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Abstract

We develop methods for rationalization of CAD surfaces using elastic curves, aiming at a cost-
effective fabrication method for architectural designs of complex shapes. By moving a heated
flexible metal rod though a block of expanded polystyrene, it is possible to produce shapes with
both positive and negative Gaussian curvature, either for direct use or for use as moulds for
concrete casting. If we can control the shape of the rod while it is moving, we can produce
prescribed shapes.
The flexible rod assumes at all times the shape of an Euler elastica (or elastic curve). The elastica
are given in closed analytic form using elliptic functions. We use a gradient-driven optimization
to approximate arbitrary planar curves by planar elastic curves. The method depends on an
explicit parameterization of the space of elastic curves and on a method for finding a good initial
guess for the optimization.
We approximate CAD surfaces by first extracting a collection of planar surface curves and
approximating these by elastica. Providing the data for these curves to robots holding the flexible
rod, we can produce an elastica-foliated surface that approximates the given CAD surface. Since
not all surfaces can be closely approximated by an elastica-foliated surface, an arbitrary CAD
surface must first be subdivided into segments that can be approximated. We discuss strategies
for subdividing an arbitrary surface into segments that can be closely approximated, taking into
account the aesthetics of the segmentation and the production constraints. If the given surface
is smooth, we want the approximating surface to be smooth as well, so we must ensure smooth
transition between the surface segments of the final result.
As an alternative to rationalization of arbitrary designs, we also present a method for direct
generation of design surfaces using foliated Euler elastica. Here we work from a grid of blocks,
so the segmentation is given, but we must still ensure smooth transition between segments.





Resumé (Abstract in Danish)

I afhandlingen udvikles metoder til rationalisering af CAD-flader ved brug af elastiske kurver
med det formål at kunne fremstille komplekse arkitektoniske former indenfor en relativt lav bud-
getramme. Ved at føre en opvarmet fleksibel metalstang gennem en blok ekspanderet polystyren
kan man skabe flader med både positiv og negativ Gausskrumning. Hvis man løbende kan
kontrollere metalstangens form under bevægelsen, kan man fremstille foreskrevne former. De
fremkomne polystyrenelementer kan enten anvendes, som de er, eller bruges som støbeforme til
beton.
De former, den fleksible metalstang kan antage, kaldes Euler elastica (eller elastiske kurver) og
kan udtrykkes analytisk ved brug af elliptiske funktioner. Vi benytter gradientbaseret optimering
til at tilnærme vilkårlige plane kurver med plane elastiske kurver. Vores metode bygger på en
eksplicit parametrisering af rummet af elastiske kurver og på en metode til at finde et godt første
gæt til optimeringen.
Vi tilnærmer en given CAD-flade ved først at udvælge et sæt plane kurver på fladen, som vi
så kan tilnærme med elastiske kurver. Ved at give data for disse kurver til et par robotter,
som holder den fleksible stang, kan man fremstille en tilnærmelse af den givne CAD-flade, som
er frembragt af elastiske kurver. Det er ikke alle CAD-flader som kan tilnærmes godt med en
sådan flade, så en vilkårlig CAD-flade skal først opdeles i dertil velegnede stykker. Vi diskuterer
forskellige segmenteringsstrategier, hvor vi tager højde for, hvor godt stykkerne kan tilnærmes,
segmenteringens æstetiske kvalitet samt begrænsninger tilknyttet produktionsmetoden. Hvis
den givne CAD-flade er glat, ønsker vi også at tilnærmelsen skal være glat, så vi må sikre glat
overgang mellem segmenterne i den nye flade.
Som alternativ til rationalisering af et vilkårligt design, præsenterer vi en fremgangsmåde til
direkte design af flader frembragt af elliptiske kurver. Her arbejdes der ud fra en given seg-
mentering i blokke, men man skal stadig sikre glat overgang mellem segmenterne.
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vi Preface

Chapter-by-chapter overview

In Chapter 1 I introduce the industrial project, BladeRunner, which my PhD is a part of, and I
detail the desired fabrication process and the problems that need to be solved in order to achieve
this. I then give a brief overview of the development of the theory of Euler elastica and spline
curves. Finally, I introduce the software that has been used for implementation.
Chapter 2 concerns the mathematical formulation of Euler elastica. I first derive the Euler-
Langrange equation for the elastica, and then I introduce elliptic functions and elliptic integrals
and describe some of their properties. Using these I solve the Euler-Langrange equation and get
an explicit parameterization of the space of elastic curve segments. Finally, I describe a way to
recover the parameters of an elastic curve segment.
An important step towards the overall goal, is a way to approximate an arbitrary curve by a
G1 piecewise elastic curve. This is the focus Chapter 3 in which we find the elastica that has
the smallest L2-distance to a given curve. I also go through some considerations on the physical
applicability and how these can be dealt with by introducing optimization constraints.
Chapter 4 deals with the problem of finding an elastic curve segment with prescribed endpoints,
end tangent angles and length. This is done by first finding a discrete version of the desired curve
and then recovering its control parameters. The algorithm for finding the discrete elastica was
based on an implementation made by J. Andreas Bærentzen. I then describe how this method
can be used for designing elastica-foliated surfaces.
The next three chapters concern surface rationalization. In Chapter 5 I describe our basic
method for approximating a surface by an elastica-foliated surface. I also describe how we can
evaluate the result.
An arbitrary surface can usually not be well approximated by a single elastica-foliated surface.
We therefore need an algorithm for subdividing the surface into patches that can be approximated
well. In Chapter 6 I discuss several segmenting strategies, which were developed in collaboration
with Kasper Steenstrup.
Finally, in Chapter 7 I describe how to approximate each piece of a segmented surface by an
elastica-foliated patch, such that the patches meet in a tangent continuous way. I describe two
strategies for doing this. The first is based on the methods developed in Chapter 3, while the
second introduces several new constraints to the optimization problem that needs to be solved.
Chapter 8 deals with a problem that came up in relation to the practical application of the
methods described in this thesis. If we know the end points and tangent angles of an elastic
curve segment, and we measure the curve height, can we determine the curve (without solving a
complicated optimization problem)? It turns out that for a symmetric curve segment, this can
be done by a bisection.
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Chapter 1

Introduction

One of the major challenges in contemporary architecture is the conflict between the architects’
design ambitions and the budgetary constraints on the complexity of building elements. While
modern CAD software makes the creation of advanced 3D models with double curved surfaces
easy and available to everyone, the fabrication of such elements is often prohibitively expensive.
However, an increasing number of projects make use of digital design tools and seek to move
outside the architectural paradigm of flat-surface, right-angled buildings. Hence there is a great
need for the development of cost-effective fabrication methods for building elements of complex
geometry.
For large-scale concrete structures, the classic way of producing complex shapes involves manual
fabrication of formwork, typically out of wood. More recently, large-scale CNC milling have been
employed either for production of foam moulds or direct milling of construction materials. None
of these processes, however, provide a cost-effective method for general construction.

1.1 The BladeRunner project

Background The Danish company Odico specializes in robotic fabrication of expanded poly-
styrene (EPS) formwork for concrete casting of complex building elements. The primary fabrica-
tion method is hot wire cutting, done by a robot moving a heated metal wire through the EPS,
thus cutting a prescribed shape, see Figure 1.1. We say “cutting” though in reality the EPS
melts and evaporates. The cut shape can be coated with a polymer or other coating material to
make the surface more smooth and hard, so it can be used as a mould for concrete casting. For
the production of moulds, a negative form must be cut, but positive shape production in EPS
is also relevant for some applications.

Figure 1.1: Robotic hot wire cutting and robot milling at Odico.
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Hot wire cutting is a very fast and precise procedure. The main limitation of this fabrication
method is that it can only produce ruled surfaces. A ruled surface has non-positive Gaussian
curvature at all points, which means that no surface with positive Gaussian curvature can be
produced by hot wire cutting, see Figure 1.2. For positively curved shapes and for elements of
fine detail, which cannot be cut by wire, companies like Odico use CNC milling. Milling is a
very precise way of producing formwork in complex shapes, but it is a very time consuming, and
thus expensive, fabrication method. Moreover, a lot of work is needed in choosing the tool path
for the cutter.

Figure 1.2: Surfaces shown with Gaussian curvatures between -1 (blue) and 1 (red). The
sphere, cylinder and tractricoid have constant Gaussian curvatures of 1, 0 and -1, respectively.
The Gaussian curvature of the ellipsoid is everywhere positive, while that of the hyperboloid
is everywhere negative. The torus has areas of both positive and negative Gaussian curvature
and two circles with zero Gaussian curvature. Note that the cylinder and hyperboloid are
actually ruled surfaces.

BladeRunner The BladeRunner project is an industrial research project supported by Inno-
vation Fund Denmark and involving several Danish companies and research institutions. The
aim of BladeRunner is development of a new production method for EPS formwork. Instead of
using a wire, the cutting will be done by a flexible cutting tool, the so called hot blade. The
blade can be bent into different shapes during cutting, thus extending the class of shapes that
can be produced. In particular it will enable fast fabrication of positively curved elements. To
allow architects as much freedom as possible in the design phase, part of the project concerns
approximating an arbitrary design by one that may be cut by the hot blade (the main focus
of this thesis). Another aim of the BladeRunner project is approximating arbitrary designs by
piecewise ruled surfaces, in order to use wire cutting as a rough first step before milling the finer
details of the formwork, see [SNS+16].
In developing these methods Odico have allied with the Department of Applied Mathematics and
Computer Science (DTU Compute) at the Technical University of Denmark (DTU), develop-
ing algorithms for surface rationalization; Danish Technological Institute (DTI), developing the
flexible cutting tool and robot setup, and testing; Department of Mechanical Engineering (DTU
Mechanical Engineering) at DTU, developing thermal and thermomechanical models for hot wire
and hot blade cutting, predicting kerf width, and comparing the hot blade shapes predicted by
mathematical and mechanical models with those measured for physical blades; 3XN architects,
in particular their innovation unit GXN, providing field knowledge of the architectural world,
ideas for commercialization, and producing test cases for the developed algorithms; and finally
the concrete factory CONFAC delivering and casting concrete, and evaluating results of casting
in different mould types (i.e. different EPS densities and coatings).
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Hot blade cutting The process of robotic hot blade cutting is similar to wire cutting, except
that instead of a wire held in a frame, we have a flexible cutting tool held by two robots that move
in synchronization. For the experimental phase, a third robot is used for holding and moving
the block of EPS that will be cut, see Figure 1.3. The more permanent setup may instead have
the EPS on a conveyor belt that passes between the robots holding the cutting tool.

Figure 1.3: Left: A rendering of the idea for the robot setup. Center: The actual experimental
setup at DTI in Odense, Denmark. Right: Robot setup for a workshop organized by the
BladeRunner team for RobArch 2016 in Sydney, Australia. Here the EPS block is fixed, so
the two robots holding the cutting tool do all the work.

During the course of the BladeRunner project, DTI and DTU Mechanical Engineering have
experimented with two versions of the cutting tool. The first is a flat, nickel-chromium blade
with a rectangular cross section of 5mm×1mm, the second a stainless steel tube with outer/inner
diameter 3mm/2.5mm.1 In this thesis, we shall refer to both of these cutting tools as blades,
and to the process as hot blade cutting. When we need to distinguish the two types, we will talk
about the flat blade and the tube. The blades were between 0.8m and 1.5m in length.
The main advantage of the flat blade is that, since it has a specific thin dimension, it will always
bend in the desired direction, while the tube is equally prone to bend in all directions. As
mentioned, the cutting tool is supposed to melt its way through the EPS, so that it does not
experience a force from the block. In reality it is difficult to maintain the correct cutting speed
to ensure that no such force is applied to the cutting tool, since the optimal speed will depend
on the temperature of the cutting tool. Using a very low speed is not a solution, since this will
cause too much EPS melting, resulting in a bad surface quality. If the speed is too high, so the
cutting tool experiences a force, the tube will be prone to bend in the direction opposite to its
velocity, while the flat blade is less so.
The disadvantage of the flat blade is that its cross section is asymmetric, which means that
it is supposed to cut in a specific direction. When the blade is changing shape while moving
through the EPS, the different points in the blade will have different velocities, so there will be
parts of the flat blade that are not moving in the optimal direction. In contrast, the tube has a
symmetric cross section, so it cuts equally well in all directions. However, for both blade types
one should consider the magnitude of the velocity at different points on the blade. Since cutting
speed affects surface quality, it is important that it does not vary too much along the blade.
The blade shape is given by the positions of its end points and the orientations of its end tangents
(and the length of the cutting tool, which is fixed). To control the cutting motion, we simply
provide the data for movement of the robots’ end effectors. These are given as a discrete set of
data points, and the robot will automatically interpolate the data. We do not know how the
robots interpolate the data, which means that we only have complete control over the blade at
a discrete set of points.

1Experiments were also done with flat blades and tubes of other dimensions.
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Surface rationalization The challenge addressed in this thesis is that of surface rationaliza-
tion, i.e. going from an arbitrary surface design to one that can be produced by hot blade cutting.
The possible shapes of the flexible cutting tool are the so-called Euler elastica or elastic curves.
Our approach is to first describe a method for approximating a planar curve by an elastica. We
can then use this method on a selection of planar curves on a surface, to get a parameterized
surface σ, which resembles the original design and is foliated by elastica, i.e. it has the form

σ : [a, b]× [c, d]→ R3, σ(u, v) = γu(v),

where for any u ∈ [a, b], γu : [c, d]→ R3 is a planar elastic curve.

Typically we cannot approximate an arbitrary surface well in this manner. Hence, we will
describe methods for segmenting a surface into patches that can be well approximated. If the
original surface is smooth we also want the rationalized design to be smooth (or at least G1).
Therefore we cannot just approximate the segments independently, but must find a way to make
sure the elastica-foliated patches meet with (at least) tangent continuity.

To sum up, by surface rationalization we mean segmentation and approximation by elastica-
foliated surfaces which meet with tangent continuity.

1.2 Short historical overview

We here give a short overview of the development of the theories of elastica and splines. We
then outline the recent work regarding hot blade cutting and similar fabrication processes. For
more details on the history of the elastica, see Levien [Lev09] and Truesdell [Tru83].

In mathematics the elastica has been investigated as early as 1691 when Jacob Bernoulli posed
the following problem: suppose that an elastic rod is fixed vertically at one end and that a load
is hung on the other, sufficient to bend it into a horizontal position. What shape does the rod
assume? Bernoulli solved this problem in the sense that he derived the differential equation for
the curve, which is known as the rectangular elastica. In the process he discovered the formula
for the radius of curvature for a planar curve.

In 1738 Daniel Bernoulli (Jacob’s nephew) realized that all elastica should be minimizers of the
bending energy, which is proportional to the integral of the square of the curvature

∫
κ(s)2 ds.

In 1742 he suggested to Leonhard Euler to solve this minimization problem for a curve of given
length with fixed end points and fixed tangents at these points. Euler did this, thus finding
all possible shapes of the elastica. In 1744, he included this as a chapter in his treatise on the
calculus of variations [Eul44]. (Oldfather [OEB33] provides a translation into English.)

The elastica can be expressed in closed form using the elliptic functions introduced by Karl
Gustav Jakob Jacobi in 1829 [Jac29]. The closed form solutions were first derived in 1880 by
Saalschütz [Saa13] and were expressed in modern notation by Love in 1892 [Lov20].

Elastic curves have been used in design for a long time. Prior to the use of computers in design,
the word “spline” referred to thin wooden rods, fixed at various points by so-called “ducks” to
create the naturally smooth curves needed in e.g. the shipping and aviation industries. Between
the ducks, the rod assumes the shape of a planar elastica. Nowadays, “spline” usually refers to
piecewise polynomial or rational curves. The computation of polynomial splines and the idea
of using them in design has been discussed by many authors, we mention Birkhoff and de Boor
[BdB65], Mehlum [Meh74] and Malcolm [Mal77] to name a few.

The use of hot wire cutting in architecture has been discussed e.g. in 2013 by McGee et al.
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[MFS13]. A rationalization process for ruled surfaces has been developed by Flöry and Pottmann
in 2010 [FP10].
In the late 1990s and early 2000s a group at TU Delft has done some work on developing a flex-
ible cutting tool, i.e. a hot blade, for rapid prototyping (de Smit et al. [dSKBH02], [dSMB+00]
and related papers). This group uses numerical methods for computing the blade shapes. Al-
ternatives to the hot blade cutting process include the use of a flexible membrane as a casting
surface (Raun et al. 2012, [RKK12]) and spatial wire cutting (Rust et al. 2016, [RJGK16]).

1.3 Software choices

The algorithms described in this thesis have for the most part been implemented in Python 2.7
using the software library IPOPT [WB05], by Andreas Wächter and Carl Laird, for optimization.
It was known when the BladeRunner project began, that the algorithms would rely on a tool
for nonlinear constrained optimization. IPOPT (short for Interior Point Optimizer) was chosen
because several people at DTU Compute (who were at the time involved with the BladeRunner
project) were familiar with it and because it is released under an open license that allows for the
developed algorithms to be used commercially. IPOPT is written in C, but it can be interfaced
from other languages, e.g. MATLAB and Python. Python was chosen because it is a rather
easy-to-learn high-level language2 and because Odico was already using python-based software
in the robot motion planning for hot wire cutting.
For the algorithms related to surfaces some work has been done using Rhino (Rhinoceros 3D)
developed by Robert McNeel & Associates. Rhino is a NURBS-based CAD application often
used by architects for design. The test surfaces created for this project by the architects from
GXN and Odico were drawn in Rhino, and since Rhino has a lot of convenient built-in functions
for manipulating curves and surfaces in 3D, it made sense to take advantage of this. Rhino
also has a scripting tool, RhinoScript, that allows the user to write Rhino commands in a
script and create algorithms for complicated tasks. Furthermore, a Python interface for Rhino
scripting is integrated in the application, so the functionality of Rhino can be called using
Python syntax. We have used RhinoPython for the algorithms concerned with surface design
(Section 4.3) and segmentation (Chapter 6), and then exported surface and curve data before
moving on to approximation.

2At the beginning of this project, the author of this thesis had very little programming experience.
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Chapter 2
Mathematical description of

Euler’s elastica

In this chapter, we derive the Euler-Lagrange equation for the elastica using calculus of variations.
We then introduce the Jacobi elliptic functions and the elliptic integrals of the first and second
kind and state some of their properties. With these in our toolbox, we can solve the Euler-
Lagrange equation and find an explicit parameterization of the elastica. We then choose a specific
way to parameterize the space of elastic curve segments, such that any segment is described by
seven control parameters. We then introduce an algorithm for numerically calculating the control
parameters for an elastic curve segment.

Sections 2.1, 2.2 and 2.3 are more detailed versions of respectively Section 2.1, Appendix A and
Section 2.2 of [BGN16], while Section 2.4 is identical to Section 3 of that paper except for small
alterations to make notation consistent throughout this thesis.

2.1 The Euler-Langrange equation

Let γ : [0, `] → R2 be a plane curve segment1 which is parameterized by arc length. Let
θ(s) denote the tangent angle, i.e. the angle between γ̇(s) and the x-axis. We have γ̇(s) =
(cos θ(s), sin θ(s)), so if the curve starts at (x0, y0) and ends at (x`, y`), say, it satisfies

x` = x0 +
∫ `

0
cos θ ds, y` = y0 +

∫ `

0
sin θ ds. (2.1)

As Daniel Bernoulli discovered, an elastica (or elastic curve) is a curve that, among curves with
the same endpoints and end tangents, minimizes the bending energy

1
2

∫ `

0
κ(s)2 ds, (2.2)

where κ = θ̇ is the curvature2. We will determine the Euler-Lagrange equation for such mini-
mizers through a variational argument.

Suppose γ is an elastica from (x0, y0) to (x`, y`) with angle function θ. Let γt be the curve with
angle function θt(s) = θ(s) + tϕ(s) and the same endpoints as γ, where ϕ is a differentiable
function with ϕ(0) = ϕ(`) = 0. Then the endpoints, length and end tangent angles of γt do not
depend on t, and we have γ = γ0.

