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Highlights 

• Enzyme modification of starch systems with well-defined amylose:amylopectin ratios 

provides detailed insight into the effects of substrate branching on enzymatic chain 

transfer 

• High amylose substrates produce high branching rates, high M w, short chains and low 

amylolytic digestion when treated with branching enzyme alone or in combination with 

amylomaltase. 

• Not only branching density but also molar mass of the glucan product restricts dietary 

degradation by steric hindrance towards human pancreatic α-amylase and α-glucosidases. 

 

Abstract 

Thermostable branching enzyme (BE, EC 2.4.1.18) from Rhodothermus obamensis in 

combination with amylomaltase (AM, EC 2.4.1.25) from Thermus thermophilus was used to 

modify starch structure exploring potentials to extensively increase the number of branch points 

tel:%2B45%2035%2033%2033%2004


in starch. Amylose is an important constituent in starch and the effect of amylose on enzyme 

catalysis was investigated using amylose-only barley starch (AO) and waxy maize starch (WX) 

in well-defined ratios. All products were analysed for amylopectin chain length distribution, α-

1,6 glucosidic linkages content, molar mass distribution and digestibility by using rat intestinal 

α-glucosidases. For each enzyme treatment series, increased AO content resulted in a higher rate 

of α-1,6 glucosidic linkage formation but as an effect of the very low initial branching of the AO, 

the final content of α-1,6 glucosidic linkages was slightly lower as compared to the high 

amylopectin substrates. However, an increase specifically in short chains was produced at high 

AO levels. The molar mass distribution for the enzyme treated samples was lower as compared 

with substrate WX and AO, indicating the presence of hydrolytic activity as well as cyclisation 

of the substrate. For all samples, increased amylose substrate showed decreased α- and β-

amylolysis. Surprisingly, hydrolysis with rat intestinal α-glucosidases was higher with increasing 

α-1,6 glucosidic linkage content and decreasing M w indicating that steric hindrance towards the 

α-glucosidases was directed by the molar mass rather that the branching density of the glucan per 

se. Our data demonstrate that a higher amylose content in the substrate starch efficiently 

produces α-1,6 glucosidic linkages and that the present of amylose generates a higher M w and 

more resistant product than amylopectin. The combination of BEAMBE provided somewhat 

more resistant α-glucan products as compared to BE alone. 

Keywords: amylose content, branching enzyme, amylomaltase, starch degradation 

 

 

 



1. Introduction 

The biosynthesis of starch and glycogen are complex processes consisting of a multitude 

of enzyme catalyzed transfer and hydrolysis reactions. In general, starch consists of two main 

components: amylose and amylopectin. Amylose is composed of long and mainly linear 

backbone α-glucan chains linked together by α-1,4 glucosidic linkages while amylopectin is a 

branched component linked together by α-1,4 glucosidic backbone with α-1,6 glucosidic branch 

points (Pérez and Bertoft, 2010). For the industry, such branching pattern is important and 

starches are selected and further modified to enhance its versatility and satisfy consumer demand 

(Tharanathan, 2005). Typically, increased branch density can increases solubility of the starch 

and can suppress amylolytic hydrolysis providing health-associated functionality (Sorndech et 

al., 2015). However, such glycogen-like functionality is not available in pure bulk quantity from 

starch crops. 

Enzymatic modification of starch is gaining an interest as a clean and safe alternative to 

chemical modification (Blennow et al., 2013). Such enzymatic starch modification may be 

carried out either by the use of recombinant enzymes acting on purified starches, or alternatively 

the enzymes may be expressed directly in the starch producing crops by GM technology 

(Hebelstrup et al., 2015). However, the GM crop approach may sometimes modify the starch to 

an extend where its function as a storage of biomass and energy is jeopardized so that biological 

functions such as grain germination and seedling establishment are deficient (Shaik et al., 2014). 

Amylomaltase (AM, 4-α-D-α-glucanotransferase; E.C. 2.4.1.25. glucosyl hydrolase family 13 

and 70, GH13 and GH70, www.CaZy.org) transfers α-1,4 glucosidic linkages mainly within 

amylopectin and amylose, amylopectin cluster, or from amylose to amylopectin (Hansen, 

Blennow, Pedersen, Nørgaard and Engelsen, 2008). AM has been proven to add value to starch 
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including its modification to impose gelatin-like functionality (Hansen et al., 2008) and increased 

degradative resistance (Jiang, Miao, Ye, Jiang and Zhang, 2014). Branching enzyme (BE, 1,4-α-

D-α-glucan:1,4-α-D-α-glucan 6-α-D-(1,4-α-D-α-glucano)-transferase, EC 2.4.1.18, glucosyl 

hydrolase family 13, GH13, www.CaZy.org) catalyses the formation of branch points in starch 

and glycogen biosynthesis by the cleavage of existing α-1,4 glucosidic linkages followed by 

transfer to 1,6 hydroxyl groups to form the tree-like amylopectin and glycogen structures 

(Roussel et al., 2013; Shinohara et al., 2001). In vitro, BE also catalyses a cyclisation reaction to 

form cyclo-amylose and cylo-amylopectin cluster (Kelly, Dijkhuizen and Leemhuis, 2009; 

Takata et al., 1996). Starch modification with BE demonstrates an increase in solubility, reduced 

viscosity and for AM, increase degradative resistance of the product (Blennow et al., 2013). The 

thermostable BE from R. obamensis has drawn interest in starch modification to efficiently 

produce highly-branched α-glucans (Roussel et al., 2013; Shinohara et al., 2001). Both amylose 

and amylopectin have been tested as substrate to identify possible different mechanisms. Some 

evidence suggests that R. obamensis BE activity was higher towards amylose than amylopectin 

(Shinohara et al., 2001). However, the substrate used was amylose from starch fractionation (Lee 

et al., 2008) which had amylopectin contamination or was enzymatic synthesized glucans 

containing DP 2-60 (Roussel et al., 2013), none of which the chain length was long enough 

compared to natural amylose. Different types of natural starch differ in their amylose content but 

there is only limited information on the effect of amylose on BE catalysed formation of α-1,6 

glucosidic linkages and cyclo-glucans (Andersson, Rydberg, Larsson, Andersson and Åman, 

2002; Roussel et al., 2013; Takata et al., 1997; Takata, Takaha, Okada, Takagi and Imanaka, 

1996). In a previous study, we modified cassava starch by using combinations of AM and BE to 



increase the content of α-1,6 branch points. The results showed that the highest content of α-1,6 

branching points was achieved when using specific serial combinations of AM and BE.  

