

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Formal Analysis of Graphical Security Models

Aslanyan, Zaruhi; Nielson, Flemming; Probst, Christian W.

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Aslanyan, Z., Nielson, F., & Probst, C. W. (2017). Formal Analysis of Graphical Security Models. Kgs. Lyngby:
Technical University of Denmark (DTU). (DTU Compute PHD-2016; No. 421).

http://orbit.dtu.dk/en/publications/formal-analysis-of-graphical-security-models(38c22eae-f164-4a45-a336-4722169facbb).html

Formal Analysis of Graphical
Security Models

Zaruhi Aslanyan

Kongens Lyngby 2016
PhD-2016-421

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

May not music be described
as the mathematics of the
sense, mathematics as music
of the reason? The musician
feels mathematics, the
mathematician thinks music:
music the dream, mathematics
the working life.

James Joseph Sylvester

Summary

The increasing usage of computer-based systems in almost every aspect of our
daily life makes more and more dangerous the threat posed by potential at-
tackers, and more and more rewarding a successful attack. Moreover, the com-
plexity of these systems is also increasing, including physical devices, software
components and human actors interacting with each other to form so-called
socio-technical systems. The importance of socio-technical systems to modern
societies requires verifying their security properties formally, while their inherent
complexity makes manual analyses impracticable.

Graphical models for security offer an unrivalled opportunity to describe
socio-technical systems, for they allow to represent different aspects like human
behaviour, computation and physical phenomena in an abstract yet uniform
manner. Moreover, these models can be assigned a formal semantics, thereby
allowing formal verification of their properties. Finally, their appealing graphical
notations enable to communicate security concerns in an understandable way
also to non-experts, often in charge of the decision making.

This dissertation argues that automated techniques can be developed on
graphical security models to evaluate qualitative and quantitative security prop-
erties of socio-technical systems and to synthesise optimal attack and defence
strategies.

In support to this claim we develop analysis techniques for widely-used
graphical security models such as attack trees and attack-defence trees. Our
analyses cope with the optimisation of multiple parameters of an attack and
defence scenario. Improving on the literature, in case of conflicting parame-
ters such as probability and cost we compute the set of optimal solutions in
terms of Pareto efficiency. Moreover, we investigate the relation between attack
and attack-defence trees and stochastic models in a verification-oriented setting,
with the aim of levering the great many mature tools and analysis techniques
developed for instance in the area of games.

ii

Resumè

Den stigende brug af computerbaserede systemer i næsten alle aspekter af vo-
res daglige liv gør truslen fra potentielle angribere mere og mere farlig, og et
vellykket angreb stadig mere givende. Desuden er kompleksiteten af disse sy-
stemer også stigende, herunder de fysiske enheder, softwarekomponenterne og
menneskene der interagerer med systemerne i såkaldte socio-tekniske systemer.
Vigtigheden af socio-tekniske systemer i det moderne samfund gør at der kræves
formel verifikation af deres sikkerhedsegenskaber, mens deres iboende komplek-
sitet gør manuel analyse umulig.

Grafiske modeller for sikkerhed tilbyder en uovertruffen mulighed for at be-
skrive socio-tekniske systemer. De giver mulighed for at repræsentere forskellige
aspekter som menneskelig opførsel, beregning og fysiske fænomener på en ab-
strakt men stadig ensartet måde. Desuden kan disse modeller tildeles en formel
semantik, og derved muligøre formel verifikation af deres egenskaber. Endelig
gør deres intuitive grafiske notationer det muligt at kommunikere sikkerheds-
problemer på en forståelig måde, også til ikke-eksperter der ofte er ansvarlige
for beslutningsprocessen.

Denne afhandling argumenterer for, at der kan udvikles automatiserede tek-
nikker på grafiske sikkerhedsmodeller til at evaluere kvalitative og kvantitative
sikkerheds egenskaber af socio-tekniske systemer og til at syntetisere optimale
angrebs- og forsvarsstrategier.

For at understøtte denne indsigt har vi udviklet analyseteknikker til udbred-
te grafiske sikkerhedsmodeller, såsom angrebstræer og kombinerede angrebs-
og forsvarstræer. Vores analyse håndterer optimering af flere parametre af et
angrebs- og forsvarsscenario. I tilfælde af modstridende parametre som sandsyn-
lighed og omkostninger, forbedrer vi resultaterne i den eksisterende litteratur, da
vi beregner det optimale sæt af løsninger i form af Pareto effektivitet. Desuden
undersøger vi forholdet mellem angrebstræer og kombinerede angrebs- og for-
svarstræer og stokastiske modeller i en verifikations-orienteret ramme, med det
formål at udnytte de mange veludviklede værktøjer og teknikker fra stokastiske

iv

spil.

Preface

This thesis was prepared at DTU Compute, the Department of Applied Mathe-
matics and Computer Science of the Technical University of Denmark, in partial
fulfilment of the requirements for acquiring the Ph.D. degree in Computer Sci-
ence.

The Ph.D. study has been carried out under the supervision of Professor
Flemming Nielson and Professor Christian W. Probst in the period from July
2013 to June 2016. Part of the research leading to these results has received
funding from the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 318003 (TRESPASS). This publication reflects
only the authors’ views and the Union is not liable for any use that may be made
of the information contained herein.

Most of the work behind this dissertation has been carried out independently
and I take full responsibility for its content. A substantial part of the scientific
work reported in this thesis is based on joint work with my supervisors [AN14,
AN15, AINP15] and on a collaboration with Dr. David Parker [ANP16] (Uni-
versity of Birmingham, United Kingdom). The relevance of those publications
to this thesis shall be clarified in each chapter.

Beyond what mere bibliography tells, the work presented in this dissertation
greatly benefited from a prolonged and fruitful interaction with a number of
excellent researchers affiliated with the Technical University of Denmark, Aal-
borg University, University of Luxembourg, University of Hamburg, and the
University of Twente, all involved in the TREsPASS research project. Similarly,
during my study at the Technical University of Denmark I had the opportunity
to discuss with and learn from a great many exquisite researchers that visited
the Technical University of Denmark.

Kongens Lyngby, June 2016
Zaruhi Aslanyan

vi

Acknowledgements

First and foremost, I would like to thank my supervisors Flemming Nielson and
Christian W. Probst, whose expertise, enthusiasm and support made this work
possible. I am truly grateful for their guidance and for engaging in countless
fruitful discussions that taught me more than just research. It is impossible to
express my gratitude to them.

I should like to thank David Parker, who hosted me in the Computer Se-
curity group at Birmingham University. His passion and ever-friendly nature
facilitated the practical side of my stay, and his knowledge and curiosity have
been key to bring home one of the results in this thesis. It was a pleasure
working with him.

I am grateful to the members of my thesis assessment committee, Alberto
Lluch Lafuente, Rene Rydhof Hansen, and Axel Legay for accepting to read and
review this manuscript, for their valuable comments on the dissertation as well
as during the examination.

I would like to thank current and former members of the Language-Based
Technology section (now Formal Methods for Safe and Secure Systems) at DTU.
Lijun for supervising me during my first period at DTU. Ender and Kebin for
being senior examples for my studies. Marieta and Alessandro for colouring my
working days and for being always there with any kind of supplies, funny jokes
and popcorn included. Marieta and Jose for being unforgettable office mates.
Laust and Lars for pretending a genuine interest in my work, always coming up
with comments on my presentations that would have filled hundreds of slides,
and of course for maintaining the coffee machine. Cathrin, Hanne, Sebastian,
Jan, Omar, Ximeng, Hugo, Michal, Nataliya, Andreas for creating a motivating
and friendly working environment which allowed both for scientific discussions
and for social activities.

My most affectionate thoughts go to my parents, my sister and my aunt for
their love, support and encouragement. They did not understand my work but

viii

they shared the pain and joy together with me. Finally, I am forever indebted to
my husband Roberto for his full support, invaluable discussions, endless patient.
This work is dedicated to him, without whom this dissertation would have taken
longer time and would have been thinner.

Contents

Summary i

Resumè iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Challenge . 1
1.2 Contribution . 3
1.3 Synopsis . 5

I Evaluation of Attack and Defence Scenarios 7

2 Preliminaries : Graphical Models for Security Analyses 11
2.1 First Graphical Models . 12
2.2 Attack Modelling Techniques . 12

2.2.1 Attack Trees . 12
2.2.2 Extensions of Attack Trees 14
2.2.3 Multi-Parameter Attack Trees 15

2.3 Attack and Defence Modelling Techniques 16
2.3.1 Defence Trees . 16
2.3.2 Protection Trees . 17
2.3.3 Attack Countermeasure Trees 17
2.3.4 Attack-Response Trees . 17
2.3.5 Attack-Defence Trees . 18

2.4 Pareto Efficiency . 19

x CONTENTS

3 Pareto Efficient Solutions of Attack Trees 21
3.1 Formal Model of Attack Trees . 22

3.1.1 Attack Trees . 22
3.1.2 Semantics in the Boolean Case 24
3.1.3 Semantics in the Probabilistic Case 27

3.2 Attack Trees with Cost . 29
3.2.1 Cost in the Boolean Case 30
3.2.2 Cost in the Probabilistic Case 33

3.3 Attack Trees with Multiple Costs 36
3.4 Attack Tree Evaluator Tool . 38
3.5 Concluding Remarks . 40

4 Pareto Efficient Solutions of Attack-Defence Trees 43
4.1 Formal Model of Attack-Defence Trees 44

4.1.1 Attack-Defence Trees . 44
4.1.2 Semantics in the Boolean Case 46
4.1.3 Semantics in the Probabilistic Case 50

4.2 Attack-Defence Trees with Cost 52
4.2.1 Cost in the Boolean Case 52
4.2.2 Cost in the Probabilistic Case 56

4.3 Attack-Defence Trees with Multiple Costs 58
4.4 Concluding Remarks . 60

II From Attack-Defence Trees to Security Games 63

5 Preliminaries: Probabilistic Models 67
5.1 Probabilistic Models . 67

5.1.1 Discrete Time Markov Chains 68
5.1.2 Stochastic Two-Player Games 68

5.2 Probabilistic Model Checking . 70
5.2.1 PCTL and Model Checking DTMCs 70
5.2.2 rPATL and Model Checking Games 72

5.3 PRISM and PRISM-Games . 74

6 Quantitative Verification and Synthesis of Attack-Defence Sce-
narios 75
6.1 Attack-Defence Trees with Sequential Operators 77

6.1.1 Attack-Defence Trees . 77
6.1.2 Strategies as Decision Trees 79
6.1.3 Semantics of Attack-Defence Trees 82

6.2 Game-based Modelling and Verification 85
6.2.1 From Attack-Defence Trees to Stochastic Games 86
6.2.2 Probabilistic Model Checking Stochastic Games 89

CONTENTS xi

6.2.3 Synthesising Strategies as Decision Trees 92
6.3 Extension with Multi-Objective Properties 95
6.4 Implementation . 97
6.5 Concluding Remarks . 100

III The Logic erPCTL for Attack Trees 103

7 Preliminaries : Markov Decision Processes 107
7.1 Markov Decision Processes . 108
7.2 Model Checking MDPs . 110

7.2.1 rPCTL . 110
7.2.2 Model Checking rPCTL 113

7.3 Reward Operators for rPCTL . 116
7.4 Verification of Attack Trees though DTMCs 117

7.4.1 Construction of DTMCs 117
7.4.2 Evaluation of DTMCs . 122

8 Evaluation of Attack Trees through MDPs 125
8.1 From Attack Trees to Markov Decision Processes 126
8.2 The Logic erPCTL for Attack Trees 129

8.2.1 Probabilistic Operator with Cost Bound PJ(ψ | I) 133
8.2.2 Cost operator CI(ψ) . 135

8.3 Model Checking erPCTL . 137
8.3.1 Model Checking the Operator PJ(ψ | I) 137
8.3.2 Model Checking the Operator CI(ψ) 143

8.4 Evaluation of Attack Trees with erPCTL 145
8.5 Concluding Remarks . 147

9 Conclusion 149
9.1 Contribution . 150
9.2 Future Directions . 151

A Soundness of the Algorithmic Evaluation for Attack Trees 153
A.1 Boolean Case . 153
A.2 Probabilistic Case . 156
A.3 Boolean Case with Cost . 159
A.4 Probabilistic Case with Cost . 164
A.5 Probabilistic Case with Multiple Costs 170

B Detailed Evaluation of Attack Trees 173
B.1 Probability Evaluation of Attack Trees 174
B.2 Cost Evaluation of Attack Trees 175

xii CONTENTS

C Soundness of the Algorithmic Evaluation for Attack-Defence
Trees 177
C.1 Boolean Case . 177
C.2 Probabilistic Case . 180
C.3 Boolean Case with Cost . 183
C.4 Probabilistic Case with Cost . 188
C.5 Probabilistic Case with Multiple Costs 193

D Detailed Evaluation of Attack-Defence Trees 195
D.1 Probability Evaluation of Attack-Defence Trees 196
D.2 Cost Evaluation of Attack-Defence Trees 197

Bibliography 199

List of Tables

3.1 The syntax of an attack tree. 23
3.2 The Boolean semantic evaluation of an attack tree. 26
3.3 The Boolean algorithmic evaluation of an attack tree. 27
3.4 The probabilistic semantic evaluation of an attack tree. 28
3.5 The probabilistic algorithmic evaluation of an attack-defence tree. 29
3.6 The values of probability and cost for the basic actions of the tree

t, displayed in Figure 3.1 . 30
3.7 The Boolean semantic evaluation of an attack tree with cost. . . 31
3.8 The Boolean algorithmic evaluation of an attack tree with cost. . 32
3.9 The probabilistic semantic evaluation of an attack tree with cost. 34
3.10 The probabilistic algorithmic evaluation of an attack tree with cost. 35
3.11 The probabilistic semantic evaluation of an attack tree with mul-

tiple cost. 37
3.12 The probabilistic algorithmic evaluation of an attack tree with

multiple cost. 38

4.1 The syntax of attack-defence trees and the type system for defin-
ing well-formed trees. 45

4.2 The Boolean semantic evaluation of an attack-defence tree. . . . 48
4.3 The Boolean algorithmic evaluation of an attack-defence tree. . . 49
4.4 The probabilistic semantic evaluation of an attack-defence tree. . 51
4.5 The probabilistic algorithmic evaluation of an attack-defence tree. 52
4.6 The values of probability and cost for the basic actions of the

example. 53
4.7 The Boolean semantic evaluation of an attack-defence tree with

cost. 54
4.8 The Boolean algorithmic evaluation of an attack-defence tree with

cost. 55

xiv LIST OF TABLES

4.9 The probabilistic semantic evaluation of an attack-defence tree
with cost. 57

4.10 The probabilistic algorithmic evaluation of an attack-defence tree
with cost. 58

4.11 The probabilistic semantic evaluation of a tree with multiple cost. 60
4.12 The probabilistic algorithmic evaluation of a tree with multiple

cost. 61

6.1 The syntax of attack-defence trees and the type system for defin-
ing well-formed trees. 77

6.2 The syntax of a decision tree. 80
6.3 The function build describing the semantics of an attack-defence

tree as a DTMC. 84
6.4 Probabilities and costs for the basic actions in the example. . . . 86
6.5 generateAD: construction of attacker decision tree from STG and

attacker player strategy. 93
6.6 generateDD: construction of defender decision tree from STG and

defender player strategy. 94

7.1 The values of probability for the basic actions of the example. . . 119

8.1 The construction from an attack tree t to an MDP. 127
8.2 Probabilities and costs for the basic actions in the example. . . . 129
8.3 Computation of probabilities with upper cost bound, Prs(φ1Uφ2 |

[0, c]). 139
8.4 Computation of probabilities with lower cost bound, Prs(φ1Uφ2 |

[c,∞]). 141
8.5 Computation of probabilities with upper and lower bounds, Prs(φ1Uφ2 |

[c′, c′′]). 142

Chapter 1

Introduction

Life was simple before World War II.
After that, we had systems.

Grace Hopper [Sch04]

1.1 Challenge

The technological evolution of computers from the early 1950s has impacted
their internal structure and organisation, but even more the way and the extent
they interact with each other to form computer networks. Distributed com-
puting has found a great many applications and governs our daily life, being
used in various areas such as education, financial systems, entertainment, and
counting. Beyond the Internet, a further increase in complexity is witnessed in
recent developments where classical IT networks are coupled with devices in-
teracting with the physical environment, giving rise to so-called Cyber-Physical
Systems, exploited for example in the domains of traffic control, health care,
and environmental monitoring.

The pervasive role of computers in our life includes supporting processes that
manage private information and public-concern infrastructure, from personal
correspondence via e-mail and bank accounts to military equipment. In turn,
such a wide application is increasing the number of people interested in attacking
such systems, thereby making their security a chief concern both for private
citizens and public institutions. These circumstances have motivated an ever-

2 Introduction

growing interest in the verification of security properties in the last couple of
decades. Moreover, due to the size of the systems in scope, any practicable
verification technique must be automated in some respect.

Unsurprisingly, the challenges of programming computer behaviour have in-
creased with the shift in paradigm from centralised systems to distributed net-
works. In a nutshell, the problem consists in ensuring that the processes exe-
cuted by the system establish the desired outcome, that is, the execution fulfils
a specification enjoying given properties. Typical properties include functional
properties and non-functional properties such as performance, safety, and secu-
rity. This is the essence of the problem of system verification: given a formal
model of a system and a property of interest, establishing whether or not the
model enjoys the property.

To make the picture even more intricate, we shall remember that computer
systems do not operate in isolation. They are part of the organisation consisting
in the combination of the environment they are deployed in, its physical infras-
tructure, and human actors, resulting in a whole referred to as a socio-technical
organisation. When it comes to security, all these layers concur to increase the
attack surface. In particular, human behaviour proves difficult to formalise and
therefore to analyse, while it is clear that a system proven secure without con-
sidering the staff who operates it gives little guarantees of proving secure while
in operation. Abstracting away the human component in the model does not
eradicate from the real world the threats connected to human behaviour.

The inherent complexity of socio-technical organisations impacts not only
the modelling, with the need of formalising human behaviour, but also the ver-
ification concerns, pushing for moving from qualitative to quantitative queries.
The cases where a complex system is error-free and its correctness can be un-
conditionally guaranteed are rare, if there exists one at all. Nonetheless, the
answer that a system is insecure does not reveal much information. It is much
more informative to investigate to what extent the system is secure, in terms of
likelihood of an attack, cost to a given attacker profile, and so on.

Moving from qualitative to quantitative properties, however, demands to rea-
son carefully about the objectives a given property formalises. Single-objective
queries are simple to understand and are solved by computing the best solu-
tion of a given system of constraints. However, in many real-life scenarios the
investigation of a single objective is rarely of interest, as conflicting constraints
and drivers typically arise. The saying that “security comes at a price” hints
at the core of the problem. In queries with multiple objectives, in particular
with conflicting objectives, there is no best solution but rather a set of efficient
solutions, known as Pareto frontier.

One chief example of conflicting objectives is indeed a pillar of the problem
of security, that is, the struggle between attackers and defenders. The relevance
of some socio-technical systems to a great many stakeholders led to equip them
with security mechanisms to counter a number known threats. Hence, a compre-
hensive framework should allow to model the competing behaviour of attackers

1.2 Contribution 3

and defenders as part of the system, and should support natively the analysis
of their conflicting objectives.

In order to tame the complexity of a socio-technical organisation, graphical
models prove useful tools as they enable to reason over a visual representation
of a problem. They allow to explore the scenario of interest in an intuitive way,
and therefore they are suitable to convey information to non-experts, often at
the top of the decision-making chain. In the realm of security, tools like attack
trees and attack-defence trees have found industrial application, where quanti-
tative reasoning plays a crucial role. They allow to model in an abstract yet
effective way human behaviour, as well as technical threats of the organisation.
Moreover, representing interaction between the attacker and the defender, at-
tack trees and attack-defence trees can be seen as one- and two-player games,
respectively. While there is a growing interest in such graphical models for se-
curity, this is a young research area if compared to computer security construed
as protocol verification, cryptography, and the like.

The thesis of this dissertation is that graphical models for security of socio-
technical organisations can be assigned formal syntax and semantics supporting
the development of automated verification techniques for the analysis of secu-
rity properties, both from a qualitative and a quantitative perspective. Such
formal models, analyses, and properties encompass both attacker and defender
behaviour, and can be relied upon to synthesise optimal strategies, thereby draw-
ing attention to vulnerable fragments of the overall system.

1.2 Contribution

In order to tackle the challenge of formal verification of graphical models for
security, we study a number of verification techniques on attack and attack-
defence trees.

Attack trees are one of the most popular graphical security models. They
are an effective tool for identifying and reasoning about security threats of an
attack scenario in a graphical manner, showing how an overall goal (attack)
can be described as a propositional combination of sub-goals (basic actions).
Attack trees combine visual features with formal semantics, which makes them
appealing both to scientists, security professionals, and non-experts. Moreover,
further extensions of attack trees for capturing the defender’s behaviour have
been explored. Attack-defence trees allow to study attack-defence scenarios and
represent the possible attacker actions and the corresponding countermeasures
a defender can undertake.

A scenario where an attacker bribes an employee of an organisation is de-
scribed by the attack-defence tree presented in Figure 1.1. The root represents
the overall goal of the attacker. The leaves represent basic actions that the
attacker or the defender can perform to achieve his/her goal, represented by

4 Introduction

∧
bribe

identify
subject

bribe
subject ∼

∧
thwart

employees

training
for thwart

threaten
to fire

employees

Figure 1.1: An attack-defence tree for bribing an employee.

round or square boxes, respectively. The internal nodes show how these actions
can be combined in order to achieve the overall goal.

The analysis of attack and attack-defence trees consists in the evaluation of
the scenario they depict from a qualitative or a quantitative perspective. In
a qualitative setting, we would enquire whether the overall goal described by
the tree is achievable, e.g., whether there exists an attack in the scenario. In
a quantitative setting, security attributes are associated with the basic actions
(leaves), providing the basics for various types of quantitative analyses, e.g., the
likelihood and cost of the attacks in the scenario.

We start this dissertation with a study of attack and attack-defence trees,
represented with a simple context-free grammar. As many real-life scenarios
require multiple attributes for security analyses, we augment tree models with
multiple attributes for the basic actions, like probability and cost, and present
evaluation techniques that address multi-parameter optimisation, improving on
the existing literature. Moreover, in case of conflicting objectives our techniques
compute the set of optimal solutions, defined in terms of Pareto efficiency. We
define two evaluation techniques; a natural but expensive semantic evaluation,
and an algorithmic evaluation which enjoys a dramatic improvement in com-
plexity. The evaluations are defined as formal semantics for trees represented
in our syntax. We finally show the equivalence of two evaluations under certain
conditions.

In the second part of this dissertation, we continue with a deeper treatment
of attack-defence scenarios, building on existing results that show a connection
between attack-defence trees and two-player games. Indeed, attack-defence trees
can be seen as interactions between an attacker and a defender who compete
in order to achieve conflicting objectives. While existing literature explores the
theoretical connection between these two concepts, we investigate the applica-
bility of game verification results to attack-defence scenarios. This opens up to
take advantage of a mature line of research including the support of a number
of tools for automated verification of games.

In particular, we translate attack-defence trees into Stochastic Two-player

1.3 Synopsis 5

Games (STGs), and evaluate their security properties by means of PRISM-
games, a state-of-the-art model checker for stochastic games. The framework
we develop formalises the notion of strategy for a player as a decision tree with an
appealing graphical notation, which recalls the distinguishing trait of graphical
models.

In our investigation we identified a limitation in the logics used to express
security properties in one- and two-player games. In particular, Probabilistic
Computation Tree Logic with Rewards (rPCTL) and Probabilistic Alternating-
Time Temporal Logic (rPATL) do not evaluate the cost of an execution without
considering the probability, i.e., the exact cost of an execution. Hence, in the
third and last part of this dissertation, we extend rPCTL to overcome such lim-
itation. We investigate both cost-related properties as well as multi-objective
properties concerning probability and exact cost. The extended logic can an-
swer the questions such as “what is the minimum cost of a successful attack?”,
“what is the maximum probability of cheap attacks?”, or “is the cost of attacks
with probability 0.7 within given cost bounds?”. We propose a model checking
algorithm for the new operators we introduce. We carry out these developments
in the simpler setting of attack trees, exploring their connection with Markov
Decision Processes (MDPs).

1.3 Synopsis

In this section, we present the organisation of the dissertation. For each part
that we have presented in Sect. 1.2 we give a brief account of its chapters and
their connection.

Part I: Evaluation of Attack and Defence Scenarios
The first part of the dissertation studies the evaluation of attack trees and
attack-defence trees.

Chapter 2 reviews existing literature on graphical models for analysing
security scenarios, in particular focusing on attack trees and their extension
with countermeasures, attack-defence trees. The chapter discusses the existing
evaluation techniques on tree models and highlights their limitations.

Chapter 3 introduces the formal syntax of attack trees which we use through-
out the dissertation. Focusing on the optimisation of attack trees with multiple
parameters for basic actions, the chapter presents evaluation techniques that
optimise all parameters at once, levering the concept of Pareto efficiency. The
chapter is based on [AN14, AINP15].

Chapter 4 builds on Ch. 3 by extending the model of attack trees with
defender actions and presenting evaluation techniques for attack-defence trees
with multiple parameters. It defines the formal syntax of attack-defence trees by
introducing the novel changing player operator. The chapter is based on [AN15].

6 Introduction

Part II: From Attack-Defence Trees to Security Games
The second part of the dissertation discusses the connection between attack-
defence trees and Stochastic Two-player Games.

Chapter 5 provides background material on probabilistic models, in partic-
ular Discrete-Time Markov Chains and stochastic games, and their evaluation
by means of probabilistic model checking.

Chapter 6 proposes a framework for a formal quantitative evaluation of
attack-defence scenarios with dependent actions, presented by an extended model
of attack-defence trees with sequential operators. The evaluation of attack-
defence trees exploits a game-theoretic approach. The chapter presents the
translation from attack-defence trees to Stochastic Two-player Games, and em-
ploys probabilistic model checking to analyse the model. The chapter is based
on [ANP16].

Part III: The Logic erPCTL for Attack Trees
The third part of the dissertation explores the relation between attack trees and
probabilistic models and presents the extended logic with exact cost operators.

Chapter 7 gives preliminaries on Markov Decision Processes and the proba-
bilistic temporal logic rPCTL for formalising the properties of MDPs. Moreover,
the chapter discusses a model checking algorithm for MDPs. Finally, we present
an evaluation technique for attack trees through Discrete-Time Markov Chains.

Chapter 8 extends rPCTL with new operators allowing to specify cost-
related properties. Investigating the probability and cost properties of an at-
tack scenario, the chapter proposes a quantitative evaluation of attack scenarios
through Markov Decision Processes resorting to model checking techniques. The
chapter is based on [AN17].

Chapter 9 presents some concluding remarks and highlights research direc-
tions that are open for future work.

On the whole, Chs. 2, 5 and 7 give the essential background to position this
dissertation, while the main contribution of the thesis is presented in Chs. 3, 4,
6 and 8.

Part I

Evaluation of Attack and
Defence Scenarios

9

As we have discussed in the introduction, ensuring security of socio-technical
organisations is as challenging as crucial in today’s world. The distributed
nature of these systems increases the attack surface including cyber, physical and
“social” targets. Hence, automated techniques that support the risk assessment
process are required. Finally, the system under investigation and the result of
the analysis must be communicated to end users, who often are not security
experts.

To cope with the challenge of developing automated risk assessment tech-
niques and produce accessible results, various formal graphical models have been
studied. Graphical models prove useful tools for presenting both technical and
social threats and conveying security information to non-experts.

Models like attack trees and attack-defence trees are a promising approach
for representing threat scenarios and possible countermeasures in a concise and
intuitive manner. An attack tree represents attacks in an attack scenario, while
an attack-defence tree describes the interaction between an attacker and a de-
fender in an attack-defence scenario. They are evaluated by assigning param-
eters to the leaves, such as probability or cost of attack or defence. In case of
multiple parameters most analytical methods optimise one parameter at a time,
e.g., maximising the probability or minimising the cost of an attack. Such meth-
ods may lead to sub-optimal solutions when optimising conflicting objectives,
e.g., maximising probability while minimising cost.

In order to tackle this challenge and evaluate complex attack and attack-
defence scenarios with more than one parameter, we devise automated tech-
niques that optimise all parameters at once, thus computing different aspects of
an attack and handling multiple objectives. Moreover, in the case of conflict-
ing objectives our techniques compute the set of all optimal solutions, defined
in terms of Pareto efficiency. The developments are carried out on a new and
general formalism for attack trees and attack-defence trees.

Part I is organised as follows. Ch. 2 reviews existing literature on security
modelling and risk assessment of attack and defence scenarios. Our techniques
for evaluating attack trees with multiple parameters are presented in Ch. 3.
Ch. 4 extends the developments of Ch. 3 to attack-defence trees.

10

Chapter 2
Preliminaries : Graphical

Models for Security
Analyses

Formal graphical models are useful tools for security analysis. They allow to
convey information to non-experts in an intuitive, visual and user-friendly way,
meanwhile attracting the attention of security experts and scientists as they
can be assigned a formal semantics. In turn, formal semantics support the de-
velopment of automated verification techniques for evaluating both qualitative
and quantitative security aspects of a system. Moreover, both the strengths of
graphical security models, that is, visualisation and verification, are supported
by various tools that facilitate risk management and threat assessment of com-
plex attack and defence scenarios.

Different graphical approaches for evaluating the properties of attack and
defence scenarios have been studied. In this work we will focus on the formalisms
based on undirected acyclic graphs, in particular on attack and attack-defence
trees.

A historical overview on existing graph-based approaches for security threats
is given by Piètre-Cambacédès and Boussou [PB10]. Moreover, Kordy et al.
summarise the existing methodologies for analysing attack and defence scenarios
in [KPS14a].

This chapter gives a review of the literature on attack and defence graphical
modelling approaches. We start with a short presentation of the first graphical
approaches in Sect. 2.1. Sect. 2.2 gives a review of the attack modelling tech-

12 Preliminaries : Graphical Models for Security Analyses

niques, while the modelling approaches for attacks and defences are described
in Sect. 2.3. Finally, the concept of Pareto efficiency, heavily exploited in our
developments, is discussed in Sect. 2.4.

2.1 First Graphical Models
The first graphical model aimed at representing graphically the safety and the
reliability of a system was introduced in the 1960’s, leading to so-called fault
trees. Fault trees represent a system failure in terms of the failure of its compo-
nents [VRHG81]. The root of the tree represents the main failure of the system,
while the basic actions (the leaves of the tree) correspond to the component
failure. Fault trees have been used in various domains such as aerospace, nu-
clear power and electrical power (for a list of references refer to the bibliography
of [MAV+13]).

Fault trees inspired a similar approach to security. In 1991, Weiss used trees
in security analysis and presented threat-logic trees as the first graphical attack-
modelling technique [Wei91]. They are used to identify the potential threats to
the system. The model follows top down approach breaking down the high-level
threat corresponding to the root of the tree into smaller threats that comprise
an attack scenarios. However, threat-logic went without much notice and few
years later, in 1998, Salter et al. [SSSW98] and a year later Schneier [Sch99]
introduced attack trees retracing the core idea of threat trees. Even though
attack trees were first mentioned by Salter et al., however, the term is often
credited to Schneier.

2.2 Attack Modelling Techniques

2.2.1 Attack Trees
In 1999, Schneier introduced attack trees as a tool to evaluate the security of
complex systems in a structured, hierarchical way. Attack trees allow to analyse
the possible attack scenarios and reason about the security of the whole system
in a methodical way, by splitting a complex goal into sub-goals and basic attacks
[Sch99].

Basics. The root of an attack tree represents the overall goal of the attacker.
The leaves represent the basic actions that an attacker might perform in order to
achieve his/her goal. The internal nodes represent the sub-goals of the tree and
refine conjunctively or disjunctively the sub-trees or actions. A conjunctively-
refined node is satisfied if all of its children are satisfied. A disjunctively-refined
node is satisfied if at least one of its children is satisfied.

Figure 2.1 displays a simplistic attack tree, where the goal is to force a card-
holder to pay. The root of the tree is labelled with the main goal. The goal

2.2 Attack Modelling Techniques 13

∨

Make cardholder pay

∧
threaten

∧
blackmail

access
household

threaten
card-
holder

collect
infor-
mation

blackmail
card-
holder

Figure 2.1: Attack tree for forcing the cardholder to pay.

is further divided into two possible sub-goals: threatening and blackmailing.
As the main goal is satisfied if at least one of sub-goals is satisfied, the root is
a disjunctively-refined node. In order to succeed in threatening, the attacker
should access the household and threaten the cardholder, while the attacker
needs to collect information and blackmail the cardholder for a successful black-
mailing.

The attack tree model have been further extended. In particular, Mauw
and Oostdijk [MO05] give a formal foundation of attack trees. They define a
formal semantics of attack trees in terms of attack suites, which are collections
of possible basic actions.

Verification. In order to analyse attack trees, different kind of attributes
(such as probability or cost) are assigned to the leaves of a tree. By having
values for the basic actions the value for the root can be computed. The standard
method for evaluating attack trees is a bottom-up algorithm, where the values
are propagated from the leaves up to the root. During the years, researchers have
proposed various evaluation methods and analysed different security aspects,
such as feasibility of an attack, attack cost and probability of success.

The representation of an attack scenario through an attack tree and its eval-
uation provides the overall picture of the security of the system under study.
In order to make this picture realistic, some knowledge about the attacker is
required, as different attackers have different levels of skills, budget, etc. This
knowledge can be applied in the modelling stage of attack trees, for example
identifying the likelihood of basic actions on account of the attacker skills. More-
over, as mentioned by Schneier: “The characteristics of your attacker determine
which parts of the attack tree you have to worry about”. Thus, the result of
an attack tree analysis can be further refined on the basis of the attacker pro-
file. For instance, knowing the attacker’s budget, the expensive attacks can be
eliminated from the result.

Attack trees are supported by various tools for modelling and evaluating at-
tack scenarios, both academic tools such as SeaMonster [Mel10, MGE+08], and

14 Preliminaries : Graphical Models for Security Analyses

commercial software like SecurITree [Ame] from Amaneza and AttackTree+ [Iso]
from Isograph. Different tools implement different analyses. For example, it
seems that SecurITree is centred around the notion of risk of an attack, while
AttackTrees+ also reasons about probability.

Attack trees have been applied to the evaluation of various case studies.
For example, the security of the Estonian and the USA e-voting systems have
been studied in [BM07], while the evaluation of the border getaway protocol
with attack tree techniques is presented in [CCF04]. Moreover, in [BFM04,
TLG07] attack trees are used to identify possible attacks in Supervisory Controls
And Data Acquisition (SCADA) systems, and to suggest possible improvements
based on the identified vulnerabilities.

Generation. Historically, attack trees are constructed manually with the help
of experts. The construction starts by identifying the main attack goals of the
scenario, which are further decomposed into smaller sub-goals until reaching the
basic attacks. This process can be repeated by modifying or adding sub-goals
and basic actions to the tree. However, the manual construction of attack trees
for large systems is error-prone and complex. Various approaches have been pro-
posed for the automated generation of attack trees from formal specifications
of attack scenarios, for example, automated deduction of attack trees from a
process-algebraic specification [VNN14], attack tree generation by policy inval-
idation [IPHK15b, IPHK15a] and industry-based process-oriented construction
and maintenance of big attack trees [Pau14].

Attack graphs. Attack graphs have been introduced at the same time as
attack trees by Philips and Swiler [PS98]. They are mostly used for network
security analysis, and this could have favoured the usage of graphs as opposed
to trees, for network models are naturally represented with (cyclic) graphs. The
nodes of the graph represent possible attack states, while edges represent a
change of state due to an attacker’s action.

Based on Philips and Swiler’s model further studies on attack graphs have
been carried out. Sheyner et al. [SHJ+02, JSW02] developed a model-checking
based approach for automated generation and analysis of attack graphs, where
attack graphs are characterised as counter-example to safety properties. A
toolkit for generating and exploring attack graphs is developed on [SW04], while
a logic-based approach for representing and generating attack graphs is pre-
sented in [OBM06, Sah08]. Ammann et al [AWK02] proposed more compact
representation of attack graphs relying on explicit assumption of monotonicity
of the attacker actions.

2.2.2 Extensions of Attack Trees
Attack trees discussed so far have conjunctive (denoted by AND) and disjunctive
(denoted by OR) refinements for internal nodes. Further extensions of this

2.2 Attack Modelling Techniques 15

model with other type of refinements have been studied.
Yager [Yag06] proposed an extension of attack trees called OWA trees. In

these extended trees AND and OR nodes are replaced with an Ordered Weighted
Averaging (OWA) node. The new node corresponds to quantifiers such as some,
half of, most, etc. OWA trees are suitable to model uncertainty and to reason
about the scenario when the exact number of satisfied sub-goals is unknown.

For modelling the situations when exactly one out of n children is necessary
for a successful attack, attack trees have been extended with XOR node [MDTG07].
A XOR node is satisfiable when exactly one of its children is satisfiable. An at-
tack tree with a XOR node is used to model spam over internet telephony attack
scenarios [MDTG07].

Several studies propose attack tree models with an order on the performance
of basic actions. For modelling the sequential-dependencies of attacks and order-
ing them, new nodes such as priority-AND, k-out-of-n and sequential enforcing
have been studied in [Kha09]. Similarly, attack trees have been extended with a
sequential conjunction operator that considers a precise order on the execution
of the basic actions in the tree [LL11]. Jhawar et al. [JKM+15] give a formal
semantics of attack trees with sequential conjunction calling the model SAND
attack trees.

It is worth noticing that the literature mentioned so far takes a static view
on the security model, where time does not play any role. Other models that
naturally allow to consider time have been investigated in connection to se-
curity analyses, such as timed automata and Continuous-Time Markov Chains.
However, this is the case of well-established general-purpose models, verification
techniques and tools applied to security problems and not the case of modelling
and analysing graphically appealing objects. We will briefly discuss these ap-
proaches in Ch. 6 in connection to our study of games.

2.2.3 Multi-Parameter Attack Trees

Basic attack trees first introduced in the literature enriched basic actions with
a single parameter of interest, such as probability, cost, time, and so on. More
recent works have lift this limitation looking at multi-parameter trees. This
extension, however, makes the analysis of attack trees much more challenging
as it leads to multi-parameter optimisation problems.

Buldas et al. [BLP+06] proposed a risk-analysis based method for security
evaluation of attack trees against a gain-oriented attacker, i.e., an attacker who
chooses only profitable attacks. The resulting model is called multi-parameter
attack trees. In the model the authors consider multiple security parameters of
the system such as gain of the attacker, probability of success, probability of
getting caught and expected penalties. On the basis of these parameters this
method computes the overall value of an attack in a bottom-up fashion. The
computation considers precise values for the parameters. An extension of this
method which considers an interval estimation for the parameters is proposed

16 Preliminaries : Graphical Models for Security Analyses

in [JW07].
The method has some limitations. The value for the gain parameter is

constant throughout the tree computation. Moreover, the computation of dis-
junctive nodes is based on local decisions, i.e., the outcome value of disjunctive
nodes is only based on the outcome value of their children.

Jürgenson and Willemson [JW08] proposed a new computation model for
multi-parameter attack trees. Instead of using a bottom-up approach for the
computation, the authors evaluate the outcome value for each attack suite. An
attack suite is a set of basic actions leading to a successful attack. The analysis
is done by considering all attack suites and computing the outcome for each of
them. In the end, the attack suite with the highest outcome is considered. As the
computation considers all possible attack suites, the complexity is exponential.

To improve the complexity of the computation, the authors propose an ap-
proximation technique based on genetic algorithms [JW10]. The genetic al-
gorithm essentially computes a lower bound to the attacker’s outcome. The
complexity of their genetic algorithm is O(n4), where n is the number of leaves.

Another extension of the multi-parameter attack tree model [JW09] enriches
the attacker’s decision-making process with a temporal order. A serial model
for attack tree computation considers basic actions (attacks) in a given order
and computes the outcome of an attack according to the defined order on the
basic attack set.