1We shall often omit the word "segment" and simply say "curve".
2When we consider planar curves, κ will always denote the signed curvature.
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Since γ minimizes (2.2), it must be a stationary curve for the bending energy

Ebend(γ) = 1
2

∫ `

0

(dθ
ds

)2
ds+ λ1

(
x0 +

∫ `

0
cos θ ds− x`

)
+ λ2

(
y0 +

∫ `

0
sin θ ds− y`

)
.

We differentiate the energy of γt with respect to t

dEbend(γt)
dt = 1

2

∫ `

0

d
dt

(d(θ + tϕ)
ds

)2
ds+ λ1

∫ `

0

d
dt cos(θ + tϕ) ds+ λ2

∫ `

0

d
dt sin(θ + tϕ) ds

=
∫ `

0

d(θ + tϕ)
ds

dϕ
ds ds− λ1

∫ `

0
ϕ sin(θ + tϕ) ds+ λ2

∫ `

0
ϕ cos(θ + tϕ) ds,

so for t = 0 we get

dEbend(γt)
dt

∣∣∣
t=0

=
∫ `

0

dθ
ds

dϕ
ds ds− λ1

∫ `

0
ϕ sin θds+ λ2

∫ `

0
ϕ cos θ ds

=
[
ϕ

dθ
ds

]`
0
−
∫ `

0
ϕ

d2θ

ds2 ds− λ1

∫ `

0
ϕ sin θ ds+ λ2

∫ `

0
ϕ cos θ ds

= −
∫ `

0
ϕ

(
d2θ

ds2 + λ1 sin θ − λ2 cos θ
)

ds,

(2.3)

where we have used that ϕ(0) = ϕ(`) = 0.
Since t = 0 is a stationary point for t 7→ Ebend(γt) and since ϕ was arbitrary, we conclude that
the angle function θ satisfies

d2θ

ds2 + λ1 sin θ − λ2 cos θ = 0, (2.4)

which is the Euler-Lagrange equation for the elastica.

Remark. The condition that ϕ(0) = ϕ(`) = 0 is what fixes the end tangents and ensures that
ϕ(`)θ̇(`) − ϕ(0)θ̇(0) = 0 for all ϕ. If we allow the tangents to change, thus minimizing the
energy for a curve with only fixed length and end points, we obtain the boundary conditions
θ̇(0) = θ̇(`) = 0. In other words, the curve of minimal energy will satisfy (2.4) and have inflection
points at its ends.

In order to find a simpler version of the Euler-Lagrange equation, we consider the role of the
Lagrange multipliers λ1 and λ2. Setting (λ1, λ2) = λ(cosφ, sinφ), with λ ≥ 0, the previous
equation becomes

d2θ

ds2 + λ sin(θ − φ) = 0. (2.5)

We note that if λ = 0, the differential equation becomes θ̈(s) = 0, so κ = θ̇ is constant, which
means that γ is part of either a circle or a straight line.

Proposition 2.1. Let γ : [0, `]→ R2 be an elastica, and let µ > 0, α ∈ ]−π, π]. The scaled and
rotated curve γ̃ : [0, `/µ]→ R2 defined by

γ̃(s) = 1
µRαγ(µs), Rα =

(
cosα − sinα
sinα cosα

)
,

is also an elastica.

Proof. It is easy to see that γ̃ is a rotated and scaled version of γ, since Rα is a rotation matrix
and µs runs through [0, `] as s runs through [0, `/µ]. We find that γ̃ is parameterized by arc
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length, since for any s ∈ [0, `/µ] we have

L(γ̃, s) =
∫ s

0
‖ ˙̃γ(u)‖ du =

∫ s

0
‖γ̇(µu)‖du = 1

µ

∫ µs

0
‖γ̇(t)‖dt = 1

µL(γ, µs) = s.

The angle function θ for γ satisfies (2.5) for some λ, φ. The angle function for γ̃ is

θ̃(s) = θ(µs) + α,

and thus
¨̃θ(s) = µ2θ̈(µs) = −µ2λ sin (θ(µs)− φ) = −λ̃ sin

(
θ̃(s)− φ̃

)
,

which shows that θ̃ satisfies (2.5) with λ̃ = µ2λ and φ̃ = φ+ α.

The above proposition shows that λ and φ in (2.5) may be considered as scaling and rotation
parameters, and we can thus find all elastica, except for the circle, by solving

θ̈ = − sin θ. (2.6)

2.2 Elliptic functions

In this section we introduce the elliptic functions defined by Jacobi and state some of their
important properties. We also define the elliptic integrals of the first and second kind, which
are essential in finding explicit parameterizations for the elastica. The elliptic functions and
integrals have been covered in several works, e.g. [Lov20], [Gre59]. For the results in this section
we mainly follow [Law89] and [Mey01].

Definition

Let k ∈ [0, 1]. The elliptic functions sn, cn and dn with (elliptic) modulus k are defined as the
solutions to the system of differential equations

d
du sn u = cn udn u, sn 0 = 0,

d
du cn u = − sn udn u, cn 0 = 1, (2.7)

d
du dn u = −k2 sn u cn u, dn 0 = 1.

We shall write sn(u, k), etc., when the dependence on the modulus is important, and otherwise
simply use sn u. The complementary modulus k′ ∈ [0, 1] is defined by

k2 + k′2 = 1. (2.8)

Proposition 2.2. For a fixed modulus k, the elliptic functions satisfy the following equations
for all u ∈ R:

sn2 u+ cn2 u = 1,
dn2 u+ k2 sn2 u = 1
dn2 u− k2 cn2 u = k′2.

(2.9)
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Proof. Define A = sn2 + cn2, B = k2 sn2 + dn2, C = dn2−k2 cn2. From the system (2.7) we
have

dA
du = 2 sn u sn′ u+ 2 cn u cn′ u = 2 sn u cn udn u− 2 cn u sn udn u = 0,

and likewise dB
du = dC

du = 0. Hence A, B and C are constant functions. We now apply the initial
conditions and get for all u ∈ R

sn2 u+ cn2 u = sn2 0 + cn2 0 = 1
dn2 u+ k2 sn2 u = dn2 0 + k2 sn2 0 = 1

dn2 u− k2 cn2 u = dn2 0− k2 cn2 0 = 1− k2 = k′2.

Define the (elliptic) amplitude am by

am(u) = F−1(u), F (u) =
∫ u

0

dt√
1− k2 sin2 t

.

We note that F is well-defined and strictly increasing, so the same holds for am.

Proposition 2.3. The elliptic functions with modulus k can be expressed as

sn(u) = sin(am u), cn(u) = cos(am u), dn(u) =
√

1− k2 sin2(am u).

Moreover, the amplitude satisfies

d
du am u = dn u, am 0 = 0.

Proof. Since (2.7) has a unique set of solutions it is enough to show that the functions above are
such solutions. We have

d
du am u = 1

dF
du (F−1(u))

= 1
dF
du (am u)

=
√

1− k2 sin2(am u). (2.10)

Hence
d

du sin(am u) = cos(am u)
√

1− k2 sin2(am u),

d
du cos(am u) = − sin(am u)

√
1− k2 sin2(am u),

d
du

√
1− k2 sin2(am u) =

−k2 sin(am u) d
du sin(am u)√

1− k2 sin2(am u)
= −k2 sin(am u) cos(am u),

and we have
sin(am 0) = 0, cos(am 0) = 1,

√
1− k2 sin2(am 0) = 1.

From the above it is evident that d
du am u = dn u and since, obviously, F (0) = 0, we have

am 0 = 0.

Proposition 2.4. For the special moduli k = 0 and k = 1 we have

sn(u, 0) = sin u, sn(u, 1) = tanh u,
cn(u, 0) = cosu, cn(u, 1) = sech u,
dn(u, 0) = 1, dn(u, 1) = sech u.

Moreover, on compact intervals, the elliptic functions converge uniformly to these functions as
k → 0+ and as k → 1−, respectively.
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Proof. For k = 0, we have F (u) = u, so am(u, 0) = u, and the above identities follow from
Proposition 2.3. For the case k = 1, we observe that

d
du tanh u = sech2 u, tanh(0) = 0,

d
du sech u = − tanh u sech u, sech(0) = 1,

so the tuple (tanh, sech, sech) satisfy (2.7) with k = 1.
The uniform convergence on compact sets follows from the ODE theorem on continuous depen-
dence of solutions on the parameters, (see e.g. [Die60], p. 291).

Elliptic integrals

The integral F (u, k) given by the function F above is called the incomplete elliptic integral of
the first kind. We define the incomplete elliptic integral of the second kind by

E(u, k) =
∫ u

0
dn2(t, k) dt. (2.11)

Proposition 2.5. For any fixed modulus k, the functions sn, am, F and E are odd, while cn
and dn are even functions.

Proof. Using that sin2 is an even function, we have

F (−u) =
∫ −u

0

dt√
1− k2 sin2(t)

= −
∫ u

0

dt√
1− k2 sin2(−t)

= −F (u),

so F is odd, and, being the inverse of an odd function, so is am. The rest follows from sin and
cos being respectively odd and even.

We observe that for k = 0, E is the identity, while E(u, 1) =
∫ u

0 sech2 tdt = tanh u. Moreover,
by Propositions 2.3–2.4 we must have

am(u, 1) = arcsin (tanh u) =
∫ u

0
sech t dt.

This function is called the Gudermannian function3 gd: R → ]−π/2, π/2[ and may also be
expressed as

gd(u) = arctan (sinh u) = sgn(x) arccos (sech u) = 2 arctan(eu)− π
2 .

For k = 1, F is the inverse of the Gudermannian function, which is defined on the interval
]−π/2, π/2[ by

F (u, 1) = gd−1(u) =
∫ u

0
sec tdt = ln(sec t+ tan t).

We have considered the elliptic functions and integrals for specific values of k, but for our
application, we will need to know their dependence on k. In particular, we need their derivatives
with respect to k. Deriving these is a technical exercise, which is included in Appendix A.

3The Gudermannian function was named so by Cayley [Cay62].
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Addition formulas and periodicity

Proposition 2.6. The elliptic functions satisfy the addition formulas

sn(u+ v) = sn u cn v dn v + sn v cn udn u
1− k2 sn2 u sn2 v

cn(u+ v) = cn u cn v − sn u sn v dn u dn v
1− k2 sn2 u sn2 v

dn(u+ v) = dn udn v − k2 sn u sn v cn u cn v
1− k2 sn2 u sn2 v

.

The proof requires some calculations, and we postpone it to Appendix B. Alternate proofs can
be found e.g. in [WW62] and [Bow61].
We define the quarter period K = K(k) by

am(K) = π

2 , i.e. K = F

(
π

2

)
,

so that snK = 1, cnK = 0, and dnK = k′.4

From the addition formulas it follows that

sn(u+K) = sn u cnK dnK + snK cn udn u
1− k2 sn2 u sn2K

= cn udn u
1− k2 sn2 u

= cn u
dn u

cn(u+K) = cn u cnK − sn u snK dn udnK
1− k2 sn2 u sn2K

= −k
′ sn udn u

1− k2 sn2 u
= −k′ sn udn u

dn(u+K) = dn udnK − k2 sn u snK cn u cnK
1− k2 sn2 u sn2K

= k′ dn u
1− k2 sn2 u

= k′

dn u
and by using the above equations twice we have

sn(u+ 2K) = cn(u+K)
dn(u+K) = − sn u

cn(u+ 2K) = −k′ sn(u+K)
dn(u+K) = − cn u

dn(u+ 2K) = k′

dn(u+K) = dn u

From this we observe that dn is 2K-periodic and by using the above twice it is evident that sn
and cn are 4K-periodic.
The elliptic integrals F and E do not have addition formulas, but we can find some useful
relations. For u ∈ R, we have

F (u+ π) =
∫ u+π

0

dt√
1− k2 sin2 t

=
∫ u

−π

dv√
1− k2 sin2(v + π)

=
∫ u

−π

dv√
1− k2 sin2 v

=
∫ 0

−π

dv√
1− k2 sin2(v + π)

+
∫ u

0

dv√
1− k2 sin2(v + π)

= −F (−π) + F (u)

= F (u) + F (π).

For u = −π/2, we get F (π/2) = F (−π/2) + F (π), so we have

F (π) = 2F (π/2) = 2K.
4The function K(k) is also called the complete elliptic integral of the first kind. The complete elliptic integral

of the second kind is the function k 7→ E(K(k), k).
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Moreover, for n ∈ Z we get F (u+ nπ) = F (u) + nF (π). In particular, we have

F (am u+ nπ) = u+ nF (π) = u+ 2nK,

and by taking the amplitude on both sides, we obtain am(u+ 2nK) = am u+ nπ.
Turning our focus to E, we have for any u ∈ R,

E(u+K) =
∫ u+K

0
dn2 tdt =

∫ K

0
dn2 t dt+

∫ u+K

K
dn2 t dt = E(K) +

∫ u

0
dn2(s+K) ds

= E(K) +
∫ u

0

k′2

dn2 s
ds = E(K) +

[
E(s)− k2 sn s cn s

dn s

]u
0

= E(K) + E(u)− k2 sn u cn u
dn u

Using this and the fact that E is odd, it follows that for all n ∈ Z we have

E(nK) = nE(K), E(u+ 2nK) = E(u) + 2nE(K).

Extension of k-domain

The elliptic functions, as we have defined them, are only valid for k ∈ [0, 1]. However, by
analytic continuation (see e.g. Lawden [Law89]), the domain of k may be extended. For k > 1,
the following identities hold for all u ∈ R:

sn(u, k) = 1
k sn(ku, 1

k ),
cn(u, k) = dn(ku, 1

k ),
dn(u, k) = cn(ku, 1

k ),
E(u, k) = kE(ku, 1

k ) + u(1− k2).

Observe thatK(k)→∞ as k → 1, so we cannot extendK continuously. We choose the extension

K(k) = 1
kK

(
1
k

)
, k > 1,

which ensures that the period of sn is always 4K, while the periods for cn and dn are 2K and
4K, respectively, when k > 1. We stress that this is not the analytic continuation of K, which
in fact takes non-real values for k > 1. With this choice of K-extension the above results for E
are still valid for k > 1. Moreover, it ensures that the derivative of K has the same expression
for all k 6= 1, see Appendix A.

Remark. When k > 1 we cannot define the complimentary modulus k′ as we have done above,
so we will let k′ ∈ [0, 1]∪ i [0,∞[ such that k2 + k′2 = 1. However, we will only need the number
k′2, which is real for all k.

Bugs in Python functions

For the implementation, we have used the elliptic functions included in the SciPy library. Un-
fortunately, these do not always provide correct values. Specifically the value for dn(K(k), k) is
erroneous for most k. We filed a bug report explaining this, which is included in Appendix C.
Since then, bugs have also been discovered in the elliptic integral of the second kind E(u, k).
We have not found a better Python library, but we have tried to circumvent this problem, when
necessary. For example one can use dn =

√
1− k2 sn2, since there are apparently no bugs in

SciPy’s sn.
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2.3 Explicit parameterization

The solutions to (2.6) can be expressed in closed form via the elliptic functions, and we shall
derive them in the following. There are two classes of elastica: curves with inflection points (i.e.
where θ̇ = 0) and curves without inflections.

Inflectional elastica

We consider an elastica with angle function θ. Let us assume that θ(0) = 0 and that θ̇(0) > 0; in
particular s = 0 is not an inflection point. Moreover, we assume that s0 > 0 is the first positive
inflection point, i.e. θ̇(s0) = 0. We now know that θ(s0) > 0.
For all s ∈ R we have

θ̇(s)2 = θ̇(s0)2 +
∫ s

s0

d
dt
(
θ̇(t)2

)
dt = θ̇(s0)2 + 2

∫ s

s0
θ̇(t)θ̈(t) dt = −2

∫ s

s0
θ̇(t) sin θ(t) dt

= −2
∫ θ(s)

θ(s0)
sin udu = 2 (cos θ(s)− cos θ(s0)) = 4

(
sin2 1

2θ(s0)− sin2 1
2θ(s)

)
,

hence
θ̇(s) = ±2

√
sin2 1

2θ(s0)− sin2 1
2θ(s).

For s ∈ [0, s0] we may take the positive square root because of our assumption that θ̇(0) > 0.
Moreover, it follows that θ(s0) ≤ π, since otherwise we could find an s ∈ [0, s0] for which the
square root would not be well-defined.
For s ∈ [0, s0] we have

s0 − s =
∫ s0

s
dt = 1

2

∫ s0

s

θ̇(t)√
sin2 1

2θ(s0)− sin2 1
2θ(t)

dt.

Setting k = sin 1
2θ(s0) and substituting ϕ = arcsin

(
1
k sin 1

2θ(t)
)
we find

dϕ
dt =

θ̇(t) cos 1
2θ(t)

2k
√

1− k−2 sin2 1
2θ(t)

=
θ̇(t)

√
1− sin2 1

2θ(t)

2
√
k2 − sin2 1

2θ(t)
= θ̇(t)

√
1− k2 sin2 ϕ

2
√
k2 − sin2 1

2θ(t)
,

(where we have used that cos 1
2θ(t) > 0) and thus

s0 − s =
∫ arcsin( 1

k
sin 1

2 θ(s0))
arcsin( 1

k
sin 1

2 θ(s))
dϕ√

1− k2 sin2 ϕ
=
∫ π

2

ψ(s)

dϕ√
1− k2 sin2 ϕ

,

with ψ(s) = arcsin
(

1
k sin 1

2θ(s)
)
. Recalling the definition of F and using the above we have

F (ψ(s), k) =
∫ ψ(s)

0

dϕ√
1− k2 sin2 ϕ

=
∫ π

2

0

dϕ√
1− k2 sin2 ϕ

+
∫ ψ(s)

π
2

dϕ√
1− k2 sin2 ϕ

= K + s− s0,

where K is the quarter period corresponding to modulus k.
It follows that ψ(s) = am(s− s0 +K, k), so

sin 1
2θ(s) = k sinψ(s) = k sn(s− s0 +K).

Since θ(0) = 0, we conclude that s0 = K, so we get sin 1
2θ(s) = k sn(s). Differentiating we find

1
2 θ̇(s) cos 1

2θ(s) = k cn(s) dn(s)
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and since
cos 1

2θ(s) =
√

1− sin2 1
2θ(s) =

√
1− k2 sn2(s) = dn(s)

we get θ̇(s) = 2k cn(s). Integrating this we find

θ(s) = θ(0) +
∫ s

0
θ̇(t) dt = 2k

∫ s

0
cn(t) dt = 2k

[
1
k arcsin(k sn t)

]s
0

= 2 arcsin(k sn(s)).

We have found the angle function, and since any curve satisfies γ̇ = (cos θ, sin θ), we have

ẋ(s) = cos θ(s) = 1− 2 sin2 1
2θ(s) = 1− 2k2 sn2(s) = 2 dn2 s− 1,

ẏ(s) = sin θ(s) = 2 sin 1
2θ(s) cos 1

2θ(s) = 2k sn(s) dn(s).

Hence an inflectional elastica that begins at (0, 0) has the parameterization

x(s) =
∫ s

0

(
2 dn2 t− 1

)
dt = 2E(s, k)− s,

y(s) = 2k
∫ s

0
sn t dn tdt = 2k (1− cn(s, k)) .

(2.12)

We see that we get a one-parameter family of curves, specified by the elliptic modulus k = 1
2 θ̇(0).

We note that for k = 0 we get the straight line (x, y) = (s, 0). For k = 1 we get

(x(s) , y(s)) = (2 tanh(s)− s , 2(1− sech(s)) .