In the present work we investigate the effects of amylose ratios of the substrate starch on 

AM and BE catalysis. As model substrates, we use the transgenic barley amylose-only (AO) 

starch which consists of more than 99% amylose (Carciofi et al., 2012) and 100% amylopectin 

waxy (WX) maize starch in well-defined ratios. The efficiency of α-1,6 branch formation for BE 

only and sequential BEAMBE treatment was investigated and the molecular structures and 

amylolytic digestibility analysed in vitro using rat intestinal α-glucosidases. The study provides 

additional information to better understand how BE only and optimized combinations of BE and 

AM treatments affect the structure and digestibility of the enzyme-modified α-glucan. 

2. Materials and methods 

2.1 Materials 

Waxy maize starch (WX) was obtained from Cerestar-AKV I/S (Vodskov, Denmark). 

Amylose-only (AO) barley starch was obtained from Aarhus University (Aarhus, Denmark). BE, 

AM and β-glucanase were kindly provided from Novozymes (Bagsvaerd, Denmark). For BE and 

AM, one U is defined as 1 µmole/min under standard conditions. Isoamylase (EC 3.2.1.68, 

specific activity 210 U·mL-1) and β-amylase (EC 3.2.1.2, specific activity 620 U·mL-1) was 

obtained from Megazyme (Wicklow, Ireland). Porcine pancreatic α-amylase (EC 3.2.1.1, 

specific activity 22 U·mg-1), and glucoamylase from Aspergillus niger (EC 3.2.1.3, specific 

activity 129 U·mg-1) were purchased from Sigma-Aldrich (Missouri, USA). Proteinase K, 

recombinant, PCR grade was purchased from Roche (Hvidovre, Denmark). Enzyme activity 

units of isoamylase, α-amylase and glucoamylase are given according to the supplier. 

2.2 AO barley starch extraction 



Amylose-only barley grains (Carciofi et al., 2012) were ground into fine powder and 200 

g of flour were mixed in 2 L of 1 mM DTT (dithiotreitol), and 1% SDS (sodium dodecyl sulfate) 

for 30 min while stirring. The pellet was collected by sediment the starch granules on ice for 1-2 

days. The washing procedure was repeated once. The pellet was resuspended in 2 L of deionized 

water and the slurry sieved through a 70 µm sieve. To remove trace of cell-wall and protein 

contaminants, the granular starch preparation was subjected to β-glucanase and proteinase K 

treatments and the sedimented starch was washed 3 times in distilled water, once in 96% ethanol 

and finally air dried at room temperature. 

2.3 Non-granular AO starch preparation 

Non-granular starch was prepared according to Kong et al., (2008). Granular AO starch 

(5 g) was dissolved in 100 mL of 90% DMSO (dimethyl sulfoxide) by heating the mixture in a 

boiling water bath with constant stirring for 3 h. The AO slurry was placed at room temperature 

and 200 mL of 95% ethanol was added with continuous stirring. A further 200 mL of 95% 

ethanol was added, the slurry was left at room temperature and then centrifuged at 2,500 ×g for 

10 min. The precipitate was suspended with 25 mL of 95% ethanol and pelleted at 2,500 ×g for 

10 min. The washing procedure was repeated once with 95% ethanol and finally with acetone. 

The final non-granular AO precipitate was freeze-dried (Kong, Bertoft, Bao and Corke, 2008). 

 

2.4 Enzymatic modification 

2.4.1 BE action on substrates with well-defined amylose:amylopectin ratios 

BE-modified starch was produced mainly as described (van der Maarel et al., 2005) with 

slight modifications. The WX and AO mixtures (2% w·v-1) with non-granular AO content varied 

from 0, 20, 50, 80 and 100% (0%AO, 20%AO, 50%AO, 80%AO and 100%AO) were suspended 
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in 50 mM phosphate buffer, pH 6.5. The suspension was heated to 120 oC in an oil bath for 3 h 

while stirring by magnetic stirrer then cooled to 80 oC for 2 min. BE (4,000 U·g starch-1) was 

added to the gelatinised starch paste and incubated at 80 oC for 30 min, then 60 oC for 24 h. The 

reaction was terminated by heating in boiling water bath for 30 min. The denatured protein and 

trace insolubles were removed by centrifugation (1,500 ×g for 20 min). The supernatant 

containing the soluble α-glucan product was recovered and dried at 50 oC overnight to less than 

1% water content. The products were ground to a fine powder before further analysis. 

2.4.2 BEAMBE treatments with well-defined amylose:amylopectin substrate 

ratios 

A gelatinised starch paste was prepared as mentioned above, pH adjusted to 6.5 with 50 

mM phosphate buffer, BE (4,000 U·g starch-1) was added and the mixture incubated at 60 oC for 

24 h. After termination of the reaction at 100 oC for 30 min, AM (10 U·g starch-1) was added and 

incubation was performed at pH 6.0, 70 oC for 3 h. The reaction was terminated by boiling at 100 

oC for 30 min. In the last step, BE was added and incubation was performed under optimal 

conditions for BE as described above. The BE reaction was terminated and insoluble materials 

were removed by centrifugation and the product was dried as described in 2.4.1.  

