sensitive at the same spectral densities as 

observed in the S-MTFs. Thus, Chi et al.(10) argued that ST-MTFs are the product of temporal and 

spectral detection, so they are separable. However, it seems that the sensitivity to STM decreases more 

rapidly than for spectral modulations when increasing the spectral density (10). 
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Figure 1 – Overview of the present study.  A) Spectral, temporal and spectro-temporal modulation transfer 

functions. T-MTF corresponds to a ST-MTF where  = 0c/o and S-MTF corresponds to a ST-MTF where   

fm = 0 Hz. B,C and D) The colored planes depict the experiments proposed here. Yellow plane shows the 

detection task (B) where the target is a modulated noise. Red plane shows the ripple discrimination 

experiments where two fully modulated with different patterns have to be discriminated (C). Blue plane the 

discrimination threshold where the task consist in discriminate between two stimuli when spectral density is 

added (D). As a result, the ST modulation perceptual limitations can be bounded in the three dimensions. 

 

While S-MTF and ST-MTF using 1 octave band noise carriers showed similar trends as in the case 

of broadband noise (7,11), Dau et al. (12) observed that the spectral density of the inherit fluctuations 

of the carrier (i.e. its bandwidth) yielded different T-MTF patterns for narrow band noise. Specifically, 

when noise was limited to a single critical band, the temporal modulation detection could be simply 

explained by the difference between the modulation and the envelope power of the carrier, which led to 

the idea of the envelope power spectrum of masking (EPSM)(13). Later, Jørgensen and Dau (14) 

applied this idea in a speech prediction model which makes use of the signal -to-noise ratio of the 

envelope (SNRenv) as a metric of the speech intelligibility. The model consists of a peripheral 

filter-bank, an envelope extraction stage, and a modulation filter-bank that analyses the envelope of 

the output of each auditory filter. Although the results of this speech based model showed  a good 

agreement with the human data, this approach has not been used to reproduce S-MTF or ST-MTF yet. 

 

Chi et al. (10) proposed a model that analyses the auditory spectrogram -spectrogram based on a 

biological inspired auditory processing- by a cortical bank of modulation filters which were tuned to 

different combinations of modulation rates and spectral densities. This stage is biologically inspired 

by the responses of the auditory primary cortex, which exhibit selectivity to spectro-temporal 

modulations, so-called spectro-temporal receptive fields (STRF). This approach has also a speech- 

based extension, the spectro temporal modulation index (STMI), which was able to reproduce normal - 

hearing listeners data in different acoustic conditions (5). Recently, Bernstein et al. (4) attempted to 

reproduce STM detection using a similar approach. The individual data of NH and HI listeners were 

used to tune the model to a certain STM detection condition. This model successfully predicted the 

speech reception thresholds of both groups. However, the model failed in reproducing the other STM 

conditions at higher rate/density combinations. Although the STRF may be needed to explain the 

segregation of sounds in complex scenarios, here, the use of  models based on the classical theories of 

power spectral model of masking (15) and its equivalent in the envelope spectrum domain (EPSM) 



 

 

(16) will be investigated. The objective is to clarify to what extent, a basic auditory signal processing 

can account for the spectral, temporal and spectro-temporal combinations. 

 

As mentioned above, the ability of perceiving speech in noise has been also connected to the ability 

to discriminate spectral ripples. The spectral ripple discrimination (SRD) experiment carried by Henry 

et al. (2) showed that HI listeners had a reduced spectral ripple discrimination as happened in listeners 

with cochlear implants. The task consisted of detecting the interval that contains a spectral ripple, 

modulated with the same modulation depth, but with the peaks and valleys of the spectrum reversed. 

However, the mechanisms involved in detection and discrimination tasks have been argued to be 

different for spectral ripples (3,17). In part, this is because studies involving these stimuli are often 

carried out using broadband stimuli. Despite spectral ripple discrimination being a time efficient and 

nonlinguistic task connected to the speech intelligibility (17), there are not systematic studies that 

could show the human limitations to perceive this stimuli in bandlimited stimuli.  Therefore, it would 

be interesting to clarify the relationship between modulation detection and discrimination and the 

contribution of temporal and spectral cues involved in the modulation sensitivity of ripples  and the 

discrimination between TM and STM, was also studied here.  