2.3 Attack and Defence Modelling Techniques

While attack trees focus on evaluating attack scenarios, other tree-like repre-
sentation also incorporate countermeasures.

2.3.1 Defence Trees

Defence trees, introduced by Bistarelli et al., constitute the first approach to-
wards combining attacker’s and defender’s behaviour in tree-like models [BFP06].
They are an extension of attack trees with defender actions, where each attacker
basic action (leaf of the tree) is associated with a set of corresponding counter-
measures. Thus, defender actions occur only at the leaves of the tree and not in
the internal nodes, as opposed to attacks (an internal node represents a sub-goal
of the attacker).

Defence trees are used to evaluate effectiveness and economic profitability
of countermeasures. These analyses are based on two economic indexes; return
on investment (ROI), which is used to determine cost-effective countermeasures,
and return on attack (ROA), which is use to determine the best attack strategies.
The computation of ROI and ROA is based on parameters such as cost, impact,
etc.

2.3 Attack and Defence Modelling Techniques 17

Further extensions of the model into game theory have been studied. The au-
thors proposed a game-theoretical reasoning for evaluating defence trees in [BDP06].
The analysis selects the best strategies for the attacker and the defender in terms
of Nash equilibrium.

2.3.2 Protection Trees

Edge et al. [EDRM, ERG+07] proposed a methodology for allocating appropri-
ate protections against specified attacks such that the success probability of the
defender is maximised. Protection trees have the same structure of attack trees
with the difference that nodes represent protections. A protection tree is gener-
ated from an existing attack tree by placing protections against corresponding
attacks. Thus, as a result we obtain two trees, an attack tree and correspond-
ing protection tree. The root of the protection tree directly corresponds to the
root of the associated attack tree, however this is not true for the rest nodes
of protection and attack trees, for protections and attacks are not necessarily
mapped one-to-one.

The evaluation of both trees are done by using bottom-up algorithms and
considering parameters such as probability, cost or impact. The formalism has
been applied to various case studies, including the U.S. Department of Homeland
Security [EDRM], online banking [ERG+07] and an RFID network [IEMR10].

2.3.3 Attack Countermeasure Trees

Another extension of attack trees with defender actions is attack countermeasure
trees proposed by Roy et al. [RKT10b, RKT10a, RKT12]. The countermeasures
in the tree are presented in the form of detection and mitigation events, and
can be applied at any node of the tree as oppose to defence trees, discussed
in Sect. 2.3.1. Moreover, together with conjunction and disjunction nodes, the
model is extended with a k-out-of-n node.

For evaluating attack countermeasure trees qualitative and probabilistic anal-
yses have been developed. The qualitative analysis of an attack countermeasure
tree exploits minimum cut sets to determine the possible ways of attacking and
defending a system and to identify the system’s most critical components. The
probability analysis is used to evaluate security aspects such as probability, cost,
impact, Birnbaum’s importance measure and risk, as well as ROI and ROA in-
dexes from defence trees.

2.3.4 Attack-Response Trees

Attack-response trees [ZKSY14] are another extension of attack trees with re-
sponse (countermeasure) actions. In attack-response trees an internal node or
a leaf is tagged with the corresponding response, and the root of the tree is
evaluated by considering the set of attacks and responses.

18 Preliminaries : Graphical Models for Security Analyses

Figure 2.2: An attack-defence tree for attacking bank accounts.

Attack-response trees are used to describe and analyse intrusion and response
scenarios. They have been developed as a part of an automated game-theoretic
intrusion response and recovery engine, which identifies the optimal response
actions from partially observable competitive Markov Decision Processes con-
structed from attack-response trees.

2.3.5 Attack-Defence Trees

Kordy et al. [KMRS10, KMRS14] formalised attack-defence trees as an intuitive
model for presenting attacks and countermeasures in a single view. Attack-
defence trees are extensions of attack trees with countermeasures. They illus-
trate in a graphical way the possible actions an attacker can perform in order to
attain a given goal, and the feasible countermeasures a defender can undertake
to counter such actions. They can be seen as an interaction between two players:
an attacker and a defender.

The graphical representation of an attack-defence tree is similar to the one
of an attack tree. The root node represents the main goal of one of the players.
The leaves represent the basic actions and the intermediate nodes refine sub-
trees either conjunctively or disjunctively. Moreover, each node might have
at most one child of the opposite type. Figure 2.2 illustrates an example of
attack-defence tree for attacking bank accounts.

For evaluating attack-defence trees the typical bottom-up approach of at-
tack trees is extended, i.e., the evaluation assigns values to the parameters of
the leaves and the tree is traversed from the leaves to the root. The evaluation
considers the basic actions to be independent. Attack-defence trees are inter-

2.4 Pareto Efficiency 19

0	

100	

200	

300	

400	

500	

600	

0.00	 0.05	 0.10	 0.15	 0.20	 0.25	 0.30	 0.35	 0.40	

co
st
	

probability	

Figure 2.3: Pareto-efficient solutions for the attack tree t in Ch. 3.

preted with various semantics to answer questions such as the vulnerability of
the system to an attack or the minimum cost of an attack. Most evaluations
[KMRS10, KPS11, KPS14b] analyse a specific aspect of a scenario and do not
consider trees with multiple parameters.

Further developments on attack-defence trees have been explored. The rela-
tionship between attack-defence trees and games has been studied in [KMMS10].
The work shows that attack-defence trees with satisfiability attributes and two-
player binary zero-sum extensive form games have equivalent expressive power.
Moreover, [KPS14b] combines the tree methodology with Bayesian networks for
analysing probabilistic measures of attack-defence trees with dependent actions.

Attack-defence trees have been used to evaluate a real-life RFID good man-
agement system [BKMS12]. This case study resulted also in guidelines for the
use of parameters for basic actions in attack-defence trees. The attack-defence
tree methodology is supported by a tool called ADTool [KKMS13], which allows
to model and analyse attack-defence scenarios.

2.4 Pareto Efficiency

Any analysis of attack or attack-defence models starts from identifying the pa-
rameters of interest that characterise the basic actions. As we have already put
forward, real-life scenarios would often require to consider multiple parameters,
leading to the challenge of dealing with conflicting aspects.

Throughout this dissertation, we will use probability of success and cost of
performing an action as a paradigmatic example of conflicting goals, for any
rational player would like to maximise one while minimising the other. The
challenge arises as in the context of multi-objective optimisation with conflicting
objectives there is no one best solution but rather a set of incomparable ones.

In order to formalise this intuition, we resort to the notion of Pareto effi-
ciency. The concept was developed by the economist Vilfredo Pareto and have
been widely used in various fields such as economy, engineering and the life sci-

20 Preliminaries : Graphical Models for Security Analyses

ences. A solution is called Pareto-efficient if it is not dominated by any other
solution in the objective space [LGCM10, MG13]. The set of Pareto-efficient
solutions is known as Pareto frontier.

Figure 3.3 displays the Pareto frontier obtained in the study of an example
in Ch. 3. Each point corresponds to one solution, characterised by a probability
and a cost, on the x and y axis, respectively. Observe that each solution in
the Pareto frontier has either higher probability or lower cost than other points
in the frontier, hence it is not worse or better than the others and might be
appealing to a given player profile. On the other hand, observe that all points
that are not on the frontier, are either not a solution or are solutions not worth
being considered by any rational player, as they can be improved in either
component.

Chapter 3
Pareto Efficient Solutions of

Attack Trees

Securing socio-technical systems against the threat of attackers is a crucial prob-
lem, which becomes increasingly difficult as attacks become more sophisticated
and systems more complex. This necessitates a thorough investigation of the
possible attack scenarios of a system. As we have discussed in Sect. 2.2, at-
tack trees are a powerful tool for modelling security threats of a system and
representing attack scenarios in an intuitive manner.

Attack trees are typically analysed by assigning values to the basic actions
and propagating them from the leaves to the root of the tree, so that the value at
the root describes the entire attack scenario. Most attack tree analyses consider
attack trees with one parameter and therefore optimise one particular aspect of
a scenario, such as likelihood of success or difficulty of a hack, for instance in
terms of time or cost of an attack. Moreover, even in those attack tree models
enhanced with multiple parameters, values are propagated from the leaves to
the root applying local decision strategies, i.e., in each step of the evaluation
the optimisation is made with respect to one parameter. In case of conflicting
objectives, however, this approach may yield sup-optimal results.

In order to overcome this limitation and analyse complex attack scenarios,
we present evaluation techniques that consider attack trees where basic actions
are assigned more than one parameter, such as likelihood of success and cost.
Our evaluation techniques optimise all parameters at once. In order to cope
with the optimisation of multiple conflicting objectives in partially-ordered sets
we compute the set of optimal solutions, defined in terms of Pareto efficiency.
In this way we can for example maximise the likelihood of possible attacks while

22 Pareto Efficient Solutions of Attack Trees

minimising their cost.
Our developments are carried out on a new language-based formalism for

attack trees. We study the problem in the settings of a Boolean and a prob-
abilistic semantics for attack trees. For each semantics, we first consider the
problem of feasibility of the attack, and then we extend our techniques to com-
pute optimal attacks in presence of probabilities and multiple costs. Moreover,
for each case, we first define the solution considering all possible choices of the
attacker, obtaining a natural but exponential characterisation. Then, we im-
prove on the complexity devising an algorithmic evaluation that is linear in the
size of the tree and yet sound for an expressive sub-class of models. We illus-
trate our developments on a home-payment system case study and we discuss
a more complex example that we have investigated through a proof-of-concept
implementation of our analysis.

We introduce our formalism for attack trees and provide evaluation tech-
niques for feasibility queries in Sect. 3.1. We extend the model with a single
cost per action and present the computation of minimum cost in Sect. 3.2.
Sect. 3.3 extend the single cost model to multiple costs. Finally, the proofs are
reported in Appendix A. This chapter is mainly based on [AN14, AINP15].

3.1 Formal Model of Attack Trees

In this section, we present our formalism for attack trees. We start by defining
the syntax and the terminology used throughout the chapter. Then, we de-
scribe the evaluation techniques for investigating the feasibility of attacks both
in Boolean and probabilistic settings. The Boolean case is thoroughly explained
in Sect. 3.1.2. The developments are generalised to the probabilistic setting in
Sect. 3.1.3.

3.1.1 Attack Trees

An attack tree is a graphical representation of an attack scenario. The root
of the tree represents the main goal of the attacker. The leaves of the tree
represent the basic actions that the attacker can perform in order to achieve
his/her goal. The internal nodes show how the basic actions can be combined.
For the sake of simplifying the technical developments, we assume that the
actions are independent.

The abstract syntax of an attack tree t is presented in Table 3.1. A tree is
either a leaf or the application of a tree operator to one or two sub-trees. A leaf
a is a basic action of the attacker. We denote the set of basic actions by Act
and the set of attack trees by Tree.

The special leaves true and false represent a trivially-successful and a
trivially-failed action, respectively.

3.1 Formal Model of Attack Trees 23

Table 3.1: The syntax of an attack tree.

t ::= a | &∧(t1, t2) | &∨(t1, t2) | &¬(t) | &true | &false

As standard in the literature, tree operators include conjunction and dis-
junction, while we introduce negation. The conjunction operator t = &∧(t1, t2)
requires that the goals of t1, t2 are achieved in order for the goal of t to be
achieved. The disjunction operator t = &∨(t1, t2) requires that the goal of at
least one sub-tree is achieved in order for the goal of t to be achieved.

The negation operator t = &¬(t′) requires that the goal of the sub-tree
t′ is not achieved in order for the goal of t to be achieved. This operator
negates the goal of t′ and it is handy for modelling purposes: even if basic
actions can be defined with a negative flavour, the possibility to negate an
entire sub-tree enhance its human-readability. Moreover, it is sometimes simpler
to define cost and probability of success in case of occurrence of an event as
opposed to estimate these values for enforcing its absence. For instance, cutting
a communication wire might be unrecoverable, and after having cut a wire a
player might not be able to communicate with a given device.

It is worthwhile observing that the operators that we have discussed are tree
operators and do not necessarily correspond to their propositional counterparts.
Hence the choice of & in the syntax.

Polarity-consistent tree. We introduce the notion of polarity-consistency,
to be exploited in the technical developments. We say that an action a occurs
negatively in a tree, if a is under an odd number of negations. Otherwise, we say
that an action a occurs positively. Such polarities are denoted with the symbols
− and +, respectively.

Definition 3.1 An attack tree t is polarity-consistent iff there is no action
that occurs both positively and negatively in t.

A sufficient (but not necessary) condition for polarity-consistency is that all
actions are “uniformly good” or “uniformly bad” for the proponent. If t is a
polarity-consistent tree, then the polarity of each action is uniquely determined.

Example. We demonstrate our developments on the example of a home-
payment system, inspired by [IPHK15a] and studied in the project TREs-
PASS [The14]. A home-payment system allows people, who may have difficulties
leaving their home, to manage some kind of services, e.g., care-taking or rent.
The payment services are performed using the remote control of a television box
by means of a contact-less payment card to authenticate users and to provide

24 Pareto Efficient Solutions of Attack Trees

payment capabilities. The card-holder owns a card with a password for initiat-
ing transfers. We assume that the cardholder is an elderly person who stays at
home most of the time and has a trusted person who visits and helps him/her
from time to time.

The attack scenario that we consider is to steal money from the card-holder
by forcing him/her to pay for fake services. This goal is the root of the corre-
sponding attack tree. In order to steal money from the card-holder, the attacker
can “blackmail” or “threaten”. In order to succeed in blackmailing the attacker
has to collect necessary information and blackmail the card-holder. For a suc-
cessful threatening the attacker should threaten the cardholder and access the
household. The latter is achievable in different ways. The complete correspond-
ing attack tree is given in Figure 3.1, where we label leaves for ease of reference.
For the sake of clarity, in the figures we denote internal node operators with
their subscript symbols. The syntactic term of the full tree is:

t = &∨(&∧(&∨(ip,&∨(&∨(&∧(&∨(rc, rt), it), itt), itp)), tc),&∧(ci, bc))

3.1.2 Semantics in the Boolean Case

In this section we formalise the semantic of attack trees in the Boolean setting.
We evaluate the feasibility of an attack tree and investigate questions such as
“is there a successful attack?” by determining possible values at the root. We
associate with each basic action a value from the Boolean set B, where true
(tt) corresponds to performing and false (ff) corresponds to not performing the
action. We consider B to be ordered such that max{tt ,ff } = tt and min{tt ,ff } =
ff . In this setting, the value true at the root denotes that the attacker has at
least one combination of basic actions that leads to the overall attack goal.

We define a Boolean assignment of basic actions as follows: a Boolean as-
signment m is an arbitrary function that assigns a value b ∈ B to each basic
action a ∈ Act; m : Act→ B. We say that the attack is successful if the Boolean
assignment evaluates the tree to true.

It is worthwhile noticing that in the following the conjunction, disjunction
and negation operators are interpreted as the corresponding Boolean opera-
tors, and in this setting the Boolean laws, i.e., commutativity, associativity,
distributivity and idempotency hold. Hence, the following two trees, t1 =
&∧(a,&∨(b, c)) and t2 = &∨(&∧(a, b),&∧(a, c)) are equivalent, meaning that
the same assignment evaluates t1 and t2 identically.

We present two evaluation techniques for feasibility analysis of an attack
scenario, termed semantic and algorithmic evaluations.

The semantic evaluation M (t) of an attack tree t ∈ Tree is presented in
Table 3.2. The evaluation of a tree t is performed over all possible Boolean
assignments of values to the basic actions of t. It computes the minimum and
maximum success values of an attack.

3.1 Formal Model of Attack Trees 25

∨

Make cardholder pay

∧
threaten

∧
blackmail

∨
access household

threaten
cardholder

tc

collect
infor-
mation

ci

blackmail
cardholder

bc

infiltrate
premises

ip

∨impersonate

∨
TV

technician imperso-
nate

trusted
person

itp

∧pretext
imperso-
nate
TV

technician

itt

∨
disrupt TV
operations

imperso-
nate

technician

it

jam
remote-
card

communi-
cations

rc

jam
remote-
TV

communi-
cations

rt

Figure 3.1: Attack tree for forcing the cardholder to pay.

The call B[[t]]m of the recursive function B[[·]]m, displayed in the second part
of Table 3.2, analyses the tree t over the Boolean assignment m. Observe that
the negation operator changes the goal of the attacker in terms of optimisation
objectives.

Observe that the minimum value gives information about all attackers, e.g., if
any attacker can attack the system, while the maximum value gives information
about some attackers, e.g., if there exists an attacker that can attack the system.
The result of the evaluation is interpreted as follows:

• If both the minimum and the maximum values of t are false, M (t) =
(ff ,ff), then the system is always secure despite the attacker’s actions.

• If the minimum value of t is false and the maximum value of t is true,
M (t) = (ff , tt), then the system is vulnerable. In other words, there exist
a set of actions (a Boolean assignment m) such that an attack on the

26 Pareto Efficient Solutions of Attack Trees

Table 3.2: The Boolean semantic evaluation of an attack tree.

M (t) = (min{B[[t]]m | m Boolean assignment},
max{B[[t]]m | m Boolean assignment})

B[[a]]m = m(a)

B[[&∧(t1, t2)]]m = B[[t1]]m ∧ B[[t2]]m
B[[&∨(t1, t2)]]m = B[[t1]]m ∨ B[[t2]]m
B[[&¬(t)]]m = ¬B[[t]]m
B[[&true]]m = tt
B[[&false]]m = ff

system leads to the overall goal.

• If both the minimum and the maximum values of t are true, M (t) = (tt , tt),
the system is flawed. In other words, despite the attacker’s actions (for all
Boolean assignment m) an attack on the system is always successful.

The semantic evaluation explores all possible Boolean assignments to the
leaves of the tree and establishes our reference standard for the evaluation.
The drawback is its exponential complexity, as the satisfiability problem is NP-
complete. In the following, we present a technique with lower complexity and
we define restrictions on attack trees under which the new technique is sound
with respect to the semantic evaluation.

The algorithmic evaluation INT (t) of an attack tree t ∈ Tree is defined in
Table 3.3. The evaluation computes the pair of minimum and maximum suc-
cess values by propagating the values of basic actions up to the root of the
tree applying the rules presented in Table 3.3. The rule (Case-BA) assigns
the minimum and maximum values to basic actions. The rules (Case-and) and
(Case-or) define the computation for conjunction and disjunction in the stan-
dard manner, respectively. The rule (Case-neg) swaps the minimum and the
maximum values before applying negation, as negation changes the goal of the
attacker. The last two rules (Case-tt) and (Case-ff) assign true and false values
to a trivially-successful and a trivially-failed action, respectively.

The two evaluation techniques we presented might lead to different results.
For example, consider the attack tree t = &∧(a,&¬(a)), where a ∈ Act . The
result of the semantic evaluation is M (t) = (ff ,ff), while the result of the
algorithmic evaluation is INT (t) = (ff , tt). Observe that t is not polarity-
consistent as a occurs both positively and negatively in t. In fact, to show that
the two techniques are equivalent it is sufficient to restrict to polarity-consistent
trees.

3.1 Formal Model of Attack Trees 27

Table 3.3: The Boolean algorithmic evaluation of an attack tree.

INT (a) = (ff , tt) (Case-BA)

INT (&∧(t1, t2)) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (min1 ∧min2,max1 ∧max2) (Case-and)

INT (&∨(t1, t2)) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (min1 ∨min2,max1 ∨max2) (Case-or)

INT (&¬(t)) = let (min,max) = INT (t)
in (¬max,¬min) (Case-neg)

INT (&true) = (tt , tt) (Case-tt)

INT (&false) = (ff ,ff) (Case-ff)

Theorem 3.2 Let t ∈ Tree be a polarity-consistent attack tree. Then

M (t) = INT (t)

The complexity of the two evaluations is as follows. The semantic evaluation
considers all possible Boolean attacks m, thus it is exponential in the number
of leaves of t. The algorithmic evaluation consists in a bottom-up traversal over
the tree, and thus it is linear in the size of t. For polarity-consistent trees the
algorithmic evaluation offers a dramatic improvement in complexity.

3.1.3 Semantics in the Probabilistic Case

We extend the developments from the Boolean case to the probabilistic case.
In this setting, we consider the interval [0, 1], where 0 and 1 correspond to the
failure and to the success of an attack, respectively. We investigate questions
such as “what is the maximum probability of an attack?” or “how vulnerable is
the system to an attack?”.

We assume that each basic action a ∈ Act has two associated success prob-
abilities; success probability p1(a) in case of not performing a, and success
probability p2(a) in case of performing a, such that p1(a) ≤ p2(a). For instance,
an attacker might succeed to disable a security camera with a given probability
p2, or the security camera might be disabled due to some external conditions
with a given probability p1, which for the attacker will be the probability of
succeeding without performing the action. We consider the Boolean assignment
m as defined in the previous section, m : Act → B, and assume that an action
a has a probability of success p1(a) if m(a) is false and has a probability of
success p2(a) if m(a) is true. Choosing p1(a) = 0 and p2(a) = 1 coincides with
the Boolean case.

28 Pareto Efficient Solutions of Attack Trees

Table 3.4: The probabilistic semantic evaluation of an attack tree.

M (t) = (min{P[[t]]m | m Boolean assignment},
max{P[[t]]m | m Boolean assignment})

P[[a]]m =

{
p1(a) if m(a) = ff

p2(a) if m(a) = tt

P[[&∧(t1, t2)]]m = P[[t1]]m · P[[t2]]m

P[[&∨(t1, t2)]]m = 1− (1− P[[t1]]m) · (1− P[[t2]]m)

P[[&¬(t)]]m = 1− P[[t]]m

P[[&true]]m = 1

P[[&false]]m = 0

In the probabilistic setting the operators are interpreted differently than in
the Boolean setting. They satisfy commutativity (e.g., &∧(a, b) and &∧(b, a) are
evaluated identically by the same assignment) and associativity (e.g., &∧(a,&∧(b, c))
and &∧(&∧(a, b), c) are evaluated identically by the same assignment). How-
ever, distributivity and idempotency do not hold in this setting. Thus, the
following two trees, t1 = &∧(a,&∨(b, c)) and t2 = &∨(&∧(a, b),&∧(a, c)), are
not equivalent in the probabilistic setting. The core reason why, is that in the
probabilistic setting multiple occurrences of the same action a are governed by
the corresponding probability distribution, but the outcome of each occurrence
is given by an independent sampling because each occurrence is attempted inde-
pendently. This feature allows to abstract details away in the model and group
basic actions in families sharing the same probabilistic behaviour. For instance,
the basic action “break door” might be used for all doors in the model that share
similar characteristics.

Similarly to the Boolean setting, we first present an evaluation technique
that describes the analysis in a natural way, and then we formulate a technique
with lower complexity by determining the necessary restrictions on the model.

The algorithmic evaluation M (t) for an attack tree t ∈ Tree is presented in
Table 3.4. The evaluation considers all possible Boolean assignments and from
these infers the probability values. The analysis P[[t]]m of the tree t, displayed in
the second part of Table 3.4, is performed recursively. The evaluation computes
the pair of minimum and maximum success probabilities. The maximum success
probability shows the existence of an attack with that probability. We say that
the system is p-vulnerable if there exists an attack with success probability p.

The algorithmic evaluation INT (t) of an attack tree t ∈ Tree is given in
Table 3.5. Similarly to the semantic evaluation, it computes the minimum and
the maximum success probabilities. The evaluation associates the probability

3.2 Attack Trees with Cost 29

Table 3.5: The probabilistic algorithmic evaluation of an attack-defence tree.

INT (a) = (p1(a), p2(a)) (Case-BA)

INT (&∧(t1, t2)) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (min1 ·min2,max1 ·max2) (Case-and)

INT (&∨(t1, t2)) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (1− (1−min1) · (1−min2),

1− (1−max1) · (1−max2)) (Case-or)

INT (&¬(t)) = let (min,max) = INT (t)
in (1−max, 1−min) (Case-neg)

INT (&true) = (1, 1) (Case-tt)

INT (&false) = (0, 0) (Case-ff)

values with each basic action and traverses the tree using a bottom-up approach.
For the negation operator, similarly to the Boolean case, the values are swapped
before applying negation.

Analogously to the previous section, we shall restrict to polarity-consistent
trees in order to show the equivalence of the two evaluations.

Theorem 3.3 Let t ∈ Tree be a polarity-consistent attack tree. Then

M (t) = INT (t)

Here as well, the imposed polarity-consistent restriction allows to scale from
an exponential to a linear complexity.

Example. Consider the polarity-consistent attack tree t presented in Fig-
ure 3.1. We apply the algorithmic evaluation for computing the maximum
probability of the attack scenario. The possible probability values for basic
actions are listed in Table 3.6 (the last column is for later reference).

The result of the algorithmic computation is INT (t) = (0, 0.34), that is, the
system is 0.34 vulnerable. The details of the computation with the values for
the internal nodes are presented in Appendix B.1.

3.2 Attack Trees with Cost
In the previous section we presented the feasibility and probability evaluations
of an attack tree. In this section, we extend the model of attack trees with a

30 Pareto Efficient Solutions of Attack Trees

Table 3.6: The values of probability and cost for the basic actions of the tree
t, displayed in Figure 3.1

Label Name of the nodes p1 p2 c

ip infiltrate premises 0.1 0.25 120
rc jam remote-card communications 0 0.65 100
rt jam remote-TV communications 0 0.65 100
it impersonate technician 0 0.6 60
itt impersonate TV technician 0 0.45 60
itp impersonate trusted person 0 0.3 80
tc threaten cardholder 0 0.3 30
ci collect information 0.1 0.55 50
bc blackmail cardholder 0 0.2 30

single cost for basic actions, and investigate cost-related questions. We start by
presenting evaluation of the minimum cost in the Boolean setting in Sect. 3.2.1.
Sect. 3.2.2 generalises the developments to the probabilistic setting.

3.2.1 Cost in the Boolean Case
In the following, the semantic and algorithmic evaluations are extended with a
single cost. Hence, we associate with each basic action a pair of Boolean and
cost values and consider the set D = B×Q≥0. We investigate questions such as
“what is the minimum cost of an attack?” or “how much does it cost to protect
a system in a given scenario?”.

We assume that each basic action a ∈ Act has a cost of not performing a,
which we set to 0, and a cost c(a) ∈ Q≥0 of performing a. The actions are
associated with two costs in order to link the model to the Boolean setting in a
seamless manner.

Associating a pair of success and cost values with each basic action leads
to multi-parameter optimisation. Moreover, having the goal of the attacker to
maximise the success value and minimise the cost, rises an issue of optimising
more than one conflicting parameters at the same time. In order to handle multi-
parameter optimisation with incomparable values we employ to the notion of
Pareto efficiency. We define two functions for computing the set of Pareto-
efficient solutions.

We assume that the goal of the attacker is to maximise the success value while
minimising the cost of an attack. In order to compute the set of pairs of efficient
solutions, where we want to maximise the first argument while minimising the
second, we define function MR+−. The function computes the set of all pairs
that have higher value for the first argument or lower value for the second
argument with respect to the other pairs in the set.

MR+−(Z) = {(x, y) ∈ Z | ∀(x′, y′) ∈ Z : x′ w x ∧ y′ v y ⇒ x′ = x ∧ y′ = y}
= {(x, y) ∈ Z | ∀(x′, y′) ∈ Z : (x w x′ ∨ y < y′) ∧ (x = x′ ∨ y v y′)}

where Z ⊆ D.

3.2 Attack Trees with Cost 31

Table 3.7: The Boolean semantic evaluation of an attack tree with cost.

M (t,A) = (MR−−({ (B[[t]]m, b) | cost(m,A) ≤ b}),
MR+−({ (B[[t]]m, b) | cost(m,A) ≤ b}))

cost(m,A) =
∑
a∈A

{
0, if m(a) = ff
c(a), if m(a) = tt

Note that the sign “+” indicates the maximisation and the sign “−” indicates
the minimisation, and their position refer to the parameter of the maximisa-
tion/minimisation.

As we mentioned in Sect. 3.1.1, the negation operator changes the goal of the
player. For instance, if the goal is to maximise the success value and minimise
the cost, then under negation the goal is to minimise the success value and
minimise the cost. Observe that the objective for the cost remains the same
under negation, as we assume to deal with rational players. Thus, we define a
dual function MR−− that computes the set of all pairs that have lower value for
both arguments with respect to the other pairs in the set.

MR−−(Z) = {(x, y) ∈ Z | ∀(x′, y′) ∈ Z : x′ v x ∧ y′ v y ⇒ x′ = x ∧ y′ = y}
= {(x, y) ∈ Z | ∀(x′, y′) ∈ Z : (x v x′ ∨ y < y′) ∧ (x < x′ ∨ y v y′)}

where Z ⊆ D.
Note, that the first sign “−” in MR−− corresponds to the min operator in

Table 3.2, and the sign “+” in MR+− corresponds to the max operator.
Similarly to the previous cases, we present two evaluation techniques and

investigate their equivalence condition.
The semantic evaluation M (t,A) of an attack tree t ∈ Tree and a set of basic

actions A is defined in Table 3.7. It computes a pair of sets of Pareto-efficient
solutions MR−− and MR+−. The first set corresponds to the solutions that
have lower success values and lower cost if compared to other solutions, while
the second set corresponds to the solutions that have higher success value and
lower cost if compared to other solutions.

The analysis B[[t]]m computes the success value for each Boolean assignment
m. The cost is represented with the concept of a budget for associating with
each success value the corresponding budget of the attacker and the Boolean
assignment m. The budget b ∈ Q≥0 takes values from 0 to infinity in an
increasing manner. For a given budget b we take m such that the cost of the
attacker for m is not greater than b, and the corresponding success value for m
is computed. The cost for a given m is computed with the function cost, defined
in Table 3.7.

The algorithmic evaluation INT (t) for an attack tree t ∈ Tree is given in
Table 3.8. Similarly, it computes a pair of sets MR−− and MR+− by travers-

32 Pareto Efficient Solutions of Attack Trees

Table 3.8: The Boolean algorithmic evaluation of an attack tree with cost.

INT (a) = (MR−−({(ff, 0), (tt, c(a))}),
MR+−({(ff, 0), (tt, c(a))})) (Case-BA)

INT (&∧(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(b ∧ b′, c+ c′) | (b, c) ∈ V1, (b

′, c′) ∈ V2}),
MR+−({(b ∧ b′, c+ c′) | (b, c) ∈W1, (b

′, c′) ∈W2}))
(Case-and)

INT (&∨(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(b ∨ b′, c+ c′) | (b, c) ∈ V1, (b

′, c′) ∈ V2}),
MR+−({(b ∨ b′, c+ c′) | (b, c) ∈W1, (b

′, c′) ∈W2}))
(Case-or)

INT (&¬(t)) = let (V,W) = INT (t)
in (MR−−({(¬b, c) | (b, c) ∈W}),

MR+−({(¬b, c) | (b, c) ∈ V })) (Case-neg)

INT (&true) = ({(tt , 0)}, {(tt , 0)}) (Case-tt)

INT (&false) = ({(ff , 0)}, {(ff , 0)}) (Case-ff)

ing the tree from the leaves to the root following the rules given in Table 3.8.
The rule (Case-BA) defines the sets MR−− and MR+− for the basic actions.
The rules (Case-and) and (Case-or) represent the evaluation of conjunction and
disjunction, respectively, where the success values are computed through the
Boolean evaluation of the corresponding operator and the costs are summed.
The rule (Case-neg) for the negation operator swaps the pairs before applying
the evaluation. The evaluation of the success value simply negates it, as in
Sect. 3.1.2, while cost remains unchanged. The rules (Case-tt) and (Case-ff) are
used to evaluate trivially-successful and trivially-failed actions, where the cost
is equal to 0 as these actions are independent from the attacker. The functions
MR−− and MR+− are applied to each rule leading to a reduction of the size of
the sets in each step.

We denote by yield(t) ⊆ Act the set of actions that correspond to the leaves
of t. Consider the polarity-consistent tree t = &∧(&∨(a, b),&∨(a, d)), where
c(a) = 2, c(b) = 1 and c(d) = 3. The result of the semantic evaluation is
M (t,A) = ({(ff , 0)}, {(ff , 0), (tt , 2)}), while the result of the algorithmic eval-
uation is INT (t) = ({(ff , 0)}, {(ff , 0), (tt , 3)}). As it becomes apparent from

3.2 Attack Trees with Cost 33

∧

({(ff , 0)}, {(tt , 3)})

∨({(ff , 0)}, {(tt , 1)}) ∨ ({(ff , 0)}, {(tt , 2)})

a

({(ff , 0)}, {(tt , 2)})

b

({(ff , 0)}, {(tt , 1)})

a

({(ff , 0)}, {(tt , 2)})

d

({(ff , 0)}, {(tt , 3)})

Figure 3.2: The Boolean algorithmic evaluation with cost of the attack tree
t = &∧(&∨(a, b),&∨(a, d)).

Figure. 3.2, the algorithmic evaluation chooses b to satisfy the sub-tree &∨(a, b)
as c(b) < c(a) and a in the sub-tree &∨(a, d) as c(a) < c(d). However, the
choice of b and a are local to their sub-trees and yield sub-optimal solution once
combined. The reason why is to be sought in the repetition of a in distinct sub-
trees. On the contrary, in the semantic evaluation the assignment m(a) = tt is
enough to satisfy the whole tree yielding cost 2. Hence, the polarity-consistent
restriction in no longer adequate for the model of attack trees with cost. To
show the equivalence of the two evaluations we define the following restriction,
inspired by Girard’s linear logic [Gir95].

Definition 3.4 An attack tree t is linear iff no action occurs twice in t.

The notion of linearity is stronger than polarity-consistency, as the latter
does not forbid to have multiple occurrences of the same action with the same
polarity.

Theorem 3.5 Let t ∈ Tree be a linear attack tree. Then

M (t , yield(t)) = INT (t)

The complexity of the two evaluation techniques is defined with respect to
the number of set operations. The semantic evaluation is exponential, while
the algorithmic evaluation is linear. Thus, the linearity restriction leads to a
dramatic improvement in the complexity.

3.2.2 Cost in the Probabilistic Case
In this section we study the model of attack trees with a single cost in the prob-
abilistic setting by generalising the Boolean case. We focus on the differences
and omit redundant details.

We consider set D = [0, 1]×Q≥0 and investigate questions such as “what is
the maximum probability of an attack while minimising the cost?”. In order to

34 Pareto Efficient Solutions of Attack Trees

Table 3.9: The probabilistic semantic evaluation of an attack tree with cost.

M (t,A) = (MR−−({ (P[[t]]m, b) | cost(m,A) ≤ b}),
MR+−({ (P[[t]]m, b) | cost(m,A) ≤ b}))

cost(m,A) =
∑
a∈A

{
0, if m(a) = ff
c(a), if m(a) = tt

link to the model to the probabilistic setting, we assume that each basic action
a ∈ Act has a cost of not performing a, which we set to 0 in this work, and a
cost c(a) ∈ Q≥0 of performing a.

Similarly to the Boolean case, the consideration of probability and cost
and the goal of maximising probability while minimising cost lead to a multi-
parameter optimisation problem with incomparable values. We define two eval-
uation techniques by considering the functions MR−− and MR+−.

The semantic evaluation M (t,A) of an attack tree t ∈ Tree and a set of basic
actions A is given in Table 3.9. It computes the pair of sets of Pareto-efficient
solutions. The evaluation follows the corresponding one presented in Sect. 3.2.1,
with the difference that the computation of the success value is based on the
probabilistic analysis P[[t]]m instead of the Boolean analysis B[[t]]m.

The algorithmic evaluation INT (t) of an attack tree t ∈ Tree is presented
in Table 3.10. The computation is performed in a bottom-up manner accord-
ing to the similar rules given in the Boolean setting, where the computation
of the probabilistic values are performed according to probabilistic evaluation,
discussed in Sect. 3.1.3.

In order to show the equivalence of the two evaluation techniques, we resort
again to a linearity restriction on trees.

Theorem 3.6 Let t ∈ Tree be a linear attack tree. Then

M (t , yield(t)) = INT (t)

Here again the restriction allows to scale from an exponential to a linear
complexity.

Example. Consider the linear attack tree t presented in Figure 3.1, and the
values of probability and cost given in Table 3.6.

We apply the above mentioned algorithmic evaluation for computing attacks
with maximum probability of success and minimum cost. We get the following
result at the root of the tree:

3.2 Attack Trees with Cost 35

Table 3.10: The probabilistic algorithmic evaluation of an attack tree with
cost.

INT (a) = (MR−−({(p1(a), 0), (p2(a), c(a))}),
MR+−({(p1(a), 0), (p2(a), c(a))}))

(Case-BA)

INT (&∧(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(p · p′, c+ c′) | (p, c) ∈ V1, (p

′, c′) ∈ V2}),
MR+−({(p · p′, c+ c′) | (p, c) ∈W1, (p

′, c′) ∈W2}))
(Case-and)

INT (&∨(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(1− (1− p)(1− p′), c+ c′) |

(p, c) ∈ V1, (p
′, c′) ∈ V2}),

MR+−({(1− (1− p)(1− p′), c+ c′) |
(p, c) ∈W1, (p

′, c′) ∈W2})) (Case-or)

INT (&¬(t)) = let (V,W) = INT (t)
in (MR−−({(1− p, c) | (p, c) ∈W}),

MR+−({(1− p, c) | (p, c) ∈ V })) (Case-neg)

INT (&true) = ({(1, 0)}, {(1, 0)}) (Case-tt)

INT (&false) = ({(0, 0)}, {(0, 0)}) (Case-ff)

INT (t) = ({(0, 0)}, {(0, 0), (0.03, 30), (0.05, 60), (0.11, 80), (0.15, 90),
(0.17, 120), (0.24, 170), (0.28, 250), (0.3, 330),
(0.31, 410), (0.33, 510), (0.34, 630)})

Figure 3.3 represents the Pareto frontier corresponding to the overall result of
the evaluation. In the figure each point describes a possible optimal solution with
a probability of success with the corresponding cost. The probability of success
of an attack ranges from 0 to 0.34, while the corresponding cost, representing the
necessary resources to be spent, ranges from 0 to 630. The detailed evaluation
on the tree t is given in Appendix B.2.

36 Pareto Efficient Solutions of Attack Trees

0	

100	

200	

300	

400	

500	

600	

700	

0.00	 0.05	 0.10	 0.15	 0.20	 0.25	 0.30	 0.35	 0.40	

co
st
	

probability	

Figure 3.3: Pareto-efficient solutions for the attack tree t.

3.3 Attack Trees with Multiple Costs
We extend further the model of attack trees by considering multiple costs for
basic actions. In the following, we study the extended model in the probability
setting as it generalises the Boolean one.

Building on top of the developments of Sect. 3.2.2 we consider the set D =
[0, 1] × Qn≥0. We assume that each basic action a ∈ Act has two vectors of n
associated costs: a vector of 0’s denoting the costs incurred for not performing
a, and a vector γ : Act→ Qn≥0 denoting the costs incurred for performing a. We
write γ = (c1(a), · · · , cn(a)), ci : Act → Q≥0, i ∈ [1, n]. When adding costs we
resort to point-wise summation of vectors.

Similarly to the model with a single cost, the investigation of probability and
multiple costs leads to a multi-parameter optimisation challenge with conflicting
parameters. In order to generalise the functions MR−− and MR+− to deal with
multiple costs we introduce polarity modifications of the comparison operators
as follows: w+ is w, =+ is =, w− is v and =− is <. The sign “+” corresponds
to the maximisation of the parameters and keeps the operator as it is, while the
sign “−” corresponds to the minimisation of the parameters, therefore it changes
the operator.

The general format of the optimisation function MR is defined as follows,
where si ∈ {+,−} and Z ⊆ D:

MRs0,··· ,sn(Z) = {(x0, · · · , xn) ∈ Z | ∀(x′0, · · · , x′n) ∈ Z :

x′0 ws0 x0 ∧ · · · ∧ x′n wsn xn ⇒ x′0 = x0 ∧ · · · ∧ x′n = xn}
= {(x0, · · · , xn) ∈ Z | ∀(x′0, · · · , x′n) ∈ Z :

((x0 ws0 x′0) ∨ (x1 =s1 x′1) ∨ · · · ∨ (xn =sn x′n)) ∧ · · ·
· · · ∧ ((x0 =s0 x′0) ∨ (x1 =s1 x′1) ∨ · · · ∨ (xn wsn x′n))}

The function MRs0,··· ,sn computes the efficient solutions for multiple pa-
rameters by maximising the parameter values if si = + and minimising them if
si = −. Note that each wsi is in fact a total order (on [0,1] or Q≥0) and hence

3.3 Attack Trees with Multiple Costs 37

Table 3.11: The probabilistic semantic evaluation of an attack tree with mul-
tiple cost.