 

2.5 β-amylolysis limit 

The β-amylolysis limit is the degree of hydrolysis of the α-glucans by β-amylase which 

express as a percentage conversion of α-glucans to maltose (Patil, 1976). The procedure was 

slightly modified from that of Wood and Mercier (1978). The α-glucan solution (1.5 mL, 0.5% 

w·v-1 in 90% DMSO) was mixed with an acetate buffer solution pH 4.8 (0.3 mL, 0.2 M). The β-



amylase (4 units) and MilliQ water were added to a total volume of 2.7 mL, the reaction mixture 

was vortexed and incubated at 37 oC for 48 h. The reducing sugar content (Nelson, 1944) and 

total sugar content (Dubois, Gilles, Hamilton, Rebers and Smith, 1956) were measured. The 

percentage of β-amylolysis limit was calculated as follows (Wood and Mercier, 1978): 

 

2.6 Chain-length distribution of debranched α-glucan 

The chain-length distribution of debranched α-glucan samples were analysed by high 

performance anion-exchange chromatography coupled with pulsed amperometric detection 

(HPAEC-PAD). The α-glucan samples were gelatinised by boiling and enzymatically 

debranched by using 0.24 U of isoamylase per 5 mg of sample at 40 ºC. The obtained linear α-

glucan fragments were analysed by HPAEC-PAD (Dionex, Sunnyvale, CA, USA). Samples of 

20 μL (100 μg of linear α- glucan) were injected on a CarboPac PA-200 column using 0.4 

mL·min-1 flow rate, 150 mM isocratic NaOH and the following NaOAc gradient profile: 0–5 

min: 0–110 mM linear gradient, 5–130 min: 110–350 mM convex gradient. Single peaks were 

integrated between DP 3-60 and corrected for the detector response (Viksø-Nielsen, Blennow, 

Nielsen and Møller, 1998). The average DP was calculated from the corrected values of the 

relative content of each chain. 

2.7 Molar mass distribution, hydrodynamic radius and dispersity analysis by size-

exclusion chromatography with triple detection array (SEC-TDA) 

The weight-average molar mass distribution ( M w), the hydrodynamic radius (Rh) and the 

dispersity ( M w/ M n) were determined by size exclusion chromatography (SEC) using a Viscotek 



system (Malvern, UK) equipped with a GS-520 HQ column (Shodex, Showa Denko, Japan) 

attached to a TDA302 module (Triple detector array) consisting of a refractive index detector 

(RI), a four-bridge visco-meter detector (VIS) and a light scattering detector (LS). The LS 

consisted of a right angle light scattering (RALS) and a low angle light scattering (LALS). The 

calibration of the instrument was made using pullulan (50,000 g·mol-1, dispersity 1.07, Showa 

Denko) as a standard which solubilised in MilliQ water (1 mg·mL-1) and mixed at 99°C for 120 

min at 1,000 rpm. Elution was carried out using 50 mM ammonium formate (HCO2NH4) buffer, 

pH 4.5, at 0.5 mL·min-1 flow rate. Samples were filtered through a 0.22 µm syringe filter and 

automatically injected (GPC max module) into the column. The injection volume was 50 μL and 

the column temperature was 60°C. The analysis was performed using the OmniSec Software 4.7 

(Malvern Instrument, ltd.). 

2.8 Molar mass distribution, hydrodynamic radius and dispersity analysis by 

asymmetrical flow field-flow fractionation coupled with multiangle laser light 

scattering (AF4-MALLS)  

 AF4-MALLS was used to study high molecular and shearing-sensitive samples like 

unmodified starch. AO were dissolved in 95% DMSO, precipitated with ethanol and dried 

(Bello-Pérez, Colonna, Roger and Octavio, 1998; Rolland-Sabaté, Guilois, Jaillais and Colonna, 

2011). WX was solubilised in water by microwave heating under pressure (Bello-Pérez et al., 

1998; Rolland-Sabaté et al., 2011) and filtered (5 µm). AO starch was directly solubilised at a 

concentration of 10 mg·mL-1 in 1 M KOH, for 2 h at 4 °C. The solution was diluted ten times 

with water and filtered through a 0.45 µm membrane filter. Solubilisation recoveries were 

calculated by comparing carbohydrate concentrations after and before filtration (Rolland-Sabaté 

et al., 2011). Aliquots (50 µL and 100 µL) were injected on to the AF4-MALLS instrument 

../../../../Ae%20from%20drive%20C/Desktop/Comment%20MS2/16062016/Manuscript_WP2_DS_AB.doc#_ENREF_3
../../../../Ae%20from%20drive%20C/Desktop/Comment%20MS2/16062016/Manuscript_WP2_DS_AB.doc#_ENREF_25
../../../../Ae%20from%20drive%20C/Desktop/Comment%20MS2/16062016/Manuscript_WP2_DS_AB.doc#_ENREF_25
../../../../Ae%20from%20drive%20C/Desktop/Comment%20MS2/16062016/Manuscript_WP2_DS_AB.doc#_ENREF_3
../../../../Ae%20from%20drive%20C/Desktop/Comment%20MS2/16062016/Manuscript_WP2_DS_AB.doc#_ENREF_3
../../../../Ae%20from%20drive%20C/Desktop/Comment%20MS2/16062016/Manuscript_WP2_DS_AB.doc#_ENREF_25
../../../../Ae%20from%20drive%20C/Desktop/Comment%20MS2/16062016/Manuscript_WP2_DS_AB.doc#_ENREF_25
../../../../Ae%20from%20drive%20C/Desktop/Comment%20MS2/16062016/Manuscript_WP2_DS_AB.doc#_ENREF_25


using an autosampler WPS-3000SL (Thermo Scientific, Waltham, USA). The equipment 

included a long AF4 channel, a ThermosPRO oven thermostated at 25 °C, and Eclipse to control 

the flows in the channel (Wyatt Technology Corporation, Santa Barbara, USA). The channel 

geometry was trapezoidal with a tip-to-tip length of 291 mm. A 350 µm polyester spacer and a 

regenerated cellulose membrane with a cutoff of 10,000 g·mol-1 was from Merck Millipore 

(Darmstadt, Germany). The two on-line detectors comprised a MALLS instrument (Dawn® 

HELEOS™) fitted with a K5 flow cell and a He-Ne laser ( = 658 nm) and an Optilab 

refractometer operating at the same wavelength (Wyatt Technology Corporation, Santa Barbara, 

CA). The carrier (Millipore water containing 0.2 g·L-1 sodium azide) was filtered through 0.1 µm 

and degassed. Starches were eluted with the flow method described in Rolland-Sabaté et al. 