 

The present study attempts to clarify the perceptual limitations observed in NH listeners in terms of 

the detection of  modulations, the minimum differences in type of modulations (discrimination 

thresholds) or the pattern of the modulation (ripple discrimination) using 1 octave band carriers at 1 

and 4 kHz (see Figure 1). Moreover, a model based on classical power spectrum models was used to 

partially explain modulation perception in several tasks. The purpose of this modeling approach is to 

examine the limitations of an “efficient” model based on psychoacoustic experiments and only fitted 

by only one parameter. The main hypothesis addressed here is that the combination of peripheral and 

modulation filters is already able to explain the majority of the conditions because their 

implementation is based in temporal resolution and frequency selectivity. 

2. Basic auditory-filter model  

The model acts as an ideal observer, which performs the experiments in the same way as the 

participants of this study. All the psychoacoustical tasks were carried out using a 3-interval 

forced-choice (3IFC) adaptive paradigm and the listeners were asked to identify the interval that 

contained the sound that was perceived to be more different than the other two. In the present model, 

the signal of each interval was processed by an auditory processing stage followed by a decision device 

that quantifies the differences among the intervals using the interval-to-interval ratio (I2IR), which 

was based on the combination of the signal-to-noise ratio envelope (SNRenv) (14) and the optimal 

detector described in (18).  

  

 

Figure 2 – Block diagram of the model. Signals of the three intervals are processed (auditory filter-bank, 

envelope extraction and modulation filter-bank. As a result a GxM matrix represents the internal 

representation of each of the intervals. 



 

 

2.1 Front-end: Auditory signal processing 

Figure 2 illustrates the stages of the front-end of the auditory model. The signal presented in each of 

the intervals is first processed by an auditory filter-bank (19) that divides the input in G spectral 

channels (xg). Subsequently the envelope is subtracted (xenvg) and for each auditory channel, this is 

analyzed by a modulation filter-bank that filters the envelope spectrum by using M bandpass filters 

(20). The output of the front-end is a three-dimensional time-varying signal (Xenvg,m) that will be 

further analyzed in the back-end. 

 

 The auditory filter-bank used here is a gammatone filter that simulates the basilar membrane 

bandpass-filter characteristics. The filter-bank consists of 24 filters equally spaced by means of the 

equivalent rectangular bandwidth (ERB) scale (21). Only the filters that are considered “audible” (less 

than 20 dB below the level in the band that contains the highest power) will be used in further stages. 

For each xg, the signal is half-wave rectified and down-sampled with new sampling frequency of 3 kHz. 

This processing filters the rectified signal at 1.5 kHz, which preserves the temporal fine structure only 

in the low frequencies range while reducing the computational cost in the later stages. Each envelope 

is then processed by a modulation filter-bank consisted of 9 modulation filters, from fm = 1 Hz to fm = 

256 Hz, logarithmically spaced with a constant quality factor of Q =1(14,12,20). The absolute 

threshold for modulation detection was incorporated in the power spectrum calculation modeled by a 

-27 dB internal noise at the output of the filters (12). 

 

2.2 Back-end: Decision device 

Once the “internal representations” of the three intervals have been obtained, two additional 

outputs are needed: 1) the power in each auditory band, Psg and 2) the envelope power of each 

individual modulation filter, Penvg,m. Finally the I2IR is calculated providing a map of the cues that the 

subject may use to identify the target among the three intervals. The decision device includes a 

“sensitivity” parameter that controls the minimum difference that the model is able to perceive. 

According to the Weber’s law, this difference limen was assumed to be 1 dB I2IR. 

 

The decision device will choose the interval that offers the highest I2IR that is defined by expression 

1:   
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The I2IR quantifies the power ratio between the intervals ‘i’ and ‘j’ both in spectral (PSM) and 

envelope (EPSM) domains. However, the integration of the cues across auditory and modulation 

channels differs. While in the envelope domain, all the I2IRs are taken into account by averaging all 

the quantities (expression 2), in the PSM, only the difference between maximum and minimum values 

is used in the decision device (expression 3). The I2IR s was tested following the procedure suggested 

in (11) and a free parameter  was empirically fitted to the results at 1c/o in order to have 1 dB I2IRs 

at the estimated thresholds. 
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Finally, the total I2IR is calculated using the sum of the envelope and spectral power differences.  
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The parameter  controls for the proportion of envelope / spectral I2IRs that the model uses to quantify 

the dissimilarity between the two intervals. values ranges from 0 to 1. 