Non-inflectional elastica

For the elastica without inflections, one can derive the parameterization similarly to the argument
above. A non-inflectional elastica starting at (0, 0) and with initial tangent angle θ(0) = 0 and
initial curvature θ̇(0) = 2/k has the parameterization(

x(s)
y(s)

)
=
(

2
kE( sk , k) +

(
1− 2

k2

)
s

2
k

(
1− dn

(
s
k , k

)) )
, (2.13)

so again we have a family parameterized by the elliptic modulus k ∈]0, 1].
We observe that for k = 1 we get (2 tanh(s)− s, 2(1− sech(s)) as in the inflectional case. We will
investigate the limit as k → 0. First, note that the “height” of the curve is ymax = 2

k (1−
√

1− k2).
By l’Hospital’s rule we get

lim
k→0

2
k (1−

√
1− k2) = lim

k→0

2k√
1− k2

= 0,

so curve height becomes arbitrarily small as k →∞.
By differentiating (2.13) twice, we find that the curvature is κk(s) = 2

k dn
(
s
k , k

)
, which goes to

infinity as k → 0. However, if we scale the elastic curve by the factor 2/k, while preserving unit
speed, we get the curvature κ̃k(s) = dn

(
s
2 , k

)
. For s in a compact interval, κ̃k(s)→ 1 uniformly,

which means that any finite segment in the k-family of scaled elastica approaches a piece of a
circle of radius 1 as k → 0.

Combining the families

Most literature that involves the explicit parameterizations, consider the two families of elastica
separately. It turns out, however, that we can describe them as one family using the analytic
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continuation of the elliptic functions. If we use the extensions, (2.12) becomes

x(s) = 2kE(ks, 1
k ) + s(1− 2k2),

y(s) = 2k
(
1− dn(ks, 1

k )
)
,

which is exactly (2.13) with k replaced by 1/k. By letting k ∈ [0,∞[ we can thus describe all
elastica, except the circle, as one family, where k = 1

2 θ̇(0) defines the initial curvature. We will
reserve the name ζk to denote these basic elastica, i.e. those unit speed curves that solve (2.6),
start at (0, 0) and have θ̇(0) ≥ 0. We thus define

ζk(s) = ζ(s, k) =
(

2E(s, k)− s
2k (1− cn(s, k))

)
, s ∈ R, k ≥ 0.

Figure 2.1 shows elastic curves for different values of k. All elastica are obtained by scaling
and rotating these curves. The curves are clearly translation periodic, i.e. the y-coordinate is
periodic in s, and the period must be that of cn, i.e. 4K if k < 1 and 2K if k > 1.

Figure 2.1: Elastica for different values of k. The curves are scaled to a uniform “height”.

When we derived the parameterization for the inflectional elastica we found the angle function
to be θ(s, k) = 2 arcsin (k sn(s, k)), which shows that the maximal angle is 2 arcsin k. For the
non-inflectional elastica, this formula is not valid, since these all have increasing angle functions.
Going back to the extension of sn we see that, when k > 1,

θ(s, k) = 2 arcsin (k sn(s, k)) = 2 arcsin
(
sn(ks, 1

k )
)

= 2 am(ks, 1
k ).

The last equality is only valid for am(ks, 1
k ) ∈ [−π/2, π/2], but the calculation still leads us to

the correct angle function for the non-inflectional elastica, namely θ(s, k) = 2 am(ks, 1
k ).

Finally we note that the curvature function

κ(s) = θ̇(s) = 2k cn(s, k) (2.14)

is valid for all k ≥ 0.



2.4 Finding the control parameters of an elastic curve segment 17

General elastica segments

We now want to define some suitable parameters to describe an arbitrary elastic curve segment.
We can chose a segment of a basic elastica by choosing k, a starting point s0 and a length ` > 0
and taking ζk|[s0,s0+l]. It will be convenient to remove the dependence on s0 and ` from the
domain and integrate them in the parameterization. We parameterize our elastica segments on
the unit interval, setting s = s0 + `t, with t ∈ [0, 1]. The new curve parameter t is not unit
speed. Finally, any elastica segment can be obtained by introducing a scaling factor S > 0, a
rotation by an angle φ ∈] − π, π] and translation by a vector (x̂, ŷ). We thus have a standard
elastic segment parameterization

γ(k,s0,`,S,φ,x̂,ŷ)(t) = SRφζk(s0 + `t) + (x̂, ŷ), t ∈ [0, 1].

It depends on seven control parameters, but we will often omit the subscript. Such a curve has
constant speed |`|S and length L = |`|S.
Remark. If ` < 0, the orientation of the curve is changed. In the inflectional case, the elastica
with opposite orientation can be obtained by a rotation by π. In this case we may therefore
assume ` > 0 without loss of generality. For elastica without inflections, however, a segment with
` < 0 cannot be described as a segment with ` > 0. One can instead reverse the direction of the
parameterization for that case, and so all cases can be handled with the assumption ` > 0.
Remark. The same elastic curve segment can be parameterized in different ways because of the
periodicity. However if we demand that s0 is nonnegative and less than a period and that the
rotation φ ∈] − π, π], we have a unique parameterization of any elastic curve segment in the
plane.

For any elastic curve γ of the above type, the curve γ̃(t) = γ( t
`S ) is unit speed. Letting θ and θ̃

denote the angle functions of ζk and γ̃, respectively, we have θ̃(t) = θ(s0 + t
S ) + φ, and thus

θ̃′′(t) = 1
S2 θ̈(s0 + t

S ) = − 1
S2 sin θ

(
s0 + t

S

)
= − 1

S2 sin
(
θ̃(t)− φ

)
,

so the angle function for γ̃ satisfies (2.4) with

(λ1, λ2) = 1
S2 (cosφ, sinφ). (2.15)

2.4 Finding the control parameters of an elastic curve segment

We will now describe a way to calculate numerically the control parameters of a given planar
elastic curve segment. In Chapter 3 the same recipe will be applied to an arbitrary planar curve
to obtain a canonical first guess for an approximating elastic curve. The main idea is to exploit
the fact that the curvature of an elastica is an affine function of the distance along a special
direction.
Let x : [a, b]→ R2 be an elastic curve parameterized by arc length. As for any planar curve, we
can write the tangent and the normal as t = (cos θ, sin θ), n = (− sin θ, cos θ), and we have the
Frenet-Serret equations

dt
ds = dθ

dsn = κn, d2t
ds2 = d2θ

ds2 n− κ2t.

The tangent angle θ must satisfy the Euler-Lagrange equation (2.4) for some Lagrangian multi-
pliers λ1, λ2 to be found.
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Let u denote the projection of x = (x, y) onto the line spanned by (λ2,−λ1), i.e.

u = 1
λ

(λ2,−λ1) · (x, y) = λ2x− λ1y

λ
,

where λ = ‖(λ1, λ2)‖ = S−2. Setting φ = 0 in (2.15), we find that the vector (λ2,−λ1) points in
the downward direction in Figure 2.1. It follows that u is bounded and periodic in s. Moreover,
we can write the Euler-Lagrange equation as θ̈ = λu̇, so we have

κ = dθ
ds = λu+ α = λ2x− λ1y + α, (2.16)

which is to say that the curvature is an affine function of u.

In order to find λ1, λ2 and α in a numerically stable manner, we solve the above equation in the
least squares sense, i.e. we consider the quadratic minimization problem

minimize
λ1,λ2,α

∫ b

a
(κ+ λ1y − λ2x− α)2 ds,

which leads to the following linear system
∫ b
a y

2 ds −
∫ b
a xy ds −

∫ b
a y ds

−
∫ b
a xy ds

∫ b
a x

2 ds
∫ b
a x ds

−
∫ b
a y ds

∫ b
a x ds

∫ b
a 1 ds


λ1
λ2
α

 =

−
∫ b
a yκds∫ b
a xκds∫ b
a κds

 . (2.17)

Let θu denote the angle between the tangent vector t and the u-axis (see Figure 2.2). We have

cos θu = 1
λ

(λ2,−λ1) · t = 1
λ

(λ2,−λ1) · dx
ds = du

ds ,

sin θu = 1
λ

(λ1, λ2) · t,
(2.18)

and hence
d sin θu

du = ds
du

d sin θu
ds = 1

cos θu
cos θu

dθ
ds = κ = λu+ α,

or equivalently
P (u) := sin θu = 1

2λu
2 + αu+ β. (2.19)

We solve this equation with respect to β in the least squares sense and obtain

β = 1
L

∫ b

a

(
sin θu −

1
2λu

2 − αu
)

ds, (2.20)

where L = b− a is the length of the curve x.

For a unit speed elastica x(s) = SRφζk(s/S) + (x̂, ŷ) we have (λ1, λ2) = S−2(cosφ, sinφ) and
κ(s) = (2k/S) cn(s/S). Substituting these into the definitions u = (λ2x − λ1y)/λ, α = κ − λu
and sin θu = (λ1, λ2)/λ · t we have

u = −2Sk(1− cn(s/S)) + x̂ sinφ− ŷ cosφ,
sin θu = 2 dn2(s/S)− 1,

α = 2kS−1 cn(s/S)− λu = 2k/S + (ŷ cosφ− x̂ sinφ)/S2. (2.21)

The equation β = sin θu − λu2/2− αu then becomes:

β = 1 + x̂ sinφ− ŷ cosφ
2S2 (x̂ sinφ− ŷ cosφ− 4kS). (2.22)
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Figure 2.2: A segment of an elastica in the plane, showing φ, θ, the u-axis and the angle θu.

It follows from (2.19) that all points on the elastica correspond to u-values where the value of
the polynomial P is between −1 and 1, and hence

u ∈
[−α− δ−

λ
,
−α+ δ−

λ

]
,

where δ− =
√
α2 − 2λ(β − 1).

If the elastica has an inflection, there must be some u∗, such that κ = λu∗ + α = 0, but this
means that u∗ is a minimizer for P (u), and thus its minimum must lie in [−1, 1]. Moreover, the
inflectional elastica has points where sin θu = 1 (which happens twice per period), but no points
where sin θu = −1 (see Figure 2.3). Hence u runs through all of the interval where P (u) is less
that 1; in other words, umin and umax are exactly the endpoints of the above interval.

Figure 2.3: The inflectional elastica have points where sin θu = 1, but not −1. For the
non-inflectional elastica sin θu takes both the values ±1.

For the elastica without inflections, the tangent makes full rotations, so sin θu takes both of the
values ±1. Hence, in this case, we must have

[umin, umax] =
[−α− δ−

λ
,
−α− δ+

λ

]
or [umin, umax] =

[−α+ δ+
λ

,
−α+ δ−

λ

]
,

where δ+ =
√
α2 − 2λ(β + 1); these are the two cases corresponding to ` < 0 and ` > 0,

respectively. We can thus determine whether the elastica has inflection points based on whether
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the minimum for the polynomial P (u) is smaller or greater than −1, see Figure 2.4. In fact,
from (2.21) and (2.22) we have

α2 − 2λ(β − 1) = 4k2

S2 ,

or equivalently

k =
√
α2 − 2λ(β − 1)

2
√
λ

, (2.23)

so we can find S, φ and k from λ1, λ2, α and β.

Remark. The above formula also holds if ` < 0 and so does the expression for β in control
parameters. The expressions for κ, λ1, λ2 and α simply change sign in this case.

u

u
min

u
max

si
n
(θ

u
)
=

1 2
λ
u
2
+
α
u
+
β

-1

0

1

u u

u
min

u
max

u
min

u
max

-1

0

1

` < 0 ` > 0

u

Figure 2.4: The parabola (2.19). To the left in the case of an elastica with inflection points,
to the right without. The blue and red part corresponds to points with negative and positive
curvature, respectively.

We still need to recover s0 and `. We have

u = −2kS
(
1− cn

(
s0 + t

S

))
+ x̂ sinφ− ŷ cosφ,

and since
umax = −α+ δ−

λ
= x̂ sin(φ)− ŷ cos(φ),

we get
∆(u) = umax − u = 2kS (1− cn s) ,

so
cn(s, k) = 1− ∆(u)

2kS . (2.24)

If we consider the unbounded complete elastica, then u oscillates between umin and umax and
we can divide the elastica into segments where u is monotone, each with length equal to a half
period 2KS.

We first consider the case of an elastica with inflection points (i.e. k < 1). Here we have
cn(s, k) = cos (am(s, k)). If the start point x0 = x(a) is on segment number 1 and u is decreasing
here, then

am(s0, k) = arccos
(

1− ∆(u0)
2kS

)
,
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and if the end point x1 = x(b) is on segment number n, then

am(s1, k) =

(n− 1)π + arccos
(
1− ∆(u1)

2kS

)
, if n is odd,

nπ − arccos
(
1− ∆(u1)

2kS

)
, if n is even.

If u is increasing on segment number 1, then

am(s0, k) = 2π − arccos
(

1− ∆(u0)
2kS

)
,

and

am(s1, k) =

(n+ 1)π − arccos
(
1− ∆(u1)

2kS

)
, if n is odd,

nπ + arccos
(
1− ∆(u1)

2kS

)
, if n is even.

In all cases we have
si = F (am(si, k), k), i = 0, 1,

and ` = s1 − s0.

In the case of an elastica without inflection points (i.e. k ≥ 1) we need a little work to find am.
We have

sn(s, k) = 1
k

sn
(
ks, 1

k

)
= 1
k

sin
(
am

(
ks, 1

k

))
and

sn(s, k) =
√

1− cn2(s, k) =
√

∆(u)
kS

(
1− ∆(u)

4kS

)
.

If u is decreasing on segment 1 then

am
(
ks0,

1
k

)
= arcsin

√
∆(u0)
S

(
k − ∆(u0)

4S

)
,

and if we have n segments

am
(
ks1,

1
k

)
=


n−1

2 π + arcsin
√

∆(u1)
S

(
k − ∆(u1)

4S

)
, if n is odd,

n
2π − arcsin

√
∆(u1)
S

(
k − ∆(u1)

4S

)
, if n is even.

If u is increasing on segment 1 then

am
(
ks0,

1
k

)
= π − arcsin

√
∆(u0)
S

(
k − ∆(u0)

4S

)
,

and if we have n segments

am
(
ks1,

1
k

)
=


n+1

2 π − arcsin
√

∆(u1)
S

(
k − ∆(u1)

4S

)
, if n is odd,

n
2π + arcsin

√
∆(u1)
S

(
k − ∆(u1)

4S

)
, if n is even.

Finally, we find the s-values using the incomplete elliptic integral

si = 1
kF

(
am

(
ksi,

1
k

)
, 1
k

)
, i = 0, 1,

and ` = s1 − s0.

Remark. If we have a negatively curved noninflectional elastica (i.e. ` < 0), we can reverse the
parameterization, find the elastica, and interchange (s0, s1).
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We now have a scaled and rotated elastica segment, γ0 = γ(k,s0,`,S,φ,0,0), and all that is left is to
find the final translation (x̂, ŷ). This is done by solving the equation

x(s) = γ0(s) + (x̂, ŷ),

in the least squares sense. The solution is

(x̂, ŷ) = 1
L

∫ b

a
(x(s)− γ0(s)) ds. (2.25)

2.5 Improved algorithm

In the above algorithm, the methods for finding α, β and λ (and thus k, S and φ) are based on
integrals and thus numerically stable. The method for finding s0 and ` however is based on the
specific end tangents of the input curve x. If the input is perturbed, the result will change. For
this reason we will here describe an alternative method for finding s0 and `.
We set ` = L/S, which guarantees the correct curve length. In order to find s0, we minimize
the difference between the tangent angles of the elastic curves x and γs0 = γ(k,s0,`,S,φ,0,0,0). The
two tangents (which are unit vectors) are the same, if their dot product is 1, so we can find the
optimal s0 by maximizing the function

F (s0) =
∫ b

a
ẋ(s) · γ̇s0(s) ds,

over s0 ∈ [0, P (k)[, where P (k) is the period of the elastica with modulus k. It is easy to
differentiate γs0 with respect to s0, so we can find the first and second derivatives of F and use
Newton’s method to find the extremum points for F . We can then pick the one that gives the
largest value.



Chapter 3

Curve approximation

In this chapter we present an algorithm for approximating an arbitrary planar curve segment by
an elastic curve segment. The basic idea is to minimize some distance between the two curves
with respect to the control parameters of the elastica. We first need to find a sensible distance
function for planar curves, which we can input as the objective function in the optimization
tool IPOPT. The optimization problem is non-convex and highly nonlinear, so it depends on a
good initial guess. We shall describe a way of finding a canonical initial guess based on some
geometric characteristics of the given curve.
Once we have a way of approximating arbitrary curves, we discuss additional constraints that
we can include in the optimization to get better results. We also show how to approximate a
curve by a G1 piecewise elastic curve.

3.1 The objective function

Let r : [a, b] → R2 be a regular, C2 curve in the plane and let γ be an elastic elastic curve
segment. As our objective function we will use the squared L2-distance ‖γ − r‖22, that is, the
integral of the distances between the curves’ points. For this to be a sensible distance function,
we require that the two curves are parameterized in a compatible way. In Chapter 2 we chose
always to parameterize our elastica with constant speed over the unit interval, but there is no
guarantee that r has this parameterization, so we need to reparameterize one of the curves.
Let s denote the arc length function of r, i.e.

s(t) =
∫ t

a
‖r′(τ)‖ dτ, t ∈ [a, b], (3.1)

then the length of the curve is L = s(b). Set ϕ(t) = s(t)/L, then ϕ′(t) = ‖r′(t)‖/L. In particular
ϕ′ > 0, so ϕ is a diffeomorphism [a, b]→ [0, 1].
Setting η = r ◦ ϕ−1, we have for all t ∈ [0, 1]

‖η′(t)‖ = ‖(r ◦ ϕ−1)′(t)‖ = (ϕ−1)′(t)‖(r′ ◦ ϕ−1)(t)‖ = ‖r
′ (ϕ−1(t)

)
‖

ϕ′ (ϕ−1(t)) = L,

so η is an (orientation preserving) reparameterization of r with constant speed L. Provided that
the length of γ is close to L (which is true if the the elastica, approximates r well), η and γ are
now parameterized in almost the same way.
We do not know the expression for η explicitly, but this is not important, because we have

‖γ − r‖22 =
∫ 1

0
‖γ(τ)−η(τ)‖2 dτ =

∫ 1

0
‖γ(τ)− (r ◦ϕ−1)(τ)‖2 dτ =

∫ b

a
‖γ(ϕ(t))− r(t)‖2ϕ′(t) dt.
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We therefore choose as our objective function

E (p) =
∫ b

a

∥∥∥∥γp

(
s(t)
L

)
− r(t)

∥∥∥∥2 s′(t)
L

dt, (3.2)

where s(t) is given by (3.1). Then the objective function, E , depends only on the control
parameters p = (k, s0, `, S, φ, x̂, ŷ).

For the optimization, we have used the gradient driven tool IPOPT [WB05], so we need the first
and second order partial derivatives of E with respect to the control parameters, which are

∂E

∂pi
=2
∫ b

a

(
γp

(
s(t)
L

)
− r(t)

)
· ∂γp
∂pi

(
s(t)
L

)
s′(t)
L dt,

∂2E

∂pi∂pj
=2
∫ b

a

(
∂γp
∂pi

(
s(t)
L

)
· ∂γp
∂pj

(
s(t)
L

)
+
(
γp

(
s(t)
L

)
− r(t)

)
· ∂2γp
∂pi∂pj

(
s(t)
L

))
s′(t)
L dt.

See Appendix A for a list of specific derivatives.

Implementation

For the implementation of this optimization problem, we have assumed that the given curve r is
a spline. For the integrals we have used Gaussian quadrature, which is a way of approximating
an integral by a weighted sum of specific integrand values. Gaussian quadrature with N points
gives the exact value of the integral if the integrand is a polynomial of degree less than 2N − 1.1
Since a spline is a piecewise polynomial curve, it makes sense to do the integration on each knot
interval and add up. Letting a = τ0 < . . . < τM = b denote the distinct knots of r, (3.2) becomes

M∑
i=1

 N∑
j=1

∥∥∥∥γp

(
s(ti,j)
L

)
− r(ti,j)

∥∥∥∥2 s′(ti,j)
L

wi,j

 ,
where ti,j and wi,j , j = 1, . . . , N denote the Gauss points and weights for the interval [τi−1, τi],
i = 1, . . . ,M .