(2011). Elution recovery rates were calculated from the ratio of the mass eluted from the channel 

and the injected mass. M w, Rh and dispersity ( M w/ M n) were calculated using ASTRA® software 

from WTC (version 6.1.2.84 for PC). A value of 0.146 mL·g-1 was used as the refractive index 

increment (dn/dc) for glucans.  

2.9 Determination of α-1,6 glucosidic linkages by 1H-nuclear magnetic resonance 

spectroscopy (1H-NMR)  

 α-Glucan samples (0.3% w·v-1) were prepared in 500 µL D2O (Cambridge Isotope 

Laboratories, Andover, MA, USA) under gentle heating. Bruker (Fällanden, Switzerland) DRX 

spectrometer equipped with a TCI CryoProbe and an 18.7 T magnet (Oxford Magnet 

Technology, Oxford, UK) were used to record the 1H-NMR spectra at 37 ºC. Spectra were 

recorded by sampling 16,384 complex data points during an acquisition time of 1.7 sec, 

employing 32 transients and a recycle delay of 10 sec for reliable quantifications. Bruker 



Topspin 2.1 software with zero filling in all dimensions and mild resolution enhancement were 

used to process NMR spectra. 

2.10 Matrix assisted laser desorption ionization-time of flight mass spectrometry 

(MALDI-TOF MS) 

MALDI-TOF MS were used to validate cyclo-structures of the samples. The matrix was 

20 mg·mL-1 of 2,5-dihydroxybenzoic acid in 30% acetonitrile in water with 0.1% TFA. The α-

glucan samples were dissolved in DMSO and diluted with water to a final concentration of 1 

µg·mL-1. The diluted analyte solution (2 µL) was combined with the matrix solution (2 µL) and 

this solution (0.5 µL) was added to the target and air-dried. MALDI-TOF MS was performed on 

a Bruker Daltonics Microflex instrument operating in reflectron mode. A 340 nm laser was used 

and mass spectra were typically accumulated from 1,000 laser shots. Spectra were generally 

acquired over a 4,000 m/z range. 

 2.11 Hydrolysis properties by human pancreatic α-amylase 

 Human pancreatic α-amylase hydrolytic degradability of the α-glucan samples was 

investigated following solubilisation of the α-glucan (10 mg·mL-1) in 10 mM PBS buffer (pH 

6.9) by boiling for 20 min. After cooling, an aliquot of the sample (1 mL) was incubated with 

500 U human pancreatic α-amylase (Meridian Life Science, Inc., Saco, Maine) at 37 oC for 24 h 

with mixing. The reaction was terminated by boiling for 20 min. The hydrolysed samples 

containing α-limit dextrins were analysed for their apparent molar mass by HPSEC-RI (Zhang, 

Ao and Hamaker, 2006) using pullulans as standard (Polymer Laboratories Inc. Amherst, MA). 

2.12 Determination of glucose release from modified α-glucan samples by rat 

intestinal α-glucosidases 



 Rat intestinal acetone powder containing α-glucosidase (Sigma-Aldrich Co., St. Louis, 

MO) was mixed with 20 mL of sodium phosphate buffer (100 mM, pH 6.8) and solubilized by 

incubation at 4°C for 24 h. An aliquot of the α-limit dextrins (200 µL) was further incubated at 

37 oC with the rat intestinal α-glucosidase (500 U, one unit (U) enzyme activity arbitrarily 

defined as 1 µg of glucose released from 1% maltose per 10 min at 37 oC). The mixture was 

centrifuged at 8,000 rpm for 15 min, and the supernatant was filtered through a 0.8 μm nylon 

membrane. The amount of released glucose at 240 min was determined by the glucose 

oxidase/peroxidase (GOPOD) method (Vasanthan, 2001) and expressed as percentage of the 

starting material weight as described in 2.11. 

3. Results and discussions 

3.1 α-1,6 glucosidic linkages 

Mixtures of well-defined amylose:amylopectin ratios ranging 0, 20, 40, 60, 10 and 100% 

amylose generated by mixing AO and WX starches were treated with BE separately and AM 

and/or BE in sequential steps (BEAMBE) (Table 1). The α-1,6 linkage contents of 

substrates and products as determined by 1H-NMR (Table 1, original spectra shown in 

Supplementary Fig. 1) showed that the modified starches had a higher content of α-1,6 linkages 

ranging 7.0-8.7 % for BE-treated starch and 8.0-9.7 % for BEAMBE-treated starch 

compared to the original AO (0.2 %) and WX (3.5 %) substrates. For each enzyme treatment 

series, a more AO content resulted in a higher rate of α-1,6 linkage formation (Table 1). An 

increase in α-1,6 linkage formation for the 0% AO sample treated with BE was 1.5-fold while 

the 100% AO sample showed a 34.0-fold increase as compared to the original substrates (Table 

1). These results are in agreement with those obtained by Shinohara et al. (2001) who suggested 

that R. obamensis BE has a six-fold higher activity for amylose than for amylopectin. However, 



another study (Roussel et al., 2013), using synthetic amylose DP 2-60 as a substrate for R. 

obamensis, BE showed that BE preferentially used branched substrates as acceptors. Our data 

provides a possible explanation for this apparent discrepancy in that BE preferably uses the 

slightly branched AO chain segments as both donors and acceptors substrates. The BE activity 

on the WX starch was possibly limited by branching steric hindrance and we suppose that new 

branch points in the 0% AO sample might be mainly located on the outer chains of glucan 

structure and a higher AO ratios in AO:WX mixture provides a more optimal donor substrate for 

BE to create new branch points. 