 

Overall, the interval chosen by the decision device will be the one that exhibits the most salient 

differences. Nonetheless, a sensitivity factor () was included here reflecting the perceptual limits of 

the auditory system. In accordance to the Weber’s law, this sensitivity factor was set at 1 dB 

interval-to-interval ratio for  = 1, which was able to reproduce the experimental results from (12). For 

conditions where   1, the sensitivity factor varied accordingly ( = ).  

 

3. Methods 

3.1 Stimuli generation and equipment 

All psychoacoustical tasks were carried out using the AFC framework implemented in MATLAB 

(22). The stimuli were generated at a sampling frequency of 44100 Hz and converted to analogue 

signals using an RME Fireface sound card. The resulting signal was amplified (SPL headphones 

amplifier) and presented to the listener through Sennheiser HD650 headphones. The experiments were 

performed in a double-walled sound-attenuating booth.  

 

The ripple stimuli were produced similarly as in (1,23). The mathematical description of the 

stimulus is characterized by: 

 

  )xtf2sinm1)(tf2sin(A)tx(S imicii i
  , (6) 

For the temporal modulation, the sinusoidal carrier is modulated in amplitude, where m is the 

modulation depth and fm the modulation frequency. In the case of spectro-temporal modulation,  is 

the spectral ripple density and x i the instantaneous space-frequency related to the center frequency of 

the octave bands xi = log2(fci/fcb). For spectral modulation m = 0, it follows: 
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where C is the spectral contrast that controls the modulation depth in the spectral domain. The stimuli 

were generated in the frequency domain as the sum of 256 equal-amplitude carrier tones per band, 

logarithmically spaced. The phase of all the carriers was randomized. Sinusoidal AM was appl ied by 

additional sidebands placed at fci ± fm with instantaneous phases increasing according to the frequency 

space xi. The two conditions included in the present study were found to be the most significant 

combinations of spectral density and modulation frequencies for the narrowband STM sensitivity 

experiment of Mehraei et al. (2014). These are 1000 Hz, fm = 4 Hz,  = 2 c/o and 4000 Hz, fm = 4 Hz, 

 = 4 c/o. 

 

3.2 Procedure and listeners 

All psychoacoustical experiments were measured at 35 dB sensation level (SL). Two unmodulated 

1-octave band noises, centered at 1 and 4 kHz were used to estimate auditory thresholds. Then, in each 

of the tasks, the listeners had to identify which interval contained the deviant stimulus in a 3-interval 

AFC paradigm. In the initial condition, the target signal was clearly identifiable whereas the other two 

intervals contained unmodulated noise. The adaptive tracking procedure of 1-up 2-down approximated 

the 70% point on the psychometric function (24). Listeners were presented with three runs per 

condition. If the measured thresholds differed more than 3 dB, a fourth threshold was performed. 

Fifteen subjects participated in the experiment; they were all students of different nationalities, ranged 

between 23 and 26 years with a median of 24.5 years. Their audiometric thresholds were below 20 dB 

hearing level (HL) for the explored frequencies.  



 

 

4. Experiment I: Modulation detection 

4.1 Method 

For measuring the TM and the STM detection thresholds, the modulation depth was varied in dB 

(20log(m)). The starting modulation depth of 0 dB was decreased in steps of 6 dB. After the first 

reversal, the step size decreased by 4 dB. Finally, the mean of 6 reversals using s teps of 2 dB were used 

to estimate the threshold. Likewise, the SM detection thresholds were estimated by varying their 

spectral contrast C in dB. The considered fully modulated condition was 30 dB peak -to-valley in the 

spectral domain. The results were then presented in terms of the difference between the SMD threshold 

and the initial condition for a fair comparison with the other types of modulations.  

4.2 Results & Discussion 

Figure 3 shows the data obtained in the proposed detection tasks. The individual data, as well as the 

boxplots are presented together with the model simulations for identical tasks. For each center 

frequency, the thresholds for the spectro-temporal (STMD) and only spectral conditions (SMD) tend to 

be lower than are for the temporal condition (TMD). This suggests that STMD represented an easier 

task compared to TMD as was also observed in (7,10).  