It is easy to compute s′ = ‖r′‖ in the Gauss points, but the arc length s is itself given by an
integral. Fortunately the Gauss points do not depend on the optimization parameters, so we
can, before starting optimization, once and for all calculate the values si,j = s(ti,j). First we
compute the arc length Li of r for each knot interval

Li =
N∑
j=1
‖r′(ti,j)‖wi,j , i = 1, . . . ,M,

and we have the total curve length L =
∑
Li. Then, since τi−1 < ti,j < τi, we have

si,j =
i−1∑
n=1

Ln +
N∑
m=1
‖r′(t̂m)‖ŵm,

where t̂m and ŵm, m = 1, . . . , N are the Gauss points and weights for the interval [τi−1, ti,j ].

Remark. In the above, we assumed that the interval [a, b] was the domain of the spline, but in
some situations we may only want to approximate part of the curve. If for example a ∈ [τµ−1, τµ[
and b ∈]τν−1, τν ], we will do as above, but only for the intervals [a, τµ], [τµ, τµ+1], . . . , [τν−2, τν−1],
[τν−1, b].

1See [AS72] p. 887 for formulas and pp. 916–919 for Gauss points and weights.
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3.2 The initial guess

The optimization problem defined in the previous section is non-convex and the result depends
very much on the initial guess, see Figure 3.1. A canonical geometrically plausible guess is
obtained from a generalization of the procedure of Section 2.4 to the case of an arbitrary input
curve, which we will now describe. This description is identical to Section 4 of [BGN16] except
for notation changes.

Figure 3.1: The blue curve is to be approximated by an elastica segment. The red dotted
curves are different initial guesses for IPOPT optimization, and the green curves show the
results. In the leftmost example the optimization terminated before an extremum was reached.

For the given curve, r : [a, b]→ R2, we let (x, y) denote its coordinates and we can compute the
curvature κ(t) = det(r′, r′′)/‖r′‖3. We find λ1, λ2, α as before, by solving (2.17), noting that∫ s(b)
s(a) f ds =

∫ b
a f(t) ds

dt dt. This gives us the scaling and rotation of the elastica (see (2.15)). We
can judge the success by calculating the normalized residual

R1 =

√∫ 1

0
(κ(t) + λ1 y(t)− λ2 x(t)− α)2 ds

dt dt
/√∫ 1

0
κ2(t) ds

dt dt .

Similarly β can be found by (2.20), where sin θu is given by (2.18), where t is the unit tangent
for r, and we can calculate the normalized residual

R2 =

√
1
L

∫ 1

0

(
sin θu(t)− 1

2λu
2(t)− αu(t)− β

)2 ds
dt dt .

Remark. Another possibility is to forget that we know λ and α and solve (2.19) with respect to
λ, α, and β, but in the few cases we tried this, the results got worse.

We know that sin θu takes values in [−1, 1], and since β is chosen to minimize the distance
between sin θu and the polynomial P (u) = 1

2λu
2 + αu + β, the latter must be less than 1 for

some u-values, so the number δ− =
√
α2 − 2λ(β − 1) is well-defined. We can thus determine

whether the elastica has inflection points and we can determine the parameter k from (2.23).

At this point we need to take into account the fact that the input curve is not necessarily an
elastica. For an elastica, we could easily count the oscillations, but for an arbitrary curve there
may be oscillations of different sizes. We find the curve segments where u is monotone, but we
only count such a segment as an oscillation if it has some minimal height: we have used half of
the difference umax−umin (as defined in Section 2.4) as this minimum. Moreover, the right hand
side of (2.24) need not be between −1 and 1, or, in the noninflectional case, between

√
1− 1/k2

and 1. We have circumvented this problem by replacing too small values by −1 (or
√

1− 1/k2)
and too large values by 1. The two issues are illustrated in Figure 3.2.

We can thus find s0 and `. We can judge the validity by calculating

R3 = 1
L

∫
u(t)/∈[umin,umax]

ds
dt dt .
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Figure 3.2: If the given curve moves outside the interval [umin, umax] (dotted segment), it
is simply cut off in these regions. The resulting elastica is shown in green. On the left all
oscillations of the input curve are counted, on the right the two very small ones are ignored.

We finally determine the translation by (2.25) computed as(
x̂

ŷ

)
= 1
L

∫ s(b)

s(a)
(r(s)− γ0(s)) ds = 1

L

∫ b

a

(
r(t)− γ0

(
s(t)
L

))
‖r′(t)‖ dt,

since we need the two curves to be parameterized in the same way when integrating over t. We
define the residual as

R4(p0) =

√
E(p0)
L2 ,

where p0 is the vector of control parameters found by the above procedure.

Remark. As above, all integrals are computed by Gaussian quadrature on each knot interval∫ s(b)

s(a)
f ds =

∫ b

a
f(t)ds

dt dt =
M∑
i=1

∫ τi

τi−1
f(t)‖r′(t)‖ dt ≈

M∑
i=1

N∑
j=1

f(ti,j)‖r′(ti,j)‖wi,j ,

so what we need are the value, unit tangent, curvature and arc length of r sampled in the Gauss
points. In the steps where we find the monotone segments and use these to find s0 and `, we
add the end points to the set of sample points, since we are interested in the shape of the entire
curve (and the first and last Gauss points are never the limits of the domain).

Remark. As described in Section 2.5, the method for finding s0 and ` is not numerically stable,
even less so here, where we need to find and count the segments where u is monotone. Instead
we can again just set ` = L/S, thus ensuring that the elastica has the same length as the given
curve. The parameter s0 can then be found by maximizing

F (s0) =
∫ s(b)

s(a)
ṙ(s) · γ̇s0(s) ds =

∫ b

a
ṙ(t) · γ̇s0

(
s(t)
L

)
‖r′(t)‖dt, (3.3)

over a period of the elastica with modulus k. The success can be validated by computing the
residual

R∗3 = 1− F (s0)
L

When ` and s0 determined, we find the translation (x̂, ŷ) as described above.

Remark. Instead of using the L2-distance as the objective function, one could use theH1-distance
or H2-distance. This would take into account the tangents and, if we choose the H2-distance, the
curvatures of the curves, and would help prevent results like the second and fourth examples in
Figure 3.1. Since our method for finding the initial guess is based on curvature, the H2-distance
may be the natural choice, but it is more complicated, and in our experience the L2-distance
gives good results provided that we have a good initial guess.
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Results

We have tested the procedure on a selection of cubic Bézier curves, displayed in Figures 3.3 and
3.4. The residuals of the method for finding the initial guess are reported in Table 3.1, and the
results from the minimization of E from (3.2) can be found in Table 3.2.

Figure 3.3: Examples of cubic Bézier curves (blue) and the canonical initial guess. The solid
green curve is the initial guess where s0 is found by counting segments where u is monotone.
The dashed red curve is the initial guess where s0 is found by maximizing (3.3).
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R1 R2 R3 R4 R∗3 R∗4

1 4.56e-01 1.39e-01 0.00e+00 9.71e-03 1.01e-02 8.65e-03
2 4.48e-01 2.29e-01 5.24e-01 4.80e-02 7.42e-02 4.38e-02
3 1.36e-01 2.05e-02 1.90e-01 7.68e-02 9.58e-03 1.58e-02
4 6.78e-01 1.74e-01 1.43e-01 2.21e-02 2.34e-02 2.23e-02
5 6.52e-01 2.71e-01 1.43e-01 3.12e-02 4.25e-02 3.40e-02
6 9.92e-02 2.46e-02 4.76e-02 3.62e-03 4.41e-04 3.61e-03
7 6.39e-02 4.42e-03 4.76e-02 1.03e-03 4.36e-05 1.01e-03
8 2.69e-01 6.92e-02 1.43e-01 1.14e-02 3.56e-03 1.10e-02
9 1.72e-02 3.34e-04 0.00e+00 1.34e-04 7.96e-07 1.31e-04
10 2.00e-02 6.22e-04 0.00e+00 1.16e-04 1.84e-06 1.16e-04
11 3.30e-01 1.39e-02 0.00e+00 4.96e-03 1.09e-03 3.28e-03
12 3.58e-01 9.97e-02 1.90e-01 1.52e-02 9.20e-03 1.43e-02

Table 3.1: The first column refers to the examples in Figure 3.3, the next four report the
residuals R1, R2, R3 and R4 in the approximation process. Next, we report the residual R∗3
and the new value of R4 obtained by using the improved algorithm. It makes no sense to
compare R3 and R∗3, but a comparison of R4 and R∗4 shows that the improved algorithm is
indeed for most cases an improvement.

R4(popt) ‖∇E (popt)‖ ] iter R4(popt) ‖∇E (popt)‖ ] iter

1 7.98e-03 1.55e-10 12 7.98e-03 7.14e-12 9
2 3.81e-02 6.14e-02 1000† 3.81e-02 1.30e+00 1000†
3 1.80e-03 1.95e-12 26 1.80e-03 1.14e-12 12
4 1.20e-02 7.64e-10 11 1.20e-02 3.45e-11 21
5 1.76e-02 7.51e-10 10 1.76e-02 3.59e-10 9
6 1.15e-03 5.09e-12 24 1.15e-03 5.83e-10 17
7 3.15e-04 2.74e-12 20 3.15e-04 2.05e-13 16
8 3.24e-03 1.00e-12 204 3.24e-03 2.32e-11 127
9 1.23e-03 2.95e-04 1000† 3.96e-05 6.00e-11 75
10 9.92e-05 7.26e-12 292 9.92e-05 4.83e-13 243
11 1.67e-03 8.56e-11 40 1.67e-03 2.20e-12 59
12 4.10e-03 5.49e-11 185 4.10e-03 4.91e-11 122

Table 3.2: The first column refers to the examples in Figure 3.4, the next three report
the normalized L2-distance, the gradient norm ‖∇E ‖ and the number of iterations for the
optimized elastica, all based on the “unstable” initial guess. Next, we report the same three
numbers for the “stable” initial guess. In case 9, we have an improvement in the L2-distance,
but in Figure 3.4 it cannot be perceived.
†IPOPT terminated because iteration count reached maximum (which was set to 1000).
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Figure 3.4: Examples of cubic Bézier curves (blue) and the optimized elastica approximation.
The green and red curves are the solutions based on the green and red initial guesses in
Figure 3.3.
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3.3 Additional optimization constraints

If we want the approximating elastic curve to satisfy further conditions, we can introduce these
as constraints in the optimization problem. We mention here some constraints that may be
relevant in different settings.
Firstly, we could demand that the length of the elastica is close to the length L of the original
curve. In terms of the control parameters, this is a very simple constraint, namely that |L −
|`|S| < ε, where ε is some tolerance. In most cases this constraint is superfluous, because it will
necessarily be satisfied by the best approximation. However, it may help during optimization
to avoid moving in a bad direction within the parameter space. For example, without this
constraint it can happen that the optimization converges to a point where ` or S is zero.

Remark. One may note that the expression L−|`|S is not differentiable with respect to `. In our
implementation this does not pose a problem because it is determined whether ` is positive or
negative during the step of finding the initial guess. During optimization ` is then only allowed
to move through either the positive or the negative numbers, and we do not need the absolute
value in the constraint.

We may want the solution curve to start and end at the same points as the original curve. This
can be done by introducing the constraints

γ(0) = r(a), γ(1) = r(b),

which is actually four constraints in the implementation, since each point has two coordinates.
This constraint is relevant, for example, if we have several connected curves (in the sense that
one curve starts where another one ends) that we want to approximate by elastic curves, and we
want the elastic curves to be connected as well.
For the same reason, we may want the elastica to have the same end tangent directions as the
original curve. The obvious way to implement this would be to make sure that the unit tangents
are the same. The problem with this is that, if we want both endpoints and tangents to fit, this
adds up to eight constraints; but we only have seven parameters to vary. IPOPT has no way of
knowing that the unit tangents each correspond only to one degree of freedom, so it will simply
state that there are not enough degrees of freedom. Instead we can look at the angles. We can
easily determine the tangential angles α0 and α1 at the end points of the original curve, from its
tangents, and we can choose the angles to lie in ]− π, π]. In fact, most programming languages
have a function for this purpose, often named atan2. For the elastica, we saw in Chapter 2 that
the expression for the angle function depends on whether the curve has inflections. Moreover if
the orientation is reversed, that is, if ` < 0, the angle changes by π. The general angle function
for γ(k,s0,`,S,φ,x̂,ŷ) is

θ(k,s0,`,φ)(t) =
{
φ+ 2 arcsin (k sn(s0 + `t)) + π1R−(`) if k ≤ 1,
φ+ 2 am

(
k(s0 + `t), 1

k

)
+ π1R−(`) if k > 1. (3.4)

With this, we can introduce the constraints

θ(0) ≡ α0 (mod 2π), θ(1) ≡ α1 (mod 2π).

It is relevant to note that, even though the formula for θ changes depending on k and `, the
expressions for its partial derivatives do not.
The elastic curves represent the possible shapes of the blade described in Section 1.1. However,
not all elastic curves can be realized by the blade. Depending on the material, thickness and
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Figure 3.5: Thin transparent plastic strip fixed between two matchboxes.

cross section of the blade, there will be an upper limit to the amount of bending it can handle
without being permanently deformed. The stress is proportional to the curvature so, to avoid
too heavy bending, we can impose bounds on the curvature. While the maximal curvature for
an unbounded elastica is 2k/S, we may consider a segment that does not achieve this maximum,
which makes it a bit more complicated to introduce a constraint. However, if the optimization
results in a too curved elastica, it is most likely because the original curve is too curved. In this
case introducing a curvature constraint will worsen the optimization result so it would be better
to fix this in the design phase so that the original curve does not demand higher curvature than
the blade can provide.
While some very flexible materials can produce quite complex elastic curves, see Figure 3.5, our
cutting tool is metallic and thus pretty stiff. For this reason we cannot expect to obtain curves
with more than two inflection points. We can impose this simply by constraining the parameter
` to be less than a period (and remember that the length of a period depends on k), since there
are exactly two inflections per period. For the elastica without inflections, a constraint of this
sort may also be useful, since we do not want self-intersections.

3.4 Approximation with several elastic segments

As we have seen, not all curves can be well approximated by an elastic curve. For example, if
a curve has oscillations of different amplitudes, it will not resemble any elastic curve. A way to
deal with this is to subdivide the curve into pieces and then approximate each piece.
Suppose that we are given a curve r : [a, b] → R2 and parameter values a = t0 < . . . < tN = b.
We then find N elastic curve segments such that γpi approximates r restricted to the interval
[ti−1, ti], for i = 1, . . . , N , by minimizing the function

Ê (p1, . . . ,pN ) =
N∑
i=1

∫ ti

ti−1

∥∥∥∥γpi

(
si(t)
Li

)
− r(t)

∥∥∥∥2 s′i(t)
Li

dt,

where
si(t) =

∫ t

ti−1
‖r′(τ)‖ dτ, Li = si(ti), for i = 1, . . . , N.

We observe that the i’th term in Ê depends only on pi, so each segment is approximated inde-
pendently. This means that the result will be N elastic curves with no connection whatsoever,
but this is not what we want. We want a piecewise elastic curve that approximates r and is at
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least tangent continuous. We can of course obtain this by imposing constraints as described in
the previous section, such that the endpoints of each of the elastic curves fit the original curve
exactly. This, however, would let the parameters t1, . . . , tN dominate too much, see Figure 3.6.
Instead we impose constraints that ensure geometric continuity of the piecewise elastic curve,
but are not related to the original curve.
For continuity we want γpi(1) = γpi+1

(0), but for production, we do not need to be that exact,
so we will introduce a tolerance ε0 ≥ 0. We impose the constraints

−ε0 ≤ γjpi(1)− γjpi+1
(0) ≤ ε0, i = 1, . . . , N − 1, j = 1, 2,

where j = 1, 2 correspond to the coordinates. Production accuracy is usually in the order of
millimetres, so if e.g. we set ε0 = 0.1mm, we should be more than safe.
For tangent continuity (G1-continuity), we need the unit tangents of adjacent curves to be equal.
Again for production, we can be less exact; in fact in many cases an angle change of 1 degree
cannot be visually discerned. We introduce the constraint in the form

γ ′pi(1)
‖γ ′pi(1)‖ ·

γ ′pi+1
(0)

‖γ ′pi+1
(0)‖ ≥ cos

(
π

180ε1

)
, i = 1, . . . , N − 1,

where ε1 ≥ 0 is the tolerated angle difference in degrees. For implementation, since IPOPT
needs the constraint bounds to be independent of the optimization parameters, we rewrite the
condition as

γ ′pi(1) · γ ′pi+1
(0)− ‖γ ′pi(1)‖ ‖γ ′pi+1

(0)‖ cos
(
π

180ε1

)
≥ 0, i = 1, . . . , N − 1.

Figure 3.6: Spline curve approximated by a piecewise elastic curve. Left: The elastic seg-
ments’ endpoints and tangents are fit to the original curve. Right: The optimization is con-
strained to tangent continuity.

We can of course impose further constraints in order to obtain a higher degree of continuity.
In Chapter 7, we will construct surfaces by sweeping piecewise elastic curves obtained in the
way described above. From a mathematical perspective it may be relevant to ensure curvature
continuity (G2-continuity) in order to get smooth reflection lines on the resulting surfaces. For
production, however, this would require a very high precision, and we would of course have to
set the tolerance ε1 to zero.
When we approximate a curve by several elastic curve segments, the result depends on where we
switch from one elastic segment to the next, see Figure 3.7. We will not consider how to choose
the subdivision here, since the goal is to use this for surface approximation, and for surfaces there
may be other considerations that must be taken into account when choosing where to subdivide.

Remark. We considered letting the parameters t0, . . . , tN ∈ [a, b] in which we split the given curve
r be part of the optimization. However, since we calculate integrals by Gaussian curvature, we
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Figure 3.7: Spline curve approximated by four elastic curve segments with tangent conti-
nuity. Left: The split points are chosen by uniform subdivision of the spline curve’s domain.
Right: The split points are tweaked manually, to give a better result.

need to compute the value, tangent and arc length of r in specific points for each interval [ti−1, ti].
If these intervals can change, we have to recalculate all these in each step of the optimization,
which is expensive. When we keep the parameters fixed, all computations on r can be done once
and for all before starting optimization.
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Chapter 4
The boundary value problem

In Chapter 2 we chose a parameterization of the space of elastic curve segments. The main
advantage of this parameterization is that when the seven control parameters are known, the
entire elastic curve is known accurately and all subsequent calculations are easy to perform. A
more natural way to describe an elastic curve segment, from a geometric point of view, is by
its length, endpoints, and the tangent angles at the endpoints (which are exactly the data we
need to give the robots for hot blade cutting). The problem is that we do not have a closed
form description in these parameters. Furthermore, the length, endpoints and tangents do not
uniquely define an elastic curve segment; if, for example, we rotate one of the end tangents by 2π,
moving through a continuous family of elastic curves, we will get a different curve segment with
the same boundary conditions. (Such a tangent rotation is not always possible with a physical
elastic rod, since the resulting elastica can have a self-intersection.) Even if we allow angles with
arbitrary real values, to ensure a continuous angle function, we still do not have uniqueness, see
Figure 4.1.

A B
Figure 4.1: Examples of different elastic curves with the same length, endpoints, and end
tangent directions. A: The blue curve can be continuously transformed into the green (or the
red) curve by rotating the left (or the right) end tangent by 2π. B: If we choose continuous
angle functions for the curves, going from the left point to the right, and starting with the
same value, the values at the end will differ by 4π for the blue and the cyan curves. The end
angle for the green and red curves, however, will be the same.