M ∗(t,A) = (MR−−···−({ (P[[t]]m, b1, · · · bn) | costi(m,A) ≤ bi}),
MR+−···−({ (P[[t]]m, b1 · · · bn) | costi(m,A) ≤ bi}))

costi(m,A) =
∑
a∈A

{
0, if m(a) = ff
ci(a), if m(a) = tt

¬(x′i wsi xi) is equivalent to xi =si x′i. Observe that with this notation we get
MR−− if we take n = 1 and s0 = s1 = −, and we get MR+− if we take n − 1
and s0 = +, s1 = −.

Lest to surprise the reader, we present again two evaluation techniques.
The semantic evaluation M ∗(t,A) of an attack tree t ∈ Tree and a set

of basic actions A is given in Table 3.11. The evaluation closely follows the
corresponding one described in Sect. 3.2.2. Similarly, the cost is represented
with a budget bi ∈ R≥0, where for a given budget bi the corresponding cost
ci(a) from the vector γ is considered. The result of the evaluation is a pair of
the set of Pareto-efficient solutions, computed through the functions MR−−···−

and MR+−···−.
The algorithmic evaluation INT ∗(t) of an attack tree t ∈ Tree is presented

in Table 3.12. Similarly to the evaluation of the model with a single cost, it
traverses the tree from the leaves to the root according to the rules. The rules
extend the ones presented in Table 3.10 with multiple costs.

The rule (Case-BA) defines the Pareto sets for the basic actions. The rules
(Case-and) and (Case-or) compute all possible sets from two sub-trees by evalu-
ating probabilities based on the operator and summing the corresponding costs,
and then applying the function MR··· in order to obtain the optimal solutions.
This is sound due to the point-wise ordering of arguments of MR···. Similarly to
the previous cases, the negation rule (Case-neg) swaps the sets before applying
the negation. The rules (Case-tt) and (Case-ff) are for trivially-successful and
trivially-failed actions, and have all costs equal to 0.

Analogously to the previous section, the linearity restriction is sufficient in
order to show the equivalence of the two evaluations.

Theorem 3.7 Let t ∈ Tree be a linear attack tree. Then

M ∗(t , yield(t)) = INT ∗(t)

38 Pareto Efficient Solutions of Attack Trees

Table 3.12: The probabilistic algorithmic evaluation of an attack tree with
multiple cost.

INT ∗(a) = (MR−−···−({(p1(a), 0, · · · , 0), (p2(a), c1(a), · · · , cn(a))}),
MR+−···−({(p1(a), 0, · · · , 0), (p2(a), c1(a), · · · , cn(a))}))

(Case-BA)

INT ∗(&∧(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−···−({(p · p′, c1 + c′1, · · · , cn + c′n) |

(p, c1, · · · , cn) ∈ V1, (p
′, c′1, · · · , c′n) ∈ V2}),

MR+−···−({(p · p′, c1 + c′1, · · · , cn + c′n) |
(p, c1, · · · , cn) ∈W1, (p

′, c′1, · · · , c′n) ∈W2}))
(Case-and)

INT ∗(&∨(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−···−({(1− (1− p)(1− p′), c1 + c′1, · · · , cn + c′n) |

(p, c1, · · · , cn) ∈ V1, (p
′, c′1, · · · , c′n) ∈ V2}),

MR+−···−({(1− (1− p)(1− p′), c1 + c′1, · · · , cn + c′n) |
(p, c1, · · · , cn) ∈W1, (p

′, c′1, · · · , c′n) ∈W2}))
(Case-or)

INT ∗(&¬(t)) = let (V,W) = INT (t)
in (MR−−···−({(1− p, c1, · · · , cn) | (p, c1, · · · , cn) ∈W}),

MR+−···−({(1− p, c1, · · · , cn) | (p, c1, · · · , cn) ∈ V }))
(Case-neg)

INT ∗(&true) = ({(1, 0, · · · , 0)}, {(1, 0, · · · , 0)}) (Case-tt)

INT ∗(&false) = ({(0, 0, · · · , 0)}, {(0, 0, · · · , 0)}) (Case-ff)

3.4 Attack Tree Evaluator Tool
We applied our approach to a real-life scenario of cloud environment studied in
the project TREsPASS [The14]. The International Traders LTD (ITL) company
is a commodity trader that buys and sells oil and gas related investments around
the world for an international set of clients. The key company asset is a list of
international clients with their private data. Much of their trading is automated
and they have a large IT department.

The company owns an office with a co-located data-center, illustrated in
Figure 3.4. Both the office and the data-center can be accessed either through
the door or the window. The data-center can also be accessed from the office
through an internal door.

3.4 Attack Tree Evaluator Tool 39

Figure 3.4: Simplified scenario of a private cloud environment with various
actors.

The cloud infrastructure is running on two physical servers, both located in
the data-center. On each server, two virtual machines, a virtual switch and a
virtual firewall are running on top of a Hypervisor. These virtual components
are connected to physical network components, namely switch SW1 and a Gate-
way. Through this connection it is possible to reach the physical and virtual
infrastructure from the Laptop. The sensitive document FileX is located in the
storage of the virtual machine VM1.

We consider an attacker whose goal is to obtain the sensitive document FileX.
The attacker is Ethan, who is trying to obtain the FileX through Terry. Due to
the large size of the attack tree corresponding to the scenario, we do not repre-
sent it here. However, we illustrate a small part of it, presented in Figure 3.5.
For obtaining the FileX from Terry attacker has to get Terry’s ID card and the
pin. The attacker gets the ID card though threatening, blackmailing, bribing,
social engineering or acquiring trust. Similarly the attacker can obtain the pin
of the ID card.

We apply the algorithmic evaluation to the example considering probability
and cost values to basic actions. The result of the evaluation at the root is pre-
sented in Figure 3.6. As we can see from the chart, the probability of an attack
ranges from 0 to 0.73 and the cost ranges from 0 to 9250. For each solution,
represented in the frontier, we can say that the system is (p, c)-vulnerable.

The result can be further analysed. For example, given a cost threshold for
an attacker we can eliminate the attacks that are outside of the cost threshold,
or we can rank the most successful attacks based on the threshold.

Implementation. A proof-of-concept implementation of the algorithmic eval-
uation techniques has been developed in Java and is available at

http://www2.compute.dtu.dk/~zaas/ATE.zip

http://www2.compute.dtu.dk/~zaas/ATE.zip

40 Pareto Efficient Solutions of Attack Trees

∧
Access FileX by Ethan through Terry

∨
get Terry’s
ID card

get pin of Terry’s
ID card

threatening ∧blackmailing
bribing ∨

social
engineering ∧acquire trust

collect
intelligence

blackmail
Terry

authority
attack

phishing become
friends

trick
Terry

Figure 3.5: Attack tree for obtaining FileX.

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

0.0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	

co
st
	

probability	

Figure 3.6: Pareto-efficient solutions for the attack tree t.

The Attack Tree Evaluator addresses multi-parameter optimisation of attack
trees in terms of Pareto efficiency. It takes as input an attack tree in .xml format
and values such as probability of success and cost for the basic actions.

If only the probabilistic values are provided for the basic actions, the tool
computes the maximum success probability. It also provides the set of basic
actions for that attack. If instead probability and cost values are provided, the
tool computes the set of optimal solutions by means of Pareto efficiency. It
presents the Pareto sets of pairs of maximum probability and minimum cost,
with the corresponding sets of basic actions. The overall structure of the tool is
presented in Figure 3.7.

3.5 Concluding Remarks

Attack trees are a widely-used tool to analyse threat scenarios and describe in
a formal way the security of a system. Most analyses consider one-parameter

3.5 Concluding Remarks 41

!

Attack!Tree!!
Evaluator!

Attack!tree!!
XML!format! Values!for!!

basic!actions!

Figure 3.7: Structure of the tool Attack Tree Evaluator.

attack trees and analyse a particular aspect of an attack, such as feasibility or
cost. Moreover, in attack trees with multiple parameters, values characterising
basic actions are propagated to the root relying on local decision strategies.
In case of conflicting objectives, however, this approach may yield sup-optimal
results.

To overcome this limitation, we devised automated techniques that quantify
attack scenarios with sets of Pareto optimal solutions in the case of multiple
conflicting objectives. We studied the problem in both the Boolean and the
probabilistic settings. In each setting we presented two evaluation techniques, a
top-down evaluation with exponential complexity and a bottom-up evaluation
with linear complexity. We showed the equivalence of two evaluation techniques
under some condition. Similarly, we extended the developments to encompass
single and multiple costs to basic actions, and presented the corresponding eval-
uation techniques.

The method for evaluating attack trees with multiple costs can seamlessly
encompass costs but also rewards. Contrary to costs, a rational attacker would
seek reward maximisation, which can be evaluated in our framework by changing
the symbols si in the function MRs0,··· ,sn accordingly. Moreover, the model can
also cope with symbolic costs/rewards or with a combination of these.

We illustrated our evaluation techniques on an example from the TREsPASS
project, where the analysis allows to identify the most promising attacks.

In order to investigate the security properties of an attack scenario described
as an attack tree, the attack tree model needs first be produced. The auto-
mated generation of attack trees is one active research strand, briefly surveyed
in Ch. 2. Some of the examples we presented have been generated automati-
cally by tools developed in the context of the TREsPASS project, a European
research project for technology-supported risk estimation by predictive assess-
ment of socio-technical security. At a very high level, the end to end process

42 Pareto Efficient Solutions of Attack Trees

starts with the generation of an attack tree for the scenario under study, whose
security properties are then analysed with dedicated tools and finally presented
to the end user.

Once an attack tree is available, another key component in the evaluation of
the corresponding attack scenario consists in the association of basic actions with
parameters such as probability and cost, which allow to phrase questions beyond
Boolean security. Providing realistic estimates for the parameters that describe
basic actions is a research topic in itself. Several techniques have been applied
to this problem, including quantification of information leakage [BLMW13] and
resorting to domain expert knowledge.

Chapter 4
Pareto Efficient Solutions of

Attack-Defence Trees

In the previous chapter we have developed evaluation techniques of attack sce-
narios represented by attack trees. However, attack trees allow to model and
analyse only the attacker’s behaviour and do not consider possible defences un-
dertaken to avoid the attacks. In this chapter we extend the model of an attack
tree with the defender’s action.

As we have discussed in Ch. 2, attack-defence trees are extensions of attack
trees with countermeasures. They illustrate in a graphical way the possible
actions an attacker can perform in order to attain a given goal, and the feasible
countermeasures a defender can undertake to counter such actions. Attack-
defence trees are used for analysing attack-defence scenarios. As for attack trees,
typical evaluations assign values to the parameters of the leaves and traverse a
tree from the leaves to the root.

The remarks on existing analyses we made on attack trees in Ch. 3 also
apply to attack-defence trees. Most analyses focus on one specific aspect of
the system, such as feasibility or cost of an attack or a defence. They do not
consider multiple parameters and the subsequent need for optimising all of them
at once. As we have seen, multiple parameters may lead to Pareto problems,
where there is a set of optimal solutions.

In order to address multi-parameter optimisation of attack-defence trees, we
present evaluation techniques that characterise the leaves of a tree with more
than one parameter, such as the success probability and the cost of an attack.
Our techniques compute different aspects of the scenario and handle multiple
parameters, thus optimising all of them at once. Multi-parameter optimisation

44 Pareto Efficient Solutions of Attack-Defence Trees

becomes necessary in case of conflicting objectives, that we handle by computing
the set of optimal solutions, defined in terms of Pareto efficiency.

Building on Ch 3, our developments are performed on a new language-based
formalism for attack-defence trees, and retrace the same structure of our in-
vestigation of attack trees. We study attack-defence tree analysis in Boolean
and probabilistic settings. For each setting, we first consider the problem of
feasibility of the attack or the defence, and then we extend our techniques to
compute optimal attacks or defences in presence of probabilities and multiple
costs. Moreover, for each case, we first define the solution considering all pos-
sible player interactions, obtaining a natural but exponential characterisation.
Then, we improve on the complexity devising an algorithmic evaluation that is
linear and yet sound for an expressive sub-class of models.

The chapter is organised as follows. In Sect. 4.1 we introduce our formalism
for attack-defence trees and provide evaluation techniques for feasibility queries.
Sect. 4.2 extends the model with a single cost and presents evaluation techniques
for computing minimum cost. We extend the single cost model to multiple costs
in Sect. 4.3. The evaluation is demonstrated on a case study for a Radio-
Frequency Identification system managing goods in a warehouse. Proofs are in
Appendix C. This chapter is mainly based on [AN15].

4.1 Formal Model of Attack-Defence Trees

In the following, we extend the formalism for attack trees given in Sect. 3.1 to
attack-defence trees. First, we define the syntax and the related terminology in
Sect. 4.1.1. Then, we describe the evaluation techniques for investigating the
feasibility of attacks and defences both in Boolean and probabilistic settings.
The Boolean case is thoroughly explained in Sect. 4.1.2. The developments are
generalised to the probabilistic setting in Sect. 4.1.3.

4.1.1 Attack-Defence Trees

We construe an attack-defence tree as an interaction between two players (de-
noted by τ), the proponent (τ = p) and the opponent (τ = o), in the wake
of [KMRS10]. A player can be either an attacker or a defender. We associate
the proponent with the player at the root, and the opponent with the opposite
player. Each player has an associated goal, such as minimising or maximising
the overall probability of an attack or a defence.

The root of the tree represents the main goal of an attack-defence scenario
for a given player τ . The leaves represent the basic actions that a player can
perform to achieve his/her goal. The internal nodes show how those actions can
be combined. In order to simplify the technical developments, we assume that
the players’ actions are independent.

4.1 Formal Model of Attack-Defence Trees 45

Table 4.1: The syntax of attack-defence trees and the type system for defining
well-formed trees.

t ::= a | &∧(t1, t2) | &∨(t1, t2) | &¬(t) | &∼(t) | &true | &false

` a : p if a ∈ Actp ` a : o if a ∈ Acto

` t1 : τ ` t2 : τ

` &∧(t1, t2) : τ

` t1 : τ ` t2 : τ

` &∨(t1, t2) : τ

` t : τ

` &¬(t) : τ

` t : τ

` &∼(t) : τ ′
τ ′ = τ−1

` &true : τ ` &false : τ

The abstract syntax of an attack-defence tree t is presented in Table 4.1. A
tree is either a leaf or the application of a tree operator to one or two sub-trees.

Based on the player type, a leaf a is either a basic action of the proponent or
of the opponent. We denote the set of proponent’s and opponent’s basic actions
by Actp and Acto, respectively. We assume that these two sets are disjoint,
Actp∩Acto = ∅. We denote by Act the set of all basic actions, Act = Actp∪Acto.

There are two special types of leaves; &true represents a trivially-successful
action, and &false represents a trivially-failed action.

Similarly to the formalism for attack trees, tree operators include conjunc-
tion, disjunction and negation, while we introduce a novel construct for player
alternation. The conjunction, disjunction and negation operators are interpreted
in the same way as in Sect. 3.1.1.

The changing player operator t = &∼(t′) changes the goal of t′ by changing
the type of the player. Note that in this case the goal belongs to the opposite
player. For instance, if t′ belongs to an attacker with the corresponding goal
(e.g., minimising), then the tree t belongs to a defender with the corresponding
goal (e.g., maximising). Thus, the changing player operator flips the player from
an attacker to a defender and vice versa, as highlighted by the side-condition of
the corresponding rule, where p−1 = o and o−1 = p.

Well-formedness. The syntax of Table 4.1 is overly liberal for it does not
associate players to nodes. A simple type system, showed in the second section
of the table, enforces such association defining a well-formedness condition. We
denote by Treeτ the set of well-formed attack-defence trees whose root belongs
to a player τ . Based on the type of the player, we have Treep when τ is the
proponent and Treeo when τ is the opponent and we define Tree = Treep∪Treeo.
In the following, we will refer to them as attack-defence trees or simply trees.

46 Pareto Efficient Solutions of Attack-Defence Trees

Polarity-consistent tree. Analogously to the model of attack trees, we in-
troduce the notion of polarity consistency, to be exploited in the technical de-
velopments. We say that an action a occurs negatively in a tree, if a is under an
odd number of negations. Otherwise, we say that an action a occurs positively.
Such polarities are denoted with the symbols − and +, respectively.

Definition 4.1 An attack-defence tree t is polarity-consistent iff there is no
action that occurs both positively and negatively in t.

Example. Let us introduce an example that we will develop throughout the
chapter. We consider a fragment of a Radio-Frequency Identification (RFID)
system managing goods in a warehouse, studied in [BKMS12]. Particularly, we
consider an attacker (proponent) whose goal consists in removing the RFID tags
from goods with the help of an insider.

In order to attain the goal, the attacker can “bribe”, “threaten”, “blackmail”,
or “trick” the insider. For bribing a person the attacker has to “identify a cor-
ruptible subject” and “bribe the subject”. The defender (opponent) can protect
against bribery by “thwarting employees”, which can be done by “training for
security” and by “threatening to fire the employees”.

In case the attacker decides instead to “trick” the insider by placing a fake
tag, he/she can either “send false replacement tags” or give a “false management
order” to do it. The latter can be done by “infiltrating the management” and
“ordering replacement tags”. To fight such attacks, the defender can provide the
employees with “training for trick”.

The corresponding attack-defence tree is given in Figure 4.1. We decorate
internal nodes with labels to keep track of sub-goals, hence making the tree more
informative and human-readable. We label the leaves to refer to them easily.
The example is formalised as a tree t, displayed in Figure 1, represented by the
following syntactic term:

t = &∨(&∧(is,&∧(bs,&∼(&∧(t1,tf)))),
&∨(t,&∨(b,&∧(&∨(&∧(st,&∼(&∧(at,&∼(ba)))),&∧(im,ot)),&∼(t2)))))

In order to enable a direct comparison with the evaluation techniques in
the literature, our attack-defence tree does not contain negation. We will see,
however, that as far as the calculation is concerned, negation would be treated
similarly to the changing player operator.

4.1.2 Semantics in the Boolean Case

As mentioned above, we construe an attack-defence tree as an interaction be-
tween the proponent and the opponent. Corresponding to the model of attack
trees, in the Boolean setting the investigation of the feasibility of a scenario is
related to answering questions such as “Is there a successful attack/defence?”.

4.1 Formal Model of Attack-Defence Trees 47

∨

Remove tag

threaten

t

∧
bribe

blackmail

b

∧
trick

identify
subject

is

bribe
subject

bs

∼

∧
thwart

employees

training
for thwart

t1

threaten
to fire

employees

tf

∨ ∼

∧
false

replacement ∧
false

management

send
false
tag

st

∼

∧authentication

authenticate
tag

at

∼

break
authenti-
cation

ba

infiltrate
manage-
ment

im

order tag
replace-
ment

ot

training
for trick

t2

© - proponent’s action
� - opponent’s action

Figure 4.1: Attack-defence tree for removing RFID tags in a warehouse.

In this setting, we associate with each basic action a value from the Boolean
set B, where true corresponds to performing and false corresponds to not per-
forming the action. We consider B to be totally ordered such that max{tt ,ff } =
tt and min{tt ,ff } = ff . The tree operators are interpreted as the Boolean op-
erators, where the changing player operator is interpreted as negation.

We define a Boolean assignment of basic actions for a given player τ as
follows: a Boolean assignment mτ is an arbitrary function that assigns a value
b ∈ B to each basic action a ∈ Actτ ; mτ : Actτ → B. Thus, the Boolean
assignment m is a pair (mp,mo), but we allow to write m(a) as a shorthand
for mp(a) when a ∈ Actp and mo(a) when a ∈ Acto. We say that the main
goal described by a tree succeeds if the Boolean assignment evaluates the tree
to true.

For evaluating the feasibility of an attack-defence tree, we present two eval-
uation techniques, termed semantic and algorithmic evaluations, respectively.

The semantic evaluation M (t) of an attack-defence tree t ∈ Treep is pre-
sented in Table 4.2. The evaluation analyses the tree t by considering all pos-
sible Boolean assignments of values to the basic actions of t. It computes the

48 Pareto Efficient Solutions of Attack-Defence Trees

Table 4.2: The Boolean semantic evaluation of an attack-defence tree.

M (t) = (min{max{B[[t]](mp,mo) | mo Boolean assignment} |
mp Boolean assignment},

max{min{B[[t]](mp,mo) | mo Boolean assignment} |
mp Boolean assignment})

B[[a]]m = m(a)

B[[&∧(t1, t2)]]m = B[[t1]]m ∧ B[[t2]]m
B[[&∨(t1, t2)]]m = B[[t1]]m ∨ B[[t2]]m
B[[&¬(t)]]m = ¬B[[t]]m
B[[&∼(t)]]m = ¬B[[t]]m
B[[&true]]m = tt
B[[&false]]m = ff

pair of minimum and maximum success values of the proponent. If the propo-
nent is an attacker, then it computes the minimum and the maximum values
of an attack. Otherwise, it computes the minimum and maximum values of a
defence. We observe that if the main goal of the scenario (represented by the
root of the tree) is successful for the proponent, then it is not successful for the
opponent. Similarly, if the proponent wants to maximise the success of the main
goal, then the opponent wants to minimise it. Thus, the players have opposite
goals. We integrate this consideration into our technique by minimising the
value of t over all opponent’s Boolean assignments mo, and then maximising it
over all proponent’s Boolean assignments mp. This is illustrated by the second
component of M (t) in Table 4.2, which computes the maximum success value
of the proponent. The first component of M (t) computes the minimum success
value of the proponent. Therefore, the computation maximises the value over
all mo’s and then minimises it over all mp’s.

The analysis B[[t]]m of the tree t, displayed in the second part of Table 4.2,
is performed recursively on the structure of t. It is worth noticing that the
evaluation rules for negation and changing player unfold in the same way but
are supported by a different semantic reason. In case of negation, t = &¬t

′, the
player remains the same, say proponent, and his/her goal on &¬t

′ is the same
goal he/she has on t, say minimise. However, minimising over &¬t

′ corresponds
to maximising over t. In case of changing player, &∼t

′, the player changes and
the objective changes accordingly. This is modelled again resorting to negation.
Hence, both cases are treated identically but what is the consequence in one
case is the reason for using negation in the other.

The result of the semantic evaluation is interpreted in the same way as
discussed in Sect 3.1.2: (ff ,ff) denotes a secure system, (tt , tt) a flawed system
and (ff , tt) a vulnerable one – assuming the root belongs to the attacker.

4.1 Formal Model of Attack-Defence Trees 49

Table 4.3: The Boolean algorithmic evaluation of an attack-defence tree.

INT (a) =

{
(ff , tt) if a ∈ Actp
(tt ,ff) if a ∈ Acto

(Case-BA)

INT (&∧(t1, t2)) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (min1 ∧min2,max1 ∧max2) (Case-and)

INT (&∨(t1, t2)) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (min1 ∨min2,max1 ∨max2) (Case-or)

INT (&¬(t)) = let (min,max) = INT (t)
in (¬max,¬min) (Case-neg)

INT (&∼(t)) = let (min,max) = INT (t)
in (¬max,¬min) (Case-change)

INT (&true) = (tt , tt) (Case-tt)

INT (&false) = (ff ,ff) (Case-ff)

The semantic evaluation characterises the analysis in a natural way, for it ex-
plicitly considers all the interactions interwoven in a tree in terms of assignments
to the leaves. Nonetheless, it gives rise to an exponential computation already
in the Boolean case, the satisfiability problem being NP-complete. Therefore,
an evaluation technique that enjoy a lower complexity is needed. In particular,
we face the problem of defining those restrictions on attack-defence trees under
which more efficient methods are sound with respect to the semantic evaluation,
our standard of reference.

The algorithmic evaluation INT (t) of an attack-defence tree t ∈ Treep is
presented in Table 4.3. Similarly to the semantic evaluation, it computes the
pair of minimum and maximum success values of the proponent. It considers the
values of basic actions and propagates them up to the root. The propagation
is performed according to the rules given in Table 4.3. The rule (Case-BA)
assigns the minimum and the maximum success values to the actions based on
the player type. Observe that, as the players have opposite goals, the success
values are also opposite. The following four rules define the computation for
operators. Conjunction and disjunction are treated in the standard way, hence
let us focus on the negation and changing player operators. Both operators
change the goal of the player. The negation operator negates the value of its
sub-tree resulting in a change of optimisation goal (min = ¬max), while the
changing player operator changes the optimisation goal by changing the player
and this is modelled by negating the value of the sub-tree (min = ¬max). Thus,

50 Pareto Efficient Solutions of Attack-Defence Trees

in both rules we first swap the minimum and maximum values, and then apply
negation. The last two rules are independent from the players and represent
always successful and failed actions.

As for attack trees, in the model of attack-defence trees, the semantic and
algorithmic evaluations might lead to different results, as we can see by consider-
ing the attack-defence tree t = &∧(a,&¬(a)), where a ∈ Actp. The result of the
semantic evaluation is M (t) = (ff ,ff), while the results of the algorithmic eval-
uation is INT (t) = (ff , tt). However, observe that t is not polarity-consistent.
As a matter of fact, if we restrict to polarity-consistent trees, then the two
evaluations are equivalent.

Theorem 4.2 Let t ∈ Tree be a polarity-consistent attack-defence tree. Then

M (t) = INT (t)

The semantic evaluation considers all possible Boolean assignments m, thus
being exponential in the size of t. The implementation of the algorithmic eval-
uation consists in a bottom-up traversal of t, and thus is linear in the size of
the tree. Therefore, in case of polarity-consistent trees, our method offers a
dramatic improvement in performance, hence in scalability.

4.1.3 Semantics in the Probabilistic Case
As we have seen in Sect. 3.1.3 for attack trees, the probabilistic setting gen-
eralises the Boolean one. In the following, we give a brief explanation of the
setting and the evaluations, focusing on the novelties and omitting redundant
details.

In the probabilistic setting, we consider the interval [0, 1], where 0 corre-
sponds to failure and 1 corresponds to success. The questions tackled in the
probabilistic setting are, e.g., “What is the maximum probability of an attack?”
or “How vulnerable is the system with respect to this attack goal?”.

In this setting the tree operators are interpreted differently than the Boolean
operators, and they satisfy only commutativity and associativity. This is in line
with the model of attack trees.

Here as well, we assume that each basic action a ∈ Act has two associated
success probabilities; success probability p1(a) in case of not performing a, and
success probability p2(a) in case of performing a, such that p1(a) ≤ p2(a).
We consider the Boolean assignment mτ as defined in the previous section,
mτ : Actτ → B, and assume that an action a has probability of success p1(a)
if m(a) is false and has probability of success p2(a) if m(a) is true. Choosing
p1(a) = 0 and p2(a) = 1 coincides with the Boolean case.

The evaluation of attack-defence trees in the probabilistic setting follows the
development for the Boolean setting: first, we characterise the solution to our
problem in a top-down fashion, and then we investigate what restrictions on the
model allow to devise an algorithmic approach with lower complexity.

4.1 Formal Model of Attack-Defence Trees 51

Table 4.4: The probabilistic semantic evaluation of an attack-defence tree.

M (t) = (min{max{P[[t]](mp,mo) | mo Boolean assignment} |
mp Boolean assignment},

max{min{P[[t]](mp,mo) | mo Boolean assignment} |
mp Boolean assignment})

P[[a]]m =

{
p2(a) if m(a) = tt

p1(a) if m(a) = ff

P[[&∧(t1, t2)]]m = P[[t1]]m · P[[t2]]m
P[[&∨(t1, t2)]]m = 1− (1− P[[t1]]m) · (1− P[[t2]]m)
P[[&¬(t)]]m = 1− P[[t]]m
P[[&∼(t)]]m = 1− P[[t]]m
P[[&true]]m = 1
P[[&false]]m = 0

The semantic evaluation M (t) of an attack-defence tree t ∈ Treep is illus-
trated in Table 4.4. It computes the minimum and the maximum success prob-
ability of a scenario by analysing the tree t over all Boolean assignments from
which the probability values are inferred. Observe that also here the players have
opposite goals, e.g., the proponent wants to maximise the overall probability of
success, while the opponent wants to minimise it.

The result of the computation, when the proponent is an attacker, is inter-
preted as follows. The maximum success probability p shows the existence of an
attack with probability p. In this case, we say that the system is p-vulnerable.

The algorithmic evaluation INT (t) of an attack-defence tree t ∈ Treep is
given in Table 4.5. It traverses the tree from the leaves to the root and prop-
agates the values of the basic actions. Similarly to the Boolean case, as the
negation and changing player operators change the goal of the player, we first
swap the minimum and maximum values before applying negation.

We shall restrict to polarity-consistent trees in order to show the equivalence
of the two evaluations.

Theorem 4.3 Let t ∈ Tree be a polarity-consistent attack-defence tree. Then

M (t) = INT (t)

Hence, in the probabilistic setting polarity-consistency allows to scale from
an exponential to a linear complexity.

Example. Consider the attack-defence tree t presented in Figure 4.1. Observe
that t is a polarity-consistent tree, thus we can apply the algorithmic evalua-
tion for computing the maximum probability of success at the root. Table 4.6

52 Pareto Efficient Solutions of Attack-Defence Trees

Table 4.5: The probabilistic algorithmic evaluation of an attack-defence tree.

INT (a) =

{
(p1(a), p2(a)) if a ∈ Actp
(p2(a), p1(a)) if a ∈ Acto

(Case-BA)

INT (&∧(t1, t2)) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (min1 ·min2,max1 ·max2) (Case-and)

INT (&∨(t1, t2)) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (1− (1−min1) · (1−min2),

1− (1−max1) · (1−max2)) (Case-or)

INT (&¬(t)) = let (min,max) = INT (t)
in (1−max, 1−min) (Case-neg)

INT (&∼(t)) = let (min,max) = INT (t)
in (1−max, 1−min) (Case-change)

INT (&true) = (1, 1) (Case-tt)

INT (&false) = (0, 0) (Case-ff)

lists possible probability values for basic actions (the last column is for later
reference).

Following the algorithmic computation we obtain INT (t) = (0, 0.97), that
is, the system is 0.97-vulnerable. The details of the computation with the values
for the internal nodes are presented in Appendix D.1.

4.2 Attack-Defence Trees with Cost
Analogously to the model of attack trees, we extend our evaluation techniques
by considering a single cost for basic actions. In this section, we evaluate the
minimum cost of an attack or defence in the Boolean and probabilistic settings.
Sect. 4.2.1 thoroughly explains the Boolean case, while the developments are
generalised to the probabilistic setting in Sect. 4.2.2.

4.2.1 Cost in the Boolean Case

We extend the model of attack-defence trees described in Sect. 4.1.2 with a
single cost for basic actions. Therefore, each basic action is associated with a
pair of Boolean and cost values.

When we consider costs, we can focus on questions such as “What is the
minimum cost of an attack?” or “How much does it cost to protect a system

4.2 Attack-Defence Trees with Cost 53

Label Name of the Node p1 p2 c
is identify subject 0.2 0.8 80
bs bribe subject 0 0.7 100
t1 training for thwart 0.1 0.3 0
tf threaten to fire employees 0.1 0.4 0
t threaten 0 0.7 160
b blackmail 0 0.7 150
st send false tag 0 0.5 50
at authenticate tag 0.1 0.7 0
ba break authentication 0.1 0.6 85
im infiltrate management 0 0.5 70
ot order tag replacement 0 0.6 0
t2 training for trick 0.1 0.4 0

Table 4.6: The values of probability and cost for the basic actions of the ex-
ample.

in a given scenario?”. Observe that cost-related questions are player-dependent,
meaning that the model is evaluated from a given player’s perspective. Since
we assumed that the basic actions are independent, we need to consider one
player’s values only. For instance, for computing the minimum cost of an attack
we need only the cost of the attacker’s actions and do not require the cost of
the defender’s actions. Thus, in our evaluation techniques we consider only the
cost of the proponent’s actions, and do not consider the cost of the opponent’s
actions.

In the following we consider the set D = B×Q≥0. In order to link the cost
parameter to the existing model in the Boolean setting, we assume that each
basic action of the proponent a ∈ Actp has two associated costs. One is the cost
of not performing a (0 in the following), the other is the cost c(a) of performing
a. We set both costs of the opponent actions to 0.

As we have seen for attack trees, extending the model with costs and evalu-
ating the pairs of success and cost values lead to multi-parameter optimisation.
Moreover, such pairs are incomparable in case the goal of a player is to maximise
one parameter while minimising the other. In order to address multi-parameter
optimisation in the case of conflicting objectives, we resort to Pareto efficiency
relying on the functions MR+− and MR−− defined in Sect. 3.2.1 to only retain
optimal solutions.

Following the previous developments, we present two evaluation techniques.
The semantic evaluation M (t,A) of an attack-defence tree t ∈ Treep and a

set of actions A is illustrated in Table 4.7. It computes a pair, where the first
argument is a set computed by the function MR−− and consists of all pairs that
have lower success value and lower cost of the proponent actions compared to
other solutions, and the second argument is the set computed by the function
MR+− and consists of all pairs that have higher success value and lower cost of
the proponent actions compared to other solutions.

As we discussed in Sect. 4.1.2, if the proponent wants to maximise the success

54 Pareto Efficient Solutions of Attack-Defence Trees

Table 4.7: The Boolean semantic evaluation of an attack-defence tree with
cost.

M (t,A) = (MR−−({ (fmp1 (t), bp) | cost(mp,A) ≤ bp}),
MR+−({ (fmp2 (t), bp) | cost(mp,A) ≤ bp}))

fmp1 (t) = max{B[[t]](mp,mo) | mo Boolean assignment}

fmp2 (t) = min{B[[t]](mp,mo) | mo Boolean assignment}

cost(mp,A) =
∑
a∈A

{
0, if mp(a) = ff
c(a), if mp(a) = tt

of the main goal, then the opponent wants to minimise it. In other words, the
players affect the computation of the success value of the main goal in opposite
ways, e.g., when one wants to maximise, the other wants to minimise and vice
versa. The functions MR−− and MR+− evaluate the success values based on
the goal of the proponent. In order to consider the effect of the opponent with
the opposite goal, we define functions fmp1 (t) and fmp2 (t) given in Table 4.7. The
functions compute respectively the maximum and minimum success values over
all Boolean assignments mo for a given Boolean assignment mp.

The algorithmic evaluation INT (t) for an attack-defence tree t ∈ Treep is
given in Table 4.8. It again computes a pair, where the first argument consists
of all pairs that have lower success value and cost of the proponent actions, and
the second argument consists of all pairs that have higher success value and
lower cost of the proponent actions. Such sets are computed in a bottom-up
fashion, defined by the rules presented in Table 4.8. The rules extend the ones
for the success value computation, presented in Sect. 4.1.2, Table 3.3.

The rule (Case-BA) assigns the sets MR−− and MR+− to the basic actions.
Observe that the cost of not performing the proponent’s actions, as well as both
costs of the opponent’s actions, is 0. The rules for conjunction (Case-and) and
disjunction (Case-or) use the standard computation for success values and sum
the costs. The negation and changing player operators evaluate the success value
as described in Sect. 4.1.2, while leaving the cost unchanged. The rules (Case-tt)
and (Case-ff) correspond to trivially-successful and trivially-failed actions, which
are independent from the players, and thus have a cost equal to 0. Applying
the functions MR−− and MR+− in each rule of the evaluation allows to reduce
the size of the sets in each step.

As we have seen on attack trees, the notion of polarity-consistency does not
suffice to show the equivalence of the semantic and algorithmic evaluation when
the notion of cost enters the model. The same applies to attack-defence trees, un-
surprisingly. Consider the polarity-consistent tree &∧(&∨(a, b),&∨(a,&∼(d))),

4.2 Attack-Defence Trees with Cost 55

Table 4.8: The Boolean algorithmic evaluation of an attack-defence tree with
cost.

INT (a) =

(MR−−({(ff, 0), (tt, c(a))}),
MR+−({(ff, 0), (tt, c(a))})) if a ∈ Actp

(MR−−({(tt, 0)}),MR+−({(ff, 0)})) if a ∈ Acto
(Case-BA)

INT (&∧(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(b ∧ b′, c+ c′) | (b, c) ∈ V1, (b

′, c′) ∈ V2}),
MR+−({(b ∧ b′, c+ c′) | (b, c) ∈W1, (b

′, c′) ∈W2}))
(Case-and)

INT (&∨(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(b ∨ b′, c+ c′) | (b, c) ∈ V1, (b

′, c′) ∈ V2}),
MR+−({(b ∨ b′, c+ c′) | (b, c) ∈W1, (b

′, c′) ∈W2}))
(Case-or)

INT (&¬(t)) = let (V,W) = INT (t)
in (MR−−({(¬b, c) | (b, c) ∈W}),

MR+−({(¬b, c) | (b, c) ∈ V })) (Case-neg)

INT (&∼(t)) = let (V,W) = INT (t)
in (MR−−({(¬b, c) | (b, c) ∈W}),

MR+−({(¬b, c) | (b, c) ∈ V })) (Case-change)

INT (&true) = ({(tt , 0)}, {(tt , 0)}) (Case-tt)

INT (&false) = ({(ff , 0)}, {(ff , 0)}) (Case-ff)

where a, b ∈ Actp, d ∈ Acto, c(a) = 2 and c(b) = 1, we see that the two evalua-
tion techniques lead to different results. The semantic evaluation gives the re-
sult M(t, yield(t)) = ({(ff, 0)}, {(ff, 0), (tt, 2)}), while the algorithmic evaluation
(presented in Figure. 4.2) gives the result INT(t) = ({(ff, 0)}, {(ff, 0), (tt, 3)}).

Again, to show the equivalence of the two evaluation we restrict to linear
trees, i.e., trees where no action occurs twice (for any player).

Theorem 4.4 Let t ∈ Tree be a linear attack-defence tree. Then

M (t , yield(t)) = INT (t)

We measure complexity of the two evaluation methods by calculating the
number of set operations. The semantic evaluation is exponential, while the
algorithmic evaluation is linear and hence presents a dramatic improvement in
the case of linear trees.

56 Pareto Efficient Solutions of Attack-Defence Trees

∧

MR−− : {(ff , 0)}
MR+− : {(ff , 0), (tt , 3)}

∨

MR−− : {(ff , 0)}
MR+− : {(ff , 0), (tt , 1)}

∨

MR−− : {(tt , 0)}
MR+− : {(ff , 0), (tt , 2)}

a

MR−− : {(ff , 0)}
MR+− : {(ff , 0), (tt , 2)}

b

MR−− : {(ff , 0)}
MR+− : {(ff , 0), (tt , 1)}

a

MR−− : {(ff , 0)}
MR+− : {(ff , 0), (tt , 2)}

∼

MR−− : {(tt , 0)}
MR+− : {(ff , 0)}

d

MR−− : {(tt , 0)}
MR+− : {(ff , 0)}

Figure 4.2: The Boolean algorithmic evaluation with cost of the attack tree
t = &∧(&∨(a, b),&∨(a,&∼(d))).

4.2.2 Cost in the Probabilistic Case

In the following we briefly generalise our development to the probabilistic set-
ting, concentrating on the differences with respect to the Boolean setting.

Note, that the same observation regarding the cost to the proponent and to
the opponent applies. Here we consider the set D = [0, 1] × Q≥0. The cost is
integrated to the basic actions in the same way. Thus, to extend the probabilistic
model with costs, we assume that each basic action of the proponent player
a ∈ Actp has two associated costs, 0 in case of not performing a, and c(a) in
case of performing a. We set both costs of the opponent’s actions equal to 0.

As in the previous case, by considering probability and cost and focusing on
maximising the first while minimising the other, we face a multi-parameter op-
timisation problem with conflicting objectives. Similarly to the Boolean setting,
we provide two evaluation techniques based on Pareto efficiency by considering
the functions MR−− and MR+−. We compute the set of Pareto-efficient solu-
tions for answering questions such as “What is the maximum probability and
the minimum cost of an attack?”.