 

Figure 3 - Detection tasks for temporal, spectral and spectro-temporal modulations. Results correspond to 

NH listeners and the basic auditory model using different  values. The results showed similar trends but 

thresholds were overestimated, especially at 1 kHz.  

 

In a recent study (25), TMD, SMD and STMD were measured in normal hearing, hearing impaired 

listeners and cochlear implantees. Overall, their results for NH differed from the ones presented here 

in the sense that the STM sensitivity presented more elevated thresholds than the TM. However, the 

method used for both threshold measurements and the stimuli generation were different. While here, 

both stimuli were generated in the same way and the only difference was the phase relationship of the 

sidebands, Won et al. (25) used a wideband noise carrier in the TMD. Therefore, it is more likely that 

the decreasing  thresholds observed in the present study correspond to the use of additional cues 

besides spectral and temporal alone as stated in (7). 

5. Experiment II: Modulation discrimination 

5.1 Method 

Modulation discrimination tasks were divided in two groups: 1) ripple discrimination and 2) 

modulation discrimination threshold. The spectral ripple discrimination (SRD) experiment provides 

an estimation of  the maximum spectral density where the listener can distinguish between a spectral 

ripple with C = 30 dB and other ripples where the peaks and valleys are reversed, as in (2,3). For the 

spectro-temporal ripple discrimination (STRD), the listeners had to distinguish between an upward 



 

 

and a downward fully modulated ripple. In contrast, in the case of the modulation discrimination 

threshold estimation, the target was a ripple fully modulated at low spectral densities. Whereas in the 

spectral discrimination threshold (SDT) experiment, the non-target intervals were unmodulated noise, 

the stimuli were temporally modulated with the same modulation frequency in the spectro -temporal 

discrimination threshold (STDT). In both cases, the task was to identify the spectrally modulated 

interval by decreasing the spectral density. For all the discrimination tasks, the starting spectral density 

was 1 c/o and this was varied in dBs (20log()) by increasing (ripple discrimination) or decreasing 

(modulation discrimination) the density in steps of 6 dB until the first reversal, 2 until the second 

reversal and 1 dB along the last 6 reversals. 

5.2 Results & Discussion 

Figure 4 shows the data for the two groups of discrimination tasks together, the left panels depict 

the discrimination thresholds while the ripple discrimination experiments are presented in the right 

panels. It seems consistent that the mean of the STDTs and SDT at 4 kHz is in the range of 0.13 -0.15 

c/o. If it is assumed that auditory filters bandwidth is about one third octave, it would correspond to a 

half of the bandwidth of an auditory filter. However, the STDT at 4 kHz showed consistent results for 

the majority of the subjects at spectral densities around 0.1 and even below. When a spectral density is 

introduced, the energy in the envelope domain decreases such that the subjects were more sensitive to 

this variation.  

 

Figure 4 - Discrimination tasks, human data with model simulations. On the left, spectro-temporal 

discrimination threshold (STDT) as the minimun spectral density required to distinguish between TM and 

STM. Spectral ripple discrimination threshold (SDT ) as the minimun  needed to identify a SM. 

Spectro-temporal ripple discrimination (STDT), maximun   for discriminating between upwards and 

backwards ST ripple. Spectral Ripple Discrimination (SRD) as in (3). Filled symbols showed the conditions 

where the procedure was skipped and the thresholds were overestimated. 

 

Unlike the results of previous studies (15), where the mean SRD was 4.84 c/o, the data showed in 

Figure 4 showed that SRD relied in the range between 6 and 12 c/o with mean of 10 c/o. One can 

ascribe this better performance to the fact that the stimuli of the present study were bandlimited 

(1-octave) compared to the ones from (2). However, other essential difference is the presentation level. 

Whereas Henry et al. (2) presented the broadband spectral ripples at 65 dB SPL, the presentation level 

here was 35 dB SL, which for NH is much lower than in the previous study. Recently, Davies -Vem et 

al. (3) found also SDR around 7-8 c/o in NH when presenting the ripples at 55 dB SPL, which supports 

the idea that the presentation level may play a greater role than the bandwidth in the discrimination of 

the stimuli. 