The BEAMBE modified starches showed a higher content of α-1,6 linkages as 

compared to the BE only (Table 1). This is in agreement with our previous study using cassava 

starch as substrate (Sorndech et al., 2015). An increase in α-1,6 linkages for the 0% AO (only 

WX, amylopectin) treated sequentially with BEAMBE was 1.8-fold as compared to the WX 

substrate while the 100% AO showed a 39.0-fold increase. These increments are slightly higher 

than the BE only catalyzed branching described above and demonstrates that AM provides a 

more efficient substrate for BE to slightly further increase the degree of branching by its 

disproportion activity. It should be noted that as an effect of the very low initial branching of the 

AO starch, the final content of α-1,6 linkages was slightly lower with increasing AO content 

(Table 1). Both BE and BEAMBE treated glucans showed that a higher AO content resulted 

in the more α-glucose monomers or reducing end groups. Support for such a minor hydrolytic 

activity was provided by 1H-NMR data of anomeric hydrogens in α-glucose monomers or end 

group located at 5.30 ppm (Supplementary Fig. 1). The presence of these segments may be a 

consequence during transfer activity leaving the un-attached glucan chains. 

 



3.2 Chain-length distribution 

 The native and the modified α-glucan products were debranched using excess isoamylase 

in order to determine the chain length distribution profiles between DP 3-65 by HPAEC-PAD. 

The unit chain distribution can be classified into A-chains (DP 6-12), B1-chains (DP 13-24), B2-

chains (DP 25-36) and long B3-chains (DP > 37) (Hanashiro, Abe & Hizukuri, 1996). The BE 

and BEAMBE modified starches had higher number of short chains of approximately DP 3-

12, corresponding to A-chains, as compared to AO and WX substrates (Fig. 1A, Table 2). It 

should be noted that, for the AO starch, the total PAD detection for the chains between DP 3-65 

only constituted 8% of the control starch, supporting the low degree of branching of this sample, 

i.e. more than 92% of AO chains were very long, DP ≥ 65. SEC data of this starch (Carciofi et 

al., 2012) substantiates that 99% of the material in this starch has amylose-like structure. For the 

BE modified starches, the depletion in the chains of DP > 12 (Table 2) suggests the consumption 

of B1, B2 and long chains, which were used as donor substrates to produce new branch points by 

BE creating the A-chains. The long chains (mainly B3-chains) were virtually absent after 

enzyme modification suggesting a complete consumption of B3 chains. Especially, for the 0% 

AO starch treated only with BE, the DP 3-13 chains were abundant after debranching while 

chains of DP ≥ 14 were decreased (Fig. 1D). However, for the 100% AO starch treated the same, 

this decrease affected the slightly longer chains (DP ≥ 17, Fig. 1D). This difference, though 

minor, may explain the relatively good correlation between the increased AO and the maximum 

length of donor substrate chains, which increased from DP 13 for the 0% AO substrate to DP 16 

for the 100% AO substrate. These results suggested that BE prefers long chain glucans present in 

amylose as donor substrate (Fig. 3C). However, a minor part of the DP 3-12 chain pool was 

already present in the modified α-glucans before debranching (data not shown). The amount of 



these chains was increased with the more AO substrate content supporting that BE prefers to use 

AO as a donor substrate for the branching reaction cleaving off donor residual segments until the 

chains were too short to accommodate in the BE catalytic subsites. As deduced from our data, 

the optimal chain length for BE substrate binding was DP 16 and for chain transfer DP 6-7 from 

the non-reducing end (Fig. 1D). These results are in agreement with previous investigations 

(Kittisuban, Lee, Suphantharika and Hamaker, 2014; Roussel et al., 2013) using R. obamensis 

BE with selected types of starches as substrate. Interestingly, the chains in the BEAMBE 

modified starches clearly showed a distributional trend characterized by an increase in short 

chains of DP 3-12 with higher AO substrate content (Fig. 1C). For the debranched products 

produced from the 0% AO substrate treated with BE, the DP 3-12 chain pools were dramatically 

increased while chains DP ≥ 12 were lower (Fig. 1E). For the corresponding 100% AO substrate 

this decrease occurred at somewhat longer chains i.e., DP ≥ 15 (Fig. 1C and 1E). The 

BEAMBE treated starch showed a shorter optimum donor chain length (DP 15) compared 

to the BE-treated starch mixtures (DP 17), indicating an efficient AM catalysis on AO. The 

dominant binding mode of AM from Thermus thermophilus (Kaper et al., 2007) indicates the 

transfer of chains at least DP 3 long. Thus, as compared to the BE only treated starch, the 

optimum donor chains for BE was presumably consumed after BEAM treatment resulting the 

presence of shorter transferred glucan chains by BE in the last step. These results differ from 

data for Bacillus sp. BE for which the optimum donor chain length is considerably shorter i.e. 

DP 12 (Kiel, Boels, Beldman and Venema, 1991). 

The apparent non-coherence with the amount of -1, 6 linkages analysed by NMR and 

the high amount of short chains at approximately DP 3-15 (Table 1 and Fig. 1) after enzyme 

treatment, can be attributed to minor hydrolysis exerted by the transferases. However, already for 



non-debranched samples we observed an increase in short chains (approximately DP 3-8) with 

higher AO:WX ratios. For the debranched samples, DP 6 was the smallest branch side chains 

created by BE (not shown), however, only in minute amounts. Some long chains may have been 

lost following gelatinization of the AO and subsequent cooling and aggregation. Such a fraction 

would not be resolved by HPAEC-PAD but can contribute to the -1, 4 linkages content in the 

NMR signal.  