In this chapter we wish to solve the boundary value problem for the elastica, that is, we want to
find the control parameters for an elastic curve segment with given length, end points and end
tangents. As already mentioned, a unique solution does not exist, so we will describe a way to
obtain a specific solution, the shape of which is guided by a particular input.
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4.1 Discrete elastica

Before we try to find the control parameters, thus getting an exact elastica, we will first find
a numerical solution to get a “sketch” of the curve that we are searching for. We do this by
finding a discrete elastica, by which we mean a polyline that satisfies the boundary conditions
and minimizes the bending energy in a discrete sense (see [BHN01]).
Let x0,x1 ∈ R2, α0, α1 ∈ R be the desired endpoints and end tangent angles of the elastic curve
segment and let L be the desired length. We want to find a curve from x0 to x1 consisting of
N+1 line segments of length L/(N+1) and with the prescribed tangent angles at the endpoints,
see Figure 4.2. For the bending energy

∫
κ2 ds, in this discrete setting, we use the sum of the

squared turning angles θ1, . . . , θN , that is

Ediscrete(θ1, . . . , θN ) =
N∑
i=1

θ2
i .

θ1

θ2

θ3

θ4

α0

α1

Figure 4.2: Polyline with prescribed boundary conditions. The turning angles θ1, . . . , θN
are shown, with N = 4.

To find the discrete elastica, we minimize Ediscrete subject to the two constraints:

α0 +
N∑
i=1

θi = α1, x0 + L

N + 1

N∑
i=0

cos
(
α0 +

∑i
j=1 θj

)
sin
(
α0 +

∑i
j=1 θj

) = x1.

The first constraint makes sure that the final angle is correct, and since we have not restricted
α0 and α1 to an interval of length 2π, we are also certain that the total angle change is correct.
The second constraint ensures that the curve beginning at x0 with angle α0 after the N angle
turns, will end at x1. In the implementation this is two constraints, one for each coordinate. In
[BNR01] Bruckstein et al. show that if the solution curve to the discrete problem converges as
N →∞, then the limit is an elastic curve.
It is easy to compute the first and second partial derivatives of the objective and constraint func-
tions, and the problem has been implemented in IPOPT with good results. The optimization’s
performance and result depend on the initial guess for the turning angles. For example, if we set
x0 = (0, 0), x1 = (1, 0), α0 = α1 = 0, L = 1.5 and let θi = 0, i = 1, . . . , N be our initial guess,
IPOPT cannot solve the problem1. This is no surprise since this corresponds to pressing the
ends of a straight elastic rod together. At some point a buckling will take place and the rod will
bend, but there is no way to know in which direction. However, if we guide the optimization in
a certain direction, we can solve the problem. Setting θ1 = 0.1 in the initial guess, IPOPT finds
the upwards bending curve seen in Figure 4.3.2

One way to choose an initial guess, is to extract it from a “sketch” curve that resembles the
1IPOPT terminates with the message: “Converged to a point of local infeasibility. Problem may be infeasible.”
2For N = 50, IPOPT finds the downwards bending curve. This can of course be helped by providing a better

initial guess.
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Figure 4.3: Discrete elastica with prescribed boundary conditions for N = 5, 10, 15, 30, 60.

elastic curve we are searching for. It is easy to construct a spline curve that meets the boundary
conditions except for the length condition; we simply choose x0 and x1 as the first and last
control points and let the second and the second-to-last control points lie on the half lines
x0 + st0 and x1 − st1, respectively, with s > 0 and ti = (cosαi, sinαi), i = 0, 1. From the
spline r : [0, 1] → R2, we can then compute the tangent angles at ti = i/(N + 1), i = 1, . . . , N
and use the angle differences as the initial guess for the turning angles in the optimization. For
example, the three discrete elastica in Figure 4.1A, can be found in this way by using the splines
in Figure 4.4 as sketch curves.

Figure 4.4: Three cubic spline curves and their control polygons. The blue and red curves
are actually Bézier curves. Using the turning angles, endpoints and end angles from these
curves, we find the elastica of Figure 4.1A after IPOPT optimization.

Since we are mainly interested in curves without self-intersections and with at most two inflection
points, in many cases we can simply use a cubic Bézier curve with control points x0, x0 + s0t0,
x1 − s1t1, and x1, for some s0, s1 > 0 as sketch curve.3 However, this will not work if t0 and t1
are parallel, as in the case described above. Another question that comes up is how to choose the
numbers s0 and s1. One possibility is choosing s0 = s1 such that the Bézier curve has exactly
length L, but this is not always a good strategy, if we want to avoid self-intersection. In any
case, the sketch curve should be chosen such that the total angle difference is correct, that is,
the integral of the curvature must be equal to α1 − α0.

3A cubic Bézier curve has at most one self-intersection and at most two inflection points.
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4.2 Analytical expression

We wish to find the control parameters for an elastic curve with given endpoints (x0, y0), (x1, y1),
end angles α0, α1 and length L. In other words, we want a vector p = (k, s0, `, S, φ, x̂, ŷ) such
that

γp(0) =
(
x0
y0

)
, γp(1) =

(
x1
y1

)
,

θ(k,s0,`,φ)(0) = α0, θ(k,s0,`,φ)(1) = α1, |`|S = L.

It turns out that we can eliminate all but three of the control parameters, the first being S which
we set to L/|`|.
From the first angle condition, we can, recalling the angle function (3.4), express the rotation
parameter as

φ(k, s0, `) =
{
α0 − 2 arcsin (k sn(s0))− π1R−(`) if k ≤ 1,
α0 − 2 am

(
k(s0), 1

k

)
− π1R−(`) if k > 1.

Moreover, we observe that ∆γ = γ(1)−γ(0) does not depend on the translation (x̂, ŷ) and that
∆θ depends neither on φ nor on the possible π term.
To find the control parameters for the elastic curve we minimize the function

F (k, s0, `) =
(
∆γ1

(k,s0,`) − (x1 − x0)
)2

+
(
∆γ2

(k,s0,`) − (y1 − y0)
)2

+
(
∆θ(k,s0,`) − (α1− α0)

)2
.

Again we use IPOPT for the optimization, and we refer to Appendix A for derivatives. When a
minimizing set of parameters (k, s0, `) have been found, we use the vector

p = (k, s0, `, S/|`|, φ(k, s0, `), x̂, ŷ)

as control parameters for the elastica, where the translation (x̂, ŷ) is computed from the condition
that the curve starts at (x0, y0).
Since x̂, ŷ and φ are computed from x0, x1, and α0, the resulting elastic curve will satisfy the
conditions for the first point and angle exactly, while the final point and angle are only correct
if F = 0. For production purposes, however, we easily come close enough.
As before the optimization depends on a good initial guess. To obtain this, we first find a discrete
elastica, that solves the boundary conditions, as described in the previous section (keeping
in mind that different initializations will produce different results). Then, to get the control
parameters, we will use the procedure described in Section 3.2. In that section, we restricted
ourselves to C2 curves, because we needed to compute curvature, but now we have a polyline.
One way of handling this issue, is to approximate the discrete elastica by a spline curve and use
this as input. However, since the algorithm only needs a discrete set of sample points, we can
simply take the vertices of the discrete elastica. Since we know the turning angle at the i’th
vertex, we immediately have an estimate for the curvature, namely κi = θi(N + 1)/L. The arc
length at the i’th vertex is si = iL/(N + 1), and the unit tangent is given by

ti =

cos
(
α0 +

∑i−1
1 θj + θi

2

)
sin
(
α0 +

∑i−1
1 θj + θi

2

) .
The weight to assign each vertex (for quadrature) is wi = L/(N + 1).
If the discrete elastica is close to the desired curve, the initial guess for the minimization of F

should be good, so this optimization should not be able to jump to another solution to the given
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boundary values. In any case, we can still impose extra constraints (e.g. that ` is within a certain
number of periods) to ensure that we get the desired solution.

4.3 Designing with elastic curves

The main objective of the BladeRunner project is to rationalize an arbitrary design and obtain a
surface that can be cut by the hot blade technology. This will be the topic of Chapters 5–7. In this
section we will see how the algorithms from this chapter can be used for creating pre-rationalized
surfaces, i.e. surfaces that are, by design, ready for hot blade cutting.4 The methods described
in this section were implemented as a tool set in Rhino and tested at a workshop at RobArch
2016.5 By following a specified work-flow, the workshop participants could design surfaces in
Rhino and then directly export robot code for hot blade fabrication, which was done on site.
The work done in preparation for the workshop was a collaboration between the BladeRunner
partners at Odico, 3XN, DTU Compute and DTI, and the results are described in [BBC+16].

Single block designs

We will design our surfaces with the EPS blocks and cutting tool in mind. Let us for example
consider a block with dimensions 600mm×800mm×500mm and a blade of length 800mm. We
will orient our coordinate system according to the block, so that we cut in the y-direction, and
the width is 600mm, which is fitting for a 800mm blade. We design a surface that intersects
the block and represents the cut we want to perform. Since the block has to be supported, we
do not allow the surface to intersect the bottom face of the block.
We want to design our surface so that it is close to an elastica-foliated surface that can be cut
by the hot blade. This means that in the blade direction, i.e. the direction perpendicular to the
cutting direction, the curvature should not be too high and there should be at most two inflection
points. One can, for example, use tensor product spline surfaces with few control points in the
blade direction. The test surfaces in this section are spline surfaces with 4 control points in the
blade direction. Moreover, the control points are positioned in an (x, y)-grid with randomized
z-values.
We sample a set of planar curves on the surface by taking the intersection with a set of planes
along the cutting direction (or, in the case of a NURBS surface, we can design the surface such
that its isocurves are planar), see Figure 4.5. For simplicity we use a set of parallel planes. These
planar curves, which we will refer to as sweep curves, since they sweep out the surface, will serve
as models for the blade shape. There are two issues we must address: the sweep curves do not
have the same length as the blade, and they are not likely to be elastic curves. We therefore
first extend the sweep curves (by the same amount at each end) to the blade length of 800mm.
We then take the endpoints and end tangents of the extended curves and find discrete elastic
curves with the same boundary conditions using the method described in Section 4.1.6 The
sweep curves’ planes are parallel to the (x, z)-plane, so we just need the x- and z-coordinates of
the endpoints and tangents. The resulting elastic curves represent the blade shapes that will be

4A research project concerning design with elastic curves was initiated in 2015 by Odico, 3XN and DTU
Compute with support from Innovation Fund Denmark.

5http://www.robarch2016.org/workshops/ Superform: Robotic Hot-Blade Cutting workshop.
6For the RobArch-workshop, a Rhino-plugin created by J. Andreas Bærentzen and Kasper Steenstrup was

used. It solves the minimization problem stated in Section 4.1 using an optimization algorithm written by J.
Andreas Bærentzen. Details can be found in [BBC+16].

http://www.robarch2016.org/workshops/
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Figure 4.5: Top left: The block cut by a tensor product spline surface with 4 × 6 control
points. Top right: The spline surface with 33 planar sweep curves (here isocurves) extended
to blade length. Center: Selection of sweep curves (black) and discrete elastic curves (red)
with the same boundary conditions. Bottom left: The surface obtained by lofting the elastic
curves. Bottom right: The block cut by the elastica-foliated surface.
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used for hot blade cutting and should be close to the sweep curves. We can then loft the elastic
curves to get an image of the surface that will be cut, see Figures 4.5 and 4.6.

Figure 4.6: Left: Surface design with 4× 6 control points. Center: Selection of sweep curves
(black) and discrete elastic curves (red) with the same boundary conditions. Right: The block
cut by the surface obtained from lofting the elastic curves.

The robot data, i.e. the end points and tangents, can be taken directly from the sweep curves.
We find the discrete elastic curves and loft a new surface in order to visualize the result before
cutting it. The new surface will be different from the original design, but that is not an issue here,
since we are in a design process which aims at designing elastica-foliated surfaces. If the result
does not fit the designer’s idea, the original surface can be edited, and the elastica algorithm can
be run again to get a new result. For this to work as a design process, the elastica algorithm
has to be stable and fast. Using IPOPT, finding the discrete elastica for 33 sweep curves took
around 20 seconds for the test surfaces in this section.
Remark. We do not know exactly how Rhino’s plane/surface-intersection function works. Kasper
Steenstrup asked about this on McNeel Forums7 but the developers would not disclose this
information. Our guess is, that the function first finds a lot of intersection points and then
interpolates these by a spline (usually a cubic spline). Whatever the case, when working with
complex geometries, we have observed the following disadvantages: The resulting spline curve
can have a very high number of control points (compared to the surface) and it can have repeated
interior knots, which may reduce its degree of differentiability. In such cases we approximate the
found curve by a simpler spline (i.e. with fewer control points), which has simple knots except
for the first and last knots, which have multiplicity equal to the spline degree plus one.
Remark. When initializing the optimization, instead of taking the initial guess for the turning
angles from the sweep curves, we can (except for the first curve) use the result from the preceding
discrete elastica.

A different type of surface can be obtained by doing multiple cuts. Instead of just designing
one surface, the designer can create several intersecting surfaces and these can then be cut in
order, with the possibility of rotating the block between cuts (if it is not much longer than it is
wide). The resulting surface will typically be piecewise smooth with clear edge curves where the
different cutting surfaces intersect, see Figure 4.7.

Designs with multiple blocks

For designs with multiple blocks we use basically the same procedure as above. We start with
a prescribed set of blocks and design a surface that intersects the block volume. For each block

7http://discourse.mcneel.com/

http://discourse.mcneel.com/
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Figure 4.7: Single block designs cut at the RobArch 2016 Superform workshop. The bottom
photo contains blocks that were cut twice.
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we extract sweep curves and find discrete elastica with the same boundary conditions, but this
time we do not extend the sweep curves before finding the elastica. If we first extend the curves
to blade length and then find the discrete elastica, two adjacent curves will not connect at the
block boundary, see Figure 4.8.

Figure 4.8: Left: Two segments of the blue spline curve are extended to blade length and then
the elastic curves (red and magenta) with the same boundary conditions are found. Right: The
segments of the blue curve that are inside the blocks are used for finding the elastic curves
which are then extended to blade length. The close-ups show that we have tangent continuity
at the block boundary in the latter case only.

We want the elastic curves to meet with tangent continuity at the block boundaries, which is
guaranteed if we solve the boundary value problem without extending the sweep curves first.
We can loft the elastic curves and get an image of the final design. The tangent continuity is of
course only ensured at the sampled curves, while in between, we cannot even ensure continuity.
However, if the curves are sampled closely, we will be within production tolerances.
The problem is now that the elastic curves do not have the same length as the blade, so we
cannot use their endpoints and tangents as robot data. We must therefore extend the elastic
curves to the blade length, for which we need to know their control parameters. We find these
by solving the optimization problem defined in Section 4.2. When the control parameters are
found, we can easily extend the curves; the elastic curve γ(k,s0,`,S,φ,x̂,ŷ) has constant speed `S,
so if we want a segment of length L we must have L = `S∆t. If we want the t-values to be
symmetric around the interval [0, 1] (so we extend by the same amount at each end), we can take
the interval [−a, 1 + a] with a = (L/(`S) − 1)/2. In this case the endpoints and end tangents
that must be given as robot data are γ(−a), γ(1 + a), γ ′(−a) and γ ′(1 + a), see Figure 4.9.
Remark. The algorithm for finding the control parameters was implemented using IPOPT, which
is not directly compatible with Rhino. For multiple block designs at the RobArch workshop,
when the discrete elastica had been found, the polylines had to be exported from Rhino. Then
we would run a Python script to find control parameters and generate the robot code.

Figure 4.10 shows some designs, produced at the workshop.
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Figure 4.9: Top left: Surface design based on composite cubic Bézier curves. Top right: The
design divided into block pieces. Center left: Each surface piece with (analytic) elastic curves
extended to blade length. Center right: Surfaces obtained by lofting the elastic curves. Bottom
left: The blocks cut by the elastica-foliated surfaces. Bottom right: The final result.
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Figure 4.10: Designs with multiple blocks cut at the RobArch 2016 Superform workshop.
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Chapter 5

Simple surface approximation

In this and the following two chapters we describe how to rationalize an arbitrary surface design
to get a surface consisting of parts that can be produced by hot blade cutting. We first describe
the basic approximation method for a surface that can be well approximated by an elastica-
foliated surface. We then move on to more complicated examples that need to be subdivided,
and we discuss different segmentation strategies. Finally, we describe how to make sure that
adjacent pieces of a segmented surface meet with tangent continuity.
In this chapter we assume that we are given a surface which is well suited for elastica approx-
imation, and for which an obvious cutting direction exist, see Figure 5.1 for an example. Our
approximation method is similar to the one described in the previous chapter: find a set of pla-
nar sweep curves on the surface and approximate these by elastic curves. We then sweep a new
surface using these curves. If the planar curves are sampled densely and they are approximated
well, the resulting surface will be close to the original.

Figure 5.1: Design by Odico for hot blade cutting experiments, to be cut from a block with a
600mm×670mm base. The surface has areas of positive Gaussian curvature and thus cannot
be produced by hot wire cutting. On the other hand, it is no challenge for the hot blade.

5.1 Parallel intersecting planes

As before, we can use parallel planes spread out along the cutting direction to find sweep curves.
If we orient the coordinate system, so the cutting direction is the y-direction as in the previous
chapter, we again need the x- and z-coordinates of the sweep curves. We now approximate these
curves by elastica using the algorithm from Chapter 3. To get the relevant data for the robot
code, we extend the elastic curves to blade length, and we are ready to fabricate the surface, see
Figure 5.2.
We cannot get an exact image of the resulting surface, since we are not sure how the robot
interpolates (or approximates) the data it is given. Even if we did know the exact interpolation
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Figure 5.2: Left: The surface is intersected by parallel planes. Center: Sweep curves are
found as intersections of the planes and the surface. Right. The sweep curves are approximated
by elastic curves, which are extended to the length of the cutting tool (here 1m).

scheme, finding the elastica for the points in between the sweep curves would require that we
solve the boundary value problem, which we can only do by optimization. The best we can do is
therefore to take a dense sample of sweep curves and loft the approximating elastic curves, see
Figure 5.3.

Figure 5.3: Left: The surface foliated by the (extended) elastic curves. Center: The elastica-
foliated surface that will be cut from the block. Right: The original surface shown with the
sweep curves (black) and the elastic curves (red).

The real surface produced by hot blade cutting can be seen in Figure 1.3. It was cut from a
block with a 600mm× 600mm base, so it misses 35mm on two sides, compared to the surface
in Figure 5.1.

5.2 Non-parallel intersecting planes

Until now, we have used parallel planes to find sweep curves, which is fine if we are cutting
with the tube for which cutting direction is not important. The flat blade, on the other hand,
is designed to cut with its thin edge. When the intersecting planes are parallel and the blade
shape changes, the velocity of the blade will be in a direction which is not normal to the blade
plane. For cutting with the flat blade, it would be better to choose the planes such that their
normals point in the cutting direction, which is equivalent to the sweep curves being geodesics.
Since we only want planar sweep curves, we cannot in general demand that they be geodesics.
Instead, we take a curve on the surface which to some extent follows the cutting direction. It
could for example be a planar curve through the center of the surface, or, in the case of a NURBS
surface, the central isocurve in the cutting direction. By taking planes along this trace curve
which are normal to the curve tangent, we obtain a new varying cutting direction, see Figure 5.4.
This will not ensure that all points on the blade are moving in a direction normal to the blade
plane, but it will in many cases be better than using parallel planes.
If the planes are based on a trace curve, it will often happen that the sweep curves do not cover
the surface sufficiently at the beginning and end of the cut. NURBS surfaces can be extended
smoothly, and we do this to find out how the blade should be shaped while moving into and
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Figure 5.4: Left: Surface with intersecting planes based on a trace curve (red). Center: The
sweep curves from trace curve planes at points on the surface. The sweep curves does not
cover the surface sufficiently. Right: The trace curve is extended outside the surface, so the
sweep curves cover the surface.

out of the EPS, see Figure 5.4. For surfaces that are not given by a parameterization, such as
meshes or point clouds, this is not possible, but there are methods for extending such surfaces.

Remark. In fact we do not need to extend the surface (just the trace curve, in order to get
intersecting planes), since we are only interested in the sweep curve segments that lie on the
original surface. However, since we have not developed a method for finding one elastica based
on several curve segments with space in between, we have chosen to extend the surface, so we
get a continuous curve, which we can approximate.