The semantic evaluation M (t,A) of an attack-defence tree t ∈ Treep and a
given set A is illustrated in Table 4.9. The evaluation follows the corresponding
one for the Boolean case, described in the Sect. 4.2.1. The only difference is
that the tree t is evaluated over the Boolean assignments by considering the
probabilistic analysis P[[t]] instead of the Boolean one B[[t]] (and considering the
corresponding probabilistic values for each action). The result of the evaluation
is the pair of sets MR−− and MR+−, corresponding to the set of Pareto-efficient
solutions.

The algorithmic evaluation INT (t) for a tree t ∈ Treep is given in Table 4.10.
It traverses the tree from the leaves to the root according to the rules presented
in the table. The rules follow the corresponding ones of the Boolean setting.

Analogously to the previous section, we shall restrict to linear trees in order

4.2 Attack-Defence Trees with Cost 57

Table 4.9: The probabilistic semantic evaluation of an attack-defence tree with
cost.

M (t ,A) = (MR−−({ (fmp1 (t), bp) | cost(mp,A) ≤ bp}),
MR+−({ (fmp2 (t), bp) | cost(mp,A) ≤ bp}))

fmp1 (t) = max{P[[t]](mp,mo) | mo Boolean assignment}

fmp2 (t) = min{P[[t]](mp,mo) | mo Boolean assignment}

cost(mp,A) =
∑
a∈A

{
0, if mp(a) = ff
c(a), if mp(a) = tt

to show the equivalence of the two evaluations.

Theorem 4.5 Let t ∈ Tree be a linear attack-defence tree. Then

M (t , yield(t)) = INT (t)

Again, a syntactic restriction allows to develop a sound evaluation technique
that is linear in the size of the tree as opposed to the exponential complexity
that characterises the general case.

Example. Consider the linear attack-defence tree t presented in Figure 4.1.
Table 4.6 lists possible values for probability and cost for basic actions.

In order to detect the attacks with maximum probability of success and min-
imum cost, we apply the algorithmic evaluation. The details of the computation
are presented in Appendix D.2, while at the root we obtain:

INT (t) = ({(0, 0)}, {(0, 0), (0.1, 50), (0.18, 70), (0.26, 120), (0.7, 150),
(0.73, 200), (0.75, 220), (0.78, 270), (0.91, 310), (0.92, 360),
(0.93, 430), (0.95, 490), (0.96, 540), (0.97, 695)})

The overall result of the evaluation, i.e., the set of efficient solutions for the
goal representing the Pareto frontier of the problem, is displayed in Figure 4.3.
The probability of successful attacks ranges from 0 to 0.97 and the corresponding
cost ranges from 0 to 695. We can conclude that the system under study is (p,c)-
vulnerable for all the incomparable pairs in the Pareto frontier. In particular,
the attack is not attainable trivially (all pairs with probability greater than zero
require a cost greater than zero).

58 Pareto Efficient Solutions of Attack-Defence Trees

Table 4.10: The probabilistic algorithmic evaluation of an attack-defence tree
with cost.

INT (a) =

(MR−−({(p1(a), 0), (p2(a), c(a))}),
MR+−({(p1(a), 0), (p2(a), c(a))})) if a ∈ Actp

(MR−−({(p2(a), 0)}),MR+−({(p1(a), 0)})) if a ∈ Acto

INT (&∧(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(p · p′, c+ c′) | (p, c) ∈ V1, (p

′, c′) ∈ V2}),
MR+−({(p · p′, c+ c′) | (p, c) ∈W1, (p

′, c′) ∈W2}))

INT (&∨(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(1− (1− p)(1− p′), c+ c′) |

(p, c) ∈ V1, (p
′, c′) ∈ V2}),

MR+−({(1− (1− p)(1− p′), c+ c′) |
(p, c) ∈W1, (p

′, c′) ∈W2}))

INT (&¬(t)) = let (V,W) = INT (t)
in (MR−−({(1− p, c) | (p, c) ∈W}),
MR+−({(1− p, c) | (p, c) ∈ V }))

INT (&∼(t)) = let (V,W) = INT (t)

in (MR−−({(1− p, c) | (p, c) ∈W}),
MR+−({(1− p, c) | (p, c) ∈ V }))

INT (&true) = ({(1, 0)}, {(1, 0)})

INT (&false) = ({(0, 0)}, {(0, 0)})

4.3 Attack-Defence Trees with Multiple Costs

In this section we extend the model to deal with multiple costs for basic actions.
Observing that the Boolean setting is a special case of the probabilistic one, in
the following we describe the extended model only in the probabilistic setting,
focusing on the extensions with respect to a single cost model. The developments
retrace those for the model of attack trees presented in Sect. 3.3.

We consider the set D = [0, 1] × Qn≥0. We assume that each basic action of
the proponent a ∈ Actp has two vectors of n associated costs: a vector of 0’s in
case of not performing a, and a vector γ : Actp → Qn≥0 in case of performing
a. We denote γ = (c1(a), · · · , cn(a)), ci : Actp → Q≥0, i ∈ [1, n]. Here as well,
when adding costs we resort to point-wise summation of vectors. We set the

4.3 Attack-Defence Trees with Multiple Costs 59

0	

100	

200	

300	

400	

500	

600	

700	

800	

0.0	 0.2	 0.4	 0.6	 0.8	 1.0	

co
st
	

probability	

Figure 4.3: Pareto-efficient solutions for the attack-defence tree t.

cost of the opponent’s actions to vectors of 0’s.
The functions MR−− and MR+− are extended as in Sect. 3.3 by introducing

polarity modifications of the comparison operators as follows: w+ is w, =+ is
=, w− is v and =− is <. The sign “+” corresponds to the maximisation of the
parameters and keeps the operator as it is, while the sign “−” corresponds to
the minimisation of the parameters, therefore it changes the operator.

We define a general frontier function, where si ∈ {+,−} and Z ⊆ D, as
follows:

MRs0,··· ,sn(Z) = {(x0, · · · , xn) ∈ Z | ∀(x′0, · · · , x′n) ∈ Z :

x′0 ws0 x0 ∧ · · · ∧ x′n wsn xn ⇒ x′0 = x0 ∧ · · · ∧ x′n = xn}
= {(x0, · · · , xn) ∈ Z | ∀(x′0, · · · , x′n) ∈ Z :

((x0 ws0 x′0) ∨ (x1 =s1 x′1) ∨ · · · ∨ (xn =sn x′n)) ∧ · · ·
· · · ∧ ((x0 =s0 x′0) ∨ (x1 =s1 x′1) ∨ · · · ∨ (xn wsn x′n))}

As in Sect. 3.3, the function MRs0,··· ,sn computes the efficient solutions
for multiple parameters by maximising the parameter values if si = + and
minimising it if si = −. Each wsi is in fact a total order (on [0,1] or Q≥0) and
hence ¬(x′i wsi xi) is equivalent to xi =si x′i. Observe that with this notation
we get MR−− when we take n = 1 and s0 = s1 = −, and we get MR+− when
we take n− 1 and s0 = +, s1 = −.

The definitions of the semantic evaluation M ∗ and algorithmic evaluations
INT ∗ closely follow that of the corresponding ones in Sects. 4.2 and 3.3. The
two evaluations are given in Table 4.11 and 4.12, respectively.

We show the equivalence of two evaluation techniques by restricting to linear
trees.

Theorem 4.6 Let t ∈ Tree be a linear attack-defence tree. Then

M ∗(t, yield(t)) = INT ∗(t)

60 Pareto Efficient Solutions of Attack-Defence Trees

Table 4.11: The probabilistic semantic evaluation of a tree with multiple cost.

M ∗(t ,A) = (MR−−···−({ (fmp1 (t), b1
p, · · · , bnp) | costi(mp,A) ≤ bip}),

MR+−···−({ (fmp2 (t), b1
p, · · · , bnp) | costi(mp,A) ≤ bip}))

fmp1 (t) = max{P[[t]](mp,mo) | mo Boolean assignment}

fmp2 (t) = min{P[[t]](mp,mo) | mo Boolean assignment}

costi(mp,A) =
∑
a∈A

{
0, if mp(a) = ff
ci(a), if mp(a) = tt

4.4 Concluding Remarks

The growing centrality of technology requires a thorough investigation of the
security properties of complex systems with respect to cyber and physical at-
tacks, as well as consideration of possible defences undertaken to counter such
attacks.

Attack-defence trees are a useful tool to study attack-defence scenarios and
present the interaction between an attacker and a defender in an intuitive way.
Moreover, such models are relied on to develop quantitative analyses of attacks
and defences. Many evaluation methods consider one-parameter trees or analyse
multi-parameter trees focusing on one specific aspect of the scenario, such as
probability of success or cost. Nonetheless, in case of multi-parameter models,
conflicting objectives may lead to incomparable values, which require to optimise
all parameters at once on pain of computing sub-optimal solutions.

In order to tackle this issue, we have presented evaluation techniques for
multi-parameter attack-defence trees that optimise all parameters at once, lev-
ering the concept of Pareto efficiency. Our developments have been carried out
extending the language-based formalism of Ch. 3 to attack-defence trees, intro-
ducing a novel operator for player alternation. In the extended language, the
interaction between an attacker and a defender is made explicit by associating a
player to each node thanks to a simple type system. We have called proponent
the player at the root and opponent the other player.

We have extended the analyses first introduced in Ch. 3 on attack trees
to analyse attack-defence scenarios, investigating aspects such as the feasibility
and the cost of an attack or a defence. For each case we have illustrated the
natural semantic evaluation technique as well as an algorithmic evaluation which
enjoys a dramatic improvement in complexity, and we have proven under which
conditions the latter can be relied on in place of the former. Both methods
characterise the goal of the scenario with a set of Pareto-efficient solutions.

4.4 Concluding Remarks 61

Table 4.12: The probabilistic algorithmic evaluation of a tree with multiple
cost.

INT ∗(a) =

(MR−−···−({(p1(a), 0, · · · , 0), (p2(a), c1(a), · · · , cn(a))}),
MR+−···−({(p1(a), 0, · · · , 0), (p2(a), c1(a), · · · , cn(a))}))

if a ∈ Actp
(MR−−···−({(p2(a), 0, · · · , 0)}),
MR+−···−({(p1(a), 0, · · · , 0)}))

if a ∈ Acto
INT ∗(&∧(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}

in (MR−−···−({(p · p′, c1 + c′1, · · · , cn + c′n) |
(p, c1, · · · , cn) ∈ V1, (p

′, c′1, · · · , c′n) ∈ V2}),
MR+−···−({(p · p′, c1 + c′1, · · · , cn + c′n) |

(p, c1, · · · , cn) ∈W1, (p
′, c′1, · · · , c′n) ∈W2}))

INT ∗(&∨(t1, t2)) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−···−({(1− (1− p)(1− p′), c1 + c′1, · · · , cn + c′n) |

(p, c1, · · · , cn) ∈ V1, (p
′, c′1, · · · , c′n) ∈ V2}),

MR+−···−({(1− (1− p)(1− p′), c1 + c′1, · · · , cn + c′n) |
(p, c1, · · · , cn) ∈W1, (p

′, c′1, · · · , c′n) ∈W2}))

INT ∗(&¬(t)) = let (V,W) = INT (t)
in (MR−−···−({(1− p, c1, · · · , cn) | (p, c1, · · · , cn) ∈W}),

MR+−···−({(1− p, c1, · · · , cn) | (p, c1, · · · , cn) ∈ V }))

INT ∗(&∼(t)) = let (V,W) = INT (t)
in (MR−−···−({(1− p, c1, · · · , cn) | (p, c1, · · · , cn) ∈W}),

MR+−···−({(1− p, c1, · · · , cn) | (p, c1, · · · , cn) ∈ V }))

INT ∗(&true) = ({(1, 0, · · · , 0)}, {(1, 0, · · · , 0)})
INT ∗(&false) = ({(0, 0, · · · , 0)}, {(0, 0, · · · , 0)})

Our current methods focus on the players independently: for evaluating the
cost of the proponent p, we set the cost of the opponent to 0 and assign a budget
to p. In future work, it would be interesting to investigate the extension of the
model with a budget for the opponent, so as to compute the optimal solutions
for both players at once.

We have now concluded Part I where we approached the challenge of attack
and attack-defence trees analysis improving on the literature but remaining in
the realm of direct evaluation of tree-like objects. In the remainder of the disser-

62 Pareto Efficient Solutions of Attack-Defence Trees

tation we shall instead explore the connection between attack and attack-defence
trees and stochastic models, moving from a static to a dynamic perspective on
the problem of security.

Part II

From Attack-Defence Trees to
Security Games

65

Formal graphical models help identify and understand the security threats
to system and to study the possible countermeasures. In the previous part we
studied two such approaches, namely attack trees and attack-defence trees, and
proposed evaluation techniques that address multi-parameter optimisation of
objectives such as probability and cost. The techniques we developed for attack
trees and attack-defence trees optimise all parameters at once and compute the
set of optimal solutions, levering the concept of Pareto efficiency.

Attack-defence scenarios, illustrated through attack-defence trees, can be
seen as the interaction between two players, an attacker and a defender, where
the players compete with each other for achieving conflicting objectives. In this
part of the work we look into attack-defence scenarios from this perspective and
explore the relation between attack-defence trees and games in the stochastic
domain. A game-theoretic approach to the analysis of attack-defence trees al-
lows to reap the benefits of the great many developments in the area of game
model checking.

The probabilistic features of many scenarios and the competitive behaviour
of attackers and defenders make it natural to model attack-defence scenarios
as Stochastic Two-player Games. We define a translation from attack-defence
trees to STGs and use automated verification techniques such as probabilis-
tic model checking for evaluating security properties and computing optimal
attack and defence strategies to the players. In order to express the dependen-
cies between attacker and defender actions we introduce sequential operators
in attack-defence trees, extending our formalism. This allows to handle the
situations when the choices of players may depend on the history of the game.

We investigate probability and expected cost-related properties of a scenario
and use Probabilistic Alternating-Time Temporal Logic with Rewards (rPATL)
to express security properties. rPATL allows to specify quantitative properties
and reason about the strategies available to the competing players. To support
the modelling and verification of stochastic multi-player games we rely on the
model checker PRISM-games.

Finally, we discuss an extension of our approach for analysing properties with
multiple objectives. We consider multi-objective probabilistic model checking for
stochastic games, which allows to verify multiple, conflicting objectives such as
probability and expected cost. This is a key contribution in our approach to
analysing attack-defence trees, as we have stressed throughout Part I. Observe
that in Part I we always dealt with the exact cost of an attack, defined as the
sum of the costs of the actions leading to the goal. On the other hand, the lit-
erature on stochastic model checking focuses on expected reward, weighing costs
by the probability of incurring them. However, it is not clear how to compare
an expected cost to a fixed budget available to a player. We will investigate in
Part III how to overcome this limitation.

The organisation of this part is as follows. Chapter 5 provides background
material on stochastic systems and the logics used in subsequent chapters. We

66

present our formalism for attack-defence trees, the proposed translation from
trees to STGs, as well as the evaluation of security properties and synthesis of
strategies in Ch. 6.

Chapter 5
Preliminaries: Probabilistic

Models

This chapter aims at introducing necessary preliminaries on the probabilistic
models used in Ch. 6 and Ch. 7. In particular, it presents Discrete-Time Markov
Chains and Stochastic Two-player Games, as well as their analysis by means of
probabilistic model checking.

5.1 Probabilistic Models

Probability is an important component for modelling unreliable and unpre-
dictable system behaviour, for example fault-tolerant systems or communication
networks. Many real-life systems have a stochastic nature, such as probabilistic
protocols or randomised distributed systems. In order to express random and
unpredictable behaviour, the models are annotated with information about the
probability of the occurrence of events. In this part of the work we consider two
probabilistic models: Discrete-Time Markov Chains (DTMCs), that represent
purely probabilistic behaviour, and Stochastic Two-player Games (STGs), that
model probabilistic systems embedding competitive behaviour.

The chapter is organised as follows. We begin in Sect. 5.1.1 with a brief back-
ground material on DTMCs. In Sect. 5.1.2 we give an overview of STGs and
related concepts. Model checking DTMCs and games is discussed in Sects. 5.2.1
and 5.2.2, respectively. Finally, Sect. 5.3 presents the model checker PRISM. For
a thorough treatment of the topic the reader is referred to [BK08, Ch.10] [KNP07,
CFK+13a].

68 Preliminaries: Probabilistic Models

5.1.1 Discrete Time Markov Chains
Discrete-Time Markov Chains model the probabilistic behaviour of the system.
In DTMCs the probability of making a transition from one state to another
depends only on the current state and not on any past states, that is, the
system is memoryless.

Definition 5.1 (DTMC) A Discrete-Time Markov Chain is a tuple D =
(S, s0, P,AP,L), where:

• S is a finite, non-empty set of states;

• s0 ∈ S is the initial state;

• P : S × S → [0, 1] is a transition probability function such that for all
states s ∈ S,

∑
s′∈S P (s, s′) = 1;

• AP is a set of atomic propositions; and

• L : S → 2AP is a labelling function.

The transition probability function indicates the probability P (s, s′) of mov-
ing from state s to state s′ in a single transition. It is required that

∑
s′∈S P (s, s′) =

1 for all state s ∈ S, thus terminating states are modelled by adding a self-loop.
The function P can be viewed as the matrix (P (s, s′))s,s′∈S , where each element
P (s, s′) gives the probability of moving from s to s′. The labelling function L
maps each state s to a set of atomic propositions.

A path through a DTMC is a sequence of states π = s0s1 · · · where si ∈ S
and P (si, si+1) > 0 for all i ≥ 0. A path can be infinite or finite. The sets of all
infinite and finite paths starting in a state s are denoted by Paths and Pathfins ,
respectively. The i-th state of the path is denoted by π[i].

Reasoning about quantitative properties of a DTMC requires determining
the probabilities that certain paths are taken. This is done by defining a proba-
bility measure Prs over the set of infinite paths Paths based on σ-algebra. For
more details we refer the reader to [BK08, Ch.10].

In addition to the probability, DTMCs can be augmented with reward struc-
tures of the form r : S×S → Q≥0, which map each transition to a non-negative
rational number. In our work we use reward as a mechanism to model costs
associated with performing an action, i.e., with taking a transition.

5.1.2 Stochastic Two-Player Games
Systems with both probabilistic and competitive behaviour can be modelled
as stochastic games. In this dissertation, we consider Stochastic Two-player
Games for modelling the interaction between the attacker and the defender of
an attack-defence scenario.

5.1 Probabilistic Models 69

Definition 5.2 (STG) A Stochastic Two-player Game is a tuple G = (Π, S,
s0, α, (SA, SD, SP , S}), P, T,AP,L), where:

• Π = {A,D} is a set of players;

• S = SA] SD] SP] S} is a finite set of states, partitioned into attacker
states (SA), defender states (SD), probabilistic states (SP) and final states
(S});

• s0 ∈ S is the initial state;

• α is a finite, non-empty set of actions;

• P : SP × S → [0, 1] is a probabilistic transition function such that for all
probabilistic states s ∈ SP

∑
s′∈S P (s, s′) = 1;

• T : (SA ∪ SD)× α→ S is a transition function;

• AP is a set of atomic propositions; and

• L : S → 2AP is a labelling function.

An STG has two players, which we fix as A (attacker) and D (defender).
Each player controls a subset of the states: A chooses between available actions
a ∈ α in states s ∈ SA, while D does so for states s ∈ SD. The choice between
outgoing transitions in probabilistic states s ∈ SP is made probabilistically,
applying the probabilistic transition function P . States in S} are terminating
and have no transitions. As for DTMCs, paths are (finite or infinite) sequences
of connected states. The sets of all infinite and finite paths starting in state s
are denoted by Paths and Pathfins , respectively.

Strategy. A strategy for player i ∈ Π is a function σi : S∗Si → Dist(α), where
Dist(α) is the set of discrete probability distributions over α. Informally, the
strategy resolves the choice of actions for the player during their turns, based
on the previous history of the STG. A strategy σi is memoryless if for any
π, π′ ∈ S∗ and s ∈ Si, σi(πs) = σi(π

′s) = σi(s). A strategy is deterministic if it
always selects actions with probability 1, and randomised otherwise. The set of
all strategies for player i is denoted Σi. The strategies for both players form a
strategy profile σ = σA, σD. A probability measure Prσs under a strategy profile
σ is defined in the standard way, similarly to DTMC.

Given a strategy profile σ = σA, σD, the resulting behaviour of the STG
is represented by the induced DTMC, from which we can obtain a probability
measure Prσs over Paths. If the strategies are both memoryless, the induced
DTMC has the same state space S as the STG.

Definition 5.3 (Induced DTMC) Let G = (Π, S, s0, α, (SA, SD, SP , S}),
P, T,AP,L) be an STG and σA, σD memoryless strategies on G. The DTMC

70 Preliminaries: Probabilistic Models

Dσ = (S, Pσ, s0, AP, L) induced by strategy profile σ = σA, σD on G has Pσ as
probabilistic transition function, defined by

Pσ(s, s′) =

1 if s ∈ SA ∧ T (s, σA(s)) = s′

1 if s ∈ SD ∧ T (s, σD(s)) = s′

P (s, s′) if s ∈ SP
1 if s ∈ S} ∧ s = s′

0 otherwise

Like for DTMCs, we also consider reward structures. For an STG, these
take the form rA : SA × α → Q≥0 and rD : SD × α → Q≥0, annotating the
transitions controlled by the attacker and defender, respectively.

5.2 Probabilistic Model Checking

Probabilistic model checking provides automated analysis of quantitative prop-
erties, formally specified in temporal logic, against various probabilistic models,
including DTMCs and STGs.

For expressing the properties of DTMCs Probabilistic Computation Tree
Logic (PCTL) and its extensions with cost operator are used, while Probabilistic
Alternating-Time Temporal Logic with Rewards (rPATL) is used as specification
language for STGs.

In this section, we provide a brief overview of PCTL and its extension with
rewards, and rPATL, while omitting the respective model checking algorithm.
We refer the reader to [HJ94, KNP07, CFK+13a] for a more in-depth coverage
of the topic.

5.2.1 PCTL and Model Checking DTMCs

Syntax. Probabilistic Computation Tree Logic is a branching-time temporal
logic, based on the temporal logic CTL.

Definition 5.4 (PCTL Syntax) The syntax of PCTL is defined as fol-
lows:

φ ::= true | a | ¬φ | φ1 ∧ φ2 | P./p(ψ)
ψ ::= Xφ | φ1Uφ2

where a ∈ AP is an atomic proposition, ./∈ {≥, >,≤, <}, and p ∈ Q ∩ [0, 1].

Note that atomic proposition a must be taken from the set AP of a proba-
bilistic model for which the formula is specified.

A formula defined in PCTL can be either a state formula φ evaluated over
states, or a path formula ψ evaluated over paths. State formulae are used to
express the properties of the model, while path formulae are used only as the

5.2 Probabilistic Model Checking 71

parameter of the probabilistic operator P . Intuitively, a state s satisfies P./p(ψ)
if the probability that the formula ψ holds on the paths from s satisfies ./ p.

Path formulae are constructed with the operators next and until, denoted by
X and U , respectively. The formula Xφ is true on a path π if φ is true on the
second state π[1] of the path. The formula φ1Uφ2 is true on a path π if φ2 is
true on the j-th state π[j − 1] of the path and φ1 is true up until the j-th state.

A number of additional operators can be derived based on the syntax of
PCTL. In particular, well-known logical equivalences such as:

false ≡ ¬true

φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)

Moreover, the path operator U allows to derive the new path operator eventually,
denoted by F , as follows:

Fφ ≡ true U φ

Intuitively, the formula Fφ means that φ will be eventually satisfied.

Semantics. For a DTMC D, s |= φ denotes that a state s ∈ S satisfies the
state formula φ. Similarly, for a path π and a path formula ψ, π |= ψ states
that π satisfies ψ.

Definition 5.5 (PCTL Semantics) LetD = (S, s0, P,AP,L) be a DTMC.
For a state s ∈ S the satisfaction relation |= of PCTL is defined inductively by:

s |= true ∀s ∈ S
s |= a iff a ∈ L(s)

s |= ¬φ iff s 2 φ
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= P./p(ψ) iff Prs(ψ) ./ p

where Prs(ψ) = Prs({π ∈ Paths | π |= ψ}), and for a path π in D:

π |= Xφ iff π[1] |= φ

π |= φ1Uφ2 iff ∃j ≥ 0 : π[j] |= φ2 ∧ (0 ≤ k < j : π[k] |= φ1)

Extension of PCTL with rewards. The logic PCTL is extended with the
reward operator E, which allows to specify reward-related properties such as “is
the expected reward of a successful attack at most 500?”.

72 Preliminaries: Probabilistic Models

Definition 5.6 (rPCTL Syntax) The syntax of rPCTL is defined as
follows:

φ ::= true | a | ¬φ | φ1 ∧ φ2 | P./p(ψ) | Er./x(Fφ)
ψ ::= Xφ | φ1Uφ2

where x ∈ Q≥0 and r : S × S → Q≥0 is a reward structure.

The expected reward operator E is used to evaluate the expected cost of
reaching a state that satisfies φ. Intuitively, a state s satisfies Er./x(Fφ) if the
overall expected cumulative reward before reaching a state satisfying φ fulfils
./ x.

For D = (S, s0, P,AP,L) and a state s ∈ S the semantics of the expected
reward operator is defined as follows:

s |= Er./x(Fφ) iff Exps(ZrFφ) ./ x

where Exps(ZrFφ) denotes the expectation of the random variable ZrFφ : Paths →
Q≥0 with respect to the probability measure Prσs , and for a path π ∈ Paths

ZrFφ(π) =

{
∞ if π[i] 2 φ for all i ∈ N∑min{j|π[j]|=φ}−1
i=0 r(π[i]) otherwise

Quantitative extension of PCTL. PCTL allows to verify whether or not
the probability with which a path formula is satisfied meets the bound p. How-
ever, it is possible also to compute the actual probability of a path formula being
satisfied, since the model checking algorithm computes the actual probability
first and then compares it with the bound. Formally, we will write P=?(ψ). The
same holds for the expected reward operator, where we can compute the actual
expected value with the formula Er=?(Fφ).

5.2.2 rPATL and Model Checking Games

Syntax. Alternating-Time Temporal Logic with Rewards is an extension of
Alternating Temporal Logic (ATL). It combines the logic rPCTL with the tem-
poral logic ATL that allows to express probabilistic properties for given coali-
tions of players.

Definition 5.7 (rPATL Syntax) The syntax of rPATL is:

φ ::= true | a | ¬φ | φ1 ∧ φ2 | 〈〈C〉〉P./p(ψ) | 〈〈C〉〉Er./x(F ∗φ)
ψ ::= Xφ | φ1Uφ2

where a ∈ AP is an atomic proposition, C ⊆ Π is a set of players, ./ ∈ {≥, >
,≤, <}, p ∈ Q ∩ [0, 1], x ∈ Q≥0, r is a reward structure and ∗ ∈ {0,∞, c}.

5.2 Probabilistic Model Checking 73

The coalition operator 〈〈C〉〉φ means that the coalition of the players C ⊆ Π
has a strategy to satisfy φ, regardless of the strategies of the players in Π\C. In
our setting, C is either {A} or {D} (in our case this is an exclusive or).

A formula can be either a state formula φ or a path formula ψ. Atomic propo-
sitions and logical connectives have the same meaning as in rPCTL. Similarly
to rPCTL, the operators for building path formulae are next and until, denoted
by X and U . The operator eventually is defined as in PCTL by Fφ ≡ true U φ.
Intuitively, the formula 〈〈C〉〉P./p(ψ) means that the coalition of players C has
a strategy which can ensure that the probability of ψ being satisfied is in the
interval specified by ./ p, regardless of the strategies of the other players. An
example formula is 〈〈A〉〉P≥0.1(F success), which is true if the attacker has a
strategy that guarantees to reach a state labelled with success (e.g., denoting a
successful attack), regardless of the strategy of the defender.

The operator E allows to reason about expected cumulative reward until a
state satisfying φ is reached. The parameter ∗ specifies the result if φ is not
reached. In the developments of Ch. 6 we fix ∗ = ∞. Intuitively, the formula
〈〈C〉〉Er./x(F ∗φ) means that the coalition of players C has a strategy which can
ensure that the expected reward before reaching a state satisfying φ is in the
interval specified by ./ x, regardless of the strategies of the other players.

Semantics. As with PCTL, s |= φ indicates that the state s satisfies the state
formula φ, and π |= ψ indicates that the path π satisfies the path formula ψ.

Definition 5.8 (rPATL Semantics) Given a game G and a state s the
satisfaction relation |= of rPATL is defined inductively by:

s |= true ∀s ∈ S
s |= a iff a ∈ L(s)

s |= ¬φ iff s 2 φ
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= 〈〈C〉〉P./p(ψ) iff ∃σC ∈ ΣC such that ∀σΠ\C ∈ ΣΠ\C :

Pr
σC ,σΠ\C
s (ψ) ./ p

s |= 〈〈C〉〉Er./x(F ∗φ) iff ∃σC ∈ ΣC such that ∀σΠ\C ∈ ΣΠ\C :

Exp
σC ,σΠ\C
s (rew(r, ∗, Sat(φ))) ./ x

where PrσC ,σΠ\C
s (ψ) = Pr

σC ,σΠ\C
s {π ∈ Paths | π |= ψ} and ExpσC ,σΠ\C

s (rew(r, ∗, Sat(φ)))
denotes the expectation of the reward function rew(r, ∗, T) : Paths → Q≥0 un-
der schedulers σC , σΠ\C with respect to the probability measure PrσC ,σΠ\C

s , and
for a path π:

rew(r, ∗, T)(π) =

{
g(∗) if π[i] 2 φ for all i ∈ N∑min{j|π[j]|=φ}−1
i=0 r(π[i]) otherwise

74 Preliminaries: Probabilistic Models

where g(∗) = ∗ if ∗ ∈ {0,∞} and g(∗) =
∑
i∈N r(π[i]) if ∗ = c.

For a path π, the satisfaction relation is defined by:

π |= Xφ iff π[1] |= φ

π |= φ1U
kφ2 iff ∃j ≤ k : π[j] |= φ2 ∧ (0 ≤ i < j : π[i] |= φ1)

π |= φ1Uφ2 iff ∃j ≥ 0 : π[j] |= φ2 ∧ (0 ≤ i < j : π[i] |= φ1)

Quantitative extension of rPATL. The rPATL operators defined above
are qualitative ones, meaning that the operators verify whether or not the
given bound is satisfied. The logic can be extended with quantitative opera-
tors that return numerical values. For the probabilistic computation the for-
mulae 〈〈C〉〉Pmin=?(ψ) and 〈〈C〉〉Pmax=?(ψ) compute the minimum and the max-
imum probabilities of ψ being satisfied, respectively. Similarly, the formulae
〈〈C〉〉Ermin=?(F ∗φ) and 〈〈C〉〉Ermax=?(F ∗φ) compute the minimum and the max-
imum expected reward, respectively.

5.3 PRISM and PRISM-Games
The probabilistic symbolic model checker PRISM [KNP11] is a tool for for-
mal modelling and analysis of systems with probabilistic and nondeterministic
behaviour.

PRISM provides support for various Markov models such as Discrete- and
Continues-Time Markov Chains and Markov Decision Processes. The model
checking techniques for such models are implemented in PRISM, allowing to
analyse a wide range of qualitative and quantitative properties. The language
used for specifying properties includes various temporal logics such as PCTL,
CSL, LTL, as well as extensions for quantitative specifications and rewards.
The tool has been widely used to analyse systems from many application do-
mains, e.g., security protocols, wireless communication protocols, randomised
distributed algorithms and biological systems.

The model checker PRISM has been extended to support the modelling
and analysis of systems with competitive or cooperative behaviour. PRISM-
games [KPW16] is a model checking tool for verification and strategy synthesis
for stochastic multi-player games. The tool supports the probabilistic model
checking algorithm for the logic rPATL.

PRISM-games supports verification of multi-objective properties expressed
as a Boolean combination of reward-based objectives. Moreover, the tool can
compute and display a Pareto curve in case of conflicting objectives.

The interested reader is referred to [KNP11, KPW16, PRI] for a more in-
depth coverage of PRISM and PRISM-games.

Chapter 6

Quantitative Verification
and Synthesis of

Attack-Defence Scenarios

So far we have studied the evaluation of attack-defence scenarios through attack-
defence trees. We shall now focus on the competitive behaviour of the attacker
and the defender, and explore the relation between attack-defence trees and
Stochastic Two-player Games.

In this chapter, we propose a novel framework for the formal analysis of
quantitative properties of attack-defence scenarios using an extension of attack-
defence trees. We allow the trees to incorporate information about the temporal
ordering of some actions or sub-goals. We then propose a novel class of at-
tack/defence strategies that incorporate dependencies, allowing decisions about
which actions are taken by the attacker or defender to be based on which actions
have been taken earlier and the outcomes of those actions.

Formally, these strategies are defined as decision trees. For an attack-defence
scenario, modelled as an attack-defence tree, and specific strategies for both the
attacker and defender, we give a semantics defining the resulting behaviour. We
allow attack-defence trees to be annotated with the probability of success or
failure of individual basic actions, so the semantics takes the form of a Markov
model, more precisely a Discrete-Time Markov Chain.

In order to formally analyse attack-defence scenarios modelled in this way,
we employ quantitative verification techniques, in particular probabilistic model
checking.

76 Quantitative Verification and Synthesis of Attack-Defence Scenarios

For attack-defence trees, it is natural to model the interactions between at-
tacker and defender as a two-player game. So, in our setting, where quantitative
and probabilistic aspects are essential, we use STGs, building upon the proba-
bilistic model checking techniques for stochastic games, and implemented in the
PRISM-games model checking tool.

This approach uses the temporal logic rPATL, introduced in Ch. 5. rPATL
allows us to explicitly reason about the strategies available to the competing
players, and provides a variety of operators to specify quantitative properties of
these strategies relating to the probability of certain events occurring, or a cost
or reward measure associated with them.

Probabilistic model checking of rPATL on stochastic games allows us to
take two distinct approaches to the analysis of an attack-defence scenario: we
can verify security properties of them (e.g., “whatever the attacker does, the
defender can always guarantee that the probability of a successful attack is
at most 0.001”); or we can synthesise strategies for a player with respect to
some goal (e.g., “what strategy for the attacker maximises the probability of a
successful attack, regardless of the actions employed by the defender?”). rPATL
provides expressiveness which goes beyond the standard queries typically used
on attack-defence scenarios [KMS12].

In order to use these game-theoretic verification techniques within our frame-
work, we define a translation from attack-defence trees to STGs. This model
captures the set of all strategies available to the attacker and defender play-
ers, and the resulting (Markov Chain) semantics induced by each pair of such
strategies. Using probabilistic model checking, we can either verify a security
property on this game model, or synthesise a strategy achieving or optimising
a desired property. In the latter case, a player strategy generated from the
stochastic game as a result is then converted into a decision tree for either the
attacker or defender.

Finally, we discuss the evaluation of multi-objective properties in this setting.
We use an extension of the basic rPATL-based approach for multi-objective
probabilistic model checking of stochastic games [CFK+13b]. This allows us
to analyse multiple, conflicting objectives such as probability and expected cost
(e.g., “what strategy minimises the expected cost incurred by the attacker, whilst
guaranteeing a successful attack with probability at least 0.5?”), and also to
compute the Pareto curve associated with the objectives.

We implement our approach and illustrate it on the example of a Radio-
Frequency Identification (RFID) warehouse goods management system, focus-
ing on a fragment of the overall system that includes also the example of
Ch. 4 [BKMS12].

In Sect. 6.1 we present our formalism for attack-defence trees and strategies,
as well as their semantics. In Sect. 6.2 we describe our proposed translation from
attack-defence trees to STGs, and the evaluation of single-objective properties.
The evaluation of STGs with multiple objectives is discussed in Sec. 6.3. The

6.1 Attack-Defence Trees with Sequential Operators 77

Table 6.1: The syntax of attack-defence trees and the type system for defining
well-formed trees.

t ::= nt | &−→∧ (t1, t2) | &−→∨ (t1, t2)

nt ::= a | &∧(nt1, nt2) | &∨(nt1, nt2) | &∼nt | &true | &false

` a : A if a ∈ ActA ` a : D if a ∈ ActD

` t1 : τ ` t2 : τ

` &−→∧ (t1, t2) : τ

` t1 : τ ` t2 : τ

` &−→∨ (t1, t2) : τ

` nt1 : τ ` nt2 : τ

` &∧(nt1, nt2) : τ

` nt1 : τ ` nt2 : τ

` &∨(nt1, nt2) : τ

` nt : τ

` &∼nt : τ ′
τ ′ = τ−1

` &true : τ ` &false : τ

results of the evaluation are discussed on the case study in Sect. 6.4. This
chapter is based on [ANP16].

6.1 Attack-Defence Trees with Sequential Oper-
ators

In this section, we present the key ingredients of our formalism: attack-defence
trees, to represent attack-defence scenarios, and strategies (in the form of de-
cision graphs), to represent the behaviour of the attacker and defender. The
formalism for attack-defence tree is the extension of our formalism presented in
Ch. 4. We start by defining the syntax and terminology for each of these, in
Sect. 6.1.1 and 6.1.2, respectively. Then, in Sect. 6.1.3, we describe their formal
semantics.

6.1.1 Attack-Defence Trees

The abstract syntax of an attack-defence tree is presented in the top part of
Table 6.1, organised into rules for a tree t and a non-sequential tree nt. A tree
is either a leaf or the application of a tree operator to one or two sub-trees. A
leaf a is a basic action of either the attacker or the defender. We denote the
attacker’s and defender’s sets of basic actions by ActA and ActD, respectively.
We assume these are disjoint and write Act = ActA] ActD for the set of all
basic actions.

Tree operators include conjunction, disjunction and changing player, already

78 Quantitative Verification and Synthesis of Attack-Defence Scenarios

defined in Ch. 4, as well as two additional operators: sequential conjunction &−→∧
and sequential disjunction &−→∨ . In order to simplify the technical developments,
we require that the sequential operators only occur above the conjunction and
disjunction operators in a tree. Thus, we disallow trees such as &∧(&−→∧ (a, b), c)
for basic actions a, b, c. This is imposed by the division of the syntax into trees
t and non-sequential trees nt.

The sequential variants additionally impose an ordering on the sub-trees.
Sequential conjunction t = &−→∧ (t1, t2) requires that the goals of both t1 and
t2 are achieved and that the former is performed before the latter. Sequential
disjunction t = &−→∨ (t1, t2) similarly requires t1 to be performed before t2 and
that the goal of at least one sub-tree is achieved. Intuitively, in a sequential
disjunction it only makes sense to attempt t2 after failing in achieving t1.

As in Ch. 4, a simple type system enforces the association between players
and nodes, as shown in the second section of Table. 6.1.

Phases. In an attack-defence tree t of the form described above, we associate
each maximal non-sequential sub-tree with a phase. We say that the maximal
non-sequential sub-trees nt1, · · · , ntn divide the tree t into phases p1, · · · , pn,
where any two non-sequential sub-trees are connected with a sequential operator.
Thus, the number of phases in a tree is one more than the number of sequential
operators. We denote by Phases the set of all phases in a tree. We indicate by
Actpi,A and Actpi,D, respectively, the set of attacker and defender basic actions
in phase pi (non-sequential tree nti), and by Actpi the set of all basic actions in
phase pi, i.e., Actpi = Actpi,A]Actpi,D.

Example. Let us introduce an example that we will develop throughout this
chapter. We consider a modified version of a simple scenario borrowed from [KPS14b],
where an attacker wants to infect a computer with a virus. In order to do so, the
attacker needs to put the virus file on the system and only after that execute it.
The attacker can transmit the virus either by sending an e-mail with an attach-
ment or by distributing a USB stick to a user of the system. The defender, on
the other hand, can try to prevent the attack by running an anti-virus program.
Once the virus file is on the computer, the attacker can execute it either directly
or through a third person. The defender can counteract this by restoring the
registry The corresponding attack-defence tree is shown in Figure 6.1, where we
label leaves for ease of reference. The syntactic term corresponding to the full
tree is:

t = &−→∧ (&−→∧ (&∨(se, usb),&∼rav),&∧(ef,&∼rr))

The tree t has three non-sequential sub-trees: t1 = &∨(se, usb), t2 = &∼rav,
and t3 = &∧(ef,&∼rr) and thus three phases.