 

 3.3 Molar mass distribution, hydrodynamic radius, dispersity, intrinsic viscosity and 

cyclo-structures formation 

The molar mass distribution ( M w), hydrodynamic radius (Rh) and dispersity ( M w/ M n) of the 

enzyme-modified starches were determined by SEC-TDA. The M w of AO and WX starch 

substrates were determined by AF4-MALLS as summarized in Table 3. The M w of WX was 

3.99 x 108 g·mol-1 while for AO was 5.50 x 106 g·mol-1. All BE and BEAMBE treated 

starches had lower M w as compared to the non-modified WX and AO. This indicates that, during 

the transfer reaction, hydrolysis is also taking place and/or highly branched-amylopectin clusters 

were produced (Table 3, Fig. 3A). The low viscometer signal for the enzyme-treated samples did 

not provide reliable viscosity [η] data and was therefore not employed for calculations using the 

Mark-Houwink equation ([η] = KMwα, where K and α are the Mark-Houwink constants). 

However, a log-log plot of Rh vs molar mass estimated rod-like shape of the products. The low 

product viscosity supports the cyclisation and minor hydrolytic activities producing small 

compact, highly branched and cluster-like products. The resulting products derived from the 0% 

AO substrate for both enzyme-treatments showed higher molecular density compared to that of 

100% AO substrate indicating variation of molecular conformation of the resulting products 



(Fig. 3A-E). Comparative analysis of synthetic amylose of DP 2-60 and potato amylopectin as a 

substrates R. obamensis BE showed that the potato amylopectin was a better acceptor substrate 

than the synthetic amylose and those chains larger than DP 11 were optimal donor chain lengths 

(Roussel et al., 2013). This is in accordance with our data since BE had high activity towards 

slightly branched and long-chain glucans represented by the AO starch. Minor low molar mass 

peaks were also observed for the higher AO:WX ratio substrates before the end of the SEC-TDA 

chromatogram (not shown) indicating various species of molecules generated during enzyme 

catalysis when using high amylose substrate. The reduction of M w following BE treatment has 

been reported elsewhere (Kim, Ryu, Bae, Huong and Lee, 2008; Le et al., 2009). However, an 

important effect observed for both BE and BEAMBE treated starches was an increase in 

molar mass of the product with increasing AO:WX substrate ratio (Table 3). Supposedly, this 

effect is due to the high specificity of BE preferably using AO for both donor and acceptor 

chains as discussed above. The presence of steric hindrance in the WX structure may prevent BE 

to penetrate the branched structure to access and catalytically act on the acceptor chains during 

the transfer reaction compared to the more linear AO acceptor chains.  

The possible production of small cyclodextrins was tested by MALDI-TOF 

(Supplementary Fig. 2). The smallest cyclic α-glucan found was γ-cyclodextrin (DP8, m/z 1,320) 

and it was detected in all modified starches, especially the AM treated samples. A decrease in  

M w for all the products indicates the production of cyclostructures with varying M w including 

cyclo-amylose (Fig. 3D) and cyclo-amylopectin clusters (Fig. 3B). Thus, a decrease in M w with 

decreasing AO ratio is supposedly mainly due to the production of cyclo-amylopectin clusters. 

However, the high melting point of the AO starch should also be considered. Thermal analysis 

by differential scanning calorimetry (DSC) of AO revealed that it gelatinised above 100 oC 



(Carciofi et al., 2012). Eventhough the AO starch was fully gelatinised prior to the following 

enzyme treatment at 60 oC, minor aggregation might occur after cooling and during the transfer 

reactions (Fig. 3E). The M w/ M n ranged 1.4-2.9 for the products demonstrating some degree of 

dispersity. However, the high M w/ M n value (6.2) of the AO substrate was extensively reduced 

by enzyme treatment. Hence, the reduction in M  w following AM and/or BE catalysis is likely a 

combined effect of hydrolysis and the formation of amylopectin cluster and cyclic α-glucan. 

However, the monodispersity of the products suggests that the hydrolytic reaction was very 

minor. 

 

3.4 α-limit dextrin structure and β-amylolysis limit 

The content of α-limit dextrin and β-amylolysis limit were determined in order to 

elucidate their molecular structure. The α-limit dextrin content was determined by HPSEC-RI 

while the β-amylolysis limit was determined by reducing end analysis (Nelson, 1944). The 

increased branching of the BE and AM treated products increased the production of α-limit 

dextrins as compared to the corresponding AO and WX substrates (Table 4). However, the β-

amylolysis limit decreased with the same treatments demonstrating that the products after BE 

and AM treatment had lower β-amylase susceptibility than the starch substrate. All BE and 

BEAMBE treated starches produced smaller amounts of α-limit dextrin and lower β-

amylolysis limit at higher AO:WX ratios. The decrease in α-limit dextrin was similar for both 

treatments. The BE-treated samples showed ranging from 32.3% to 6.5% as for the 

BEAMBE-treated samples (from 34.5% to 7.3%, Table 4, Fig. 2). This trend demonstrates 

that less branched structures were obtained as AO increased which is associated with the branch 

linkage analysis (Table 1). The action pattern of α-amylase involves a virtually random 



hydrolytic multiple attack to cleave starch into linear and branched dextrins (Bijttebier, Goesaert 

and Delcour, 2008) and requires at least a four glucose-unit linear segment between two branch 

points for catalysis (Damager et al., 2005). The low -limit dextrin content of the samples 

having low branch point density is in accordance with the specific action of -amylase on linear 

-1,4 chains. A previous study (Kandra, Gyémánt, Remenyik, Hovánszki and Lipták, 2002) 

demonstrated that the maximum frequency of α-amylase attack site is shifted towards the 

reducing end with longer chain length. Therefore, our data do not exclude that the distance 

between each branch points in the products were shorter or equal to four glucose units (Fig. 3C).  