Since the sweep curves’ planes are not aligned with the coordinate system, we will need a
transformation to get the curves in a two-dimensional format, which is needed for the curve
approximation algorithm. It is trivial to get a frame for the curve planes, using the Gram-
Schmidt process.
There are of course infinitely many ways to frame each plane, but one choice ensures minimal
rotation from one frame to the next. This way to frame the curve, which was first described
by Bishop [Bis75], is called the frame of minimal rotation and it is unique up to a single global
rotation.1 While the Frenet-Serret frame does not always exist, any regular curve has a frame
of minimal rotation.
The frame of minimal rotation (M1,M2,T) for a curve (T being the unit tangent for the curve)
satisfies the equations

Ṫ = k1M1 + k2M2,

Ṁ1 = −k1T, (5.1)
Ṁ2 = −k2T,

where k1 and k2 are functions of the arc length parameter, satisfying k2
1 + k2

2 = κ2. We will not
detail how to compute the frame here, but we note that for a planar curve, the Frenet-Serret
frame has minimal rotation.
Let r : I → R3 denote the trace curve with I being its domain interval. For τ ∈ I, let Pτ denote
the intersecting plane at r(τ). A point p ∈ Pτ is assigned the two-dimensional coordinates (u, v)
with

u = (p− r(τ)) ·M1(τ), v = (p− r(τ)) ·M2(τ).

Since the sweep curve at r(τ) is a planar spline, we only need to apply the above transformation
to its control points, in order to describe it in Pτ -coordinates. In Pτ , we can now find an elastica
η : R → R2, such that the segment η|[0,1] approximates the sweep curve, and we can move the

1Bishop calls this a relatively parallel adapted frame. It is also known as a zero-twisting frame, a perpendicular
frame, and a Bishop frame.
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elastic curve back to the three-dimensional space as the curve γ : R→ R3 given by

γ(t) = r(τ) + η1(t)M1(τ) + η2(t)M2(τ), t ∈ R.

Finally, we can loft the elastic curves to get an image of the expected result, see Figure 5.5.

Figure 5.5: Result using intersecting planes based on the central isocurve. Left: The surface
foliated by the (extended) elastic curves. Center: The elastica-foliated surface that will be
cut from the block. Right: The original surface shown with the sweep curves (black) and the
elastic curves (red).

5.3 Evaluation

We shall now describe how we evaluate our results. There are two things to evaluate: How
close is the rationalized design to the original? Is the blade velocity close to the ideal cutting
direction, and how much does it vary along the blade?
From the optimization we have, for each elastic curve, the value of the objective function E , i.e.
the squared L2-distance between the sweep curve and the approximating elastic curve. As in
section 3.2 we compute the normalized residual R4 =

√
E /L2, where L is the length of the sweep

curve, which gives us a scale invariant number. This number tells us how well the optimization
algorithm performed, but we want a concrete way of evaluating the result; so we also compute
the (one-sided) Hausdorff distance for each curve pair, that is,

dH(Γ,Λ) = max
x∈Γ

min
y∈Λ
‖x− y‖

where Γ and Λ are sets of sampled points on the elastic curve and the sweep curve respectively.
The errors are collected in Table 5.1, and we observe that sweep curves obtained from parallel
planes are approximated best.

PP TCP
maxτ R4 7.26e-4 1.86e-3
meanτ R4 3.42e-4 6.15e-4
maxτ dH [mm] 1.61 2.36
meanτ dH [mm] 0.83 1.17

Table 5.1: Error data for surface approximation with parallel intersecting planes (PP) and
planes based on a trace curve (TCP). In each case 60 sweep curves were approximated and
the residual R4 and the Hausdorff distance dH were calculated. The Hausdorff distance is
in millimetres and calculated from 1000 points sampled on each curve. We list the maximal
value of R4 and dH and the mean over the 60 curve pairs.

We must also evaluate the cutting motion, since we do not want different parts of the blade to
move with very different speeds. Moreover, we would like the blade to move in a direction close
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to the normal of its plane, so we will find a way to calculate the velocity of each point on the
blade, to see if this is the case.
For τ ∈ I, let (u(τ), v(τ)) : R → R2 denote the coordinates of the elastic curve in Pτ . The
corresponding curve in R3 is

γ(τ) = r(τ) + u(τ)M1(τ) + v(τ)M2(τ)

We want to compute the velocity vector at each point γ(τ)(t), t ∈ [0, 1], on the curve γ(τ). This
gives us a vector field γ ′(τ) along the curve, given by

γ ′(τ) =r′(τ) + u′(τ)M1(τ) + v′(τ)M2(τ) + u(τ)M′
1(τ) + v(τ)M′

2(τ)
=r′(τ) + u′(τ)M1(τ) + v′(τ)M2(τ)− u(τ)

(
T′(τ) ·M1(τ)

)
T− v(τ)

(
T′(τ) ·M2(τ)

)
T(τ)

=r′(τ) + u′(τ)M1(τ) + v′(τ)M2(τ)−
(
T′(τ) · (u(τ)M1(τ) + v(τ)M2(τ))

)
T(τ)

where we have used the properties of the frame of minimal rotation

dMi

dτ = dMi

ds
ds
dτ = −ds

dτ

(dT
ds ·Mi

)
T = −

(dT
dτ ·Mi

)
T, i = 1, 2.

While we can easily compute r′ and T′ = r′′
‖r′‖ −

r′·r′′
‖r′‖3 r′, we cannot find (u′, v′), which determines

how the elastic curve changes inside the plane Pτ as τ changes, without knowing how the robot
interpolates the data. In any case, we are only taking a discrete set of intersecting planes,
corresponding to a set of parameters τi ∈ I, so we will just use the two-sided difference quotient

u′(τi) ≈
u(τi+1)− u(τi−1)

τi+1 − τi−1

and likewise for v′. For the first and last τ -values we can, of course, only take the one-sided
difference quotient.
For each τ ∈ I we can now compute the velocity γ ′(τ)(t) for different t ∈ [0, 1]. We can compare
the magnitudes of these vectors to see how much the speed of the blade varies, and we can
compute the angle φ(τ, t) between the velocity and the plane normal as

φ(τ, t) = arccos
(

γ ′(τ)(t)
‖γ ′(τ)(t)‖ ·T(τ)

)
= arccos

(
γ ′(τ)(t)
‖γ ′(τ)(t)‖ ·

r′(τ)
‖r′(τ)‖

)
See Table 5.2 and Figure 5.6 for results. We observe that, at least in this example, using non-
parallel planes does indeed result in a cutting direction closer to the ideal one. On the other
hand it results in a less uniform speed distribution along the blade.

PP TCP
maxτ,t φ(τ, t) [◦] 41.1 40.7
meanτ,t φ(τ, t) [◦] 15.0 10.3
maxτ meant φ(τ, t) [◦] 28.8 15.5
minτ mint ‖γ′(τ)(t)‖

maxt ‖γ′(τ)(t)‖ 0.754 0.449

Table 5.2: For each of the 60 elastic curves we calculate the velocity in 100 points and find
the angle deviation. We list here the maximal and mean angle deviation over all 600 velocities
(in degrees). We also compute the mean of the angle deviation for each curve, and we list here
the highest value. Finally for each curve we find the points with lowest and highest speed and
we compute the quotient. We list here the value for the curve with the lowest value.
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Figure 5.6: Visualization of the results. Left: Parallel intersecting planes. Right: Intersecting
planes based on trace curve. Top: Colours show the angle deviation from the plane normal
(in degrees). Bottom: The colour of each curve point is the speed at that point divided by the
maximal speed along the elastic curve. As one might expect, if we look at angle deviation, the
non-parallel planes are best, but if we consider speed variation, the parallel planes are best.



Chapter 6
Surface segmentation

When given an arbitrary design, we cannot be sure that it can be well approximated by a single
elastica-foliated surface. If we simply find planar sweep curves as above, these may not resemble
elastic curves at all. Moreover, the blade has a certain length, so if the surface is too big, we
cannot produce it by hot blade cutting. Another limitation is that the set of possible blade
shapes is much “smaller” than the set of elastic curve segments, as described in Section 3.3. For
example, the surface in Figure 6.1 (left) is foliated by one elastica, but we could never hope to
cut this in one go.

Figure 6.1: Left: Surface obtained by moving an elastic curve along another elastic curve.
Right: Curved wall design by 3XN architects with dimensions 4200mm× 2400mm.

In this chapter we will discuss methods for subdividing a surface into pieces that can actually be
cut. In doing the segmentation, we will only concern ourselves with limitations regarding possible
blade shapes and the length of the blade. We will thus focus on segmenting a surface into strips
that each, in principle, can be produced in one cut. In practice, we may need to subdivide the
strips due to limitation in the EPS block size, but we will not take this into account here. In the
next chapter we will approximate the patches of a segmented surface and discuss how to make
sure these patches, when produced, fit together in a smooth way.
The work behind this chapter and the algorithms described in it were done in collaboration
with Kasper Steenstrup. Most of our ideas were based on the specific case of the curved wall
in Figure 6.1 (right), a design created by architects at 3XN with the goal of being a prototype
showcase for the BladeRunner project. The implementation was for the most part done in
RhinoPython and rely on many built-in Rhino functions. Since Rhino is NURBS based, all
surfaces that we consider are NURBS surfaces.

6.1 Preparing for segmentation

In the previous chapter we assumed that the surface was ready for approximation. Here we
address two issues that we need to consider before an arbitrary surface can be segmented and
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approximated: How should we orient the surface in relation to the EPS blocks it must be cut
from? In which direction should we cut the surface.

Choosing an orientation in space

In most practical examples from architecture, e.g. wall panels, the surface that we want to
produce can be considered as a height map, often over a rectangular domain. This means that
we have a fixed direction that we can consider as upwards. Usually the design will be oriented
with the z-axis pointing upwards.

The segmentation strategies we present in this chapter depend to some extent on knowing which
direction is up. We will therefore describe a way of choosing a bounding box for an arbitrary
surface. This box will then define a reference frame and, in particular, an “up”-direction given
by the z-axis. Rhino has a built-in function for creating an oriented bounding box for a surface.

If the surface can be described as a height map over a rectangular domain, we of course want
the bounding box to be aligned with the domain. A surface of this kind, such as the curved wall
above, has four planar edge curves. Rhino has functions for finding these curves and the planes
that they lie in. From these we can determine the orientation of the relevant bounding box, see
Figure 6.2. If the surface is a graph over a rectangular domain, we choose a bounding box with
this rectangular domain as the base.

Figure 6.2: Bounding box for surfaces. The curved wall (left) has four planar edge curves
and adjacent edge planes are perpendicular, so there is a natural choice for the bounding box.

If there is no direction from which the surface appears as a rectangle, e.g. if the edge curves
are not planar or if the edge planes are not perpendicular, there may be no obvious choice for a
bounding box. A NURBS surface is always defined on a rectangular parameter domain and it
therefore has four “corners” along its boundary. We randomly pick three corners and from these
we construct a plane to which we align the bounding box.1 This often works well, but cases exist
where there is a more obvious choice for the bounding box, see Figure 6.3

When we have chosen a bounding box we can can align our coordinate system to it so that we
always have the z-direction pointing upwards. This also means that the plane that supports the
EPS blocks will be parallel to the (x, y)-plane. The primary movement of the blade will be along
vectors in this plane, i.e. the blade will not move so much up or down that it cuts through the
tops or the bottoms of the EPS blocks.

1In Rhino a plane object has a coordinate system and thus defines a coordinate frame in space.
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Figure 6.3: Design for the corner piece of a skater ramp. The surface does not have a
rectangular boundary, but it still has a natural bounding box. Left: The bounding box based
on a plane between three surface corners. Right: The natural bounding box based on the
planar boundary curves.

Choosing a general cutting direction

We generally want to segment the surface in the direction perpendicular to the cutting direction,
so we must choose this direction before we analyse the surface for where to subdivide. However,
when we have a segmented surface, we want to choose the cutting direction for each segment
based on its shape. Moreover, as we have seen above, the ideal cutting direction for a single
segment need not be constant. For these reasons we will choose a “general direction” of cutting,
given by a vector v, and analyse the surface in the direction given by v × z, where z points in
the direction of the z-axis, i.e. upwards. Typically the general cutting direction will be along
the x- or y-axis.
There may be geometric features that make a specific cutting direction the natural choice, or
make the other directions bad choices, see Figure 6.4. Otherwise it makes sense to pick the
longest dimension as the cutting direction in order to have as few segments as possible.

Figure 6.4: Left: For the curved wall, it seems natural to let the cutting direction follow the
isocurves in the longest direction. The general cutting direction, which is indicated by the
arrow, follows the edge of the bounding box. Right: The design with 200 sweep curves.

Once a general cutting direction v has been chosen, we will create a set of sweep curves from
parallel intersecting planes along a line with direction v. We will base our surface analysis on
these sweep curves, our assumption being that the results will not change too much when the
cutting direction is changed.
Remark. With the cutting direction chosen above, the sweep curves for the curved wall have
points of too high curvature; the blade cannot bend that much without being permanently
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deformed. For this reason, we went for the opposite cutting direction, i.e. along the short
direction, for the production, see Section 7.4. This direction, however, does not have as nice
features to determine segmentation, so for describing our methods, we stick with the cutting
direction chosen here. A larger version of the wall could be cut, since scaling up the design
would reduce its curvature.

6.2 Surface analysis

We will now describe how we analyse a given surface in order to get guidelines for where to
subdivide it. We consider three reasons to subdivide: size, inflection points, and whether a good
approximation can be achieved.

Size

The most obvious reason for segmenting a surface is if it is too big. Clearly, each strip cannot
be wider than the blade length. In fact since we want to bend the blade, there should be a gap,
between the strip width and the blade length Lblade. Also, we do not want the robots holding
the blade ends to collide with the EPS block while cutting, so we must demand that the cutting
part of the blade, that is the part which is inside the EPS, should be shorter than the actual
blade length.
If we, for example, say that 10% of the blade should be outside the EPS, we have

Lmax = 0.9Lblade.

We may assume that a segment of a sweep curve, will be approximated by an elastic curve of
roughly the same length. Thus if any sweep curve on the surface is longer than nLmax, we need
at least n strips.

Inflection points

Another key feature of the surface relevant to segmentation is the number of inflection points
on the sweep curves, since the blade can have at most two inflections. We have therefore
implemented a method for finding the inflection points of a planar parameterized curve: We
compute the signed curvature at a number of sample points on the curve. If the curvatures of
two adjacent points have opposite signs, we use a bisection to find the curve parameter for the
inflection, see Figure 6.5.

Figure 6.5: Left: Surface designed for rationalization tests. Right: The inflection points are
shown for 101 sweep curves on the surface. The central curve is supposed to be a straight
line, but the intersection algorithm produces a spline with many small oscillations.
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Finding the inflection points will give a guide as to where the surface should be segmented. If a
sweep curve has more than two inflections, we need to subdivide it into pieces that each have at
most two inflection. In fact, because an elastic curve segment between two inflection points is
always symmetric (which limits the possible shapes), it will often be desirable to have at most
one inflection point in each sweep curve segment.
If a curve has many inflections close to each other, it may be relevant to consider whether this is
indeed part of the designer’s idea, or a “byproduct” of either the computer aided design process,
or the way the sweep curve was found by intersecting the surface with a plane. If the latter is the
case, we can either smoothen the surface in the relevant area before doing the approximation,
or we can allow an approximating curve segment with fewer inflections points, than the original
curve. In any case, because of the limited flexibility of the hot blade, we cannot produce curves
with inflection points very close to each other. We choose to ignore close pairs of inflection points
and inflections very close to the surface boundary. In this way we get rid of inflections on curve
segments that are almost straight, and we reduce the number of inflection points we need to
consider, when choosing where to subdivide.
In our implementation, for each sweep curve we first find the pair of inflections that are closest
to each other (in arc length). If this distance is less than 200mm and if the curve segment
between them is almost a straight line, we will ignore the pair, i.e. not consider the points as
inflections. We say that the curve segment is almost straight if its length is less than 1% longer
than the distance between its ends. We repeat this process until there are no more close pairs
of inflection points. If there are now inflections less than 100mm from the surface boundary,
with the curve segment from inflection to boundary being almost straight, we will ignore these
as well, see Figure 6.6.

Figure 6.6: Left: The inflection points of 181 sweep curves on the the curved wall. The red
inflections are ignored. Right: The inflection points of another surface design by 3XN. Top:
The same surface seen from another angle.

Good elastica approximation

Instead of only considering inflection points, we may try to determine whether a given sweep
curve can be approximated well by an elastic curve segment. Or rather, if we are going to
subdivide the curve, how long segments can be approximated well? To answer this we first
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need to define what it means to be well approximated, and we need a (preferably fast) way to
determine whether a curve satisfies this.
We will say that an approximation is good if the normalized L2-distance R4 =

√
E /L2 is smaller

than some value ε > 0. It will be too time consuming to actually do the optimization, so we will
compute this value for the canonical initial guess found by the algorithm described in Section 3.2.
Letting r : [a, b]→ R2 denote the sweep curve’s 2D representation, we define Fa : [a, b]→ [0,∞[
by

Fa(t) = R4
(
p0(r|[a,t])

)
=

√√√√E
(
p0(r|[a,t])

)
L(a, t)2 ,

where p0(r|[a,t]) is the control point vector for the initial guess for an elastica approximating the
curve segment r|[a,t], and L(a, t) is the length of that segment. We will say that the segment can
be well approximated if Fa(t) ≤ ε.
This is a “better safe than sorry”-choice, meaning that we may discard segments because of a
“bad” initial guess that might still have led to a good optimization result; on the other hand,
if the initial guess is good, the optimization result should be even better. We also remark the
subscript a, which denotes the dependence of Fa on the start point for the curve segment.
Clearly Fa(a) = 0. If Fa(b) > ε, we use the bisection method to find the largest t0 ∈ [a, b],
such that Fa(t0) ≤ ε. Once we have thus found the longest segment r[a,t0] that can be well
approximated, we can repeat the procedure using Ft0 to find the next segment of r that can
be well approximated. This will give us a suggestion for a subdivision of r into segments that
can each be well approximated, but we want more freedom in choosing the segmentation. We
therefore run the same procedure on the reversed curve, which will provide us with subintervals
of [a, b] in which subdivision is suggested, see Figure 6.7.

a b

Figure 6.7: On the black axis, we have the parameter interval [a, b] for the sweep curve.
The blue arrows show the segments that can be well approximated by elastica, based on the
bisection method. The green arrows show the same but with the method used on the reversed
curve, i.e. from b to a. The red regions are suggested for subdivision, since any segment from
one red region to the next can be well approximated.

Remark. Of course, there may be better ways of determining whether a curve segment can be
well approximated. Instead of simply computing R4, one could use a combination of the residuals
we calculated to evaluate the initial guess algorithm. The residual R1 actually measures how
close the original curve segment is to satisfying the Euler-Lagrange equation for the elastica.

6.3 Segmentation

Above we have described the different reasons for segmentation and how we analyse the surface
to find guidelines as to where we should segment it, but we have not actually segmented any
surfaces. We will now describe different ways to segment based on the surface analysis.

Parallel strips

The simplest segmentation one can think of is parallel strips. This will also make production
easy, since it will only require box-shaped EPS blocks. The strips should naturally be aligned
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with the chosen general cutting direction. Let us say that we cut in the y-direction, and thus
want to segment in the x-direction. We can let all the strips have the same width, or we can
base the width of each strip on the features of the surface.
As above, let Lmax denote the maximal length of the part of the blade used for cutting. For
each sweep curve r : [a, b]→ R2, we now find the largest parameter t ∈ [a, b], such that

• the length of the segment r|[a,t] is less than Lmax,

• the segment r|[a,t] contains at most two inflection points, (6.1)

• Fa(t) ≤ ε.