 

 

 

The discrimination task using ST ripples consisted of the discrimination between an upward and a 

downward ripple. As shown in (10), the modulation detection thresholds are affected by the direction 

of the ST ripple. However, Mehraei, et al. (7) did not find significant differences in STMD when using 

1-octave band stimuli with different directions. Therefore, this opposition was proposed as an 

alternative to the SRD, where the amount of modulation, rate and density are the same and only the 

phase (direction) changes. The STRD limit presented here was in the range between 1 and 8 c/o with a 

mean of 5.13 c/o. The variance observed and the number of outliers suggested that this task may 

require more training or a different procedure.  

 

6. Experiment III: Temporal and spectral resolution 

6.1 Method 

Besides the modulation detection and discrimination tasks, temporal and spectral resolution tasks 

were considered as an outcome measure related to the spectro-temporal modulation perception. Gap 

detection thresholds (GDT) were estimated by using as a marker (stimulus that contains the silence 

gap) the unmodulated 1-octave band noise, as in section 3.2. A silence gap was placed in the middle of 

the marker. The starting gap was 30 ms, which was reduced in dB (10 log (gap/1ms)) by 6 dB for the 

first reversal and then reduced to a half for every reversal until 0.5 dB for the last 6 reversals.  

 

Spectral resolution was estimated by measuring frequency discrimination thresholds (FDT). The 

central frequency of the 1 octave band noise was shifted to a higher frequency in the target interval. 

The initial difference was 25%. The procedure was tracked in dB (20log(%)) with a final step size of 

0.5 dB.  

 

6.2 Results & Discussion 

 

 

Figure 5 - Spectral and temporal resolution tasks. Gap detection thresholds (GDT) obtained by the model 

follow the trend of the NH results for the higher values of  but are overestimated. Frequency 

discrimination thresholds (FDT) were well reproduced by the model by using only spectral cues (=0) and 

for the lower values of spectral-temporal combinations ( < 0.8).   

 

The data from the temporal and spectral resolution tasks are showed in Figure 5. In this case the 

model simulations showed a clear change in trend between low and high -values when simulating 

GDT. Whereas a greater contribution of the spectral cues showed lower GDTs at 1 kHz than at 4 kHz, 

a greater contribution of the temporal cues provided a trend, in line with the human data, but quite 

elevated. On the other hand, FDT mean results were fairly well reproduced by the model for all the 

-values but for the EPSM alone. 

 



 

 

7. Discussion  

7.1 Analysis of the model simulations 

The auditory-filter model was able to reproduce the TMD and SMD thresholds for different values 

of . The best fit with the mean of the human data was found between  = 0.6 and  = 0.8. These two 

versions of the model were tested in order to reproduce T-MTFs and S-MTFs. The simulations could 

reproduce successfully the T-MTFs and shape of S-MTFs but shifted to lower spectral densities 

(Figure 6). However, the model was not able to capture STMD thresholds which were equal or higher 

than TMD especially at 4 kHz. This can be because the model only uses TFS information below 1.5 

kHz and the temporal modulation may lead to some differences in the power spectrum. On the other 

hand, the EPSM alone ( = 1) overestimates the thresholds, not only for SMD, but also for STMD 

(Figure 3). 

 

Figure 6 – T-MTFs and S-MTFs for broadband and narrowband carriers. Model simulations ( = 0.6 version). 

Simulations are compared to the data from (11,16).  

 

As shown in Figure 4, model simulations were able to capture the STDT for combinations of 

PSM+EPSM (0.4 <  < 0.6) and PSM ( = 0) alone but not for EPSM ( = 1). This may suggest that the 

cues used in the discrimination of these stimuli are actually spectral rather than envelope based. 

Nevertheless, model failed in reproducing the SDT at both frequencies and thresholds were located 

well below 0.1 c/o. This suggests that some limitations for perceiving the spectral changes have not 

been taken into account. It would be of interest to understand, why the model fitted quite accurately to 

the human data when the noise is amplitude modulated (STDT) but not for SDT, therefore, further 

simulations including an internal noise in the auditory filters may provide more suitable simulations in 

both tasks. 