The β-amylase degradation of BE-treated samples was increased from 20.0% to 33.3% 

with increasing AO substrate. This implies that BE preferentially uses AO, initially creating new 

branch points expected to be located mostly on the non-reducing end of the -glucan acceptor 

chains where β-amylase is less active (Fig. 3C). In addition, the β-amylolysis limit from BE-

treated samples was higher than that of the BEAMBE-treated samples which decreased 

from 21.4% to 12.2% with increasing AO (Table 4). This result confirms that the 

disproportionation activity of AM in the BEAMBE-treated samples promotes the 

production of more complex structures as compared to the BE-treated samples. Such branch 

structures are more β-amylase resistant than randomly branched glucans. The combine results of 

α-limit dextrin content and β-amylolysis limit provides evidence that the product following BE 

chain transfer in high amylose:amylopectin systems causes longer distance between the adjacent 

branch point in the product. The new branch points were located mostly on the non-reducing end 

of the acceptor -glucan chains. 

 

 



3.5 Glucose released after rat intestinal α-glucosidases hydrolysis 

In order to investigate the internal branch structure of the α-limit dextrins (Fig. 2) 

obtained from the enzyme modified starches, the samples were subjected to further hydrolysis by 

rat intestinal α-glucosidases after hydrolysis by human pancreatic α-amylase. These data would 

also indicate the potential degradative pattern of the α-limit dextrins in the intestinal part of 

gastrointestinal tract. These amylases consist of maltase-glucoamylase (MGAM) and sucrase-

isomaltase (SI) and they are mainly active on α-1,4 and α-1,6 linkages, respectively (Lin et al., 

2012). Hydrolysis of α-limit dextrin is expected to specifically slow down the MGAM and SI 

activities due to the highly-branched structures of these glucans (Lee et al., 2013). Glucose 

released from all BE and BEAMBE treated starches after hydrolysis by human pancreatic α-

amylase and rat intestinal α-glucosidases were 43.0-58.0 % and 38.0-51.0 %, respectively, with 

decreasing AO:WX ratios (Table 5). A positive relationship was found between the amount of 

branched α-limit dextrins in the hydrolysis product and the amount of glucose generated. The α-

limit dextrins obtained from the BEAMBE treated starches released lower glucose as 

compared to the BE treated starches. This result demonstrates an effect of AM on arrangement 

the α-glucan structure due to it disproportionation activity of the α-glucan linear chains or 

clusters. In addition, a previous study demonstrated that α-glucan hydrolysis rate by MGAM-SI 

is low on densely branched α-limit dextrin (Kittisuban et al., 2014; Lee et al., 2013). Particular 

chemical structures including tightly branched clustered in the α-limit dextrin can affect the 

MGAM-SI catalysis (Lin et al., 2010). 

The samples after BE and BEAMBE treatment were analysed by HPAEC-PAD in 

order to investigate the formation of isomaltose, isomaltotriose and highly branched 

oligosaccharides. All of them are slowly digested by isomaltase in human body (Gropper, Smith 



and Groff, 2009). Only low amounts of isomaltose and isomaltotriose were detected (data not 

shown). This finding indicates that the fraction denoted as “linear” found in the HPSEC-RI 

chromatograms possibly consisted of both isomaltose and isomaltotriose and were hence slowly 

digested. The MGAM has a preference for short α-1,4 linkages while SI has a broader specificity 

for both α-1,4 and α-1,6 linkages (Sim et al., 2010). The 100% AO product might contain long 

chains with highly branch points, and some of them might be in a form of double helical 

segments which can resist MGAM-SI hydrolysis. Our results are in agreement with those of Ao 

et al., 2007 who proposed that the slowly digested and resistant properties of the enzyme-

modified starch were not affected only from the higher content of α-1,6 linkages and shortened 

chains. It was also likely to be a minor effect from short amylose fragments that were self-

associated which reduced enzyme hydrolysis. The propose products generated from BE and 

BEAMBE on WX and AO substrate were represented in Fig. 3A-E.  

 

 

4. Conclusions 

BE more efficiently catalyzed chain transfer in AO than WX to create new branch points 

and to produce a low and more monodisperse product. The BE- and BEAMBE-treated 

starches showed an higher rate of α-1,6 glucosidic linkages formation and short chains 

approximately DP 3-16 with higher AO:WX ratios. However, due to a very low initial branch 

content of the AO starch, the final content of α-1,6 glucosidic linkages was slightly lower at high 

AO substrate content. Sequential BEAMBE catalysis resulted in more extensive branching 

as compared to using BE alone. This increased branching suppressed amylolytic susceptibility as 

demonstrated by increased levels of α-limit dextrins for each of the substrates. However, high 

amylose substrates generated lower level of α-limit dextrin demonstrating that amylose substrate 



generated less α-amylase resistant products. Further hydrolysis with rat intestinal α-glucosidases 

showed increased hydrolysis rate with higher α-1,6 glucosidic linkage content and decreased 

molar mass. This suggests that α-glucosidases is sterically hindered by the molar mass and 

molecular configuration rather that the branching density of the glucans per se. Combined 

BEAMBE produced more resistant α-glucan products as compared to BE alone. Overall, the 

high amylose starch shows a better potential source to be applied as a raw material for enzymatic 

modification to produce slowly- and resistant dextrin. 
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Fig. 1. Relative area (%) of debranched glucan samples. (A) WX and AO control substrates, (B) 

BE treated sample, (C) BEAMBE treated sample with specific AO content. (D-E) 

Difference plots relative to controls as indicated, (D) BE treated samples as compared to 

corresponding control WX and AO substrates, (E) BEAMBE treated samples as compared 

to control WX and AO. WX, waxy maize starch; AO, amylose only barley starch; BE, branching 

enzyme-treated starch; and BEAMBE, sequential enzyme treatments. 
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Fig. 2. Molar mass distribution of enzyme-modified starches by HPSEC-RI after human 

pancreatic α-amylase treatment. The two different regions indicate branched and linear α-limit 

dextrins, respectively, as verified elsewhere (Lee et al., 2013). The peak area of branched α-limit 

dextrins are interpreted in Table 4. A) BE treated samples and B) BEAMBE treated 

samples. Log       w corresponds to the       w calculated with strictly linear pullulan standards. 