Now we have a parameter t for each sweep curve. We compute the x-value at these curve points
(in 3D-space) and choose the smallest, say x0. Our first segmentation line is given by x = x0, see
Figure 6.8. We can now for each sweep curve find the segmentation parameter t0 where it passes
the line x = x0. If this parameter is not unique, we pick the largest that is smaller than the t
we found above. We repeat the procedure by for each sweep curve finding the largest t ∈ [t0, b]
such that (6.1) is satisfied, with t0 in place of a.

Figure 6.8: The blue points indicate the longest segments of each sweep curve that can be
approximated well (tolerance ε = 0.005). The blue curve is the segmentation line defined by
the point of smallest x-value. The green points indicate the longest segments, starting from
the blue curve, that can be well approximated, and the green curve is the second segmentation
line.

The above procedure will give us a set of x-values that determine where to segment the surface.
If we want more freedom, we can run the procedure on the reversed sweep curves to get overlap
regions, similar to those in Figure 6.7.
If we want strips of uniform width, we can simply divide the surface into n equally wide strips.
If the sweep curve segments of each strip satisfies the conditions (6.1) (with a and t replaced by
the end parameters for the relevant curve segment), we are done; otherwise we increase n by one
and check again.

Freeform strips

If we do not restrict our subdivision to parallel strips, we can get more interesting segmentations.
As above we can for each sweep curve ri find the largest parameter ti, such that (6.1) is satisfied.
We can then create a curve on the surface that either interpolates or approximates the points
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ri(ti), and use this a a segmentation curve. The lengths of the found sweep curve segments can
vary a lot, see Figure 6.9, so we may want to reduce the distance between the points before
interpolating or approximating. We pick a maximal distance δ between adjacent points and
start with the shortest sweep curve segment, say ri. If one of the neighbouring segments is too
long, that is, if e.g. ‖ri+1(ti+1)− ri(ti)‖ > δ, we lower ti+1.

Figure 6.9: Blue points are as in Figure 6.8, but this time we approximate the points with
a spline to get a segmentation curve.

We repeat the procedure to get more segmentation curves across the sweep curves. Again, this
procedure can be applied to the reversed sweep curves, so we get overlap regions and thus more
freedom to choose our segmentation curves.

Strips based on surface geometry

The above methods subdivide surfaces into parts that should be well suited for elastica approx-
imation, but they do not take into account the aesthetics of the segmentation in relation to the
surface shape. When the surface is cast in EPS-moulds, the segmentation curves will often be
visible, so it is desirable to let these follow the surface geometry.

Figure 6.10: Left: The local minima and maxima in the z-direction are found for 100 sweep
curves on the curved wall. Right: The surface is subdivided based on curves through the
extrema.

Our idea is to find the valleys and ridges of the surface, and see if these give rise to nice
segmentation curves. We use here that we have decided on an upwards direction (the z-axis)
and we simply find the extrema of the sweep curves in this direction. Alternatively one can find
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the points of maximal and minimal (signed) curvature on the sweep curves. For the curved wall
example, this gives us a very nice segmentation of the surface, see Figure 6.10.
There is no reason to expect that finding ridges and valleys will give segments that can be well
approximated. To obtain this, we can do as we proposed for the parallel strips of uniform width:
we check if each segment of the sweep curves satisfies (6.1). If this is not the case, we will
subdivide the surface further by finding curves between those defined by the extrema. We can
project the new curves onto the surface to get more segments and we can repeat this until each
segment can be well approximated.
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Chapter 7
Advanced surface approximation

In this chapter we assume that we are given a surface with a specified segmentation. We will also
assume that EPS pieces have been precut (e.g. by hot wire) in the shapes of the segmentation
strips. Our task is to find the best approximation of each segment by an elastica-foliated surface
but with the global condition that the segments must meet in a tangent continuous way.

7.1 Planar sweep curves

Our first approach is, as always, to find sweep curves by intersecting the entire surface with
parallel planes. We can then subdivide the sweep curves based on the surface segmentation. We
now have planar curves, which are split into segments which we must approximate by elastic
curves. The optimization scheme we defined in Section 3.4 solves this problem and can ensure
tangent continuity where the curves are connected, see Figure 7.1.

Figure 7.1: Approximation of 3XN’s curved wall using 200 sweep curves based on parallel
intersecting planes. The valleys and ridges of the surface give a segmentation into four strips;
the outer two strips have been further subdivided to obtain a good approximation. Left: The
piecewise elastic curves and the original surface. Right: Only the elastic curves.

Again, using parallel planes is not appropriate for the flat blade. Instead we can choose the
intersecting planes’ normals based on a trace curve on the surface and extend the surface to
make sure the sweep curves cover it sufficiently, see Figure 7.2. We now meet a new challenge:
if we only wanted to produce the two innermost segments, this method works fine, but on the
outer segments we have areas where the blade rotates around a point inside the surface that we
want to produce. When the blade moves back over an area which has already been cut, it will
cause additional melting of the EPS and thus result in a wrong shape and possibly bad surface
quality. Moreover, at the point around which the blade is rotating, far too much EPS will melt
and evaporate. Even on the innermost pieces, where the blade path does not overlap, the fact
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that one end of the blade moves faster than the other can cause the surface quality to differ at
the two ends.

Figure 7.2: Sweepcurves based on trace curves (red). To the left we have used the central
isocurve. To the right we have used the curve obtained by intersecting the surface with a
vertical plane though its center.

7.2 Piecewise planar sweep curves

In order to avoid the problems described above, we will sacrifice the convenience of using global
intersecting planes. Instead we will find different planes for each surface segment. However we
still want the sweep curves for the segments to join at the boundaries. We propose two ways of
doing this.
The first idea is to sample points along the boundary curves and draw line segments between
them. For each of these lines we need a vector in order to define an intersecting plane. We want
to orient the plane such that it contains the surface normal, but the surface normal direction will
not be constant along the intersection curve. We therefore need to pick some vector as proxy
for the surface normals to lie in the plane. We can, for example, find the surface normal at the
endpoints of the line segment and compute a mean. If the line segment intersects the surface
at more points than its ends, we can include these when computing the mean normal. Another
possibility is to project (e.g. along the z-direction) the midpoint of the line segment onto the
surface and use the normal at this point.
The second approach is to use a trace curve for each surface segment to obtain a set of intersecting
planes. We can start from the trace curve of one surface segment and find sweep curves. For
each of these we can, e.g. via bisection, find the parameter on the next trace curve, such that
the sweep curves will meet at the boundary.
We now have a set of continuous sweep curves for the entire surface and the sweep curves are
planar in each surface segment. Results of the two approaches can be seen in Figure 7.3.

7.3 An optimization using tangent planes

Since our new sweep curves are not planar, we can no longer use the optimization method
from Section 3.4. We still want to approximate each curve segment separately, so instead of
considering a piecewise planar sweep curve as one curve, we will consider each segment. A sweep
curve thus consists of N planar curve segments ri : [ti−1, ti]→ R3, i = 1, . . . , N , which lie on the
surface, such that

ri(ti) = ri+1(ti+1), i = 1, . . . , N − 1,
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Figure 7.3: Left: Piecewise planar sweep curves obtained by drawing lines between the
segmentation curves and using the mean of the surface normals at the lines’ ends to define
the intersecting planes. Right: Piecewise planar sweep curves based on a trace curve on each
surface segment.

We want to find N planar elastic curve segments in R3 that approximate the sweep curve
segments ri, which we can obtain by minimizing

N∑
i=1

∫ ti

ti−1

∥∥∥∥γpi

(
si(t)
Li

)
− ri(t)

∥∥∥∥2
s′i(t) dt

over the control parameter vectors pi, i = 1, . . . , N , where si and Li denote the arc length
function and arc length for each sweep curve segment, i.e.

si(t) =
∫ t

ti−1
‖r′i(τ)‖dτ, Li = si(ti), for i = 1, . . . , N.

Remark. The curves ri and γpi are planar curves in R3, but we convert them into 2D-coordinates
(in the relevant intersecting planes) before doing the optimization. The further constraints we
impose on the problem, will be on the 3D curves, however.

We want the elastic curve segments to form a continuous curve in R3, and when we approximate
many sweep curves and use the obtained elastic curves to cut a surface, we want it to be tangent
continuous between segments. We therefore impose constraints that the elastic curve segments
should meet at the segment boundaries on the surface and that their end tangent should be in
the surface’s tangent plane at those points. Both of these constraints are very restrictive, so we
will introduce some tolerances.
For the elastic curve segments to meet we must require γpi(1) = γpi+1

(0), for i = 1, . . . , N − 1.
We also want the curve segments to meet close to the point on the surface, where the sweep
curve segments ri and ri+1 meet, that is at ri(ti).
For this purpose we introduce a unit vector vi along which we allow the meeting point to vary.
Unless the two curves segment ri and ri+1 are coplanar, there is only one possible choice for this
vector (up to a sign), namely the one that lies in the intersection between two planes. If the
curves are coplanar, which is highly unlikely we let vi be the cross product of the surface normal
at ri(ti) and the normal to the plane of ri and ri+1. The constraint we impose is thus

γpi(1) = ri(ti) + uivi = γpi+1
(0), |ui| < ε0, (7.1)

where ui is a scalar, which is kept within a tolerance and determines how far the curves’ meeting
point is form the surface.
To ensure tangent continuity of the elastica-foliated surface, we want the end tangents of the
elastic curve segments to lie in the tangent plane for the surface. The easiest way to ensure
this is to demand that γ ′pi(1) ·Ni = γ ′pi+1(0) ·Ni = 0, where Ni is the surface normal at ri(ti).
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Again we will allow some room for variation, so instead of using the actual surface normal, we
will use an approximate normal vector ni which will be kept close to the actual normal by a
tolerance ε1. We also introduce a tolerance ε2 for how close the curves’ tangents should be to
being orthogonal to ni. Our constraint is thus

cos( π

180(90 + ε2)) ≤
γ ′pi(1)
‖γ ′pi(1)‖ · ni,

γ ′pi+1
(0)

‖γ ′pi+1
(0)‖ · ni ≤ cos( π

180(90− ε2)), (7.2)

with the further demands that

‖ni‖ = 1, Ni · ni ≥ cos
(
π

180ε1

)
. (7.3)

Summing up, by minimizing the function

G (p1, . . . ,pN , u1, . . . , uN−1,n1, . . . ,nN−1) =
N∑
i=1

∫ ti

ti−1

∥∥∥∥γpi

(
si(t)
Li

)
− ri(t)

∥∥∥∥2
s′i(t) dt

subject to the constraints (7.1)–(7.3), we obtain in each surface segment an approximating elastic
curve segment with end points having a distance less than ε0 to the surface and end tangents
at most ε2 degrees from an approximate tangent plane, which is itself at most ε1 degrees off
compared to the actual surface tangent plane.
Remark. From a mathematical perspective, the constraints defined above will in no way ensure
tangent continuity of the surface foliated by the elastic curves. However, we only want precision
within production tolerances. If we set ε0 = ε1 = ε2 = 0 the elastic curve segments will form
continuous, piecewise planar curves that have end points on the surface and end tangents in the
surface’s tangent planes at these points.

7.4 Results

We have tested the method described above on part of the curved wall; more precisely, on the
four inner pieces of the six-piece segmentation used for the parallel planes approximation in
Section 7.1. The result can be seen in Figure 7.4.
As we mentioned, some of the curves along the short dimension of the curved wall has areas of
too high curvature. For our fabrication test, we therefore chose to use the short dimension as
the cutting direction. We chose a simple segmentation in five parallel strips, using sweep curves
based on parallel planes, see Figures 7.5 and 7.6.
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Figure 7.4: Top: 181 piecewise planar sweep curves based on a trace curve (red) in each of
the four inner segments of the curved wall. Bottom left: The surface and the piecewise planar,
piecewise elastic curves obtained from the optimization described in Section 7.3. Bottom right:
Only the elastic curves.

Figure 7.5: Rationalization of the curved wall. Left: 25 sweep curves in 5 segments each.
The end points and end (unit) tangents of the elastic curves are constrained to be identical to
those of the sweep curves. Right: 1201 sweep curves of 5 segments each. The elastic curves
are constrained to meet with tangent continuity, but not at the points of the sweep curves.



68 Advanced surface approximation

Figure 7.6: The produced result from cutting EPS blocks based on the rationalization in
Figure 7.5 left.

Figure 7.7: Surface design by 3XN and cut result of rationalized design. The surface was
designed for hot blade cutting and segmented into blocks during the design phase. Tangent
continuity for the cut result was obtained by constraining end points and tangents to be the
same as those of the sweep curves.



Chapter 8
Finding the length of a symmetric

elastic curve segment

In this chapter we deal with an interesting problem that came up during the course of the
BladeRunner project. When we want the robots to bend the blade into a prescribed elastica
shape, we provide the end points and tangents. These were computed based on the blade length,
which means that if our estimate of this length is imprecise, the resulting elastica shape will not
be identical to the one we have predicted. When we have a free blade, we can of course measure
its length to a high precision, but when we mount it on the robots, part of the blade will be
used for fixing it, and thus cannot deform elastically. Moreover, when the blade is heated, it will
expand. We need to know the length of the part of the blade that can deform freely.
When the blade is mounted we can move its ends to given positions and turn them to given
angles. Without loss of generality we may assume that the end points lie on a horizontal line.
If we choose the same angle at both ends, we will get a symmetric shape and we can measure
the curve height, see Figure 8.1. The symmetric curve will necessarily be a segment of a scaled
version of the basic elastica ζk for some k. The basic elastica has minimal y-value at s = 0,
so we will here consider downward bending curves. Since we are considering a physical blade,
we can assume that the obtained elastica segment constitutes less that a period of the entire
(infinitely long) elastic curve. The question is now whether we can compute the blade length
from measuring the height.

h

d
α α

Figure 8.1: Downwards bending, symmetric elastic curve segment with end point distance
d, end angles α and height h.

8.1 Free tangents

We will first consider the case where the blade is mounted in such a way that its ends can rotate
freely. We saw in Section 2.1 that in this case the elastic curve segment will have inflection
points at its ends.
Let d > 0 be the distance between the end points and let h > 0 be the measured height. The
overall shape of the elastic curve is given by the unknown control parameter k ∈ ]0, 1[, i.e. the
elliptic modulus. What we do know is that the inflection points of this curve lie where the arc



70 Finding the length of a symmetric elastic curve segment

length parameter s is nK(k), where n is odd. We may therefore take the relevant segment to
be s ∈ [−K,K], or equivalently, we may choose the control parameters s0 = −K and ` = 2K.
Letting (ζ1

k , ζ
2
k) denote the coordinates of ζk, we can now compute in terms of k, the distance

between the endpoints

d = S
(
ζ1
k(K)− ζ1

k(−K)
)

= S (2E(K, k)−K − (2E(−K, k) +K)) = 2S (2E(K, k)−K)

and the height

h = S
(
ζ2
k(K)− ζ2

k(0)
)

= 2kS(1− cn(K, k))− 2kS(1− cn(0, k)) = 2kS.

We can determine the parameter k by solving

d

h
= 1
k

(2E(K, k)−K) (8.1)

Letting f(k) denote the righthand side of the above equation, it can be shown that

f ′(k) = −E(K, k)
k2k′2

,

which is negative, so f is strictly decreasing and thus (8.1) has a unique solution, which can be
found e.g. by bisection.

From k and h we can find the scaling parameter S, and the length is

L = 2SK = h

k
K.

8.2 Fixed tangents

We now turn to the case where the tangents are fixed, which is the case for the robots used in
our setup for hot blade cutting. We move the blade to a position with known end points and
tangents, such that we get a symmetric downwards bending curve. Intuitively, if we increase the
blade length, the height of the curve will also increase; if we shorten the blade, the height will
decrease. We can thus assume that there is a one-to-one correspondence between the height and
the length of curves in this specific configuration. It turns out, however, that its expression in
terms of elliptic functions is quite complicated and hard to analyse mathematically.

Let α ∈ ]0, π/2[ be the angle formed by the end tangent and the line between the end points, and
let d > 0 be the length of that line. Recall that the maximal tangential angle for the inflectional
elastica with modulus k is θmax(k) = 2 arcsin(k). For the angle condition to be satisfied, our
elastica must thus have θmax(k) > α, i.e. k ≥ sin(α/2). We will set β = sin(α/2), so in the
following β is a fixed value in the interval

]
0, 1/
√

2
[
. For any k ≥ β there are two segments of

ζk that satisfy the angle condition, see Figure 8.2.

A B C D

Figure 8.2: Elastica segments with interior angle α = π/6 for k = 0.3 (cases A and B) and
k = 1.02 (cases C and D).
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Figure 8.3: Elastica with k = 0.8550924.

We consider the following cases:

A: k < 1, s ∈ [K, 2K], θ(s, k) = α.

B: k ≤ 1, s ∈ [0,K], θ(s, k) = α.

C: k ≥ 1, s ∈ [0,K], θ(s, k) = α.

D: k > 1, s ∈ [0,K], θ(s, k) = π − α.

Case A We first note that in order to avoid self-intersections, we must have k less than
kcrit ≈ 0.8550924, see Figure 8.3 and compare with Figure 2.1.
Let k ∈ [β, kcrit[ and K = K(k). Letting sA ∈ [K, 2K] such that θ(sA, k) = α, we consider the
elastic curve segment with s ∈ [−sA, sA] and distance d between its endpoints. The height of
this segment is

hA(k) = d
ζ2
k(sA)− ζ2

k(0)
ζ1
k(sA)− ζ1

k(−sA)
= dk (1− cn(sA, k))

2E(sA, k)− sA
. (8.2)

Case B We do not need to worry about self-intersections, so we let k ∈ [β, 1], and take
sB ∈ [0,K] such that θ(sB, k) = α. The height hB of the elastic curve segment with s ∈ [−sB, sB]
is given by (8.2) with B in place of A.
We note that for k = β cases A and B coincide, since we get sA = sB = sn−1(1, β) = K(β), and
thus

hA(β) = hB(β) = dβ

2E(K(β), β)−K(β) . (8.3)

Case C Let k ≥ 1 and sC ∈ [0,K] such that θ(sC , k) = α. Again we recover (8.2) for the
height with C in place of A. We note that for k = 1 cases B and C coincide, and we get
sB = sC = sn−1(β, 1) = arctanh(β) and the height

hB(1) = hC(1) =
d
(
1−

√
1− β2

)
2β − arctanh(β) . (8.4)

Case D Let k > 1 and sD ∈ [0,K] such that θ(sD, k) = π − α and consider the segment
s ∈ [sD, 2K − sD]. This is an upwards curving elastica segment, but if we rotate it by π, we get
a downwards curving segment that satisfies the desired angle condition. For simplicity we will
do the calculations on the upwards curving elastica, and just make sure to get a positive height,
which is thus

hD(k) = d
ζ2
k(K)− ζ2

k(sD)
ζ1
k(sD)− ζ1

k(2K − sD)
=

dk
(
cn(sD, k)−

√
1− k−2

)
2E(sD, k)− 2E(K, k)− sD +K

We observe that hD(k) → 0 as k → 1, because as k → 1, K(k) → ∞, the numerator of hD(k)
tends to d

√
1− β2 and the denominator minus K tends to 2β − 2− arctanhβ.

It is obvious that as k →∞, the segments of cases C and D will become identical circle segments,
see Figure 8.4. The height will then be the sagitta of the circle with chord length d and angle α
between the chord and the circle tangent. In other words we have

lim
k→∞

hC(k) = lim
k→∞

hD(k) = d
2 tan α

2 = dβ

2
√

1− β2 . (8.5)

We have validated numerically (though we have not been able to prove analytically) that
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Figure 8.4: Cases C and D for d = 1, α = π/6 and k ∈ {1.02, 1.1, 1.5, 5.0}. The cases
coincide in the limit k →∞ when the elastica is a circle.

• hA is strictly increasing on [β, kcrit[,

• hB is strictly decreasing on [β, 1],

• hC is strictly decreasing on [1,∞[,

• hD is strictly increasing on ]1,∞[.