 

The simulations of the ripple discrimination tasks showed that the model overestimated the SRD 

and STRD in the most of the conditions. As stated before, the purpose of the STRD test was to include 

a task where long-term power spectra and envelope power spectra should be similar so only combined 

spectro-temporal pattern differs. Therefore, a power-based model would not be expected to 

discriminate between them. Nevertheless, the model over-performed and, only in the cases of either 

PSM ( = 0) or EPSM ( = 1) alone, the model underestimated the results.  

 

The different model versions were fitted by only one parameter () in the condition ( = 0) and the 

sensitivity was adjusted to ( = ) in order to fulfill the Weber’s law for T-MTFs. However, the 

adjustment of these two parameters is not completely independent and may be connected by a task that 

involves discrimination in both domains such as SRD or STRD. 

7.2 Auditory-filter-model based vs STRF 

The present model was able to reproduce temporal and spectral modulation detection, 

discrimination between temporal and spectro-temporal modulations as well as measures of temporal 

and spectral resolution. These simulations were obtained by means the combination of PSM and EPSM 

approaches and only one parameter was empirically fitted to the data. However, the model 

overestimated the ripple discrimination and underestimated the STM detection thresholds. One can 



 

 

then discuss whether there were some features of the stimuli that were not captured by using a  

power-based metric. In the case of STMD and STRD, the task may involve the perception, not only of 

the differences in power, but also other features that may be crucial in the pattern recognition of 

complex STM. Figure 6, shows the visual representation of the stimuli used in the present study and 

explains how the STM do not provide a characteristic representation either in spectral or envelope 

power domains. 

 

Overall, the simulations where the model fails could be due to 1) the power-based metric that may 

be substituted by an correlation-based optimal detector (26) or a temporal coherence, 2) the need of an 

across-channel processing stage as suggested in (6,27), 3) the need for further stages as adaptation or 

non-linear auditory filters (18,26), or 4) the need for other analysis for extracting an internal 

representation as suggested in models based on spectro-temporal receptive fields (4,10,27). 

 

 

Figure 7 – Visual representation of the stimuli used in the detection tasks. First row shows the spectrograms 

of the TM, STM and SM stimuli. The spectrum of the three stimuli can be visualized in the second row, where 

the SM can be clearly identified. The envelope power spectrum is illustrated in the bottom row. While TM 

and SM present harmonic components in the spectrum, STM does not provide a characteristic representation 

in any of both domains. 

 

STRF were used in (4) as a final cortical analysis preceded by an auditory model. When 

reproducing HI data, the model was fitted to the individual data making use of data psychoacoustical 

experiments such as auditory filter bandwidth, peripheral compression and STM sensitivity. As a 

result, a non-linear model fitted to individual data did not provide sufficient benefit and a simpler 

linear version that only used audiometric thresholds and the STMD was able to represent the 

variability of the STM data. This suggested that a model that analyzed the stimuli in terms of STRFs 

may not need a detailed front-end. However, the auditory-filter-model approach pursues the 

examination of effective auditory processing at different stages and their perceptual consequences.  

 

An efficient model should be able to reproduce the perceptual consequences of the impairment of 

different stages of the auditory system. In that sense, the present approach should include stages that 

account for the reduction of frequency and temporal resolution as well as a back-end able to account 

for the discrimination of different spectro-temporal patterns.  

 

 

 

8. CONCLUSIONS 

The main findings observed in the present study are: 



 

 

 The model based theories of auditory processing and perception, which only is fitted by one 

parameter, was able to reproduce several tasks related to spectral and temporal perception. 

The model simulations showed that the best combination of spectral and temporal cues was 

for 0.4 <  < 0.6. 

 Experimental results showed better sensitivity for spectral and spectro-temporal 

modulation than for temporal modulations. However, all the different versions of the model 

underestimated the discrimination of spectro-temporal ripples, most likely because 

additional cues, besides purely spectral or temporal, have to be taken into account. 

 The model overestimated in most of the discrimination tasks. Further stages in order to 

reproduce the perceptual limitations should be considered in the model.  

 An efficient model that reproduces human perception by means of auditory processing 

should involve stages that can reflect specific impairments. A different back-end based on 

correlation or coherence may provide more suitable results in the discrimination tas ks 

rather than spectro-temporal receptive fields. 
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