 

 

Fig. 3. Schematic representation the obtained products from BE and BEAMBE reaction. 

The black symbol symbolize α-D-glucose unit and red symbol symbolize newly generated α-

glucan. A-B represents enzymes-treated WX products, A: branched-amylopectin cluster, B: 

cyclo-amylopectin cluster and short α-glucan chains. C-E: represents enzymes-treated AO 

products, C: branched-amylose, D: cyclo-amylose and E) amylose double helix. 



Table 1. Content (%) and the increased ratio of α-1,6 linkages of the enzyme-modified starches. 

WX, waxy maize starch; AO, amylose-only barley starch; BE, branching enzyme-treated starch; 

and BEAMBE, starch treated with branching enzyme followed by amylomaltase and 

completed with branching enzyme.  

Samples/ 

Enzymes 

treatment 

AO 

content 

(%) 

α-1,6 

(%) 

Increase in ratio 

of α-1,6 (fold)** 

WX 0 3.5 - 

AO 100 0.2* - 

BE 

0 8.7 1.5 

20 8.4 2.0 

50 8.2 3.4 

80 7.2 7.4 

100 7.0 34.0 

BEAMBE 

0 9.7 1.8 

20 8.9 2.1 

50 8.7 3.7 

80 8.5 8.9 

100 8.0 39.0 

 

*Degree of branching calculated from 1H-NMR except for the AO substrate, which was 

determined by reducing end analysis. 

**The increment of α-1,6 as compared to the initial values calculated from the substrate mixture 

ratios (Supplementary Table 1). 



Table 2. Average chain length distribution (%) of α-glucan products and control AO and WX 

starches. 

% 

Distribution 
WX AO 

BE treated BEAMBE treated 

0% 

AO 

20% 

AO 

50% 

AO 

80% 

AO 

100% 

AO 

0% 

AO 

20% 

AO 

50% 

AO 

80% 

AO 

100% 

AO 

DP 3-12 20.5 14.6 42.2 58.6 58.5 62.5 67.8 54.3 61.9 65.0 70.6 77.7 

DP 13-24 54.2 37.8 45.6 36.7 40.0 31.9 28.4 37.9 32.8 29.8 25.3 19.8 

DP 25-36 16.6 22.0 11.2 4.1 7.2 5.1 3.3 6.5 5.2 5.1 3.8 2.3 

DP > 37 8.7 25.6 1.0 0.7 0.7 0.5 0.7 0.3 0.1 0.2 0.3 0.2 

 

WX, waxy maize starch; AO, amylose only barley starch; BE, branching enzyme-treated starch; 

and BEAMBE, sequential enzyme treatments. 



Table 3. Molar mass distribution ( M w), hydrodynamic radius (Rh), dispersity index ( M w/ M n), 

intrinsic viscosity (IV) and molecular density of the control and enzyme-modified starches. AF4-

MALLS was used for AO and WX while SEC (Viscotek-TDA system) was used for enzyme-

modified starches. 

Enzymes 

treatment 

AO 

content 

(%) 

M w  

(x 103 g·mol-1) 
Rh (nm) M w / M n  

Molecular 

density  

(g·mol-1·nm-3) 

WX* 0 399,000 N.A. 1.4 N.A. 

AO* 100 5,500 N.A. 6.2 N.A. 

BE 

0 154 12.5 1.7 18.8 

20 175 13.3 1.6 17.8 

50 261 15.2 1.6 17.7 

80 426 17.9 1.6 17.7 

100 1,000 27.1 1.6 12.0 

BEAMBE 

0 166 13.0 2.9 18.0 

20 291 15.9 2.6 17.3 

50 368 17.3 1.4 17.0 

80 517 19.1 1.8 17.7 

100 912 23.9 2.0 15.9 

 

*The radius of gyration, Rg for WX and AO are 281.0 and 139.0 nm, respectively. 

N.A.; Not Available. 



Table 4. The peak area (%) of branched α-limit dextrin regions after human pancreatic -

amylase digestion from Fig. 2 compared to the β-amylolysis limit.  

Samples/ 

Enzymes 

treatment 

AO content 

(%) 

Area for branched  

-limit dextrin (%) 

β-amylolysis 

limit (%) 

WX 0 27.0 47.9  

AO 100 3.8 64.8  

BE 

0 32.3 33.3  

20 27.8 29.3  

50 23.6 25.8  

80 14.3 21.1  

100 6.5 20.0  

BEAMBE 

0 34.5 21.4  

20 29.5 18.7  

50 23.1 14.7  

80 14.9 13.2  

100 7.3 12.2  

 



Table 5. Glucose released (%) from enzyme modified starches and control starch by human 

pancreatic α-amylase followed by rat intestinal α-glucosidases. The AO:WX ratios indicated are 

for the original substrates prior to enzyme treatment. 

Samples/ 

Enzyme 

treatment 

AO 

content 

(%) 

Glucose 

released (%) 

WX 0 51.0 ± 3.0bcd 

AO 100 26.0 ± 3.0g 

BE 

0 58.0 ± 0.0a 

20 56.0 ± 2.0ab 

50 53.0 ± 1.0abc 

80 50.0 ± 1.0bcd 

100 43.0 ± 1.0ef 

BEAMBE 

0 51.0 ± 1.0bcd 

20 48.0 ± 2.0cde 

50 45.0 ± 1.0ef 

80 43.0 ± 1.0ef 

100 38.0 ± 1.0f 

 

 