In particular we have
hD(k1) < hC(k2) ≤ hB(k3) ≤ hA(k4)

for any choice of k1 ∈ ]1,∞[, k2 ∈ [1,∞[, k3 ∈ [β, 1], and k4 ∈ [β, kcrit[, see Figures 8.5 and 8.6.
When α and d are given, we can compute values of (8.3), (8.4) and (8.5) corresponding to the
heights of the elastica with free tangents, the one loop elastica (i.e. k = 1) and the circle segment,
respectively. For any height h we can, by comparing with these values, determine whether h
belongs to case A, B, C or D.
When we have determined the case, say A, we can find k = h−1

A (h). We do not have an analytic
expression for h−1

A but, since it is strictly monotone, we can find the k-value by the bisection
method, for example. The length of the segment can now be found as

L = 2dsA
ζ1
k(sA)− ζ2

k(−sA)
= dsA

2E(sA, k)− sA
,

and similarly for cases B and C, while in case D we get

L = d(2K − 2sD)
ζ1
k(sD)− ζ1

k(2K − sD)
= d(K − sD)

2E(sD, k)− 2E(K, k)− sD +K
.
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Figure 8.5: Graphs of the inverses of hA, hB, hC and hD. We have set d = 1 and from top
to bottom we have α = 0.1, α = 0.7, α = 1.57.
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Chapter 9

Conclusion

We have described an optimization-based method for approximating arbitrary curves by elastic
or piecewise elastic curves expressed in closed form using elliptic functions. We have developed
a method for finding a canonical first guess for the optimization. In the case of piecewise elastic
curves, we have imposed constraints on the optimization to ensure tangent continuity. We have
described how to validate the success of the method by calculation of residuals.
For most examples, our curve approximation method performs very well, but an investigation
into the effect of replacing the L2 norm in the optimization by e.g. the H1 or H2 norm is in
order. Using a Sobolev norm might make the algorithm more stable, but it might also increase
computation time.
We have discussed reasons for subdividing a surface for approximation by elastica-foliated patches
and proposed methods for choosing segmentation curves. Some of these methods are, however,
computationally expensive. It would be desirable to find a fast method for determining whether
a given surface can be approximated well by an elastica-foliated surface.
We have described how to approximate a set of planar or piecewise planar curves on a surface
by piecewise elastic curves. For planar, piecewise elastic curves, we ensure tangent continuity
within a given tolerance; for piecewise planar, piecewise elastic curves, we ensure that the end
tangents lie in the tangent plane of the surface.
The methods that rely on curve approximation for planar curves perform well, while the method
described in Section 7.3 is not completely stable (in its current implementation) and needs
improvement. In both cases, doing optimization for many curves is time consuming, and the
convergence rate naturally depends on the allowed tolerances. In order to determine the relevant
tolerances, more hot blade cutting tests must be done with the physical production cell.
As we have mentioned, the continuity between segments is ensured only for the specific elastic
curves that are obtained from optimization. The end point and tangent data is given to a set
of robots which interpolate the data to perform the cutting motion. If we knew the robots’
interpolation scheme (or, even better, if we could control it ourselves) we would be able to
improve certain steps of the production.
Finally, we have described how to numerically determine the length of a symmetric elastic curve
segment from its height and its end conditions. We can thus determine the length of a heated
blade mounted in a robot cell, which is important when we wish to compute data for the hot
blade cutting procedure. The one-to-one correspondence between length and height have only
been established numerically. From a mathematical point of view, it would be more satisfying
to prove that the length and the height depend monotonically on the elliptic parameter k.
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Appendix A

Derivatives

In this appendix we shall find the derivatives with respect to k of the elliptic functions and the
elliptic integrals. We follow Lawden [Law89], but we take specific care to obtain formulas for the
derivatives at k = 0 and k = 1. We then list the first and second derivatives of the basic elastica
as they appear in [BGN16], but here we have added the specific expressions for the derivatives
at k = 1. These are important, since we want to be able to move from one family (inflectional
or non-inflectional) to the other, when doing the optimizations described in Chapters 3 and 4.
Finally, we list the derivatives of the angle function for the basic elastica.

Derivatives w.r.t k of the elliptic functions and elliptic integrals

Using the shorthand notation

S = sn(u, k), C = cn(u, k), D = dn(u, k), E = E(u, k)

Sk = ∂

∂k
sn(u, k), Ck = ∂

∂k
cn(u, k), Dk = ∂

∂k
dn(u, k), Ek = ∂

∂k
E(u, k)

we differentiate (2.9) with respect to k and find

SkS + CkC = 0, DkD + kS2 + k2SkS = 0. (A.1)

Differentiating Sk with respect to u, and using the above we get

∂

∂u
Sk = CkD +DkC = −SkS

C
D − kS2 + k2SkS

D
C = −SkS

CD
(D2 + k2C2)− kS2C

D
, (A.2)

and by rearranging and multiplying by 1/(CD), we obtain
∂Sk
∂u

CD
+ SkS

(CD)2 (D2 + k2C2) = −kS
2

D2 .

We note that the left-hand side is equal to ∂
∂u (Sk/(CD)), so we integrate and get

Sk
CD

= u

k
+ k

k′2
SC

D
− 1
kk′2

E + f(k)

which may be verified by differentiation and use of (2.9). Here the function f is the “constant”
of integration, but this turns out to be identically zero: for u = 0 we get

f(k) = Sk
∣∣
u=0 = ∂

∂k sn(0, k) = 0,

since sn(0, k) = 0 for all k.
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Finally, we arrive at
Sk = u

k
CD + k

k′2
SC2 − 1

kk′2
ECD,

and we can find Ck and Dk from (A.1)

Ck = −u
k
SD − k

k′2
S2C + 1

kk′2
ESD,

Dk = k

k′2
ESC − k

k′2
S2D − ukSC

We observe that the expressions we have found for the k-derivatives are not valid for k ∈ {0, 1}.
Setting k = 1 in (A.2) we get

∂Sk
∂u

∣∣
k=1 = −2 tanh uSk|k=1 − tanh2 u,

which is a linear first order equation with the solution

Sk|k=1 = −1
2 (sinh u cosh u− u) sech2 u,

where, as before, the constant of integration is zero. For k = 0 we get the homogeneous equation
∂Sk/∂u = − tan(u)Sk and since, again, the constant of integration is zero, we find Sk|k=0 = 0.
As above we can use (A.1) to find Ck and Dk, which are

Ck|k=0 = 0, Ck|k=1 = 1
2 (sinh u cosh u− u) tanh u sech u,

Dk|k=0 = 0, Dk|k=1 = −1
2 (sinh u cosh u+ u) tanh u sech u.

The k-derivative of E and K can be found by differentiating under the integral

Ek =
∫ u

0

∂

∂k

(
D2
)

dt = 2
∫ u

0
DkD dt

dK
dk =

∫ π
2

0

∂

∂k

( 1√
1− k2 sin2 t

)
dt =

∫ π
2

0

k sin2 t(
1− k2 sin2 t

)3/2 dt

These are easy to compute for k ∈ {0, 1} and we refer to [Law89] for the details of deriving the
general formulas

Ek|k=0 = 2
∫ u

0
0 dt = 0,

Ek|k=1 = −
∫ u

0
(sinh t cosh t+ t) tanh t sech2 tdt = −1

2

(
u+ u tanh2 u− tanh u

)
,

Ek = k

k′2
SCD − ukS2 − k

k′2
EC2, k /∈ {0, 1},

dK
dk
∣∣
k=0 =

∫ π
2

0
0 dt = 0,

dK
dk
∣∣
k=1 =

∫ π
2

0

sin2 t

| cos3 t|
dt =∞,

dK
dk = E(K(k), k)

kk′2
− K(k)

k
, k /∈ {0, 1}.

It is no surprise that the last integral diverges, since K → ∞ as k → 1. We remark that the
general expressions found in this section, are indeed valid for all k ∈ R+ \ {0, 1}.
The second derivatives with respect to k can be found from straightforward (though tedious)
calculations using the above formulas. For k ∈ {0, 1}, analogously to the above, one can differ-
entiate ∂Sk/∂u and (A.1) to obtain a linear equation for ∂Sk/∂k.
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Derivatives of the parameterized elastica

We now consider the basic elastica ζ defined in Section 2.3 and we will use the shorthand notation

S = sn(s, k), C = cn(s, k), D = dn(s, k), E = E(s, k).

We have
ζ(s, k) =

(
2E − s

2k(1− C)

)
.

The derivatives with respect to s follow from the definitions of the elliptic functions.

∂

∂s
ζ(s, k) =

(
2D2 − 1
2kSD

)
,

∂2

∂s2 ζ(s, k) = 2kC
(
−2kSD
D2 − k2S2

)
= 2kC

(
−2kSD
2D2 − 1

)
.

We have found the k-derivatives of S, C, D and E above and from these, with repeated use of
(2.9), one can find

∂

∂k
ζ(s, k) = 2

k′2

(
k
(
SCD − EC2 − sk′2S2)

k′2 + C(k2 −D2)− SD(E − sk′2)

)
,

∂2

∂s∂k
ζ(s, k) = 2

k′2

(
SD − C(E − sk′2)

)(−2kSD
2D2 − 1

)
,

∂2

∂k2 ζ(s, k) = 2
k′4

(
2SDC

(
D2 − k2E2 + k′2

(
s2k2 − (E − s)2 − 1

2

))
1
k

(
(1− 2k2S2)(E − s)(2sk2 + E − s)C +DS(sk′2 − E)(4k2C2 + k′2)

))

+ 2
k′4

(
(E − s)(C2 +D2 − 4C2D2) + 2sk2(2S2 − 1)D2 − sk′2
−skk′2DS + s2k3C + kCS2(2− 2s2k4 − 2k2S2 + k2)

)

Again, we find expressions that are not valid for k = 1. However, the relevant values can easily
be found from those for the elliptic functions. We have

∂

∂k
ζ(s, 1) =

(
2∂E∂k

2(1− C)− 2k ∂C∂k

) ∣∣∣∣
k=1

=
(

tanh s− s tanh2 s− s
2 (1− sech s)− (sinh s cosh s− s) tanh s sech s

)
∂2

∂s∂k
ζ(s, 1) =

(
4D ∂D

∂k

2SD + 2kD ∂S
∂k + 2kS ∂D∂k

)
=
(

−2 (sinh s cosh s+ s) tanh s sech2 s

2s sech3 s+ 2 tanh s sech s− sinh s− s sech s

)
∂2

∂k2 ζ(s, 1) =
(

2∂2E
∂k2

−4∂C∂k − 2k ∂2C
∂k2

) ∣∣∣∣
k=1

= 1
4

(
2 sinh s cosh s− 4s− tanh s− 4s2 tanh s sech2 s+ 3s sech s

−4s sinh s− cosh s+ (1− 2s2) sech s+ 3s tanh s sech s+ 4s2 sech3 s

)

The derivatives of γ(k,s0,`,S,φ,x̂,ŷ) with respect to the control parameters can be found by straight-
forward calculations using the above.
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Derivatives of the angle function

Recall that the angle function for the basic elastica is

θ(s, k) =
{

2 arcsin (k sn(s, k)) , k ≤ 1,
2 am

(
ks, 1

k

)
, k > 1.

We have not defined an extension of am for k > 1, and we will not need this, but we will need
the k-derivative of am.

Proposition A.1. The k-derivative of am is

∂ am
∂k

(s, k) = s

k
dn(s, k) + k

k′2
sn(s, k) cn(s, k)− 1

kk′2
E(s, k) dn(s, k).

We postpone the proof since our main objective is finding the derivatives of θ.

For k < 1 we immediately find the derivatives

∂

∂s
θ(s, k) = 2k cn(s, k)

∂

∂k
θ(s, k) = 2

sn(s, k) + k ∂ sn
∂k (s, k)

dn(s, k) = 2
k′2

(
sn(s, k) dn(s, k) + cn(s, k)

(
sk′2 − E(s, k)

))
,

from which we also get

∂

∂s
θ(s, 1) = 2 sech s

∂

∂k
θ(s, 1) = 2

sn(s, 1) + ∂ sn
∂k (s, 1)

dn(s, 1) = sinh s+ s sech s

For k > 1 we have
∂

∂s
θ(s, k) = 2k dn

(
ks, 1

k

)
= 2k cn(s, k),

where we have used the analytic extension of dn, and we observe that this is the same expression
as for k < 1. For the k-derivative, we have

∂θ

∂k
(s, k) = 2s dn

(
ks, 1

k

)
− 2

k2
∂ am
∂k

(
ks, 1

k

)
= 2s dn

(
ks, 1

k

)
− 2

k2

k2sdn
(
ks, 1

k

)
−

sn
(
ks, 1

k

)
cn
(
ks, 1

k

)
k(1− k−2) +

kE
(
ks, 1

k

)
dn
(
ks, 1

k

)
1− k−2


= 2
k(k2 − 1) sn

(
ks, 1

k

)
cn
(
ks, 1

k

)
− 2k
k2 − 1E

(
ks, 1

k

)
dn
(
ks, 1

k

)
= 2
k′2

(
sn(s, k) dn(s, k)− (E(s, k)− sk′2) cn(s, k)

)
,

and again we get the same expression as for k < 1.

The derivatives of the general angle function θ(k,s0,`,φ) with respect to the control parameters
can be found using the above.

Proof of Proposition A.1. For k0 ∈]0, 1[ set K0 = K(k0) and let s ∈ [−K0,K0]. We have

am(s, k0) = arcsin (sn(s, k0)) ,
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so

∂ am
∂k

(s, k0) =
∂ sn
∂k (s, k0)√

1− sn2(s, k0)
=

∂ sn
∂k (s, k0)
cn(s, k0)

= s

k0
dn(s, k0) + k0

k′20
sn(s, k0) cn(s, k0)− 1

k0k′20
E(s, k0) dn(s, k0),

and we shall argue that this formula also holds if s /∈ [−K0,K0].
Let s ∈ R and pick t ∈ [−K0,K0] and n ∈ Z such that s = t+ 2nK0. Let A denote the function
k 7→ am(t+ 2nK(k), k). On the one hand we have

dA
dk = ∂ am

∂u
(t+ 2nK(k), k) d

dk (t+ 2nK(k)) + ∂ am
∂k

(t+ 2nK(k), k)

= 2n dn(t+ 2nK(k), k)dK
dk + ∂ am

∂k
(t+ 2nK(k), k).

Recalling from Section 2.2 that am(u+ 2nK(k), k) = am(u, k) + nπ, we find on the other hand
that

dA
dk = ∂ am

∂k
(t, k),

so
∂ am
∂k

(t+ 2nK(k), k) = ∂ am
∂k

(t, k)− 2n dn(t+ 2nK(k), k)dK
dk .

In particular, for k = k0 we get

∂ am
∂k

(s, k0) = ∂ am
∂k

(t, k0)− 2n dn(s, k0)dK
dk (k0)

Now, since t ∈ [−K0,K0], we have

∂ am
∂k

(t, k0) = t

k0
dn(t, k0) + k0

k′20
sn(t, k0) cn(t, k0)− 1

k0k′20
E(t, k0) dn(t, k0)

=s− 2nK0
k0

dn(s, k0) + k0
k′20

sn(s, k0) cn(s, k0)− dn(s, k0)
k0k′20

E(s− 2nK0, k0)

= s

k0
dn(s, k0) + k0

k′20
sn(s, k0) cn(s, k0)− dn(s, k0)

k0k′20
E(s, k0)

+ 2n
k0

(
E(K0, k0)

k′20
−K0

)
dn(s, k0),

where we have used that E(u − 2nK) = E(u) − 2nE(K), and since the last term is exactly
2n dn(s, k0)dK

dk
∣∣
k=k0

, we conclude that

∂ am
∂k

(s, k0) = s

k 0
dn(s, k0) + k0

k′20
sn(s, k0) cn(s, k0)− 1

k0k′20
E(s, k0) dn(s, k0).
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Appendix B

Proof of the addition formulas

Here we prove the addition formulas for the elliptic functions as stated in Section 2.2. The
modulus k is fixed. We write Su, Cu, Du for sn(u), cn(u), dn(u), respectively, and similarly for
v, so the addition formulas are

sn(u+ v) = SuCvDv + SvCuDu

1− k2S2
uS

2
v

cn(u+ v) = CuCv − SuSvDuDv

1− k2S2
uS

2
v

(B.1)

dn(u+ v) = DuDv − k2SuSvCuCv
1− k2S2

uS
2
v

.

Denoting the right-hand sides of (B.1) by RS , RC , RD, we have

dRS
du =CuDuCvDv − SvSuD2

u − k2SvSuC
2
u

1− k2S2
uS

2
v

+ 2k2SuCuDuS
2
v(SuCvDv + SvCuDu)

(1− k2S2
uS

2
v)2

=k2CuCvDuDvS
2
uS

2
v + CuCvDuDv

(1− k2S2
uS

2
v)2

+ k2D2
uS

3
uS

3
v −D2

uSuSv + 2k2C2
uD

2
uSuS

3
v − k2C2

uSuSv + k4C2
uS

3
uS

3
v

(1− k2S2
uS

2
v)2

=k2CuCvDuDvS
2
uS

2
v + CuCvDuDv

(1− k2S2
uS

2
v)2

+ D2
uSuSv

(
k2S2

uS
2
v − 1 + k2C2

uS
2
v

)
+ k2C2

uSuSv
(
D2
uS

2
v − 1 + k2S2

uS
2
v

)
(1− k2S2

uS
2
v)2 .

By use of (2.9) we find

k2S2
uS

2
v − 1 + k2C2

uS
2
v = k2S2

v − 1 = −D2
v ,

D2
uS

2
v − 1 + k2S2

uS
2
v = S2

v − 1 = −C2
v ,

so we get

dRS
du =k2CuCvDuDvS

2
uS

2
v + CuCvDuDv −D2

uD
2
vSuSv − k2C2

uC
2
vSuSv

(1− k2S2
uS

2
v)2 .

We now note that this is equal to RCRD. Similarly one can show that

dRC
du = −RSRD,

dRD
du = −k2RSRC .
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From the definition of the elliptic functions we have

d sn(u+ v)
du = cn(u+ v) dn(u+ v),

d cn(u+ v)
du = − sn(u+ v) dn(u+ v),

d dn(u+ v)
du = −k2 sn(u+ v) cn(u+ v),

so the left-hand sides of (B.1) satisfy the same system of differential equations (as functions of
u) as the right-hand sides. If the two sets of functions agree at a point, they must be the same.
We compute the right-hand sides for u = 0, recalling that Su(0) = 0, Cu(0) = Du(0) = 1, so we
get

RS |u=0 = Sv, RS |u=0 = Cv, RS |u=0 = Dv,

and observe that these are the same as the left-hand sides for u = 0, and we are done.
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SciPy bug report

The discovery of errors in SciPy’s elliptic functions led me to post the following bug report on
GitHub1 on 24 August, 2014. Within a few hours another user confirmed the bug, but there
have been no further comments.

scipy.special.ellipj dn wrong values at quarter period

I’m using Numpy version 1.8.1, SciPy version 0.14.0. At the quarter period of the elliptic
functions I get a wrong value in the third output of ellipj (third output is dn):

from scipy.special import ellipj
from scipy.special import ellipk
ellipj(ellipk(0.5),0.5)[2]

1.0

This results is a discontinuity for dn.

import matplotlib.pyplot as plt
import numpy as np
A=np.linspace(0,2*ellipk(0.5),1001)
plt.plot(A,ellipj(A,0.5)[2])

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Using that dn^2=1-m*sn^2, I find that the correct value is
1https://github.com/scipy/scipy/issues/3904

https://github.com/scipy/scipy/issues/3904
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np.sqrt(1-0.5*ellipj(ellipk(0.5),0.5)[0]**2)
0.70710678118654757

For m-values below 0.6 the output is apparently always 1.0, but for larger m-values it is not so
(the values are still wrong though).

L=np.linspace(0,1,1000)
plt.plot(L,ellipj(ellipk(L),L)[2])
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The correct graph would be

plt.plot(L,np.sqrt(1-L*ellipj(ellipk(L),L)[0]**2))
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