6.1 Attack-Defence Trees with Sequential Operators 79

−→∧

Infect Computer

−→∧
virus file
on system

∧execute

∨ ∼

send
e-mail
with

attachment

se

distribute
USB
stick

usb

run

anti-

virus
rav

execute
file

ef

∼

restore
registry

rr

Figure 6.1: An example of an attack-defence tree for infecting a computer.

6.1.2 Strategies as Decision Trees

As we have seen in Ch. 4 for the Boolean setting, in the standard model of
attack-defence trees a possible attack (or defence) is a set of basic actions for
one player which will be performed. Given an attack and a defence, the tree
defines the success or failure of these according to the way that the basic actions
are combined within the attack-defence tree (e.g., if the root node belongs to
the attacker, the attack is successful if the tree evaluates to true).

Here, we take a different approach, proposing a more powerful class of strate-
gies for attackers and defenders which can incorporate dependencies on events
that happened previously when deciding which basic action to perform. In
particular, a strategy’s choice can depend on the attempt, success or failure
of another basic action from an earlier phase. We represent these strategies,
for either attacker or defender, by means of decision trees, which illustrate the
relation between phases in an intuitive way.

The abstract syntax of a decision tree d is presented in Table 6.2. We assume
that this defines a strategy for an attack-defence tree with n phases p1, · · · , pn
and, for convenience, we add a “dummy” phase pn+1 denoting the end of the
strategy. In the syntax, dτi represents a strategy (for a sub-tree ti) for player τ
(where τ = A,D) which starts in phase pi. So the root node of a decision tree
is of the form dτ1 .

In phase pi (for 1 ≤ i ≤ n), a decision tree can be either: (i) an action
node B.dτi+1, indicating that player τ performs the (possibly empty) set of basic
actions B ⊆ Actpi,τ in that phase and then proceeds to sub-tree dτi+1; or (ii)
a decision node of the form if(cτi , d′τi , d′′τi), which branches based on the con-
dition cτi . Once n phases have passed, the decision tree moves to a stop node,
representing the end.

Decision nodes represent conditional dependencies: deciding whether to per-
form some basic actions or to move to another phase can be conditional on events
that have already occurred. For instance, in phase pi, a player may wish to only

80 Quantitative Verification and Synthesis of Attack-Defence Scenarios

Table 6.2: The syntax of a decision tree.

dτi ::= B.dτi+1 where B ⊆ Actpi,τ cτi ::= a? if τ = A and a ∈ Actpi,D
dτi ::= if(cτi , d′τi , d′′τi) cτi ::= pj? if 1 ≤ j < i

dτn+1 ::= stop cτi ::= c′τi ∧ c′′τi
cτi ::= c′τi ∨ c′′τi
cτi ::= ¬c′τi

perform an action in the case of a failed attempt at performing some action in
phase pi−1. A decision node consists of a condition cτi and two possible sub-trees,
where execution of the strategy moves to the first sub-tree d′τi if the condition
is true, or the second sub-tree d′′τi otherwise.

Conditions are expressed as Boolean expressions over atomic conditions of
two types, pj? or a?. A condition of the form pj?, in a phase pi decision tree
node (where j < i), asks about the success of an earlier phase. The success of
a phase is determined by an evaluation of the corresponding node of the sub-
tree (more precisely, the root node of the corresponding maximal non-sequential
tree), which we will define more precisely in the next section.

In the case of a decision tree for an attacker strategy (i.e., where τ = A),
we also allow conditions a? that ask whether some defender action a ∈ Actpi,D
was performed within the current phase pi (note that we ask whether it was
attempted, not whether it was successful, since the latter is not yet known). We
do not allow the reverse: where defenders ask about attacker action’s performed
in the same phase. In our work, we assume that the attacker has slightly more
power/information than the defender in this respect, favouring a conservative
approach to verifying the absence of attacks.

The intuition behind the strategy for the players is as follows. In each phase
pi (for 1 ≤ i ≤ n) the attacker can ask about the success of the earlier phases pj
(where j < i), and whether some defender action a ∈ Actpi,D was attempted in
the same phase. Based on the outcome of such queries the attacker chooses the
set of actions B ⊆ Actpi,A to be performed in pi. On the contrary, in each phase
pi (for 1 ≤ i ≤ n) the defender can ask only about the success of the earlier
phases pj (where j < i), and based on the result chooses the set of basic actions
B ∈ Actpi,D to be performed in phase pi. We assume that in each phase the
players always perform a set of basic actions. In case the player has no action in
the current phase we denote it with B = ∅. The phase pi ends when the players
performed the set of actions and the strategy moves to the next phase pi+1.

Graphical representation. The graphical representation of each node in a
strategy is shown in Figure 6.2. A stop node is represented by a black dot,

6.1 Attack-Defence Trees with Sequential Operators 81

(a) stop node

d′
B

(b) action node

pi
d′

d′′

c
T

F

(c) decision node

Figure 6.2: Graphical representation of decision tree nodes.

p1 p2 p3 p4

{se} ∅ p1?∧p2?

T

F

{ef}

∅

Figure 6.3: An attacker strategy for the attack-defence tree of Fig 6.1.

and occurs only as a leaf at the end of the tree (in the last phase pn+1). An
action node B.d′ is represented by a black square with an outgoing edge to the
successor node d′ labelled with the set of performed actions B. A conditional
node if(c, d′, d′′) is drawn as a black diamond. It has an outgoing transition
labelled with the condition c and two transitions, labelled with “T ” (true) and
“F ” (false), corresponding to the “then” and “else” branches of the “if” statement.
In the rightmost node in Figure 6.2 (the decision node), we also illustrate the
use of vertical dashed lines to mark the boundaries of phases.

Example. Figure 6.3 illustrates a possible attacker strategy for the tree t,
displayed in Figure 6.1. The attack strategy is represented by the decision tree
with the following syntactic term:

dA1 = {se}.∅.if(p1? ∧ p2?, {ef}.stop, ∅.stop)

According to the strategy dA1 , in the first phase, the attacker sends an e-mail
with an attachment. As there are no attacker actions in the second phase,
the attacker does nothing and moves to the third phase. Before performing an
action in the third phase, the attacker checks the success of the previous phases
p1, p2. In case of success, i.e., if the attacker successfully sent an e-mail in phase
p1 and the defender did nothing or failed to run the anti-virus program in phase
p2, the attacker executes the file; otherwise, he/she does nothing.

Figure 6.4 illustrates a possible defender strategy for the same tree. The
difference for a defender strategy with respect to an attacker strategy is that
in each phase the defender knows about the success of the previous phases but

82 Quantitative Verification and Synthesis of Attack-Defence Scenarios

p1 p2 p3 p4

∅ p1?

T

F

{rav}

∅

p1?∧p2?
T

F

{rr}

∅

∅

Figure 6.4: A defender strategy for the attack-defence tree of Fig 6.1.

not about actions attempted by attacker in that phase. The defender strategy
is represented by the following term:

dD1 = ∅.if(p1?, {rav}.if(p1? ∧ p2?, {rr}.stop, ∅.stop), ∅.∅.stop)

In the first phase, the defender does not have any actions to perform. In the
second, it runs the anti-virus program if p1 was successful, that is, if the attacker
succeeded in sending a virus over e-mail; otherwise, he/she does nothing. In the
third phase, depending on the success of the previous phases, the defender either
restores the registry or does nothing.

6.1.3 Semantics of Attack-Defence Trees
So far we have presented the syntax of attack-defence trees and explained how
strategies can be represented by means of decision trees. Given strategies for
both players, the attack-defence scenario described by an attack-defence tree is
determined, meaning that the value at the root can be computed. The com-
putation depends on the type of semantics chosen for the basic actions, e.g.,
Boolean, probabilistic, etc. Moreover, fixed a semantics, different evaluation
approaches can be exploited in the computation. For example, a bottom-up
evaluation (without sequential operator) for the Boolean and probabilistic case
can be found in [KMRS10] and for multi-objective Pareto analyses in Ch. 4 and
in [AN15].

In the following, we define, given an attack-defence tree and strategies for
both players, a probabilistic semantics of the resulting attack-defence scenario,
and show how to evaluate it. Since our attack-defence trees incorporate tem-
poral ordering (through the sequential operators) and our strategies involve
dependencies on earlier events, we define our semantics as a state-based model
capturing the possible sequences of events that can unfold. As discussed below,
basic actions can fail stochastically, so the semantics is in fact represented as a
(Discrete-Time) Markov Chain. We will also annotate this model with costs or
rewards (e.g., to represent the cost of performing basic actions) and, later, will
show how the semantic model can be analysed against a range of quantitative
measures using probabilistic model checking. This will allow us to check for

6.1 Attack-Defence Trees with Sequential Operators 83

the existence (or absence) of particular strategies, for example: “what is the
maximum probability of a successful attack?”.

Probabilities and costs. We associate each basic action a with a success
probability p(a), p : Act→ [0, 1], that it is achieved successfully if a is performed.
Moreover, we assume that each basic action a has a cost c(a) of performing it,
c : Act → Q≥0. Note that, the probabilities of individual basic actions are
all assumed to be independent of each other. Similarly, the costs incurred by
each action and by each player are all independent. Moreover, cost-related
questions are player-dependent, meaning that the scenario is evaluated from a
given player’s perspective. For instance, for computing the minimum cost of an
attack we need only the cost of the attacker’s actions and do not require the
cost of the defender’s actions. Thus, in our model we will not consider the cost
of the defender actions while evaluating the attacker cost, and vice versa. The
relation between actions (and the resulting impact this has in terms of, e.g.,
the probability of a successful attack) is captured by the structure of the attack
tree. In other words, the assumptions retrace those from Ch. 4.

Semantics. We define the DTMC semantics for attack-defence tree t, with
n phases, represented by non-sequential trees t = t1, . . . , tn, and decision trees
dD1 , d

A
1 . The semantics is given by the function build in Table 6.3. It constructs

the DTMC, which takes the form of a tree, recursively, each call returning a
new root state.

It is worthwhile noticing that the order in which players perform actions
is not determined in an attack-defence tree. On the contrary, in the DTMC,
this needs to be made explicit. Since we assume, as discussed earlier, that the
attacker knows the actions attempted by the defender in the current phase, in
the DTMC semantics, the defender is the first to move in each phase.

Throughout the evaluation of the function we assume to have an attack-
defence tree t with n phases, t = t1, · · · , tn, and the corresponding probabil-
ity function p and cost function c as a global parameters. The build func-
tion operates recursively over the two decision trees: each call is of the form
build[t, p, c](dτ , dτ

−1

, τ,Succp,Donei,Succi), where the parameters have the fol-
lowing meaning. The first two parameters correspond to a player’s decision tree
dτi and the opposite player’s decision tree dτ

−1

i that still have to be evaluated.
The third parameter represents the next player to move, and is used to identify
the end of each phase, i.e, it is the end of the phase if τ = A. The remaining
parameters record the phases that were successful (Succp), the set of actions
attempted in the current phase (Donei) and the ones that succeeded (Succi).
At the top-level, the function is called as build[t, p, c](dD1 , d

A
1 , D, ∅, ∅, ∅). The

function is structurally defined over decision trees as explained below.
If the decision tree is an if -clause, dτi = if(cτi , d′τi , d′′τi), we evaluate the condi-

tion cτi over the success of the previous phases and, when τ = A, also over the set

84 Quantitative Verification and Synthesis of Attack-Defence Scenarios

Table 6.3: The function build describing the semantics of an attack-defence
tree as a DTMC.

build[t, p, c](if(cτi , d′τi , d′′τi), dτ
−1

i , τ,Succp,Donei,Succi) ={
build[t, p, c](d′τi , d

τ−1

i , τ,Succp,Donei,Succi) if [[cτi]](Succp,Donei)
build[t, p, c](d′′τi , dτ

−1

i , τ,Succp,Donei,Succi) if ¬[[cτi]](Succp,Donei)

build[t, p, c]((B ∪ {a}).dτi+1, d
τ−1

i , τ,Succp,Donei,Succi) = new state s with:
L(s) = {a}, P (s, s′) = p(a), P (s, s′′) = 1−p(a) where:
s′ = build[t, p, c](B.dτi+1, d

τ−1

i , τ,Succp,Donei ∪ {a},Succi ∪ {a})
s′′ = build[t, p, c](B.dτi+1, d

τ−1

i , τ,Succp,Donei ∪ {a},Succi)
and: r(s, s′) = r(s, s′′) = c(a)

build[t, p, c](∅.dτi+1, d
τ−1

i , D,Succp,Donei,Succi) =

build[t, p, c](dτ
−1

i , dτi+1, A,Succp,Donei,Succi)

build[t, p, c](∅.dτi+1, d
τ−1

i+1 , A,Succp,Donei,Succi) ={
build[t, p, c](dτ

−1

i+1 , d
τ
i+1, D,Succp∪{pi}, ∅, ∅) if [[ti]](Succi)

build[t, p, c](dτ
−1

i+1 , d
τ
i+1, D,Succp, ∅, ∅) if ¬[[ti]](Succi)

build[t, p, c](stop, stop,A,Succp,Donei,Succi) = new state s with:
L(s) = {success} if [[t]](Succp,Succi) and {failure} otherwise

of actions attempted in the current phase. The evaluation [[cτi]](Succp,Donei) is a
standard Boolean evaluation, where cτi is a Boolean expression and (Succp,Donei)
give the truth values of the variables, where the variable is tt if it is in the set
(Succp,Donei) and ff otherwise. If τ = D we can omit the component Donei
from the evaluation. The DTMC is constructed recursively, from either d′τi or
d′′τi , depending on whether cτi evaluates to true.

If the root of the decision tree is an action node containing action a, i.e., dτi =
(B ∪ {a}).dτi+1, we create a DTMC state labelled with a, with outgoing transi-
tions corresponding to the success or failure of executing a (with probability p(a)
and 1−p(a)). We also label the transitions with the cost c(a). The successor
states are constructed recursively, adding a to Donei and, if appropriate, Succi.
In case a executed successfully we call build[t, p, c](B.dτi+1, d

τ−1
i , τ,Succp,Donei∪

{a},Succi ∪ {a}), otherwise we call build[t, p, c](B.dτi+1, d
τ−1
i , τ,Succp,Donei ∪

{a},Succi).
If the set of actions in the action node is empty, dτi = ∅.dτi+1, and the

current player is D, it means that the defender does not have any more moves
in phase i and we need to start exploring the attacker decision tree in the same

6.2 Game-based Modelling and Verification 85

phase. Thus, we change the current player from D to A, and construct DTMC
recursively from dτ

−1

i .
On the contrary, if the action set is empty and the current player is A, then

we are at the end of the phase. Hence, we evaluate the success of phase i based
on the set Succi, [[ti]](Succi), where [[ti]] is Boolean formula of which the non-
sequential sub-tree ti is a parse tree and the actions in the formula are tt if the
actions are in the set Succi and ff otherwise. If phase i was successful, we add
pi to the set Succp. We start the new phase pi+1 with player D to move next,
and resetting the sets Donei and Succi to empty.

Finally, if the decision trees for both players consist of the stop node, dτi =

stop, dτ
−1

i = stop, and A is to move next, then we are at the end of both strate-
gies. We create a final node in the DTMC and label it with the result of the
evaluation of the tree t over the success of all phases, [[t]](Succp).

Once we have obtained a DTMC, we can verify the properties of interest
by means of probabilistic model checking. Below, we will see some examples
of security properties verified on the DTMC corresponding to the tree given in
Figure 6.1.

So far we assumed that the strategies for both players are given and focused
on the values of the properties for fixed strategies. This leads to the following
questions:

• how to obtain strategies (possibly in an automated way)?

• how to evaluate security properties over all possible strategies for both
players?

A game semantics for attack-defence scenarios is the answer to both questions.

Example. Consider the example attack-defence tree given in Figure 6.1, the
strategies for attacker and defender given in Figures 6.3 and 6.4, and the prob-
ability and cost values for basic actions listed in Table 6.4. Figure 6.5 shows
the resulting DTMC semantics. We verify the following security properties: “Is
the success probability of an attack greater than or equal to 0.005?” and “What
is the success probability of an attack?”. The first one is expressed in PCTL
as the formula P≥0.005[F success] which evaluates to true, while the second one
is expressed in PCTL as the formula P=?[F success] and the obtained result is
0.00675.

6.2 Game-based Modelling and Verification
In this part of the dissertation, we use probabilistic model checking techniques to
evaluate attack-defence scenarios using the formalism proposed in the previous
section. In particular, we aim at verifying whether certain types of attack are

86 Quantitative Verification and Synthesis of Attack-Defence Scenarios

Table 6.4: Probabilities and costs for the basic actions in the example.

Label Name of the Node Success probability Cost
se send e-mail with attachment 0.2 20
usb distribute USB stick 0.6 80
rav run anti-virus 0.7 70
ef execute file 0.75 50
rr restore registry 0.85 65

se

rav

failure

failure

rr

ef

ef

failure

failure

success

failure

0.2(20)

0.8(20)

0.7(70)

0.3(70)

0.85(65)

0.15(65)

0.75(50)

0.25(50)

0.75(50)

0.25(50)

Figure 6.5: The DTMC for attack-defence tree from Figure 6.1 and decision
trees dA1 , dD1 from Figures 6.3 and 6.4.

impossible, or to synthesise attack or defence strategies satisfying some formally
specified property. The basic idea is to transform an attack-defence tree into a
Stochastic Two-player Game, in which the players are the attacker and defender,
and strategies (in the sense of the stochastic game) correspond to strategies
represented by decision trees over an attack tree.

In this section, we explain the transformation of an attack tree to a game
and describe how probabilistic model checking can be applied to answer the
kinds of questions posed above. We also then explain how to extract decision
tree strategies from the results of model checking.

6.2.1 From Attack-Defence Trees to Stochastic Games
Given an attack-defence tree t with n non-sequential sub-trees (phases) we trans-
form the tree t to an STG in two steps. First we transform each sub-tree to
a game and then combine the games by means of the sequential composition,
mimicking the behaviour of a sequential operator connecting corresponding non-
sequential sub-trees.

Before explaining the algorithm, it is worthwhile discussing the behaviour
of the players in the trees. Each sub-tree represents the static behaviour of the
players, i.e., each player makes a choice of their actions independently and the
outcome of each action affects only the overall result of the sub-tree and not the
other basic actions. Thus, in a game corresponding to a sub-tree, we consider
the set of attempted actions for each player instead of one action at a time.

6.2 Game-based Modelling and Verification 87

Algorithm 1 Transformation of non-sequential tree to STG.
Input: a non-sequential tree ti with probabilistic function p and cost function
c for basic actions, and Actpi,A,Actpi,D,Act = Actpi,A]Actpi,D sets
Output: STG (Π, S, s0, α, (SA, SD, SP , S}), P, T,AP,L)

Π← {A,D}; α← 2Act; AP ← Act] {success, failure};
P ← ∅; T ← ∅; F1 ← ∅; F2 ← ∅;
SA ← ∅; SD ← ∅; SP ← ∅; S} ← ∅;
Create state sD; SD ← SD ∪ {sD}; s0 ← sD;
for all B ⊆ Actpi,D do

Create state sA; SA ← SA ∪ {sA}; F1 ← F1 ∪ {sA};
T (sD, B)← sA; L(sA)← B;
rD(sD, B)←

∑
a∈B c(a);

end for
for all sA ∈ F1 do

for all C ⊆ Actpi,A do
Create state sP ; SP ← SP ∪ {sP }; F2 ← F2 ∪ {sP };
T (sA, C)← sP ;
L(sP)← C ∪B where B ⊆ L(sA);
rA(sA, C)←

∑
a∈C c(a);

end for
end for
Create states ss, sf ; S} ← S} ∪ {ss, sf};
L(ss)← {success, pi = T}; L(sf)← {failure, pi = F};
for all sP ∈ F2 do

let p =
∑
E⊆BCs.t.eval(t,E)

∏
a∈E p(a)

∏
a∈BC\E 1 − p(a) where BC ⊆

L(sP);
P (sP , ss)← p; P (sP , sf)← 1− p;

end for
S ← SA] SD] SP] S};

Moreover, similarly to a DTMC, we cannot generate games without fixing an
order of the players. We assume that the attacker has more information than
the defender, thus in a game the defender will be the first to move. On the
contrary, a tree consisting of two non-sequential sub-trees t1, t2 combined with
a sequential operator illustrates the dynamic behaviour of the players. Here, the
choices of the basic actions in t2 might depend on the outcome of t1. We take
care of this in the sequential composition of two sub-trees, formalised below.

Algorithm 1 displays how to transform a non-sequential tree ti to a game.
The transformation first considers all nondeterministic transitions of the de-
fender and of the attacker, and then the probabilistic transitions. We start with
the initial state s0 belonging to the defender. For all subsets B ⊆ Actpi,D of the
defender actions we have an outgoing edge from s0 entering an attacker state

88 Quantitative Verification and Synthesis of Attack-Defence Scenarios

Algorithm 2 Sequential composition of two sub-trees.
Input: an attack-defence tree t = op(t1, t2), op ∈ {&−→∧ ,&−→∨ } and correspond-
ing STGsM1,M2

Output: STG (Π, S, s0, α, (SA, SD, SP , S}), P, T,AP,L)

Let m be the number of final states inM1;
Create m disjoint copiesM1

2, · · · ,Mm
2 ofM2;

MergeM1,M1
2, · · · ,Mm

2 ;
Replace each final state j labelled with “success" of M1 with the starting
state ofMj

2;
Add the label p1 = T to the starting state ofMj

2;
Replace each final state j labelled with “failure" ofM1 with the starting state
ofMj

2;
Add the label p1 = F to the starting state ofMj

2;
Change the label of each final state ofMj

2 base on the evaluation [[t]](Done);

labelled with the subset B. The outgoing edges are labelled with the sum of
the costs of the actions in the subset B,

∑
a∈B c(a). For each attacker state we

do a similar construction, i.e., each attacker state has as many outgoing edges
as the subsets C ⊆ Actpi,A of the attacker actions. Similarly, the edges are
labelled with the sum of the costs

∑
a∈C c(a) and they enter the probabilistic

states labelled with the corresponding subset C. Each probabilistic state has
two outgoing edges. One of the edges enters the final state labelled with suc-
cess and is labelled with the sum of the success probabilities of the actions that
evaluates the tree ti to true. The other edge enters the final state labelled with
failure and is labelled with the sum of the failure probabilities. The final states
labelled with success and failure are also instrumented with pi = T meaning
that the phase pi was successful, and pi = F meaning that the phase pi failed,
respectively.

So far we have described how to transform each non-sequential sub-trees
to a Stochastic Two-player Game. We combine the games corresponding to
sub-trees by means of the sequential composition. Consider two sub-trees t1, t2
connected with a sequential operator op ∈ {&−→∧ ,&−→∨ }, t = op(t1, t2), and the
corresponding games M1,M2. The sequential composition of two games is
presented in Algorithm 2, and is as follows. Assume M1 has m final states.
We create m disjoint copies ofM2, denotedM1

2, · · · ,Mm
2 . For each final state

j of M1 labelled with success we connect Mj
2 with M1 by replacing the final

state j of M1 with the starting state of Mj
2 and adding the label pi = T to

the starting state of Mj
2. Similarly, for each final state j of M1 labelled with

failure we connectMj
2 withM1 by replacing the final state j ofM1 with the

starting state ofMj
2 and add the label p1 = F to the starting state ofMj

2. We
evaluate and re-label (if needed) each final state ofMj

2 based on the set Done

6.2 Game-based Modelling and Verification 89

of performed actions on the path from the starting state of M1 till the final
state, [[t]](Done), where [[t]] is the Boolean formula of which the tree t is a parse
tree.

In the special case where there are only sequential conjunctions, we can op-
timise the construction of the game by merging together all final states labelled
with success and all final states labelled with failure. Observe that merging
the final states together does not cause a lose of information in the history of a
game.

Example. Let us construct an STG from the tree t, displayed in Figure 6.1,
by following the steps described above. First we transform each basic sub-tree
to a game through Algorithm 1. Figure 6.6 presents the constructed games for
each basic sub-tree. As we can see, each game has first the nondeterministic
transitions of the defender, then the nondeterministic transitions of the attacker
and finally the probabilistic transitions. We combine the constructed games
by means of the sequential composition, as explained in Algorithm 2. As the
tree has only sequential conjunction, we merge the final states with same label
during the sequential composition. The full game for the attack-defence tree t
is illustrated in Figure 6.7.

6.2.2 Probabilistic Model Checking Stochastic Games
In the previous section we proposed a transformation from attack-defence trees
to STGs. The main focus of this section is to show how to evaluate security
properties over all possible strategies and how to synthesise optimal attack (or
defence) strategies. We start with a discussion of the security properties of
interest and then discuss their representation in the temporal logic rPATL. This
allows us to perform our analysis of attack-defence trees using the existing model
checking techniques implemented in PRISM-games.

Security properties. We can phrase a great many useful quantitative ques-
tions on attack-defence scenarios, concerning either one player or both players.
It is worth observing that a question might refer to one or both players de-
pending on the parameters they are formulated over. For example, cost-related
questions refer to one player: for computing the cost of an attack we do not
require the cost of the defender actions. On the other hand, probability-related
questions refer to both players, i.e., if the attacker succeeds with probability p
then the defender succeeds with probability 1− p.

In this work we characterise the basic actions of an attack-defence scenario
with the success probability and the cost of an attack and a defence. We then
study properties with one objective, e.g., “is there an attack which is successful
with probability greater than or equal to 0.03?” or “what is the maximum success
probability of an attack?”. Later in Sect. 6.3 we will investigate properties with
multiple objectives.

90 Quantitative Verification and Synthesis of Attack-Defence Scenarios

{}

{se, usb}

{se}

{usb}

{}

success,
p1 = T

failure,
p1 = F

{se, usb}(100)

{se}(20)

{usb}(80)

{}(0)

0.68

0.32

0.2

0.8

0.6

0.4
1

(a) An STG for t1 = ∨(se, usb)

{}

{rav}

{}

success,
p2 = T

failure,
p2 = F

{rav}(0)

{}(0)

0.3

0.71

(b) An STG for t2 =∼ rav

{}

{rr}

{}

{rr, ef}

{rr}

{ef}

{}

success,
p3 = T

failure,
p3 = F

{rr}(0)

{}(0)

{ef}(50)

{}(0)

{ef}(50)

{}(0)

0.11

0.89

1

0.75

0.25

1

(c) An STG for t3 = ∧(ef,∼ rr)

Figure 6.6: Transformation of basic sub-trees to games (at-
tacker/defender/probabilistic states shown as dia-
monds/rectangles/circles).

Verification of security properties. Formal verification is used to deter-
mine whether or not the system under study exhibits certain precisely specified
properties. For verifying security properties of STGs, we exploit probabilis-
tic model checking of rPATL. This logic allows us to express a wide range of
properties. For instance, the first single-objective property above is expressed
in rPATL as the formula 〈〈A〉〉P≥0.03[F success], while the second property is
expressed as the formula 〈〈A〉〉Pmax=?[F success].

Model checking systematically explores all states and transitions in the model
to check whether it satisfies the given property. Moreover, probabilistic model
checking of rPATL also allows us to synthesise strategies for a player with respect

6.2 Game-based Modelling and Verification 91

{}

{se, usb}

{se}

{usb}

{}

{},
p1 = T

{rav}

{}

{},
p1 = F

{rav}

{}

{},
p2 = T

{rr}

{}

{rr, ef}

{rr}

{ef}

{}

{},
p2 = F

{rr}

{}

{rr, ef}

{rr}

{ef}

{}

success

failure

{se, usb}(100)

{se}(20)

{usb}(80)

{}(0)

0.68

0.32

0.2

0.8

0.6

0.4
1

{rav}(0)

{}(0)

0.3

0.7

1

{rav}(0)

{}(0)

1

1

{rr}(0)

{}(0)

{ef}(50)

{}(0)

{ef}(50)

{}(0)

0.11

0.89
1

0.75

0.25

1

{rr}(0)

{}(0)

{ef}(50)

{}(0)

{ef}(50)

{}(0)

1

1

1

1

Figure 6.7: The STG for attack-defence tree t, from Figure 6.1. An optimal
strategy for the attacker player is marked in bold.

to a given property. For instance, we can determine which is the optimal strategy
for the attacker in terms of maximising the success probability of the attack,
for all possible strategies that the defender may choose. In fact, we can also
determine, at the same time, what the best strategy for the defender to ensure
that the probability of success does not exceed this.

The model checking techniques described here are all implemented in PRISM-
games, which we therefore employ for verification and strategy synthesis prob-
lems on attack-defence trees. PRISM-games also generates optimal strategies.

Correctness. We conclude this section by sketching the correctness of our ap-
proach, i.e., that the construction and analysis of the stochastic game described
above yields the right answers to questions phrased in terms of attack-defence
trees. This relies on the correspondence between an attack-defence tree t, as for-
malised in Sect. 6.1, and the STG G whose construction is outlined in Sect. 6.2.1.
More precisely, this depends on a correspondence between decision trees for t
and their corresponding attacker or defender player strategies in the stochastic
game G.

92 Quantitative Verification and Synthesis of Attack-Defence Scenarios

In Sect. 6.1.3, we gave a precise definition of the semantics of a pair of
attacker/defender decision trees dA, dD in terms of a Discrete-Time Markov
Chain. Each decision tree dτ has an equivalent strategy, say στ , for player τ in
G. As mentioned in Sect. 5.1.2, the behaviour of G under a pair of strategies
σA, σD is also represented by a DTMC. It is the equivalence of these two Markov
Chains which underlies the correctness of the overall approach. An important
issue here is the class of stochastic game strategies that we need to consider. For
the properties used in this paper (those in the logic rPATL), it suffices to consider
memoryless strategies, which makes the equivalence of the two Markov Chains
relatively straightforward. The relation between stochastic game strategies and
decision trees is expanded upon in the following section.

Example. Consider the game given in Figure 6.7. We use the tool PRISM-
games to verify the security properties mentioned above. For example, the veri-
fication of the query 〈〈A〉〉P≥0.03[F success] returns “false”, meaning that there is
no attack with success probability greater than or equal to 0.03. The verification
of the quantitative query 〈〈A〉〉Pmax=?[F success]) computes the maximum suc-
cess probability of an attack, which is 0.0229. Figure 6.7 also shows an optimal
attacker strategy, marked in bold.

6.2.3 Synthesising Strategies as Decision Trees

After synthesising an optimal strategy from the stochastic game, as described
above, we can transform it to a corresponding decision tree. This provides
a high-level, syntactic description of the strategy, in particular, capturing the
dependencies within the strategy on the outcomes of earlier actions and choices
by players. We now describe this process, first for an attacker, and then for a
defender.

Attacker strategies. Synthesis of an attacker decision tree, from an STG G
and attack strategy σA, is done using the recursive function generateAD[G, σA](s, i),
shown in Table 6.5, which operates over the structure of G. The first parameter
s is a state of G and the second parameter i keeps track of the current phase (to
be precise, the phase i associated with the decision tree node currently being
created). Throughout the evaluation of the function we assume to have the STG
G, and the attack strategy σA as a global parameters. At the top-level, we call
the function as generateAD[G, σA](s0, 1), where s0 is the initial state of G.

By construction of the game G (see Sect.6.2.1), its states are grouped by
phase, and within each phase there are (possibly) defender and then (possibly)
attacker states, followed by probabilistic states at the end of the phase. We
treat the three classes of state separately.

If s is a defender state, s = sD ∈ SD, then the strategy σA will not have
resolved the choice of actions in sD and we need to consider each of the possible

6.2 Game-based Modelling and Verification 93

Table 6.5: generateAD: construction of attacker decision tree from STG and
attacker player strategy.

generateAD[G, σA](sD, i) = construct[G, σA](sD, i, Actpi,D, ∅)
generateAD[G, σA](sA, i) = σA(sA).generateAD[G, σA](sP , i+ 1)

where sP = T (sA, σA(sA))

generateAD[G, σA](sP , i) =
if(pi−1?, generateAD[G, σA](s′, i), generateAD[G, σA](s′′, i))

where P (sP , s
′) > 0 ∧ “pi−1 = T” ∈ L(s′)

and P (sP , s
′′) > 0 ∧ “pi−1 = F” ∈ L(s′′)

generateAD[G, σA](sP , n+ 1) = stop

construct[G, σA](sD, i,LA ∪ {a},Done) =
if(a?, construct[G, σA](sD, i,LA,Done ∪ {a}), construct[G, σA](sD, i,LA,Done))

construct[G, σA](sD, i, ∅,Done) ={
generateAD[G, σA](s′, i) if s′ = T (sD,Done) ∈ SA
∅.generateAD[G, σA](s′, i+ 1) if s′ = T (sD,Done) ∈ SP

outgoing branches. These will be translated into if statements in the decision
tree, which can ask whether a defender action was performed in the current
phase (see Sect. 6.1.2). This is done by calling construct[G, σA](sD, i, Actpi,D, ∅),
explained below.

If the state s is an attacker state, s = sA ∈ SA, we create an action node with
the set of attacker actions performed in state sA, as specified by the strategy
choice σA(sA), and the next node in the decision tree is generated recursively
for the successor state T (sA, σA(sA)), which, by construction of the game, will
be a probabilistic state.

For a probabilistic state, s = sP ∈ SP , we have reached the end of current
phase in the STG. We create a decision node whose condition depends on the
success of the phase, and then recursively construct the decision tree for the
successor states of sP corresponding to the scenarios where the phase succeeded
or failed. Notice that we create a decision node for phase i (i.e., a node dAi from
Table 6.2) which queries the state of the preceding phase pi−1. Once we reach
the end of the phases (indicated by i = n+1), we have reached the end of the
STG and there are no further actions to be taken so we create a stop node in
the decision tree.

As mentioned above, defender states sD are treated using an auxiliary recur-
sive function construct[G, σA](sD, i,LA,Done), which is also given in Table 6.5.
The first two parameters are as for generateAD, the third, LA, is the set of the
defender actions to be performed and the last, Done, is the set of actions al-
ready performed. The function iterates over the actions in LA (initially, the set

94 Quantitative Verification and Synthesis of Attack-Defence Scenarios

Table 6.6: generateDD: construction of defender decision tree from STG and
defender player strategy.

generateDD[G, σD](sD, i,D) = σD(sD).generateDD[G, σD](s′, i+ 1, A)

where s′ = T (sD, σD(sD))

generateDD[G, σD](sA, i, A) = generateDD[G, σD](sP , i+ 1, A)

where sP = T (sA, B) for some B

generateDD[G, σD](sA, i,D) = ∅.generateDD[G, σD](sP , i+ 1, A)

where sP = T (sA, B) for some B

generateDD[G, σD](sP , i, A) =
if(pi−1?, generateDD[G, σD](s′, i,D), generateDD[G, σD](s′′, i,D))

where P (sP , s
′) > 0 ∧ “pi−1 = T” ∈ L(s′)

and P (sP , s
′′) > 0 ∧ “pi−1 = F” ∈ L(s′′)

generateDD[G, σD](sP , n+ 1, A) = stop

Actpi,D of all defender actions for phase i), each time removing an action a and
creating a decision node with condition a? and recursively building the decision
tree for the cases where the condition is true or false. This creates decision
nodes that branch over the possible combinations. Once, the parameter LA is
empty, we recursively construct the next part of the decision tree, using the
outgoing transitions of the sD state. These will either go to an attacker state
sA or directly to a probabilistic state sP . In the latter case, we add an action
node with an empty action set, indicating that the attacker performs no actions
in this phase.

Defender strategies. The generation of a defender decision tree from a game
and a defender tree is slightly different, since, here, the defender can ask only
about the success of the previous phases, not any attacker actions from the
current phase.

Again, we use a recursive function operating over the states of the game G.
This function, generateDD[G, σD](s, i, τ) is shown in Table 6.6 and constructs
a decision tree for a strategy σD of the defender player in G. Parameters s
and i are the current state and phase, as for generateAD, above; parameter τ
represents the next player to move. At the top-level, we call the function as
generateDD[G, σD](s0, 1, D).

If the state is a defender state, s = sD ∈ SD, we create an action node with
the set of actions performed by the defender in sD, obtained from the defender
strategy σD, and proceed recursively using the successor of sD chosen by σD.

If the state is an attacker state, s = sA ∈ SA, and the current player is
A, we just move to the next probabilistic state sP . The state sP is chosen

6.3 Extension with Multi-Objective Properties 95

p1
p2 p3

p4

{se,usb} p1?

T

F

∅

∅

p2?
T

F

p2?
T

F

{ef}

∅

∅

∅

Figure 6.8: An attack decision tree for the optimal attacker strategy high-
lighted in the stochastic game shown in Figure 6.7.

nondeterministically. Note, that for any choice of sP further construction on
the decision tree is the same. If the current player is D, this means that there
is no defender action in the current phase. Thus, we create an empty set in the
decision tree and move to the next probabilistic state sP .

On probabilistic states, the function generateDD behaves the same as the
function generateAD, as described above.

Finally, we note that the decision tree constructed as above can subsequently
be optimised by merging identical sub-trees and removing decision nodes with
identical then/else branches.

Example. The stochastic game in Figure 6.7 also shows an optimal attacker
strategy marked in bold. We show in Figure 6.8 the (optimised) attacker decision
tree corresponding to the optimal attacker strategy.

6.3 Extension with Multi-Objective Properties
So far we proposed a game-theoretic approach, translating attack-defence trees
to STGs, and then employed probabilistic model checking techniques for for-
mally analyse these models. We studied the analysis of single-objective proper-
ties for an attack-defence scenario. We shall now move towards multi-objective
properties.

An rPATL-based approach for multi-objective probabilistic model checking
of stochastic games allows to analyse multiple objectives, and compute the as-
sociated Pareto curve. The approach focuses on expected reward objectives.
Although expected reward objective can express various useful properties for
games, however the main focus in an attack-defence tree evaluation is on exact
cost, i.e., cost of performing a successful attack without taking into consider-
ation the probability measure. That is why, here we will briefly discuss the

96 Quantitative Verification and Synthesis of Attack-Defence Scenarios

analysis of multi-objective properties expressed as expected reward by omitting
the details. We will discuss exact cost in Part III.

In this section we present briefly how we can extend the proposed frame-
work for verifying multi-objective properties of the attack-defence scenarios,
and synthesising strategies for the attacker and the defender which guarantee
or optimise some multi-objective quantitative property.

Optimal strategies for multi-objective properties may be randomised. Thus,
we extend the framework to incorporate randomisation, i.e., we extend the syn-
tax and the semantics of decision trees, as well as the construction of a decision
tree from a strategy to incorporate randomisation. Observe that multi-objective
queries in stochastic games need infinite-memory strategies in general, but our
games are trees (or DAGs) so memoryless strategies suffice.

Randomisation in decision trees and semantics. Decision trees repre-
sent the attacker or the defender strategies that incorporate dependencies. For
representing strategies that optimise multiple objectives, we consider randomi-
sation in decision trees. More precisely, instead of just allowing the attacker or
defender to choose to execute a set of actions B in a given phase, we allow them
to probabilistically select between several different action sets. In terms of the
syntax of a decision tree, presented in Table 6.2, in addition to action nodes
d = B.d′ for B ⊆ Actpi,τ , we allow d = µ.d′, where µ is a discrete probability
distribution over Actpi,τ , indicating that each action set Bi may be picked, with
probability µ(Bi), before proceeding to the sub-tree d′.

The random selection of actions in decision trees can be added to the seman-
tics in Table 6.3 in straightforward fashion: a node d = µ.d′ results in a single
DTMC state with one outgoing transition for each element of the support of µ,
each of which is a normal action node of the form d′′ = B.d′.

Randomisation in construction of decision trees. We consider decision
trees that incorporate randomisation. In the transformation of a strategy to a
corresponding decision tree, that means that strategy σA (or σD) may select a
distribution over actions in a state sA (or sD), rather than a single action. The
decision tree synthesis algorithms in Tables 6.6 and 6.5 thus remain unchanged
but the rules for states sA and sD, respectively generate random action nodes.

Multi-objective security properties. Here, we study properties with mul-
tiple objectives, such as “can we achieve an attack with an expected cost of
at most 500 and a success probability of at least 0.005?”. As in the case
of a single objective, we use rPATL to express the properties. For exam-
ple, the above mentioned multi-objective property is expressed as the formula
〈〈A〉〉(ErA≤500[F success] ∧ P≥0.005[F success]).

6.4 Implementation 97

Figure 6.9: Pareto curve illustrating the trade-off between attack success prob-
ability and expected attack cost over strategies in the running
example.

For verification of multi-objective properties we use an extension of rPATL
model checking [CFK+13b]. The extension allows us both to verify security
properties and to synthesise strategies for a player, e.g., “what strategy of the
attacker ensures that the expected cost of an attack is at most 500, while the
success probability is at least 0.005?”. In addition, we can compute the Pareto
curve of achievable objectives.

We employ PRISM-games for verification and strategy synthesis of multi-
objective queries. PRISM-games also can compute and display graphically the
Pareto curve associated with two objectives.

Example. Consider the game given in Figure 6.7. We verify multi-objective
queries such as 〈〈A〉〉(ErA≤500[F success]∧P≥0.005[F success]). The property evalu-
ates to “true” meaning that there is an attack with cost at most 500 and success
probability at least 0.005. Moreover, Figure 6.9 illustrates the Pareto curve com-
puted by PRISM-games when maximising probabilities and minimising cost of
an attack.

6.4 Implementation
We applied our approach to a real-life scenario studied in [BKMS12]: we consider
part of a Radio-Frequency Identification (RFID) goods management system for
a warehouse, modified by introducing temporal dependencies between actions.

The warehouse uses RFID tags to electronically identify all goods. In the
attack-defence scenario that we consider, the attacker aims to physically remove

98 Quantitative Verification and Synthesis of Attack-Defence Scenarios

−→∧

Infiltrate building

−→∧

break
and
enter ∼

∨
get into
premises ∨

get into
warehouse

∧climb
enter

through
gate

tg
(.4,60)climb

over
fence

cf
(.75,60)

∼

∧barbed

barbed
wire
bw

(.6,0)

∼

∨

guard
against
barbs

use
carpet
on

barbs

uc
(.6,80)

wear
protective
clothing

pc
(.7,100)

∧door
enter

through
loading
door

ld
(.6,75)enter

through
door

ed
(.5,50)

∼

monitor
with biometric

sensors
bs

(.7,0)

∧monitor

monitor with
security
cameras

sc
(.8,0)

∼

∨
disable
cameras

laser
cameras

lc
(.65,70)

∧video

video
loop

cameras

vc
(.75,70)

∼

employ
seguard

eg
(.8,0)

Figure 6.10: Attack-defence tree for breaking and entering a building.

some RFID tags after infiltrating the building.
In order to achieve this goal, the attacker has to first get into the premises

and then into the warehouse. For getting into the premises the attacker can
climb over the fence or enter through the main gate. The defender can protect
against climbing by setting some barbed wire on the fence. To protect against
the barbed wire the attacker can guard against barbs either by using a carpet
over the barbs or by wearing protective cloths. Once the attacker succeeds in
accessing the premises, they have to get into the warehouse. The attacker can
achieve this sub-goal either by entering through the door or by entering through
the loading dock. The former action can be defended against by monitoring the
door with biometric sensors.

The defender can prevent the attacker from attaining the main goal by mon-
itoring the premises with security cameras. In order to overcome the camera
issue the attacker can disable them either by shooting a strong laser at the cam-
eras or by video looping the camera feed. The defender, in turn, can employ
guards in order to patrol the premises and counter this kind of attack.

The corresponding attack-defence tree is given in Figure 6.10. The leaves
(basic attack and defence actions) of the tree are decorated with success proba-

6.4 Implementation 99

Figure 6.11: Pareto curve illustrating the trade-off between attack success
probability and expected attack cost over strategies for the RFID
example.

bility and cost values. The attack-defence tree has three phases: the first phase
corresponds to the sub-tree with the root “get into premises”, the second phase
is the “get into warehouse” sub-tree, and the last phase is the sub-tree on the
right of the main goal with the defender action on the root. The syntactic term
corresponding to each phase and to the full tree is:

t1 = &∨(&∧(ef,&∼&∧(bw,&∼&∨(uc, pc))), tg)
t2 = &∨(&∧(ed,&∼bs), ld)
t3 = &∼(&∧(sc,&∼&∨(lc,&∧(vc,&∼eg))))

t = &−→∧ (&−→∧ (t1, t2), t3)

The resulting stochastic game generated from the attack-defence by our ap-
proach has 1072 states and 2052 transitions. We verified a variety of proper-
ties, including the numerical property 〈〈A〉〉Pmax=?[F success]) that computes
the maximum success probability of an attack (equal to 0.41), and the multi-
objective qualitative property 〈〈A〉〉(RrA≤150[F success]∧P≥0.1[F success]) (which
evaluates to true, meaning that there is an attack with cost at most 150 and
success probability at least 0.1). We also examine the trade-off between the
probability of a successful attack at the expected cost of doing so. The Pareto
curve generated for this pair of properties is shown in Figure 6.11.

Implementation. We have developed a prototype implementation of our
techniques, comprising a converter from attack-defence trees, specified in XML,
into stochastic games modelled in the input language of PRISM-games [KPW16],
available in Java at

100 Quantitative Verification and Synthesis of Attack-Defence Scenarios

www2.compute.dtu.dk/~zaas/ADT2PRISM.zip

The output of the tool can then be used to perform verification and strategy
synthesis as described earlier. The presented two example in this chapter are
available with the tool.

6.5 Concluding Remarks
As we have argued in Ch. 4, attack-defence trees are a useful tool to study
attack-defence scenarios and present the interaction between an attacker and
a defender in an intuitive way. However, they offer a rather static view on
the scenario, while a game approach promotes the dynamic interaction of the
players as a first-class citizen of the domain, thanks to the notion of strategy.
Stochastic Two-player Games are a more general and widely-used formalism to
study competing behaviours, and benefit from a rich corpus of literature on
automated verification and tool support.

In this chapter, we explored the relation between attack-defence trees and
STGs. We proposed a framework for evaluating security properties of attack-
defence scenarios, by developing an extension of attack-defence trees in which
temporal dependencies among sub-goals can be expressed. In order to formally
represent strategies for the players in presence of such dependencies, we have
defined the novel concept of decision trees, whose semantics we have given in
terms of Discrete-Time Markov Chains. Moreover, we have shown how to encode
an attack-defence tree into an STG, where it becomes natural to study the
interaction between players and to account for quantitative and probabilistic
aspects of a scenario. This allows us to exploit the power of probabilistic model
checking techniques and tools, to verify security properties automatically and
synthesise strategies for attacks and defences. These strategies can be converted
to decision trees, linking the outcome of the verification on the game model to
the original attack-defence tree, facilitating communication of the results to
end-users.

We implemented our approach in a prototype tool and applied it to the
example of an RFID goods management system, where the analysis gives insights
on the points of the system open to attack and the corresponding effort to the
attacker and likelihood of success.

Our current approach requires that sequential operators only occur above
non-sequential operators in an attack-defence tree. Future work includes gener-
alisation of the approach allowing sequential operators to occur anywhere in a
tree. Moreover, it would be interesting to consider partially-observable games
instead of fully-observable ones.

In order to address multi-parameter optimisation we considered multi-objective
probabilistic model checking and extended the framework to incorporate ran-
domisation. The approach for model checking of Stochastic Two-player Games

www2.compute.dtu.dk/~zaas/ADT2PRISM.zip

6.5 Concluding Remarks 101

with multiple objectives investigates the expected cost or reward objectives, i.e.,
the summation of the rewards multiplied with the probabilities along the path.
The expected reward captures many useful properties of stochastic games. How-
ever, it is sometimes important to know the exact costs of attacks or defences,
especially when a given budget is constraining the resources available to either
player. Moreover, exact cost is studied in many evaluation techniques of attack-
defence scenarios, hence we cannot claim the verification techniques proposed
in this chapter fully cover those developed in Chs. 3, 4 directly on attack and
attack-defence trees. To the best of our knowledge, no extension of rPATL exists
that encompass exact costs. Therefore, in Part III we will embrace the challenge
of extending the model checking approach to attack tree evaluation to consider
exact cost analysis.

Graphical and game-theoretical approaches. While most extensions study
static attack trees, a few consider dynamic aspects. Arnold et al. [AHPS14] anal-
ysed the timing of attack scenarios using Continuous-Time Markov Chains, but
do not reason about strategies; [KRS15] used priced time automata and the
Uppaal model checker to analyse attack trees, but without probabilities. More
recently, [HKKS16] explored how stochastic timed automata can be used to
study attack-defence scenarios where timing plays a central role. None of these
approaches use game-based models.

Elsewhere, various studies have explored a game-theoretic approach to mod-
elling security aspects of a system. In particular, stochastic games [Sha53] have
proven useful to model uncertainty and randomisation of security scenarios,
and have been explored in several application domains. Lye and Wing [LW05]
modelled the security of computer network as a stochastic game and computed
Nash equilibrium strategies for the players. Ma et al. [MRY11] presented a
game-theoretic approach for studying rational attackers and defenders in the
security of cyber-physical systems. Along similar lines, Vigo et al. [VBY13] pro-
posed a framework for modelling and analysing the security of cyber-physical
systems by means of stochastic games.

102 Quantitative Verification and Synthesis of Attack-Defence Scenarios

Part III

The Logic erPCTL for Attack
Trees

105

In Part II we showed the connection between attack-defence trees and STGs,
and proposed a game-theoretic approach for analysing attack-defence scenarios.
We discussed a limitation of rPATL, namely, the logic does not support the
evaluation of the exact cost of the execution.

The reward operator in rPATL computes the expectation of the cumulative
cost with respect to the probability measure. It does not evaluate the cost
value itself without probabilities. The cumulative exact cost is however a useful
concept to reason about cost-related properties of the execution. It allows to
compute the cheapest execution or to verify that the cost of an execution is
within a given budget. In order to compute the exact cost of an attack and to
analyse queries with probability and cost bounds, we extend rPCTL with new
operators. We develop the theory in the simpler setting of attack trees. This
simplification removes the defender from the scene focusing on the evaluation of
attack scenarios and moving the game from two players to one player, namely
MDPs.

We use MDPs to model the probabilistic and nondeterministic behaviour of
an attacker in an attack scenario, and propose a translation from attack trees
to MDPs. To verify security properties expressed in rPCTL, we employ proba-
bilistic model checking. The logic rPCTL allows to express properties ranging
over probability and expected cost. Even though there exist a few studies that
have extended rPCTL with reward-bounded properties, as we will discuss in
Sect. 7.3, they evaluate properties on Discrete- and Continuous-Time Markov
Chains. To evaluate exact cost-related properties on MDPs, we extend rPCTL
with new operators and present the corresponding model checking algorithm.

Moreover, we study the connection between attack trees and DTMCs for
representing the purely probabilistic behaviour of the system, for which we de-
velop a bisimulation-based analysis that leads to a straightforward visualisation
of the feasibility of an attack.

This part is organised as follows. We start with the background on MDPs
and probabilistic model checking in Ch. 7, where we also present the transla-
tion of attack trees to DTMCs and the evaluation of probabilistic properties
expressed in rPCTL. The extended logic with cost-related operators, as well as
the proposed translation from trees to MDPs is formulated in Ch. 8.

106

Chapter 7
Preliminaries : Markov

Decision Processes

So far we presented DTMCs, which are purely probabilistic models, and STGs,
which incorporate the competitive behaviour of two players. In this chapter we
review MPDs, which extend DTMCs with nondeterministic choices. Moreover,
MDPs are a special case of STGs where the nondeterministic actions of one
player are fixed.

MDPs are transition systems that model nondeterministic and probabilistic
behaviour. MDPs are used to model various kinds of systems, including for
example randomised distributed algorithms, planning, queuing and optimisation
problems. Phenomena like message loss, processor failure and the like may be
modelled by nondeterminism. As for DTMCs, in order to analyse such systems
quantitative verification techniques, namely probabilistic model checking, are
applied, extended to deal with nondeterministm.

Probabilistic model checking is used to verify automatically whether or not
a model satisfies its specification. It requires as input a state transition system
and a property of interest. In order to express the qualitative and quantitative
properties of the system, the temporal logic rPCTL is used. This logic allows to
express probability and reward-based properties such as “the attack will succeed
at least with probability 0.7” or “what is the maximum probability of eventually
reaching a successor state?”.

Section 7.1 gives the essential background on MDPs and related concepts,
while Sect. 7.2 reviews the syntax and the semantics of the logic, as well as the
model checking algorithm, presented in the wake of [BK08, Ch.10] [FKNP11,

108 Preliminaries : Markov Decision Processes

KP12]. We discuss various reward operators proposed in the literature for
rPCTL in Sect. 7.3. Finally, Sect. 7.4 presents a translation from attack trees
to DTMCs and shows what analyses are supported by existing techniques.

7.1 Markov Decision Processes

Definition 7.1 (MDP) AMarkov Decision Process is a tupleM = (S, α, P,
T, s0, AP, L) where we can find sets SA (of attacker nondeterministic states), SP
(of probabilistic states), and S} (of final states), such that

• S = SA] SP] S}, where] denotes the finite disjoint union of sets;

• α is a finite, non-empty set of actions;

• P : SP × S → [0, 1] is a probabilistic transition function such that for all
probabilistic states s ∈ SP

∑
s′∈S P (s, s′) = 1;

• T : SA × α→ S is a transition function;

• s0 ∈ S is the initial state;

• AP is a set of atomic propositions; and

• L : S → 2AP is a labelling function.

The probabilistic transition function P is defined in a similar way as for
DTMCs. It describes the probability P (s, s′) of a transition from the state s to
the state s′ in one step. Final states are modelled by adding a self-loop, i.e., for
all s ∈ S} the probability of a transition going back to s is 1, P (s, s) = 1.

The transition function T is used to solve nondeterminism. For a state s and
an action l ∈ α selected nondeterministically function T specifies the successor
state s′, T (s, l) = s′. We denote by α(s) the set of enabled actions in the state
s ∈ SA, α(s) = {l ∈ α | s ∈ SA and T (s, l) is defined}. The labelling function L
maps each state s to a set of atomic propositions.

The set of direct successors of s is defined as Post(s) = {s′ ∈ SA | ∃l ∈ α :
T (s, l) = s′} ∪ {s′ ∈ SP ∪ S} | P (s, s′) > 0}. Similarly, the set of direct prede-
cessors is defined as Pre(s) = {s′ ∈ SA | ∃l ∈ α : T (s′, l) s} ∪ {s′ ∈ SP ∪ S} |
P (s′, s) > 0}.

An infinite path in an MDP is a non-empty sequence of states π = s0s1 · · ·
where si ∈ S. A finite path is a finite sequence of states π = s0 · · · sn, where
si ∈ S. We denote by Pathfins and Paths the set of all finite and infinite paths
that start in state s, respectively, and by π[i] we denote the i-th state of the
path, π[i] = si.

7.1 Markov Decision Processes 109

Schedulers. Reasoning about probabilities in an MDP relies on the determi-
nation of nondeterminism. A scheduler solves nondeterminism by choosing an
action for each nondeterministic state of an MDP. A scheduler forM is a func-
tion σ : S∗SA → α that maps a finite path to an action. A scheduler corresponds
to one possible resolution of nondeterminism. A scheduler σ is memoryless if
for any π, π′ ∈ S∗ and s ∈ SA, σ(πs) = σ(π′s) = σ(s). We denote by Σ the
set of all possible schedulers of an MDP. A probability measure Prσs under a
scheduler σ is defined in the standard fashion.

As we mentioned above, a scheduler σ solves nondeterministic choices in
an MDP reducing the model to a purely probabilistic one. Thus, a scheduler
σ induces a DTMC that corresponds to the behaviour of the MDP under the
decision of σ. The following definition formalises this intuition.

Definition 7.2 (Induced DTMC) Let M = (S, α, P, T, s0, AP, L) be
an MDP and σ a memoryless scheduler onM. The DTMCDσ = (S, Pσ, s0, AP, L)
induced by σ onM has Pσ as probabilistic transition function, defined by

Pσ(s, s′) =

1 if s ∈ SA ∧ T (s, σ(s)) = s′

P (s, s′) if s ∈ SP
1 if s ∈ S} ∧ s = s′

0 otherwise

A reward structure is helpful to reason about the quantitative information
of an MDP. In this work we consider only state rewards and use the termi-
nology reward to model cost. Thus, a reward (cost) structure on an MDP
M = (S, α, P, T, s0, AP, L) is a function r : S → Q≥0 that assigns the states
with a cost. For a finite path π = s0s1 · · · sn we define the total cost as
cost(π) =

∑
si∈π r(si).

Remark 1 As shown by Baier [Bai98], there are two kinds of MDP-based
models. Concurrent probabilistic systems, where each state is assigned nonde-
terministic alternatives followed by probabilistic distribution; and stratified sys-
tems, where states are distinguished between nondeterministic and probabilistic
ones. This two models have equivalent expressive power. Baier showed how to
transform concurrent probabilistic systems to stratified systems.

Building on top of Baier’s approach, we could show that the stratified sys-
tems discussed in this chapter can be transformed into concurrent probabilistic
systems. Informally, the procedure would work as follows. We modify transi-
tions between states and make them two-step transitions, first nondeterministic
and then probabilistic ones. For a nondeterministic states s, after choosing an
action from α(s), the successor state is chosen probabilistically with probability
1. For a probabilistic state s we first add a nondeterministic choice of an action
and then choose the successor state according to probability distribution P (s, s′).

110 Preliminaries : Markov Decision Processes

7.2 Model Checking MDPs
In this section we describe rPCTL that is used to specify the properties of the
system modelled by an MDP and we give the model checking algorithm for
verifying the specified properties. The algorithms presented in this section are
based on [FKNP11].

7.2.1 rPCTL
Syntax. We consider the extension of PCTL with rewards to evaluate the
expected cost properties on an MDP. Let us remind the reader of the syntax of
rPCTL, introduced in Ch. 5

φ ::= true | a | ¬φ | φ1 ∧ φ2 | PJ(ψ) | Er./x(Fφ)
ψ ::= Xφ | φ1Uφ2

where a ∈ AP is an atomic proposition, ./∈ {≥, >,≤, <}, J ⊆ [0, 1] is an
interval with rational bounds, x ∈ Q≥0, r : S → Q≥0 is a reward structure.

Observe that there is a minor difference in the syntax of P with respect
to Ch. 5. Here we write PJ(ψ) as oppose to P./p(ψ), where the interval J
allows to express bounds from below and above in a concise way. As we will see
shortly, the expressiveness of the two version of the logic is the same. Moreover,
reasoning about intervals will make our exposition simpler to follow.

Semantics. The semantics of the propositional logic fragment and of the path
formulae is defined as for DTMCs. The difference is in the probabilistic and
expected reward operators, where the notion of scheduler is introduced and the
computation ranges over all schedulers σ ∈ Σ. The formal semantics of rPCTL
is as follows.

Definition 7.3 (rPCTL Semantics) Let M = (S, α, P, T, s0, AP, L)
be an MDP, σ a scheduler of M and s ∈ S. The satisfaction relation |= of
rPCTL for state formulae is defined inductively by:

s |= true ∀s ∈ S
s |= a iff a ∈ L(s)

s |= ¬φ iff s 2 φ
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= PJ(ψ) iff Prσs (ψ) ∈ J for all schedulers σ ∈ Σ

s |= Er./x(Fφ) iff Expσs (ZrFφ) ./ x for all schedulers σ ∈ Σ

where Prσs (ψ) = Prσs ({π ∈ Paths | π |=σ ψ}), and Expσs (ZrFφ) denotes the
expectation of the random variable ZrFφ : Paths → Q≥0 under scheduler σ with

7.2 Model Checking MDPs 111

respect to the probability measure Prσs ,

ZrFφ(π) =

{
∞ if π[i] 2 φ for all i ∈ N∑min{j|π[j]|=φ}−1
i=0 r(π[i]) otherwise

Moreover, for a path π in M the satisfaction relation |=σ is defined by:

π |=σ Xφ iff π[1] |= φ

π |=σ φ1Uφ2 iff ∃j ≥ 0 : π[j] |= φ2 ∧ (0 ≤ k < j : π[k] |= φ1)

From now onwards we will omit σ from the satisfaction relation and write
|= when the meaning is clear from the context.

Operator P and E. Before discussing the model checking algorithm, we
expand on the semantics of P and E defined above, showing how queries over all
schedulers reduce to reasoning over infimum and supremum over all schedulers.
This corresponds to computing infσ∈Σ Pr

σ
s (ψ) and supσ∈Σ Pr

σ
s (ψ).

In order to simplify the technical details, we use the symbol d to denote open
and closed lower bounds, d∈ {[, (} and we use e to denote open and closed upper
bounds, e ∈ {],)}. Accordingly, we use the symbol d./ to denote “greater than”
inequality symbols, d./ ∈ {≥, >}, and we use the symbol e./ to denote “less than”
inequality symbols, e./ ∈ {≤, <}, where [./ = ≥, (./ =>,]./ =≤ and)./ =<.

From the equivalence result on PCTL formulae discussed by Baier and Ka-
toen [BK08, Ch.10], we know that the following holds:

Pdp1,p2e(ψ) ≡ P d./p1
(ψ) ∧ P e./p2

(ψ)

We are interested in computing theminimum and themaximum probabilities
and expected values. By the result in [BK08, Ch. 10], we know that there exist
memoryless schedulers σmin and σmax that minimise and maximise, respectively,
the probabilities of eventually reaching a state that satisfies φ:

Prσmin
s (Fφ) = inf

σ∈Σ
Prσs (Fφ)

Prσmax
s (Fφ) = sup

σ∈Σ
Prσs (Fφ)

This holds for every state s. In particular we will have:

s |= P./p(ψ)⇔ Prσmin
s (ψ) ./ p for ./∈ {≥, >}

s |= P./p(ψ)⇔ Prσmax
s (ψ) ./ p for ./∈ {≤, <}

Similar reasoning holds for the operator E, where we are interested in com-
puting the minimum and the maximum expected cost values over all schedulers.

112 Preliminaries : Markov Decision Processes

From [FKNP11] we know that there exist memoryless schedulers σmin and
σmax that minimise and maximise, respectively, the expected cumulative reward
of reaching a state that satisfies φ:

Expσmin
s (ZrFφ) = inf

σ
Expσs (ZrFφ)

Expσmax
s (ZrFφ) = sup

σ
Expσs (ZrFφ)

In particular, we can write:

s |= Er./x(Fφ)⇔ Expσmin
s (ZrFφ) ./ x for ./∈ {≥, >}

s |= Er./x(Fφ)⇔ Expσmax
s (ZrFφ) ./ x for ./∈ {≤, <}

Quantitative extension of rPCTL. The operators P and E express quali-
tative properties, i.e., they validate whether or not the probability and expected
cost of the paths satisfying the formula meet the given bounds, respectively. For
instance, the property “is the probability of reaching a state satisfying φ2 while
passing through states satisfying φ1 greater than or equal to 0.7?” can be ex-
press with the formula P[0.7,1](φ1Uφ2). Even though such queries are qualitative,
however the model checking algorithm is solving the corresponding quantitative
formulation. Thus, the logic can be extended with quantitative properties such
as Pmin=?(ψ), Pmax=?(ψ), Rmin=?(ψ) and Rmax=?(ψ), and compute the mini-
mum and the maximum values of probability and expected cost, respectively.
For instance, the formula Pmax=?(F success) will compute the maximum prob-
ability of eventually reaching successful states.

Remark 2 (Extending E.) According to the semantics the expected re-
ward operator returns infinity (∞) when the set of target states T ⊆ S is not
reached for some path π, and this is what we will consider in the following part
of the dissertation. However, inspired by the different forms of the reward for-
mula defined by Baier and Katoen [BK08, Ch.10], the expected reward operator
can be extended with alternative values for the reward when T is not reached.
In particular, the expected reward ∗ can be 0 (∗ = 0) when T is not reached, or
it can be equal to the cumulative reward c (∗ = c) along the whole path.

The general definition of the random variable ZrF∗φ(π) for different values
for the reward, when T is not reached, is:

ZrFφ(π) =

{
g(∗) if π[i] 2 φ for all i ∈ N∑min{j|π[j]|=φ}−1
i=0 r(π[i]) otherwise

where g(∗) = ∗ if ∗ ∈ {0,∞}, and g(∗) =
∑
j∈N r(π[j]) if ∗ = c.

7.2 Model Checking MDPs 113

7.2.2 Model Checking rPCTL

Given a model of the system defined by an MDP M and a property specified
by an rPCTL state formula φ, model checking verifies whether the model M
satisfies the formula φ. For verification of the formula φ the model checking
algorithm automatically determines the states ofM that satisfies φ. The algo-
rithm recursively traverses the parse tree of φ in a bottom-up fashion, where the
internal nodes of the parse tree represents the sub-formulae of φ and the leaves
correspond to the constant true or an atomic proposition a ∈ AP . For each
sub-formula φ′ of φ, the algorithm recursively computes the set of satisfying
states Sat(φ′) = {s ∈ S | s |= φ′}.

For atomic propositions and logical connectives the model checking algorithm
is as follows:

Sat(true) = S
Sat(a) = {s ∈ S | a ∈ L(s)}
Sat(¬φ) = S\Sat(φ)
Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

Model checking the operators P and E is not trivial. We need to compute
the probability and expected cost values over all schedulers and then check them
against the given bounds. Below we discuss the model checking algorithm for
each operator separately.

The complexity of PCTL model checking over MDPs is linear in the size of
the formula φ and polynomial in the size of the state space S.

7.2.2.1 Model Checking the Probabilistic Operator P

For model checking the formulas PJ(ψ) we need to compute the probability of
satisfying the formula ψ for each state s, and check whether or not the interval
J is satisfied for all schedulers σ ∈ Σ. This is reduced to the computation of the
minimum and maximum probabilities depending on the bound. Thus, we have:

Sat(P1p(ψ)) = {s ∈ S | Prmins (ψ) 1 p} for 1∈ {≥, >}

Sat(P1p(ψ)) = {s ∈ S | Prmaxs (ψ) 1 p} for 1∈ {≤, <}

where Prmins (ψ) = infσ∈Σ Pr
σ
s (ψ) and Prmaxs (ψ) = supσ∈Σ Pr

σ
s (ψ).

The computation is done for each path formula separately. For the sake of
simplicity, we denote Prmins (ψ) by xmins and Prmaxs (ψ) by xmaxs .

The operator Next. We first consider the operator next. For

xmins = Prmins (Xφ)

114 Preliminaries : Markov Decision Processes

the following equation system is satisfied:

xmins =

0 if s ∈ S}∑
s′∈Sat(φ) P (s, s′) if s ∈ SP

minl∈α

{
1 if T (s, l) ∈ Sat(φ)
0 otherwise if s ∈ SA

In case the system had multiple solutions, we would consider the least one as we
are interested in the minimum probability. However, from the results discussed
in [FKNP11], it follows that the above equation system has a unique solution.

Similarly, for
xmaxs = Prmaxs (Xφ)

the following equation system is satisfied and has a unique solution:

xmaxs =

0 if s ∈ S}∑
s′∈Sat(φ) P (s, s′) if s ∈ SP

maxl∈α

{
1 if T (s, l) ∈ Sat(φ)
0 otherwise if s ∈ SA

The operator Until. For computing the operator until, we first determine the
sets of states satisfying the formula with probability 1 and 0. The set Sat(φ2)
contains the states satisfying the formula φ2 with probability 1, while the set
S0
min = {s ∈ S | ∃σ ∈ Σ : Prσs (φ1Uφ2) = 0} denotes all states from which it

is not possible to reach a state satisfying φ2 by following the states satisfying
φ1. The computation of the set S0

min is done through the breadth-first graph
traversal algorithm presented in Algorithm 3. We refer the reader to [FKNP11]
for more details about the algorithm and the computation.

Algorithm 3 : Computation of the set S0
min

Input: MDPM = (S, α, P, T, s0, AP, L), ψ = φ1Uφ2

Output: the set S0
min = {s ∈ S | ∃σ ∈ Σ : Prσs (φ1Uφ2) = 0}

—————————————————————————————————–
R← Sat(φ2); R′ ← ∅;
while R 6= R′ do

R′ ← R;
R← R′ ∪ {s ∈ Sat(φ1) | (s ∈ SP ∧ (∃s′ ∈ R′ : P (s, s′) > 0)) ∨

(s ∈ SA ∧ (∀l ∈ α(s) : (∃s′ ∈ R′ : T (s, l) = s′)))};
end while
return S\R;

For each set of states and for

xmins = Prmins (φ1Uφ2)

7.2 Model Checking MDPs 115

we have:

xmins =

1 if s ∈ Sat(φ2)

0 if s ∈ S0
min∑

s′∈S P (s, s′) · xmins′ if s ∈ SP \(S0
min ∪ Sat(φ2))

minl∈α x
min
T (s,l) if s ∈ SA\(S0

min ∪ Sat(φ2))

As before, we are interested in the minimum solution of the system. However,
here as well the above equation system has a unique solution.

For computing
xmaxs = Prmaxs (φ1Uφ2)

we have:

xmaxs =

1 if s ∈ Sat(φ2)

0 if s ∈ S0
max∑

s′∈S P (s, s′) · xmaxs′ if s ∈ SP \(S0
max ∪ Sat(φ2))

maxl∈α x
max
T (s,l) if s ∈ SA\(S0

max ∪ Sat(φ2))

where S0
max = {s ∈ S | ∀σ ∈ Σ : Prσs (φ1Uφ2) = 0} and the computation

is presented in Algorithm 4. Analogously, the following system has a unique
solution.

Algorithm 4 : Computation of the set S0
max

Input: MDPM = (S, α, P, T, s0, AP, L), ψ = φ1Uφ2

Output: the set S0
min = {s ∈ S | ∀σ ∈ Σ : Prσs (φ1Uφ2) = 0}

—————————————————————————————————–
R← Sat(φ2); R′ ← ∅;
while R 6= R′ do

R′ ← R;
R← R′ ∪ {s ∈ Sat(φ1) | (s ∈ SP ∧ (∃s′ ∈ R′ : P (s, s′) > 0)) ∨

(s ∈ SA ∧ (∃l ∈ α(s) : (∃s′ ∈ R′ : T (s, l) = s′)))};
end while
return S\R;

7.2.2.2 Model Checking the Reward Operator E

Similarly to the case of probabilistic operator, for computing the expected cost
value over all schedulers we compute the minimum and maximum values based
on the bound.

Sat(Er./x(Fφ)) = {s ∈ S | Expmin
s (ZrFφ) ./ x} for ./∈ {≥, >}

116 Preliminaries : Markov Decision Processes

Sat(Er./x(Fφ)) = {s ∈ S | Expmax
s (ZrFφ) ./ x} for ./∈ {≤, <}

where Expmin
s (ZrFφ) = infσ∈ΣExp

σ
s (ZrFφ) and Expmax

s (ZrFφ) = supσ∈ΣExp
σ
s (ZrFφ).

The computation of
xmins = Expmin

s (ZrFφ)

can be done by solving the following equation system:

xmins =

0 if s ∈ Sat(φ)

∞ if s ∈ S<1
min

r(s) +
∑

s′∈S P (s, s′) · xmins′ if s ∈ SP \(S<1
min ∪ Sat(φ))

r(s) + minl∈α x
min
T (s,l) if s ∈ SA\(S<1

min ∪ Sat(φ))

where S<1
min = {s ∈ S | ∀σ ∈ Σ : Prσs (Fφ) < 1}. The set S<1

min is the set of
states for which the probability of reaching the states satisfying φ is strictly less
than 1 for all schedulers. We omit the detail computation of the set S<1

min and
refer the reader to [FKNP11].

We are interested in the minimum value of the above system. Based on the
discussion in [FKNP11], for the equation system above to have a unique solution
we need to modify the MDP by removing states with self-loop and zero reward.

For the computation of the maximum value we replace min with max in the
system above and use the set S<1

max = {s ∈ S | ∃σ ∈ Σ : Prσs (Fφ) < 1}.

7.3 Reward Operators for rPCTL
We have seen so far a classic expected reward operator for rPCTL. It is worth
noticing, however, that different operators have been investigated to compute
different kinds of rewards. For instance, Forejt et al. [FKNP11] define PCTL
with new operators that are used to evaluate instantaneous and cumulative
expected reward, while operators for expressing long-run and accumulated ex-
pected reward are presented in [AHK03].

Nevertheless, these extensions do not reason about the cumulative reward
along the path, i.e., they cannot express properties such as “the probability of
reaching the success state is at least 0.7, while the cumulative reward is at most
50”. To overcome this limitation, rPCTL has been extended with the reward-
bounded until path operator [BK08, Ch.10], [BHHK00, CFK+13a]. The operator
verifies if the cumulative reward along a path satisfying the property meets the
given reward bound.

All these operators evaluate the expected reward of the model, i.e., the sum
of the rewards along the path multiplied with probabilities. To the best of
our knowledge, they do not evaluate the exact reward, i.e., the sum of the
rewards without considering the probability measure. As in the attack and

7.4 Verification of Attack Trees though DTMCs 117

attack-defence scenarios the exact cost is one of the properties of interest, in
Ch. 8 we extend rPCTL with an operator that evaluates the exact cost of the
model.

7.4 Verification of Attack Trees though DTMCs

Attack trees in probabilistic setting present the purely probabilistic behaviour
of the system. In this setting, where only probabilistic aspects are essential,
the connection between attack trees and probabilistic models established in the
area of probabilistic model checking becomes natural. In particular, we study
the relation between attack trees and DTMCs, and propose an approach based
on DTMCs for evaluating the probability of an attack scenario.

In order to verify the probabilistic properties of an attack scenario we use
probabilistic model checking. First we present the transformation of an attack
tree to a probabilistic model (DTMC), and then discuss how probabilistic model
checking can be used to validate the properties of interest.

In the following we consider the attack tree formalism presented in Ch. 3,
where the sub-trees are combined either conjunctively or disjunctively. The
set of basic actions of an attack tree t is denoted by Act. For evaluating the
probabilistic behaviour of the system, we associate with each basic action a ∈
Act a success probability p(a) in case the attacker performs the action, p : Act→
[0, 1]. The probability of the failure of the action a will be 1− p(a).

7.4.1 Construction of DTMCs

The transformation of an attack tree t to a DTMC is done with the help of
transition matrices. First, we transform each basic action of an attack tree to a
DTMC and compute the corresponding transition matrix. Then, we construct
the product automata of DTMCs by combining the transition matrices by means
of Kronecker product in a bottom-up fashion according to the structure of the
tree. Finally, having a transition matrix for the root of the tree, we construct a
DTMC corresponding to t.

The construction of a DTMC D from a basic action a ∈ Act is presented
in Algorithm 5. The construction is done as follows. For each basic action a
we create three new states s0, s1 and s2. The initial state s0 of the DTMC D
corresponds to performing a. If a is performed successfully, the state s0 moves
with probability p(a) to a success state s1. Otherwise, it moves with probability
1−p(a) to a failure state s2. We associate with each state a Boolean label, such
that a state has label tt if an action a performed successfully in that state, and
it has label ff otherwise. Thus, we label the state s1 with tt and the state s2

with ff. The initial state has label ff.
Figure 7.1 shows graphically the constructed DTMC D from a basic action a.

The state s0 is the initial state labelled with ff. It has two outgoing transitions.

118 Preliminaries : Markov Decision Processes

Algorithm 5 : Algorithm for constructing a DTMC from a basic action.
Input: a basic action a ∈ Act
Output: DTMC D = (S, s0, P,AP,L)
—————————————————————————————————–
new states s0, s1, s2;
P (s0, s1) = p(a); P (s0, s2) = 1− p(a);
P (s1, s1) = 1; P (s2, s2) = 1;
L(s0) = ff; L(s1) = tt; L(s2) = ff;

ffstart

s0

tt

s1

ff

s2

p(a)

1− p(a)

1

1

Figure 7.1: Markov chain constructed from a basic action a.

With the outgoing transition labelled with probability p(a) the action succeeds
and moves to the state s1, while with the transition labelled with probability
1−p(a) it fails and moves to the state s2. The success state s1 is labelled with tt,
while the failure state s2 is labelled with ff. The states s1 and s2 are absorbing
states, meaning that Post(s1) = {s1} and Post(s2) = {s2}.

The transition matrix P and the labelling vector L of the constructed DTMC
D have the following form:

P =

 0 p(a) 1− p(a)
0 1 0
0 0 1

 and L =

 ff
tt
ff

So far we have described how to transform each basic action to a DTMC. We

combine DTMCs by computing a product automata. The product automata
of two DTMCs D1,D2 corresponding to sub-trees t1, t2, and with transition
matrices P1, P2 and labelling vectors L1, L2 is constructed as follows. First,
we construct the transition matrix P and the labelling vector L of the product
automata. The construction is based on the operator combining sub-trees t1
and t2:

• If t = &∧(t1, t2), then P = P1 ⊗ P2 and L = L1 ∧ L2

• If t = &∨(t1, t2), then P = P1 ⊗ P2 and L = L1 ∨ L2

7.4 Verification of Attack Trees though DTMCs 119

∨

Make cardholder pay

∧
threaten

∧
blackmail

access
household

threaten
card-
holder

collect
infor-
mation

blackmail
card-
holder

Figure 7.2: A fragment of the attack tree for forcing the cardholder to pay,
from Ch. 3.

Table 7.1: The values of probability for the basic actions of the example.

Name of the Node Success probability
Access household 0.6
Threaten cardholder 0.3
Collect information 0.55
Blackmail cardholder 0.2

where the labelling vector is combined by using point-wise conjunction (respec-
tively disjunction) that applies the conjunction operator (respectively disjunc-
tion operator) element by element such that L(ij) = L1(i)∧L2(j) (respectively
L(ij) = L1(i) ∨ L2(j)).

From the resulting transition matrix P and labelling vector L we construct
the DTMC corresponding to the tree t by considering only reachable states.
At each step of the construction we remove outgoing edges from the absorbing
states by making them terminal states, meaning that Post(s) = ∅.

The constructed DTMC can be further simplified with the help of bisimu-
lation reduction. A bisimilar DTMC can be computed by means of partition
refinement, which has a complexity of O(nt) for a Markov Chain with n states
and t transitions [BK08, Buc08, Buc99].

Example. We will present our approach on a fragment of the attack tree
discussed in Ch. 3. Consider the attack tree given in Figure 7.2, where the goal
of the attacker is to steal money from the cardholder by forcing him/her to pay.
The goal can be divided into two sub-goals: threatening or blackmailing. For
a successful threatening the attacker should threaten the cardholder and access
the household. In order to succeed in blackmailing the attacker should collect
necessary information and blackmail the cardholder. The estimated success
probability of basic actions is given in Table 7.1.

First, we translate each basic action to a DTMC having the form presented
in Figure 7.1, where edges are labelled with corresponding probabilities. Using

120 Preliminaries : Markov Decision Processes

our bottom-up approach we construct a DTMC for the root.
Let us first construct a DTMC for the node “threaten”. The corresponding

transition matrix Pth, which is the Kronecker product of transition matrices Pah
and Ptc, corresponding to the basic actions “access household” and “threaten
cardholder”, is:

Pth = Pah ⊗ Ptc =

0 0 0 0 0.18 0.42 0 0.12 0.28
0 0 0 0 0.6 0 0 0.4 0
0 0 0 0 0 0.6 0 0 0.4
0 0 0 0 0.3 0.7 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0.3 0.7
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

The corresponding labelling vector Lth is the point-wise conjunction of the la-
belling vectors of the basic actions “access household” and “threaten cardholder”.

Lth = Lah ∧ Ltc =

ff
ff
ff
ff
tt
ff
ff
ff
ff

Considering only the reachable states of the transition matrix Pth and the

labelling vector Lth, the DTMC for the node “threaten” is:

ffstart

tt

ff

ff

ff
0.18

0.12

0.28

0.42

1

1

1

1

7.4 Verification of Attack Trees though DTMCs 121

The new transition matrix Pth, derived from the figure above, is:

Pth =

0 0.18 0.42 0.12 0.28
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Observe that we can reduce the DTMC to the following one, which is bisim-

ilar to the one above:

ffstart

tt

ff

0.18

0.82

1

1

The corresponding transition matrix Pth and labelling vector Lth is:

Pth =

 0 0.18 0.82
0 1 0
0 0 1

 and Lth =

 ff
tt
ff

The DTMC for the node “blackmail” is constructed in the same way and the

transition matrix Pbl have a similar structure with the appropriate probabilities.
The transition matrix for the root of the tree is constructed through the

Kronecker product of the matrices Pth and Pbl. Each of them are 5×5 matrices
and as a result we get a 25× 25 matrix and the corresponding labelling vector
for the root. However, through bisimulation reduction we can reduce the size of
the so obtained DTMC. In this case, the size of the transition matrix Pth is 3×3
as well as the size of the transition matrix Pbl, and the result of the Kronecker
product of P = Pth ⊗ Pbl is a 9× 9 matrix instead of a 25× 25 matrix.

P = Pth ⊗ Pbl =

0 0 0 0 0.02 0.16 0 0.09 0.73
0 0 0 0 0.18 0 0 0.82 0
0 0 0 0 0 0.18 0 0 0.82
0 0 0 0 0.11 0.89 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0.11 0.89
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

122 Preliminaries : Markov Decision Processes

The labelling vector L for the root of the tree is:

L = Lth ∨ Lbl =

ff
tt
ff
tt
tt
tt
ff
tt
ff

Similarly, considering only the reachable states, the DTMC corresponding

to the tree in Figure 7.2 is:

ffstart

tt

tt

ff.

tt
0.02

0.16

0.73

0.09

1

1

1

1

Further simplifying the result, we obtain the following bisimilar DTMC:

ffstart

tt

ff

0.27

0.73

1

1

7.4.2 Evaluation of DTMCs
In the previous section we have described a transformation of attack trees in
probabilistic setting to DTMCs. It is worth observing that this procedure always
leads to a DTMC with three states that contains the essence of any attack
tree evaluation, showing that the goal at the root can be attained or not and

7.4 Verification of Attack Trees though DTMCs 123

with what probabilities. The probabilistic evaluation is performed during the
construction of a DTMC through the computation of the transition matrix P
and the labelling vector L in each step, leading to a DTMC with the result at
the root for the query “what is the maximum probability of a successful attack?”.

Of course, properties that can be verified on such a DTMC are limited to the
probability of success and failure at the root. In particular, the transformation
leads to loose information about the internal nodes (sub-goals) and the leaves
that enable the attack. Even though the method provides limited insights onto
the model and its properties, it could be argued that it results in a very concise
outcome, easy to communicate. In case when the main focus of the security
analysis of an attack scenario is to reason about the probability of an attack and
not the path leading to it, this method provides a simple visual representation
of the query under investigation.

124 Preliminaries : Markov Decision Processes

Chapter 8

Evaluation of Attack Trees
through MDPs

In Sect. 7.4 we have studied attack trees where basic actions are associated only
with the probability of success and presented the connection between attack
trees and DTMCs. We shall now turn our attention to other attributes of
attack trees, for probability is just one of various security attributes to be found
in the literature and in the practice.

In this chapter we extend the model of attack tree with a cost attribute. The
attribute describes the cost of performing a basic action and allows to evaluate
properties such as “is there a cheapest way to attack the system?” and “what
is the minimum cost of a successful attack?”. Moreover, the extended model
allows to represent an attack tree with multiple parameters, which leads to the
analysis of security properties with various, possibly conflicting, objectives such
as “what is the maximum success probability of an attack with cost at most
500?”.

Attack scenarios with both probability and cost attributes express a combi-
nation of nondeterministic and probabilistic behaviour, i.e., an attacker has the
nondeterministic choice of performing a basic action and paying the correspond-
ing cost, while the performed basic action succeeds with a certain probability.
In order to represent both choices, the nondeterministic choice for performing
an action and the probabilistic choice for succeeding with a certain probability,
we model the attack scenario as an MDP. We study the connection between
these two models and define a translation from attack trees to MDPs.

In order to analyse attack scenarios formally and to compute the optimal

126 Evaluation of Attack Trees through MDPs

strategy of the attacker we employ probabilistic model checking. The proba-
bilistic temporal logic rPCTL is then used to express a wide range of security
properties. The logic allows to specify various properties related to the prob-
ability of certain events occurring, and an expected cost or reward measure
associated with them.

The expected reward operator in rPCTL computes the expected value of
the cumulative reward obtained before some set of target states is reached.
Intuitively, the expected value is computed by multiplying the cost of the states
by their probability of occurring along the paths reaching the target states,
and the resulting products are summed. This operator is useful to analyse the
expectation of certain events and allows to specify properties such as “what
is the expected cost of an attack?”. However, one might be interested in the
exact cost computation of certain events occurring, i.e., computing the sum of
the costs of states along the path satisfying the event. Exact cost can be used
to evaluate the cost or time to execute a task and compare it to the available
budget.

For specifying and verifying exact cost properties we extends rPCTL with
an exact cost operator denoted by C. In our extended logic erPCTL we use
a general notation of the cost-bounded until operator with any cost interval
I ∈ Q≥0 and without step bound, i.e., the formula is satisfied when both the set
of target states is reached and the cost interval is satisfied. We define the model
checking algorithm erPCTL and demonstrate our developments on an example.

The chapter first presents the construction of MDPs from attack trees with
multiple parameters in Sect. 8.1. The extended logic erPCTL and the model
checking algorithm are defined in Sects. 8.2 and 8.3, respectively. The verifica-
tion of security properties expressed in erPCTL is discussed in Sect. 8.4. We
conclude and discuss future research directions in Sect. 8.5. This chapter is
mainly based on [AN17].

8.1 From Attack Trees to Markov Decision Pro-
cesses

In Sect. 7.4 we studied the probabilistic properties of an attack scenario. In
the following, together with a probability attribute, we augment attack trees
with the cost of performing basic actions. We associate with each basic action
a ∈ Act a cost c of performing a, c : Act→ Q≥0.

As noted above, an attack tree with probability and cost attributes encodes
behaviour encompassing both probabilistic and nondeterministic features. Thus,
we translate such an attack tree to an MDP. Before presenting the translation,
it is worthwhile noticing that in an attack tree the order in which the basic
actions are performed is not fixed. However, in the MDP this needs to be made

8.1 From Attack Trees to Markov Decision Processes 127

construct[t](A ∪ {a},Done,Succ) = new state s ∈ SA with:
L(s) = {a}, T (s, Y) = s′, T (s,N) = s′′ where:
s′ = construct[t](A,Done ∪ {a},Succ)
s′′ = construct[t](A,Done,Succ)
and: r(s′) = c(a), r(s′′) = 0

construct[t](∅,Done ∪ {a},Succ) = new state s ∈ SP with:
L(s) = {a}, P (s, s′) = p(a), P (s, s′′) = 1− p(a) where:
s′ = construct[t](∅,Done,Succ ∪ {a})
s′′ = construct[t](∅,Done,Succ)
and: r(s′) = r(s′′) = 0

construct[t](∅, ∅,Succ) = new state s ∈ S} with:
L(s) = {success} if [[t]](Succ) and {failure} otherwise, P (s, s) = 1

Table 8.1: The construction from an attack tree t to an MDP.

explicit. Since we assume that the basic actions of a tree are independent, we
will also assume any linear order of the set of basic actions Act.

From an attack tree to an MDP. We construct an MDPM = (S, α, P, T, s0,
AP,L) from an attack tree t according to Table 8.1, where s0 = construct[t](Act, ∅, ∅).
The set of states S is the disjoint union of sets SA, SP , S}, S = SA] SP] S},
while the set of actions is α = {Y,N}. The transition functions P, T and
the labelling function L are constructed according to Table 8.1, and a set of
atomic propositions is AP = Act] {success, failure}. Recall from Ch. 7 that
r : S → Q≥0 denotes the reward associated with the states of an MDP. The
target state space S is exponential in the size of t.

The call construct[t](Act, ∅, ∅) of the recursive function construct, defined in
Table 8.1, constructs an MDP from t. The procedure first constructs all nonde-
terministic transitions of the target MDP, and then the probabilistic transitions.

Throughout the evaluation of the function we assume to have an attack tree t
as a global parameter. At each step of the evaluation of construct[t](A,Done,Succ)
the first parameter A corresponds to the remaining set of attacker’s basic ac-
tions that has still to be evaluated, the second parameter Done is the set of
attempted actions, and the last parameter Succ is the set of attempted and
succeeded actions. The construction function is structurally defined over the
set of basic actions as explained below.

If the set of remaining actions contains the action a, A = A′∪{a}, we create
a nondeterministic state in the MDP labelled with a and with two outgoing

128 Evaluation of Attack Trees through MDPs

∨

Make cardholder pay

∧
threaten

∧
blackmail

access
household

ah

threaten
card-
holder

tc

collect
infor-
mation

ci

blackmail
card-
holder

bc

Figure 8.1: A fragment of the attack tree for forcing the cardholder to pay,
from Ch. 3.

transitions. One transition corresponds to attempting a and is labelled with
the action Y and cost c(a), while the other transition corresponds to not at-
tempting a and is labelled with the action N and cost 0. The successors of the
state are constructed recursively, by calling construct[t](A′,Done ∪ {a},Succ)
and construct[t](A′,Done,Succ), respectively.

If the set of remaining actions is empty, A = ∅, while the set of attempted
actions contains the action a, Done = Done′ ∪ {a}, we create a probabilistic
state labelled with a and with the outgoing transitions corresponding to the
success and the failure of the attempted action a. We label these transitions with
probabilities p(a) and 1−p(a), and construct the successor of the state by calling
construct[t](∅,Done′,Succ ∪ {a}) and construct[t](∅,Done′,Succ), respectively.

If both the set of remaining actions and the set of attempted actions are
empty, A = ∅,Done = ∅, then we are at the end of the procedure. We create a
final state and label it with the result of the evaluation of t over the success of
the basic actions, [[t]](Succ), where [[t]] is the Boolean formula of which the tree
t is a parse tree and the actions in the formula are tt if the actions are in the
set Succ and ff otherwise.

Observe that the procedure builds finite MDPs as they contain no loop,
hence all paths are finite.

Example. Let us introduce an example that we will develop throughout the
chapter. We consider a fragment of the attack tree discussed in Chs. 3,7. The
corresponding attack tree t is given in Figure 8.1. We label the leaves to refer
to them easily.

The probability of success and cost values for the basic actions of the tree
are given in Table 8.2, and we consider the following linearly ordered set for
basic actions, Act = {ah, tc, ci, bc}.

Let us construct an MDP from the tree t displayed in Figure 8.1, by following

8.2 The Logic erPCTL for Attack Trees 129

Table 8.2: Probabilities and costs for the basic actions in the example.

Label Name of the Node Probability Cost
ah access household 0.6 70
tc threaten cardholder 0.3 30
ci collect information 0.55 50
bc blackmail cardholder 0.2 30

ahstart

tc

tc

Fig. 8.3

Fig. 8.4

Fig. 8.5

Fig. 8.6

Y

N

Y

N

Y

N

Figure 8.2: The MDPMt constructed from the tree t. Due to the size ofMt

we have split it into some figures.

the rules described in Table 8.1. First, all nondeterministic transitions are con-
structed, and then the probabilistic ones. The resulting MDP Mt is presented
in Figure 8.2.

8.2 The Logic erPCTL for Attack Trees
In the following we introduce erPCTL (Probabilistic Computation Tree Logic
with Exact Reward) for expressing probability as well as cost-related properties
of MDPs. erPCTL is an extension of the temporal logic rPCTL. It allows to
reason about the properties over cost measures such as probability within a cost
bound or minimum cost of an execution.

Definition 8.1 (erPCTL Syntax) The syntax of the extended logic er-
PCTL is defined as follows:

φ ::= true | a | ¬φ | φ1 ∧ φ2 | PJ(ψ) | Er./x(Fφ) | PJ(ψ | I) | CI(ψ)
ψ ::= Xφ | φ1Uφ2

where a ∈ AP , ./∈ {≥, >,≤, <}, J ⊆ [0, 1] is a non-empty interval with rational
bounds, x ∈ Q≥0, I ⊆ Q≥0 is a non-empty interval with rational bounds, and
r : S → Q≥0 is a reward structure.

130 Evaluation of Attack Trees through MDPs

ci

bc

bc

ah

ah

ah

ah

tc

tc

tc

tc

tc

tc

tc

tc

ci

ci

ci

ci

ci

ci

ci

ci

bc

bc

bc

bc

success

failure

failure

bc

bc

bc

bc

bc

bc

bc

bc

success

failure

failure

failure

success

failure

failure

failure

success

success

success

failure

success

failure

success

failure

Y

N

Y

N

Y

N

0.75

0.25

0.75

0.25

0.75

0.25

0.75

0.25

0.6

0.4

0.6

0.4

0.6

0.4

0.6

0.4

0.6

0.4

0.6

0.4

0.6

0.4

1

0.75

0.25

0.75

0.25

0.75

0.25

0.75

0.25

1

1

1

1

1

1

1

1

0.25

0.75

0.25

0.75

0.25

0.75
1

0.25

0.75

1

0.25

0.75

1

Figure 8.3: A fragment of the MDPMt constructed from the tree t.

Similarly to rPCTL, we differentiate between state formulae (φ) and path
formulae (ψ). The operators inherited from rPCTL have the same semantics.
The intuitive interpretation of the new operators is as follows. The probabilistic
operator with cost bound PJ(ψ | I) is used to evaluate the probability over the
paths satisfying the cost bound I. Intuitively, a state s satisfies PJ(ψ | I) if
the probability that the formula ψ holds on the paths from s satisfying the cost
bound I is in J . The cost operator CI(ψ) is used to evaluate the exact cost of
the paths satisfying the formula ψ. Intuitively, a state s satisfies CI(ψ) if the
cumulative cost of the paths satisfying the formula ψ is in I.

These operators allow us to check queries like “is the probability of an attack
in a cost interval [300,540] smaller than or equal 0.85?”, “what is the maximum
probability of cheap attacks?” or “is the cost of all successful attacks greater

8.2 The Logic erPCTL for Attack Trees 131

ci

bc

bc

ah

ah

ah

ah

ci

ci

ci

ci

bc

bc

failure

bc

bc

bc

bc

failure

failure

failure

failure

success

failure

success

failure

Y

N

Y

N

Y

N

0.75

0.25

0.75

0.25

0.75

0.25

1

0.75

025

0.75

0.25

1

1

1

1

0.25

0.75

1

0.25

0.75

1

Figure 8.4: A fragment of the MDPMt constructed from the tree t.

than 300?”.

For simplifying the technical developments, without loss of generality we
move from rational numbers to integers for costs. We prove the following facts
that we will use later in the chapter.

Fact 1 For any finite set Y ⊆ Q there exists N ∈ N>0 such that Y ⊆ Z
N (Q,

where Z
N is a set of rational numbers expressed as fractions of the same non-zero

denominator N .

Proof. If the set is empty, Y = ∅, then the fact follows trivially, for the empty
set is a subset of any set A, ∀A : ∅ ⊆ A.

Assume the set contains n > 0 rational numbers, Y = {A1

B1
, · · · , AnBn } where

Ai ∈ Z, Bi ∈ N>0. We choose N = B1 · . . . · Bn and re-write each number in
the set as follows, AiBi =

Ai·
∏
j 6=i Bj

N ∈ Z
N . Thus, there exists N such that Y ⊆ Z

N
and the fact follows.

�

Fact 2 For all natural numbers N ∈ N>0 and sets Y ⊆ Z
N it holds that

inf(Y) ∈

 {+∞} if Y = ∅
{−∞} if Y is not bounded from below
Y otherwise

132 Evaluation of Attack Trees through MDPs

ci

bc

bc

tc

tc

tc

tc

ci

ci

ci

ci

bc

bc

failure

bc

bc

bc

bc

failure

failure

failure

failure

success

failure

success

failure

Y

N

Y

N

Y

N

0.6

0.4

0.6

0.4

0.6

0.4

1

0.75

025

0.75

0.25

1

1

1

1

0.25

0.75

1

0.25

0.75

1

Figure 8.5: A fragment of the MDPMt constructed from the tree t.

sup(Y) ∈

 {−∞} if Y = ∅
{+∞} if Y is not bounded from above
Y otherwise

Proof. We show the proof for the infimum. The case for the supremum is
analogous.

Consider the set Y ⊆ Z
N . The first two cases, when the set is empty or is not

bounded from below, are trivial. Assume that Y is a non-empty set bounded
from below. As N is a natural number, we can write inf(Y) = 1

N inf(Y · N),
where Y ·N is a point-wise multiplication of the set Y by (a scalar) N resulting
in a set of integers. We know that the infimum of a set of integers bounded from
below is in the set. Thus, modifying Y as above we can conclude that inf(Y) is
in Y .

�

Remark 3 The new operators of erPCTL are treated similarly to the oper-
ators of rPCTL, reducing to the computation of infimum and supremum. For
closed intervals, these values are in the interval. On the contrary, when the
interval is open, it is not always the case that the infimum and the supremum
are in the interval.

The cost operator CI(ψ) computes the exact cost of reaching a state that
satisfies ψ, where the cost values are added along the path without multiplying
with probability, as opposed to the computation of the standard expected cost
operator of rPCTL. Hence, with the help of Fact 2 and because Z

N is closed
under addition, we can consider both open and closed cost intervals I.

8.2 The Logic erPCTL for Attack Trees 133

ci

bc

bc

ci

ci

bc

bc

bc

failure

failure

failure

success

failure

failure

Y

N

Y

N

Y

N

0.75

0.25

1

1

1

0.25

0.75

1

Figure 8.6: A fragment of the MDPMt constructed from the tree t.

A similar reasoning holds for the cost interval I in the probabilistic operator
with cost bound PJ(ψ | I), where we can consider both open and closed cost
intervals. However, this is not the case for the probability interval J . In the
operator PJ(ψ | I) probabilities are multiplied along the path, hence we cannot
use Fact 2 as Z

N is not closed under multiplication. Thus, we consider only
closed intervals J .

As a future research direction we would like to investigate open intervals
for probability in the operator PJ(ψ | I) and study when the infimum and the
supremum are in J .

Quantitative extension of erPCTL. Similarly to the probabilistic and ex-
pected reward operators of rPCTL, the operators PJ(ψ | I) and CI(ψ) are
validating whether or not the given bound is satisfied. They are not deter-
mining the actual probability and cost values. However, as the model checking
algorithm is computing the values, we can extend the logic with quantitative
operators such as Pmin=?(ψ | I), Pmax=?(ψ | I), Cmin=?(ψ) and Cmax=?(ψ).

The semantics of the propositional logic fragment and of probabilistic and
reward formulae is defined as for rPCTL. Below we will discuss the semantics
of the new operators PJ(ψ | I) and CI(ψ).

8.2.1 Probabilistic Operator with Cost Bound PJ(ψ | I)
We propose the operator PJ(ψ | I) for probability computation with cost bound,
where ψ is a path formula, J ⊆ [0, 1] is a non-empty probability interval and
I ⊆ Q≥0 is a non-empty cost interval. The probability interval J can be only
closed, while the cost interval I can be either open or closed. In order to simplify
the technical developments, however, we do not consider intervals I of the form
(0, ce – if 0 is an extreme than it must fall in I.

134 Evaluation of Attack Trees through MDPs

Before defining the formal semantics of PJ(ψ | I), let us introduce some
useful notation. We define the semantics of each path formula with cost interval
I as follows:

π |=I Xφ iff π[1] |= φ ∧ cost(π[0 1]) ∈ I
π |=I φ1Uφ2 iff ∃j ≥ 0 : π[j] |= φ2 ∧ (0 ≤ k < j : π[k] |= φ1)

∧ cost(π[0 · · · j]) ∈ I

The semantics of the probabilistic operator with cost bound is as follows:

s |= PJ(ψ | I) iff Prσs (ψ | I) ∈ J for all schedulers σ ∈ Σ

where Prσs (ψ | I) = Prσs {π ∈ Pathσs | π |=I ψ}.
Intuitively, PJ(ψ | I) states that the probability of the paths starting from

state s and satisfying the formula ψ and cost bound I meets the bounds given
by J .

The operator PJ(ψ) is treated as a special case of the operator PJ(ψ | I).
The two operators are equivalent if the cost interval is [0,∞):

PJ(ψ) ≡ PJ(ψ | [0,∞))

As mentioned above, the semantics considers all possible schedulers, but we
can rephrase it in terms of infimum and supremum. We know from [BK08] that
the following equation holds:

P[p1,p2](ψ) ≡ P≥p1
(ψ) ∧ P≤p2

(ψ)

The result holds also in case of cost intervals on both sides of the equation:

P[p1,p2](ψ | I) ≡ P≥p1(ψ | I) ∧ P≤p2(ψ | I)

Similarly to the case of PJ(ψ), we are interested in computing the minimum
and the maximum probability values within given cost bounds.

s |= P≥p(ψ | I)⇔ inf
σ∈Σ

Prσs (ψ | I) ≥ p

s |= P≤p(ψ | I)⇔ sup
σ∈Σ

Prσs (ψ | I) ≤ p

where the clauses above hold thanks to the reduction of costs from Q to Z
explained in Facts 1 and 2.

For the sake of conciseness, we define

Prmins (ψ | I) = inf
σ∈Σ

Prσs (ψ | I)

Prmaxs (ψ | I) = sup
σ∈Σ

Prσs (ψ | I)

8.2 The Logic erPCTL for Attack Trees 135

8.2.2 Cost operator CI(ψ)

We propose the operator CI(ψ) for exact cost computation, where ψ is a path
formula and I ⊆ Q≥0 is a non-empty cost interval. The cost interval I can be
either open or closed.

Before defining the formal semantics of CI(ψ), let us introduce some useful
notation. We define the cost of an infinite path π = s0s1 · · · for each path
formula, denoted by cost(π, ψ), as follows:

cost(π,Xφ) = {cost(π[0 1]) | π[1] |= φ}
cost(π, φ1Uφ2) = {cost(π[0 · · · k]) | π[k] |= φ2 ∧ (0 ≤ i < k : π[i] |= φ1)}

When the path formula φ is not satisfied, then the set is empty. Otherwise, it
contains the set of possible costs.

Fact 3 For a path π, a cost interval I and a path formula ψ it holds that

π |=I ψ ⇔ ∃c ∈ cost(π, ψ) : c ∈ I

Fact 4 For a path π and a path formula ψ it holds that

π |= ψ ⇔ π |=[0,∞) ψ

The semantics of the cost operator is as follows:

s |= CI(ψ) iff ∀σ ∈ Σ : ∀π ∈ Pathσs : ∀c ∈ cost(π, ψ) : c ∈ I

Intuitively, CI(ψ) states that the exact (cumulative) cost of paths starting in
state s and satisfying formula ψ under scheduler σ is in the interval I.

In order to verify the cost formula with a general cost interval, we reduce
the problem to intervals with only lower and upper bounds according to the
following equivalence result:

Cdc1,c2e(ψ) ≡ C d./c1(ψ) ∧ C e./c2(ψ)

where c1 ≤ c2, c1, c2 6=∞, d./ ∈ {≥, >}, and e./ ∈ {≤, <}.
Thus, to verify that the exact cost of each path satisfying the formula ψ is in

the interval it is sufficient to verify that the exact cost of each path satisfying ψ
meets the lower and upper bounds. Again, this problem can be reduced to verify
that the infimum (respectively the supremum) cost meets the bound. Lemma 8.2
shows how such reduction is performed. Note that the cost computation is done
over all schedulers and all paths.

Lemma 8.2

s |= C./c(ψ)⇔ (inf
σ∈Σ

inf
π∈Pathσs

inf cost(π, ψ)) ./ c, for ./∈ {≥, >}

136 Evaluation of Attack Trees through MDPs

s |= C./c(ψ)⇔ (sup
σ∈Σ

sup
π∈Pathσs

sup cost(π, ψ)) ./ c, for ./∈ {≤, <}

Proof. Let us first proof the case of the infimum. The case when the set
cost(π, ψ) is empty or not bounded is straightforward. Assume that there exists
at least one path satisfying ψ, hence cost(π, ψ) is non-empty and bounded. Let
us define cminσ = infπ∈Pathσs inf cost(π, ψ).

It is sufficient to prove that for an MDPM with state space S there exists
a memoryless scheduler σmin such that for any s ∈ S

cσmin = inf
σ∈Σ

cminσ

We know that costs are non-negative rational numbers. We modify them
into the form Z

N for N ∈ N>0. Since Z
N is closed under addition, we have that

cost(π, ψ) ⊆ Z
N . Based on Fact 2 we have that cminσ ∈ Z

N . Then, it follows that
there exists a scheduler σmin such that cσmin = infσ∈Σ c

min
σ as the infimum of

the set is in Z
N by Fact 2. The thesis follows.

The proof for the case of the supremum follows a different approach. Here
we do not consider the cost of the shortest path in the underlying graph, but we
take the maximum cost value. The poof is carried out by considering possible
values for the supremum.

The case when the supremum is −∞ is trivial as it can happen only when
the set cost(π, ψ) is empty and for the empty set the relation holds.

Assume the supremum is +∞. We get this value only if a path meets a loop
whose cost is greater than 0. In this case there must be a cost value greater
than the upper bound c, and thus both sides of the relation cannot be satisfied.

Assume the supremum is finite. This case is similar to the corresponding
one for the infimum. The proof follows by Fact 2: if the supremum is finite then
the value must fall in the interval.

�

Duality. The cost formula CI(ψ) evaluates the cost over all schedulers and
all paths. It is used to verify queries such as whether the cost of all successful
attacks is within the given bounds. Such questions quantify universally over
schedulers and paths. The dual questions, when we consider the existential
quantifier, might be of interest as well. For instance, if the attacker has a
limited budget, then he/she might want to know whether there is at least one
cheap attack or a successful attack below his/her budget. Such “dual” queries
can be phrased restoring to negation. For instance, verifying that the cost of
satisfying ψ for at least one execution is at most c is equivalent to verifying the
formula ¬C>c(ψ).

8.3 Model Checking erPCTL 137

Semantically, for a given bound c, the following equivalence result holds:

∃σ ∈ Σ : ∃π ∈ Pathσs : ∃c′ ∈ cost(π, ψ) : c′ ./ c⇔

¬(∀σ ∈ Σ : ∀π ∈ Pathσs : ∀c′ ∈ cost(π, ψ) : ¬(c′ ./ c))

8.3 Model Checking erPCTL
To verify properties defined in erPCTL we develop a model checking algorithm.
The model checking algorithm for a erPCTL formula φ on an MDP M deter-
mines the states of M that satisfy φ. The algorithm is similar to the model
checking algorithm for rPCTL. It recursively determines the set of satisfying
states Sat(φ′) for each sub-formula φ′ of φ traversing the parse tree of ψ in a
bottom-up manner.

For atomic propositions, logical connectives, the probabilistic operator and
the reward operator the model checking algorithm is the same as for rPCTL. In
the following we will discuss the algorithms of the new operators.

8.3.1 Model Checking the Operator PJ(ψ | I)
Similarly to the cases discussed above, the algorithm for the probabilistic oper-
ator with a cost bound is reduced to the computation of the minimum and the
maximum values:

Sat(P≥p(ψ | I)) = {s ∈ S | Prmins (ψ | I) ≥ p}

Sat(P≤p(ψ | I)) = {s ∈ S | Prmaxs (ψ | I) ≤ p}
In the following we explain how to determine the minimum and maximum proba-
bility satisfying the formula in the cost interval, separately for each path formula
ψ. The algorithm follows the development for the model checking probabilistic
operator, presented in Sect. 7.2.2.1.

The operator Next (ψ = Xφ). First, we consider the operator next. For
computing the minimum probability satisfying Xφ in the cost interval I,

xmins = Prmins (Xφ | I)

we are solving the following equations:

xmins =

0 if s ∈ S}∑

s′∈Sat(φ)

r(s)+r(s′)∈I
P (s, s′) if s ∈ SP

minl∈α

{
1 if T (s, l) ∈ Sat(φ) ∧ (r(s) + r(T (s, l))) ∈ I
0 otherwise if s ∈ SA

138 Evaluation of Attack Trees through MDPs

As the sets S}, SP , SA are disjoint and we identified the set of states for which
xmins equals 0, we can compute xmins as the unique solution of the system above.

Similarly, for computing the maximum probability satisfying Xφ in the cost
interval I,

xmaxs = Prmaxs (Xφ | I)

the following equations have a unique solution:

xmaxs =

0 if s ∈ S}∑

s′∈Sat(φ)

r(s)+r(s′)∈I
P (s, s′) if s ∈ SP

maxl∈α

{
1 if T (s, l) ∈ Sat(φ) ∧ (r(s) + r(T (s, l))) ∈ I
0 otherwise if s ∈ SA

The operator Until (ψ = φ1Uφ2). Let us now discuss the computation
of PJ(ψ | I) for the operator until. Again we are interested in computing
Prmins (ψ | I) and Prmaxs (ψ | I). Before presenting the computation, it is
worthwhile noticing that in many real-life scenarios the cost interval I has only
an upper bound or a lower bound. Thus, we develop the computation in three
different cases with respect to the cost bounds; only an upper bound [0, c2], [0, c2)
– recall that I ⊆ Q≥0, only a lower bound [c1,∞), (c1,∞), or both bounds (cost
interval) [c1, c2], [c1, c2), (c1, c2] and (c1, c2).

Cases I = [0, c2] and I = [0, c2). Let us first look into the case of the inter-
val [0, c2]. Having only an upper bound c2 for cost, the values of interest are
Prmins (φ1Uφ2 | [0, c2]) and Prmaxs (φ1Uφ2 | [0, c2]). First, we define

xmins (c) = Prmins (φ1Uφ2 | [0, c])

where c ≥ 0 is the maximum amount that may be spent, where initially c = c2.
The algorithm follows the corresponding one for the probabilistic operator in
rPCTL. The difference is that in each considered case (set of states) we examine
the cost bound as well. For instance, for the set of state for which Prσs (φ1Uφ2)
is 1 we need to ensure that their costs are within the threshold c (r(s) ≤ c):
instead, when their costs exceed the threshold (r(s) > c), these states are in the
set for which Prσs (φ1Uφ2) is 0. Thus, xmins (c) can be computed by solving the

8.3 Model Checking erPCTL 139

Table 8.3: Computation of probabilities with upper cost bound, Prs(φ1Uφ2 |
[0, c]).

Sat(φ2) S0 s ∈ SP \(S0 ∪ Sat(φ2)) s ∈ SA\(S0 ∪ Sat(φ2))
≤ c (1) (2) (3) (4)
> c (2) (2) (2) (2)

following equation system:

xmins (c) =

1 if s ∈ Sat(φ2) ∧ r(s) ≤ c (1)

0 if s ∈ S0
min ∨ r(s) > c (2)∑

s′∈S P (s, s′) · xmins′ (c− r(s)) if s ∈ SP \(S0
min ∪ Sat(φ2))

∧ r(s) ≤ c (3)

minl∈α x
min
T (s,l)(c− r(s)) if s ∈ SA\(S0

min ∪ Sat(φ2))

∧ r(s) ≤ c (4)

where S0
min = {s ∈ S | ∃σ ∈ Σ : Prσs (φ1Uφ2) = 0}.

To better understand the equation system, let us look into Table 8.3. The
first row of the table illustrates the four disjoint set of states (1-4). The first
column corresponds to the possible cost bounds. As we have an upper cost
bound, all costs can be divided into two groups; those that are within the bound
(≤ c) and those that are outside the bound (> c). Table 8.3 maps each possible
combination of a set of states and cost bound for a state with a corresponding
equation.

We consider the minimum value of the equation system in case of multiple
solutions. However, the problem is similar to the stochastic shortest path prob-
lem, discussed in [DA98, BT91], and thus, the equation system has a unique
solution.

For the computation of the maximum probability we change “min” to “max”
in the system above. Analogously, the following system has a unique solution.

xmaxs (c) =

1 if s ∈ Sat(φ2) ∧ r(s) ≤ c (1)

0 if s ∈ S0
max ∨ r(s) > c (2)∑

s′∈S P (s, s′) · xmaxs′ (c− r(s)) if s ∈ SP \(S0
max ∪ Sat(φ2))

∧ r(s) ≤ c (3)

maxl∈α x
max
T (s,l)(c− r(s)) if s ∈ SA\(S0

max ∪ Sat(φ2))

∧ r(s) ≤ c (4)

where S0
max = {s ∈ S | ∀σ ∈ Σ : Prσs (φ1Uφ2) = 0}.

140 Evaluation of Attack Trees through MDPs

A correspondence holds between Table 8.3 and the equation system for com-
puting the maximum probability as the one highlighted above for the minimi-
sation case.

So far we have discussed the case for the closed interval [0, c2]. For the
computation of the open interval [0, c2) we change ≤ to < and > to ≥ in the
equations above.

Cases I = [c1,∞) and I = (c1,∞). Let us present now the case when I
has only a lower bound. We are interested in computing the probability of the
paths that have cost greater than or equal to c1. Having only a lower bound for
the cost, the values of interest are Prmins (φ1Uφ2 | [c1,∞)) and Prmaxs (φ1Uφ2 |
[c1,∞)).

We define
xmins (c) = Prmins (φ1Uφ2 | [c,∞))

where c ∈ Q is the required minimum amount to be spent.
First, we identify the set of states for which Prσs (φ1Uφ2) is 0. The set with

probability 0 is the same as for the probabilistic operator of rPCTL, that is

S0
min = {s ∈ S | ∃σ ∈ Σ : Prσs (φ1Uφ2) = 0}

S0
man = {s ∈ S | ∀σ ∈ Σ : Prσs (φ1Uφ2) = 0}

Observe that having a lower cost bound it might happen that a prefix of a path
satisfies the formula but the required cost budget is not reached. We handle
this situation by continuing the computation until we find a point where both
the formula and the required cost budget are satisfied. Thus, for the set with
probability 1 we check the satisfiability of the cost budget. If a state satisfies
φ2 (s ∈ Sat(φ2)) and the required cost amount c (r(s) ≥ c), then we stop the
computation. Otherwise, we continue the iteration based on a type of the state.

xmins (c) =

1 if s ∈ Sat(φ2) ∧ r(s) ≥ c (1)

0 if s ∈ S0
min (2)∑

s′∈S P (s, s′) · xmins′ (c− r(s)) if s ∈ SP \(S0
min ∪ Sat(φ2))∨ (3a)

(s ∈ SP ∩ Sat(φ2) ∧ r(s) < c) (3b)

minl∈α x
min
T (s,l)(c− r(s)) if s ∈ SA\(S0

min ∪ Sat(φ2))∨ (4a)

(s ∈ SA ∩ Sat(φ2) ∧ r(s) < c) (4b)

We present Table 8.4 to associate each set of states and cost amount for a
state with a corresponding equation. Observe that for the states in Sat(φ2) and
cost < c there are two equations. The equations (3b) and (4b) correspond to the

8.3 Model Checking erPCTL 141

Table 8.4: Computation of probabilities with lower cost bound, Prs(φ1Uφ2 |
[c,∞]).

Sat(φ2) S0 s ∈ SP \(S0 ∪ Sat(φ2)) s ∈ SA\(S0 ∪ Sat(φ2))
≥ c (1) (2) (3a) (4a)
< c (3b),(4b) (2) (3a) (4a)

φstart
s

l

Figure 8.7: An MDP example.

continuation of the computation in case the formula is satisfied but the required
cost amount is not reached.

In case of multiple solutions we consider the minimum value of the equation
system above.

Remark 4 Consider an MDP with one state s ∈ SA and r(s) = 0, like the
one presented in Figure 8.7. We are interested in computing Prmins (true Uφ |
[10,∞)). Checking the conditions of the equations above, we can see that the
state s satisfies the condition (4b), as s ∈ Sat(φ) and r(s) < c. From the
equation system we have that xmins (c) = xmins (c), and thus the system above has
infinitely many solutions.

For ensuring a unique solution of the equation system we can use the tech-
niques described in [FKNP11, DA98]. The main idea is to modify the MDP by
removing states with self-loop and zero cost. However, as the uniqueness of the
solution is outside of the scope of this dissertation, we will not go into more
details.

For the computation of the maximum probability we change “min” to “max”
in the equations above and follow similar developments as for the computation
of the minimum probability.

So far we have discussed the case for the closed interval [c1,∞]. The com-
putation of the open interval (c1,∞] is carried out by changing ≥ to > and <
to ≤ in the system above.

General case I = dc1, c2e. Let us now present the general case, where we have
both lower and upper cost bounds, we are interested in computing Prmins (φ1Uφ2 |
dc1, c2e) and Prmaxs (φ1Uφ2 | dc1, c2e), where c1 ≤ c2.

142 Evaluation of Attack Trees through MDPs

Table 8.5: Computation of probabilities with upper and lower bounds,
Prs(φ1Uφ2 | [c′, c′′]).

Sat(φ2) S0 s ∈ SP \(S0 ∪ Sat(φ2)) s ∈ SA\(S0 ∪ Sat(φ2))
≥ c′ and ≤ c′′ (1) (2) (3a) (4a)
> c′′ (2) (2) (2) (2)
< c′ (3b),(4b) (2) (3a) (4a)

We define
xmins (c′, c′′) = Prmins (φ1Uφ2 | [c′, c′′])

where c′ ∈ Q is the required minimum amount to be spent and c′′ ≥ 0 is the
maximum amount that may be spent. Similarly to previous cases, we examine
the cost amount for each set of states. For instance, the states in the set with
probability 1 should satisfy not only the formula φ2 but also be in a cost interval
[c′, c′′], while the states above the cost interval (r(s) > c′′) should be in the set
with probability 0.

xmins (c′, c′′) =

1 if s ∈ Sat(φ2) ∧ r(s) ∈ [c′, c′′] (1)

0 if s ∈ S0
min ∨ r(s) > c′′ (2)∑

s′∈S P (s, s′) · xmins′ (c′ − r(s), c′′ − r(s))

if (s ∈ SP \(S0
min ∪ Sat(φ2)) ∧ r(s) ≤ c′′) (3a)

∨ (s ∈ SP ∩ Sat(φ2) ∧ r(s) < c′) (3b)

minl∈A x
min
T (s,l)(c

′ − r(s), c′′ − r(s))

if (s ∈ SA\(S0
min ∪ Sat(φ2)) ∧ r(s) ≤ c′′) (4a)

∨ (s ∈ SA ∩ Sat(φ2) ∧ r(s) < c′) (4b)

We present Table 8.5 to associate each set of states and cost amount for a
state with a corresponding equation. Differently from the previous cases, here
the cost values are divided into three groups; those that are inside the cost
interval, those that are below the cost interval and those that are above the cost
interval.

We consider the minimum solution of the equation system above. Like in
the case with only lower bound, here as well the system above does not have a
unique solution. Again, we can use the techniques presented in [FKNP11, DA98]
and modify the MDP in order to compute the unique solution.

For the computation of the maximum probability we change “min” to “max”
in the equations above and consider the maximum solution.

8.3 Model Checking erPCTL 143

So far we have discussed the case for the close interval [c1, c2]. The compu-
tation of partially-opened, (c1, c2], [c1, c2), or fully-opened, (c1, c2) intervals, is
carried out as follows. When the lower bound is not included, we change ≥ to
> and < to ≤, while when the upper bound is not included we change ≤ to <
and > to ≥.

8.3.2 Model Checking the Operator CI(ψ)

Let us now present the model checking algorithm for the operator CI(ψ). We
need to compute the exact cost of the paths satisfying the formula ψ and check
whether it is in I. The procedure reduces to the computation of the minimum
and the maximum values depending on the bound:

Sat(C./c(ψ) = {s ∈ S | (inf
σ∈Σ

inf
π∈Pathσs

inf cost(π, ψ)) ./ c for ./∈ {≥, >}}

Sat(C./c(ψ) = {s ∈ S | (sup
σ∈Σ

sup
π∈Pathσs

sup cost(π, ψ)) ./ c for ./∈ {≤, <}}

In the following we explain how to determine the minimum and maximum
cost, separately for each path formula ψ.

The operator Next (ψ = Xφ). We start with the computation of the mini-
mum cost for the operator next. The minimum cost

ymins = inf
σ∈Σ

inf
π∈Pathσs

inf cost(π,Xφ)

for each state s can be computed by means of the following equations:

ymins =

+∞ if s ∈ S}

minP (s,s′)>0

{
r(s) + r(s′) if s′ ∈ Sat(φ)
+∞ otherwise if s ∈ SP

minl∈α

{
r(s) + r(T (s, l)) if T (s, l) ∈ Sat(φ)
+∞ otherwise if s ∈ SA

The equation system above has a unique solution.

Similarly, we compute the maximum cost

ymaxs = sup
σ∈Σ

sup
π∈Pathσs

sup cost(π,Xφ)

144 Evaluation of Attack Trees through MDPs

by means of the following equations:

ymaxs =

−∞ if s ∈ S}

maxP (s,s′)>0

{
r(s) + r(s′) if s′ ∈ Sat(φ)
−∞ otherwise if s ∈ SP

maxl∈α

{
r(s) + r(T (s, l)) if T (s, l) ∈ Sat(φ)
−∞ otherwise if s ∈ SA

The operator Until (ψ = φ1Uφ2). Similarly to the computations of the
until operator for PJ(ψ | I) the minimum cost of a path satisfying the formula
φ1Uφ2 can be computed recursively. For computing the minimum cost of a
path, we stop the first time φ2 is satisfied, i.e., we compute the cost of the path
π = s0 · · · sj where j = min{j | π[j] |= φ2 ∧ (∀k < j : π[k] |= φ1)}.

Thus, the computation of

ymins = inf
σ∈Σ

inf
π∈Pathσs

costinf(π, φ1Uφ2)

corresponds to solving the following equations:

ymins =

r(s) + min({ymins′ | s |= φ1 ∧ P (s, s′) > 0} ∪ {0 | s ∈ Sat(φ2)})

if s ∈ SP ∨ s ∈ S}

r(s) + min({ymins′ | s |= φ1 ∧ T (s, l) = s′} ∪ {0 | s ∈ Sat(φ2)})
if s ∈ SA

Note that the system is solved in the set Q ∪ {−∞,+∞}, where inf ∅ =
min ∅ = +∞. Thus, when there is no state satisfying the formula (the set of
solutions is empty), the system returns +∞.

The equation system above might give more than one solution. In this case
we consider the maximum one.

The computation of the maximum cost is slightly different. We are interested
in computing the supremum over the set of costs cost(π, φ1Uφ2). Thus, we are
not stopping the first time φ2 is satisfied but we continue the computation as
follows. We check if the state satisfying φ2 is the last one. If yes, then the cost
is equal to r(s), otherwise we continue the computation of the cost based on
the type of the state. Observe that the computation is performed in the set
Q ∪ {−∞,+∞} where sup ∅ = max ∅ = −∞, and it returns −∞ if the set of
costs is empty.

For computing

ymaxs = sup
σ∈Σ

sup
π∈Pathσs

costsup(π, φ1Uφ2)

8.4 Evaluation of Attack Trees with erPCTL 145

we solve the following equation system:

ymaxs =

r(s) + max({ymaxs′ | s |= φ1 ∧ P (s, s′) > 0} ∪ {0 | s ∈ Sat(φ2)})

if s ∈ SP ∨ s ∈ S}

r(s) + max({ymaxs′ | s |= φ1 ∧ T (s, l) = s′} ∪ {0 | s ∈ Sat(φ2)})
if s ∈ SA

Here as well the equation system might give multiple solutions and we con-
sider the minimum one.

8.4 Evaluation of Attack Trees with erPCTL

In the previous two sections we have proposed a translation from attack trees
to MDPs and presented the new logic erPCTL, an extension of rPCTL with
cost-related operators. In the following, we discuss how security properties of
interest can be evaluated by means of model checking of erPCTL.

Security properties. Attributes to basic actions play an important role in
the analysis of an attack scenario. They are used to express various properties of
interest. In this part of the work we characterise the basic actions of an attack
scenario with the success probability and the cost of performing the action.
The properties we study range from quantitative to qualitative as well as from
one-objective to multiple-objective properties. We formalise them in erPCTL.

We study probability-related properties such as “is the success probability of
an attack greater than or equal to 0.2?” or “what is the maximum probability
of success?”. The first qualitative property is expressed in erPCTL as the for-
mula P≥0.2(F success), while the second quantitative property is express as the
formula Pmax=?(F success).

The characterisation of basic actions with cost allows to deduce the cheapest
attack. We study questions such as “what is the minimum cost of an attack?”.
The property is expressed as the formula Cmin=?(F success). Moreover, having
a cost budget c for the attacker, we can study more specific properties. For
example, the attacker might want to know if whatever he/she does the cost of
all successful attacks is in I, i.e., whether the attacker can always succeed by
spending no more than the budget. We can express it with the question “is the
cost of all successful attacks within the budget c?” and it is expressed in erPCTL
as the formula C[0,c](F success). On the other hand, a defender who is looking
at the attack scenario might want to verify whether all successful attacks are
outside the attacker’s budget, i.e., “is the cost of all successful attacks greater
than or equal to c?”. The corresponding formula is C[c,∞)(F success).

So far the cost-related properties we considered are evaluated over all attacks.
However, the (clever) attacker might want to know if there exists at least one

146 Evaluation of Attack Trees through MDPs

successful attack within the budget c. We can express this property as the
formula ¬C[c,∞)(F success).

Our framework allows also to study multiple-objective properties such as “is
there an attack with success probability at least 0.4 and cost at most 1500?” or
“what is the maximum probability of an attack with cost at most 1500?”. They
expressed as the formulae P≥0.4(F success | [0, 1500]) and Pmax=?(F success |
[0, 1500]), respectively.

Verification of security properties. We use model checking erPCTL, pre-
sented in Sect. 8.3, for verifying the security properties of MDPs constructed
from attack trees. The model checking algorithm allows to verify both qualita-
tive as well as quantitative properties. It first computes the value of interest for
each state and then checks whether it satisfies the given property. For example,
to verify that the success probability of an attack is at least 0.2, the model
checking algorithm first computes for all states the probability of eventually
reaching the success state, and than checks whether it is at least 0.2.

Observe that MDPs constructed from attack trees are finite and acyclic.
Moreover, most properties of interest concern reachability of a success state,
i.e., the path formula has the form (F success).

Example. Consider the MDP given in Figure 8.2. We exploit the model
checking algorithm of erPCTL to verify the security properties mentioned above.
For example, the verification of the probabilistic query P≥0.2(F success) returns
“false”, meaning that there exists at least one attack with success probability
less than 0.2. We compute the maximum success probability of an attack with
the query Pmax=?(F success), which is 0.549.

Assume the attacker has a cost budget equal to 1500 and let us check whether
all successful attacks are within the budget. The query C≤1500(F success) returns
“false” meaning that there exists a successful attack with cost greater than the
budget. Now, let us check whether there exists at least one successful attack
within the budget. We verify the query ¬C>1500(F success), which returns “true”
meaning that there is an attack within the budget. We can also compute the
minimum cost of a successful attack with the query Cmin=?(F success), which is
900.

Finally, we verify multi-objective queries, such as P≥0.4(F success | [0, 1500])
and Pmax=?(F success | [0, 1500]). The first property evaluates to “false” mean-
ing that there is no attack with probability at least 0.4 and cost at most 1500,
while the second property computes the maximum probability of an attack with
cost at most 1500, which is 0.18.

8.5 Concluding Remarks 147

8.5 Concluding Remarks
Markov Decision Processes are powerful objects for modelling uncertain and
randomised behaviour. They are commonly used formalism for studying sys-
tems that show a combined probabilistic and nondeterministic behaviour. Thus,
we investigated the relation between attack trees and MDPs for modelling the
probabilistic and nondeterministic behaviour of an attack scenario with proba-
bility and cost attributes. We proposed a translation of attack trees into MDPs,
and used probabilistic model checking for verifying the security properties of an
attack scenario expressed in rPCTL.

The logic rPCTL allows to reason about probability and expected reward
properties of the system. Even though the evaluation of the expected reward is
of interest in many domains, the analysis of exact cumulative cost of an attack
is a typical property of interest in the study of attack scenarios. There are few
extensions of rPCTL with cost-bounded until operator. Nevertheless, to the
best of our knowledge none of the rPCTL operators evaluate the exact cost.

To overcome this limitation, we extended the logic with an exact cost oper-
ator. The new logic erPCTL allows to reason about the probability and exact
cost measures and to evaluate both qualitative and quantitative queries. We
presented the model checking algorithm for erPCTL. Finally, we showed how
to verify security properties of an attack scenario with the presented model
checking approach.

As future work, it would be interesting to investigate in details open prob-
ability intervals in the operator PJ(ψ | I) discussed in Sect. 8.2. Moreover,
it would be worth moving from attack trees and MDPs to attack-defence trees
and games, and propose a logic for evaluating exact cost properties in an attack-
defence scenario.

148 Evaluation of Attack Trees through MDPs

Chapter 9

Conclusion

Still round the corner there may wait
A new road or a secret gate.

J.R.R.Tolkien

In this dissertation we have investigated the evaluation of qualitative and
quantitative security properties of attack and defence scenarios expressed as
graphical models for security, and the synthesis of optimal strategies for the
attacker and the defender. Our initial thesis was that

graphical models for security of socio-technical organisations can be assigned
formal syntax and semantics supporting the development of automated verifica-
tion techniques for the analysis of security properties, both from a qualitative
and a quantitative perspective. Such formal models, analyses, and properties
encompass both attacker and defender behaviour, and can be relied upon to syn-
thesise optimal strategies, thereby drawing attention to vulnerable fragments of
the overall system.

In this dissertation we have studied attack trees and attack-defence trees,
graphical security models for analysing attack and defence scenarios, and their
connection to one- and two-player games. We have proposed techniques for the
formal evaluation of security properties of complex attack and defence scenarios,
improving on the literature of both tree and game verification.

In Sect. 9.1 we summarise the contribution of this dissertation by discussing
how our developments support the claim above. At a high level, the first part of

150 Conclusion

this dissertation examined graphical models for security of socio-technical organ-
isations and assigned formal syntax and semantics supporting the development
of automated verification techniques for the analysis of security properties. The
models and properties studied in the second part encompassed both attacker and
defender behaviour, and proposed a game-theoretic approach to synthesise opti-
mal strategies. Finally, the third and last part investigated in detail cost-related
security properties. We conclude with final remarks followed by directions for
future work in Sect. 9.2.

9.1 Contribution
Let us summarise briefly the main contributions of our work presented in each
part of this dissertation.

Evaluation of attack-defence trees. Many organisations are complex socio-
technical systems consisting of physical infrastructure, software components,
human actors and the environment which all these are deployed. Securing such
systems from potential attacks requires a thorough investigation of vulnerabili-
ties in both the social and technical levels. Moreover, properties with multiple
conflicting objective are of interest in security analysis of many complex socio-
technical systems.

Graphical models such as attack trees and attack-defence trees prove useful
techniques to visualise social and technical attacks. We have proposed a new
formal syntax for attack tree and attack-defence trees. For making the models
more expressive and for explicit representation of the defender actions, we have
extended the model with new negation and changing player operators.

We have devised automated techniques for evaluating security properties
with multiple parameters. For addressing multi-parameter optimisation of tree
models and optimising all parameters at once, our have proposed techniques
computed the set of optimal solutions, in term of Pareto efficiency.

From attack-defence trees to security games. We have then explored the
connection between attack-defence trees and games from a verification-oriented
prospective, as opposed to the theoretical studies found in the literature. Deal-
ing with two players, the attacker and the defender, we have translated attack-
defence trees into stochastic two-player games. The proposed game-based anal-
ysis of attack-defence scenarios allows to automatically verify security properties
and to synthesise strategies for a player with respect to some goal.

Investigation of cost-related properties. Finally, we have investigated
some limitations of existing game-based verification frameworks. For evaluating
the exact cost of an attack though model checking techniques, we have extended
rPCTL with the new operators. The proposed new logic erPCTL allows to

9.2 Future Directions 151

express probability and exact cost-related properties of attack scenarios. We
have presented a translation from attack trees to MDPs and investigated security
properties of an attack scenario with single and multiple parameters. We have
developed model checking algorithm for the new operators.

9.2 Future Directions
During the work on this dissertation we have identified a number of possible
extensions of the developed techniques and a number of research directions that
can continue this line of research. We discussed some of them in the concluding
remarks that follows each chapter, focusing on technical topics. In the following,
we highlight some broader topics whose investigation in connection with what
we have presented seems promising.

Our attack and attack-defence tree evaluation techniques assume that basic
actions are independent from each other with respect to all parameters that
characterise them, including probability and cost. In other words, the model
assumes that the decision of a player to perform an action as well as its outcome
do not influence the outcome of other actions. While this assumption is common
to most of the work on attack and attack-defence trees, and may be valid for
some specific domains, it sounds quite unrealistic in general. In the second part
of this dissertation we partly tackled this issue by extending attack-defence trees
with sequential operator that puts an order of execution among basic actions.
Nonetheless, we have not considered the possibility that values describing the
basic actions could be expressed as functions of other parameters or entire sub-
trees, rather than being static and fixed once and for all. On a similar note,
dependency of basic actions might be studied for one player, or among players,
where for instance a defender’s action would have an impact on other defender’s
actions and another impact on the attacker’s actions. Hence, removing the
independence assumptions on basic actions and explore how our developments
can cope with that is a first open line of research we should like to mention.

A second line of research that stems directly from our developments con-
cerns moving from fully-observable to partially-observable games. In particular,
this extension seems to indicate that games offer a natural framework to study
an obvious feature of attack-defence scenario, namely the security-by-obscurity
approach of complex organisations, which is instead not encompassed in tree
models (and, to say the truth, out of the range of any explicit graphical repre-
sentation).

Finally, real world-security is seldom a two-opponent game, being rather a
story of multiple stakeholders with goals that are sometimes not fully conflicting
and not fully aligned for the entire duration of a play [Umm11]. In the setting
of multi-player games the quest for Pareto-efficient solutions seems even more
central to unravel the intricacies of competition and cooperation of players.

152 Conclusion

Appendix A
Soundness of the

Algorithmic Evaluation for
Attack Trees

This appendix contains the proof of equivalence of the evaluation techniques for
attack trees presented in Ch. 3.

A.1 Boolean Case

Here, we show the equivalence of the semantic evaluation given in Table 3.2 and
the algorithmic evaluation presented in Table 3.3, Sect. 3.1.2. Before presenting
the proof of Theorem 3.2, we formalise a lemma to be used later in the proof.

Lemma A.1 Let t ∈ Tree be a polarity-consistent tree. Then there exist
Boolean assignments m− and m+ such that

min{B[[t]]m | m Boolean assignment} = B[[t]]m−

max{B[[t]]m | m Boolean assignment} = B[[t]]m+

Proof. First let us show that there exists an assignmentm− that minimises
B[[t]]m. We do it by constructing such an assignment, i.e., defining the value of
m− for each basic action.

154 Soundness of the Algorithmic Evaluation for Attack Trees

Consider basic action a ∈ Act . The tree t is a polarity-consistent, hence a
occurs in t either positively or negatively. Since we want to minimise the overall
value and we have assumed that ff < tt , then

• if a occurs positively in t, we map it to the minimum value, m−(a) = ff

• if a occurs negatively in t, we map it to the maximum value, m−(a) = tt ,
so as to get the minimum value after applying negation.

Thus, we constructed an assignment m− that minimised B[[t]]m.

In the same way we can construct an assignment m+ that maximises B[[t]]m.
In this case we map an action a to tt when it occurs positively in t, and we map
it to ff when it occurs negatively in t. �

Theorem A.2 Let t ∈ Tree be a polarity-consistent attack tree. Then

M (t) = INT (t)

Proof.[Theorem 3.2] The proof is organised by structural induction on the
shape of the tree t.

Basis. The basis of the induction consists of the analysis of three cases.

1. Assume t = &false. Then, we have

M (t) = (min{B[[&false]]m | m Boolean assignment},
max{B[[&false]]m | m Boolean assignment})

= (ff ,ff)

and
INT (t) = (ff ,ff)

and we conclude M (t) = INT (t).

2. Assume t = &true. This case is analogous to the case t = &false.

3. Assume t = a. Then, we have

M (t) = (min{B[[a]]m | m Boolean assignment},
max{B[[a]]m | m Boolean assignment})

= (min{ff , tt},max{ff , tt})
= (ff , tt)

On the other hand, we have

INT (t) = (ff , tt)

and the thesis follows immediately.

A.1 Boolean Case 155

Step. The inductive step consists of the analysis of three cases, corresponding
to the Boolean operators.

1. Assume t = &∧(t1, t2). Then, by inductive hypothesis it holds that

M (ti) = (min{B[[ti]]m | m Boolean assignment},
max{B[[ti]]m | m Boolean assignment}) =

INT (ti) = (mini,maxi)

for i ∈ {1, 2}, and we shall prove that M (t) = INT (t).

From Lemma A.1, the rules in Table 3.2 and the inductive hypothesis, we
have

M (t) = (min{B[[&∧(t1, t2)]]m | m Boolean assignment},
max{B[[&∧(t1, t2)]]m | m Boolean assignment})

= (B[[&∧(t1, t2)]]m−,B[[&∧(t1, t2)]]m+)

= (B[[t1]]m− ∧ B[[t2]]m−,B[[t1]]m+ ∧ B[[t2]]m+)

= (min{B[[t1]]m | m Boolean assignment}∧
min{B[[t2]]m | m Boolean assignment},
max{B[[t1]]m | m Boolean assignment}∧
max{B[[t2]]m | m Boolean assignment})

= (min1 ∧min2,max1 ∧max2)

On the other hand, we have

INT (t) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (min1 ∧min2,max1 ∧max2)

Hence, M (t) = INT (t).

2. Assume t = &∨(t1, t2). This case is analogous to the previous case hence
omitted.

3. Assume t = &¬(t′). Then, by inductive hypothesis it holds that

M (t′) = (min{B[[t′]]m | m Boolean assignment},
max{B[[t′]]m | m Boolean assignment}) =

INT (t′) = (min′,max′)

We shall show that M (t) = INT (t).

From Lemma A.1, the rules in Table 3.2, the inductive hypothesis, and

156 Soundness of the Algorithmic Evaluation for Attack Trees

the fact that ¬m− = m+,¬m+ = m−, we have

M (t) = (min{B[[&¬(t′)]]m | m Boolean assignment},
max{B[[&¬(t′)]]m | m Boolean assignment})

= (B[[&¬(t′)]]m−,B[[&¬(t′)]]m+)

= (¬B[[t′]]m+,¬B[[t′]]m−)

= (¬max{B[[t′]]m | m Boolean assignment},
¬min{B[[t′]]m | m Boolean assignment})

= (¬max′,¬min′)

and
INT (t) = let (min′,max′) = INT (t′)

in (¬max′,¬min′)

and the thesis follows.

�

A.2 Probabilistic Case

In the following we show Theorem 3.3, presented in Sect. 3.1.3.

Lemma A.3 Let t ∈ Tree be a polarity-consistent tree. Then there exist
Boolean assignments m− and m+ such that

min{P[[t]]m | m Boolean assignment} = P[[t]]m−

max{P[[t]]m | m Boolean assignment} = P[[t]]m+

Proof. The proof is done by constructing the Boolean assignments m− and
m+. Let us first show the construction of m−.

Consider basic action a ∈ Act . The tree t is a polarity-consistent, thus a
occurs in t either positively or negatively. Moreover, we assumed that p1(a) ≤
p2(a), where p1(a) corresponds to m(a) = ff and p2(a) corresponds to tt .

• If p1(a) = p2(a), then we can map m−(a) to any Boolean value as it will
give the same probabilistic value for a.

• If a occurs positively in t, we map it to the minimum value, m−(a) = ff
in order to get the smallest probabilistic value.

• If a occurs negatively in t, we map it to the maximum values, m−(a) = tt ,
so to get the minimum value after applying negation.

A.2 Probabilistic Case 157

Thus, we constructed an assignment m− that minimised P[[t]]m.

In the same way we can construct an assignment m+ that maximises P[[t]]m.
In this case we map an action a to tt , when it occurs positively in t, and we
map it to ff , when it occurs negatively in t. �

Theorem A.4 Let t ∈ Tree be a polarity-consistent attack tree. Then

M (t) = INT (t)

Proof.[Theorem 3.3] The proof is organised by structural induction on the
shape of t.

Basis. The basis of the induction consists in the analysis of three cases.

1. Assume t = &false. Then, we have

M (t) = (min{P[[&false]]m | m Boolean assignment},
max{P[[&false]]m | m Boolean assignment})

= (0, 0)

and
INT (t) = (0, 0)

and we conclude M (t) = INT (t).

2. Assume t = &true. This case is analogous to the case t = &false.

3. Assume t = a. Then, we have

M (t) = (min{P[[a]]m | m Boolean assignment},
max{P[[a]]m | m Boolean assignment})

= (min{p1(a), p2(a)},max{p1(a), p2(a)})
= (p1(a), p2(a))

for we have assumed p1(a) ≤ p2(a).

On the other hand, we have

INT (t) = (p1(a), p2(a))

and the thesis follows immediately.

Step. The inductive step consists of the analysis of three cases, corresponding
to the probabilistic operators.

158 Soundness of the Algorithmic Evaluation for Attack Trees

1. Assume t = &∧(t1, t2). Then, by inductive hypothesis it holds that

M (ti) = (min{P[[ti]]m | m Boolean assignment},
max{P[[ti]]m | m Boolean assignment}) =

INT (ti) = (mini,maxi)

for i ∈ {1, 2}, and we shall prove that M (t) = INT (t).
From Lemma A.3, the rules in Table 3.4 and the inductive hypothesis, we
have

M (t) = (min{P[[&∧(t1, t2)]]m | m Boolean assignment},
max{P[[&∧(t1, t2)]]m | m Boolean assignment})

= (P[[&∧(t1, t2)]]m−,P[[&∧(t1, t2)]]m+)

= (P[[t1]]m− · P[[t2]]m−,P[[t1]]m+ · P[[t2]]m+)

= (min{P[[t1]]m | m Boolean assignment} ·
min{P[[t2]]m | m Boolean assignment},
max{P[[t1]]m | m Boolean assignment} ·
max{P[[t2]]m | m Boolean assignment})

= (min1 ·min2,max1 ·max2)

On the other hand, we have

INT (&∧(t1, t2)) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (min1 ·min2,max1 ·max2)

Hence, we conclude that M (t) = INT (t).

2. Assume t = &∨(t1, t2). This case is analogous to the previous case hence
omitted.

3. Assume t = &¬(t′). Then, by inductive hypothesis it holds that

M (t′) = (min{P[[t′]]m | m Boolean assignment},
max{P[[t′]]m | m Boolean assignment}) =

INT (t′) = (min′,max′)

and we shall prove M (t) = INT (t).
From Lemma A.3, the rules in Table 3.4, the inductive hypothesis, and
the fact that ¬m− = m+,¬m+ = m− we have

M (t) = (min{P[[&¬(t′)]]m | m Boolean assignment},
max{P[[&¬(t′)]]m | m Boolean assignment})

= (P[[&¬(t′)]]m−,P[[&¬(t′)]]m+)

= (1− P[[t′]]m+, 1− P[[t′]]m−)

= (1−max{P[[t′]]m | m Boolean assignment},
1−min{P[[t′]]m | m Boolean assignment})

= (1−max′, 1−min′)

A.3 Boolean Case with Cost 159

On the other hand we have

INT (t) = let (min′,max′) = INT (t′)
in (1−max′, 1−min′)

Thus, the thesis follows.

�

A.3 Boolean Case with Cost

We prove that the semantic evaluation given in Table 3.7 and the algorithmic
evaluation presented in Table 3.8 are equivalent for linear attack trees.

First let us formalise a lemma to be used later in the proof of Theorem 3.5.

Lemma A.5

1 . MR−−({(b1 ∧ b2, c1 + c2) | (b1, c1) ∈ U1, (b2, c2) ∈ U2}) =
MR−−({(b1 ∧ b2, c1 + c2) | (b1, c1) ∈ MR−−(U1), (b2, c2) ∈ MR−−(U2)})

2 . MR+−({(b1 ∧ b2, c1 + c2) | (b1, c1) ∈ U1, (b2, c2) ∈ U2}) =
MR+−({(b1 ∧ b2, c1 + c2) | (b1, c1) ∈ MR+−(U1), (b2, c2) ∈ MR+−(U2)})

3 . MR−−({(b1 ∨ b2, c1 + c2) | (b1, c1) ∈ U1, (b2, c2) ∈ U2}) =
MR−−({(b1 ∨ b2, c1 + c2) | (b1, c1) ∈ MR−−(U1), (b2, c2) ∈ MR−−(U2)})

4 . MR+−({(b1 ∨ b2, c1 + c2) | (b1, c1) ∈ U1, (b2, c2) ∈ U2}) =
MR+−({(b1 ∨ b2, c1 + c2) | (b1, c1) ∈ MR+−(U1), (b2, c2) ∈ MR+−(U2)})

5 . MR−−({(¬b, c) | (b, c) ∈ U}) = MR−−({(¬b, c) | (b, c) ∈ MR+−(U)})
6 . MR+−({(¬b, c) | (b, c) ∈ U}) = MR+−({(¬b, c) | (b, c) ∈ MR−−(U)})

Proof. The proof considers the six cases above distinctly.

1. Let us represent the sets U1 and U2 as the union of two partitions each:

U1 = MR−−(U1) ∪ U1\MR−−(U1)

U2 = MR−−(U2) ∪ U2\MR−−(U2)

Let us first recall the definition of the function MR−−. The function
computes the set of all pairs that have lower value for both arguments
with respect to the other pairs in the set:

MR−−(Ui) = {(x, y) ∈ Ui | ∀(x′, y′) ∈ Ui : (x v x′∨y < y′) ∧ (x < x′∨y v y′)}

160 Soundness of the Algorithmic Evaluation for Attack Trees

Thus, the set Ui\MR−−(Ui) contains all pairs that have higher values for
both arguments with respect to the pairs in the set MR−−(Ui):

Ui\MR−−(Ui) = {(x, y) ∈ Ui | ∃(x′, y′) ∈ MR−−(Ui) :
(x = x′ ∧ y w y′) ∨ (x w x′ ∧ y = y′)}

The proof is carried out by splitting the origin of the pairs (b1, c1) and
(b2, c2) in the left-hand side with respect to the four possible partitions of
U1 and U2.

(a) Assume (b1, c1) ∈ MR−−(U1) and (b2, c2) ∈ MR−−(U2). Then the
identity of the two sides of the equation follows trivially.

(b) Assume (b1, c1) ∈ U1\MR−−(U1) and (b2, c2) ∈ U2\MR−−(U2). Ap-
plying the definition of Ui\MR−−(Ui) we can write
∃(b′1, c′1) ∈ MR−−(U1) and ∃(b′2, c′2) ∈ MR−−(U2) such that
((b1 = b′1 ∧ c1 w c′1) ∨ (b1 w b′1 ∧ c1 = c′1)) ∧
((b2 = b′2 ∧ c2 w c′2) ∨ (b2 w b′2 ∧ c2 = c′2))

Based on distributivity of ∧ over ∨, we can write
(b1 = b′1 ∧ c1 w c′1) ∧ (b2 = b′2 ∧ c2 w c′2) ∨
(b1 = b′1 ∧ c1 w c′1) ∧ (b2 w b′2 ∧ c2 = c′2) ∨
(b1 w b′1 ∧ c1 = c′1) ∧ (b2 = b′2 ∧ c2 w c′2) ∨
(b1 w b′1 ∧ c1 = c′1) ∧ (b2 w b′2 ∧ c2 = c′2)

As conjunction over Booleans is monotonic and summation over non-
negative rational numbers is monotonic, we have
((b1 ∧ b2 = b′1 ∧ b′2) ∧ (c1 + c2 w c′1 + c′2)) ∨
((b1 ∧ b2 = b′1 ∧ b′2) ∧ (c1 + c2 = c′1 + c′2)) ∨
((b1 ∧ b2 = b′1 ∧ b′2) ∧ (c1 + c2 = c′1 + c′2)) ∨
((b1 ∧ b2 w b′1 ∧ b′2) ∧ (c1 + c2 = c′1 + c′2))

From here we can see that the tuple (b1∧b2, c1 +c2) has higher values
on both arguments with respect to the tuple (b′1 ∧ b′2, c′1 + c′2). Thus,
after applying the function MR−− the former will be discarded.
We proved that the point-wise combination of pairs from the sets
U1\MR−−(U1), U2\MR−−(U2) will be discarded in favour of the point-
wise combination of pairs from the sets MR−−(U1),MR−−(U2) when
applying the outer MR−−.

(c) Assume (b1, c1) ∈ U1\MR−−(U1) and (b2, c2) ∈ MR−−(U2). This
case is analogous to the previous case hence omitted.

(d) Assume (b1, c1) ∈ MR−−(U1) and (b2, c2) ∈ U2\MR−−(U2). This
case is analogous to the previous case hence omitted.

A.3 Boolean Case with Cost 161

Thus, we showed that when applying the outer MR−− only the combina-
tions of pairs from the sets MR−−(U1) and MR−−(U2) are kept. Thus, we
can consider these sets only instead of the sets U1 and U2 without loosing
any pairs in the final result.

2. The proof is analogous to the proof of the first point of the lemma, where
the sets U1 and U2 are represented as

U1 = MR+−(U1) ∪ U1\MR+−(U1)

U2 = MR+−(U2) ∪ U2\MR+−(U2)

and

Ui\MR+−(Ui) = {(x, y) ∈ Ui | ∃(x′, y′) ∈ MR+−(Ui) :
(x < x′ ∧ y w y′) ∨ (x v x′ ∧ y = y′)}

3. The proof is analogous to the proof of the first point of the lemma, using
the fact that disjunction over Booleans is monotonic.

4. The proof is analogous to the previous cases, using the fact that disjunction
over Booleans is monotonic.

5. The proof is analogous to the previous cases, where the set U is represented
as

U = MR+−(U) ∪ U\MR+−(U)

and

U\MR+−(U) = {(x, y) ∈ U | ∃(x′, y′) ∈ MR+−(U) :
(x < x′ ∧ y w y′) ∨ (x v x′ ∧ y = y′)}

Moreover, we use the fact that negation over Booleans is anti-monotonic.

6. The proof is analogous to the previous cases, where the set U is represented
as

U = MR−−(U) ∪ U\MR−−(U)

and

U\MR−−(U) = {(x, y) ∈ U | ∃(x′, y′) ∈ MR−−(U) :
(x = x′ ∧ y w y′) ∨ (x w x′ ∧ y = y′)}

and the fact that negation over Booleans is anti-monotonic.

�

162 Soundness of the Algorithmic Evaluation for Attack Trees

Theorem A.6 Let t ∈ Tree be a linear attack tree. Then

M (t , yield(t)) = INT (t)

Proof.[Theorem 3.5] The proof is organised by structural induction on the
shape of the tree t.

Basis. The basis of the induction consists in the analysis of three cases.

1. Assume t = &false. Then we have

M (t, yield(t)) = (MR−−({ (B[[&false]]m, b) | cost(m, yield(t)) ≤ b}),
MR+−({ (B[[&false]]m, b) | cost(m, yield(t)) ≤ b}))

= (MR−−({(ff , 0)}),MR+−({(ff , 0)}))
= ({(ff , 0)}, {(ff , 0)})

for B[[&false]]m is independent from any assignment m.

On the other hand, we have

INT (t) = ({(ff , 0)}, {(ff , 0)})

and we conclude that M (t , yield(t)) = INT (t).

2. Assume t = &true. This case is analogous to the previous case.

3. Assume t = a. Then we have

M (t, yield(t)) = (MR−−({ (B[[a]]m, b) | cost(m, yield(t)) ≤ b}),
MR+−({ (B[[a]]m, b) | cost(m, yield(t)) ≤ b}))

= (MR−−({(ff , 0), (tt , c(a))}),
MR+−({(ff , 0), (tt , c(a))}))

and
INT (t) = (MR−−({(ff, 0), (tt, c(a))}),

MR+−({(ff, 0), (tt, c(a))}))
and the thesis follows immediately.

Step. The inductive step consists of the case analysis of three cases, corre-
sponding to the Boolean operators.

1. Assume t = &∧(t1, t2). Then, by inductive hypothesis it holds that

M (ti, yield(ti)) = (MR−−({ (B[[ti]]m, b) | cost(m, yield(ti)) ≤ b}),
MR+−({ (B[[ti]]m, b) | cost(m, yield(ti)) ≤ b})) =

INT (ti) = (Vi,Wi)

A.3 Boolean Case with Cost 163

for i ∈ {1, 2}, and we shall prove that M (t) = INT (t).

Since t is a linear tree no action occurs both in t1 and t2. Thus, we can
write the budget b corresponding to cost(m, yield(t)) ≤ b as a summa-
tion of budgets b1 and b2 corresponding to cost(m, yield(t1)) ≤ b1 and
cost(m, yield(t2)) ≤ b2, respectively.

From the mentioned fact, Lemma A.5, and the inductive hypothesis, we
have

M (t, yield(t)) = (MR−−({ (B[[&∧(t1, t2)]]m, b) | cost(m, yield(t)) ≤ b}),
MR+−({ (B[[&∧(t1, t2)]]m, b) | cost(m, yield(t)) ≤ b}))

= (MR−−({(B[[t1]]m ∧ B[[t2]]m, b1 + b2) |
cost(m, yield(t1)) ≤ b1, cost(m, yield(t2)) ≤ b2}),

MR+−({(B[[t1]]m ∧ B[[t2]]m, b1 + b2) |
cost(m, yield(t1)) ≤ b1, cost(m, yield(t2)) ≤ b2}))

= let Ui = {(B[[ti]]m, bi) | cost(m, yield(ti)) ≤ bi}
in (MR−−({ (b ∧ b′, c+ c′) | (b, c) ∈ U1, (b

′, c′) ∈ U2}),
MR+−({ (b ∧ b′, c+ c′) | (b, c) ∈ U1, (b

′, c′) ∈ U2}))
= (MR−−({ (b ∧ b′, c+ c′) | (b, c) ∈ MR−−(U1),

(b′, c′) ∈ MR−−(U2)}),
MR+−({ (b ∧ b′, c+ c′) | (b, c) ∈ MR+−(U1),

(b′, c′) ∈ MR+−(U2)}))
= (MR−−({ (b ∧ b′, c+ c′) | (b, c) ∈ V1, (b

′, c′) ∈ V2}),
MR+−({ (b ∧ b′, c+ c′) | (b, c) ∈W1, (b

′, c′) ∈W2}))

On the other hand, we have

INT (t) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(b ∧ b′, c+ c′) | (b, c) ∈ V1, (b

′, c′) ∈ V2}),
MR+−({(b ∧ b′, c+ c′) | (b, c) ∈W1, (b

′, c′) ∈W2}))

and we conclude that M (t) = INT (t).

2. Assume t = &∨(t1, t2). This case is analogous to the previous case hence
omitted.

3. Assume t = &¬(t′). Then, by inductive hypothesis it holds that

M (t′, yield(t′)) = (MR−−({ (B[[t′]]m, b) | cost(m, yield(t′)) ≤ b}),
MR+−({ (B[[t′]]m, b) | cost(m, yield(t′)) ≤ b})) =

INT (t′) = (V ′,W ′)

164 Soundness of the Algorithmic Evaluation for Attack Trees

From Lemma A.5 and the inductive hypothesis, we have

M (t, yield(t)) = (MR−−({ (B[[&¬(t′)]]m, b) | cost(m, yield(t′)) ≤ b}),
MR+−({ (B[[&¬(t′)]]m, b) | cost(m, yield(t′)) ≤ b}))

= (MR−−({ (¬B[[t′]]m, b) | cost(m, yield(t′)) ≤ b}),
MR+−({ (¬B[[t′]]m, b) | cost(m, yield(t′)) ≤ b}))

= let U = {(B[[t′]]m, b) | cost(m, yield(t′)) ≤ b}
in (MR−−({ (¬b, c) | (b, c) ∈ U}),

MR+−({ (¬b, c) | (b, c) ∈ U}))
= (MR−−({ (¬b, c) | (b, c) ∈ MR+−(U)}),

MR+−({ (¬b, c) | (b, c) ∈ MR−−(U)}))
= (MR−−({ (¬b, c) | (b, c) ∈W}),

MR+−({ (¬b, c) | (b, c) ∈ V }))

and

INT (t) = let (V,W) = INT (t)
in (MR−−({(¬b, c) | (b, c) ∈W}),

MR+−({(¬b, c) | (b, c) ∈ V }))

and we conclude that M (t) = INT (t).

�

A.4 Probabilistic Case with Cost

We prove that the semantic evaluation given in Table 3.9 and the algorithmic
evaluation presented in Table 3.10 are equivalent for linear attack trees. First,
let us formalise a lemma to be used later in the proof.

A.4 Probabilistic Case with Cost 165

Lemma A.7

1 . MR−−({(p1 · p2, c1 + c2) | (p1, c1) ∈ U1, (p2, c2) ∈ U2}) =
MR−−({(p1 · p2, c1 + c2) | (p1, c1) ∈ MR−−(U1), (p2, c2) ∈ MR−−(U2)})

2 . MR+−({(p1 · p2, c1 + c2) | (p1, c1) ∈ U1, (p2, c2) ∈ U2}) =
MR+−({(p1 · p2, c1 + c2) | (p1, c1) ∈ MR+−(U1), (p2, c2) ∈ MR+−(U2)})

3 . MR−−({(1− (1− p1) · (1− p2), c1 + c2) | (p1, c1) ∈ U1, (p2, c2) ∈ U2}) =
MR−−({(1− (1− p1) · (1− p2), c1 + c2) |

(p1, c1) ∈ MR−−(U1), (p2, c2) ∈ MR−−(U2)})
4 . MR+−({(1− (1− p1) · (1− p2), c1 + c2) | (p1, c1) ∈ U1, (p2, c2) ∈ U2}) =

MR+−({(1− (1− p1) · (1− p2), c1 + c2) |
(p1, c1) ∈ MR+−(U1), (p2, c2) ∈ MR+−(U2)})

5 . MR−−({(1− p, c) | (p, c) ∈ S}) = MR−−({(1− p, c) | (p, c) ∈ MR+−(U)})
6 . MR+−({(1− p, c) | (p, c) ∈ S}) = MR+−({(1− p, c) | (p, c) ∈ MR−−(U)})

Proof. The proof closely follows the proof of Lemma A.5. We give the
detailed proof for the first equation only, while highlighting the considerations
for the proof for the other equations.

1. Let us represent the sets U1 and U2 as the union of two partitions each:

U1 = MR−−(U1) ∪ U1\MR−−(U1)

U2 = MR−−(U2) ∪ U2\MR−−(U2)

Let us first recall the definition of the function MR−−. The function
computes the set of all pairs that have lower value for both arguments
with respect to the other pairs in the set.

MR−−(Ui) = {(x, y) ∈ Ui | ∀(x′, y′) ∈ Ui : (x v x′∨y < y′) ∧ (x < x′∨y v y′)}

Thus, the set Ui\MR−−(Ui) contains all pairs that have higher values for
both arguments with respect to the pairs in the set MR−−(Ui).

Ui\MR−−(Ui) = {(x, y) ∈ Ui | ∃(x′, y′) ∈ MR−−(Ui) :
(x = x′ ∧ y w y′) ∨ (x w x′ ∧ y = y′)}

The proof is carried out by splitting the origin of the pairs (b1, c1) and
(b2, c2) in the left-hand side with respect to the four possible partitions of
U1 and U2.

(a) Assume (p1, c1) ∈ MR−−(U1) and (p2, c2) ∈ MR−−(U2). Then the
identity of the two sides of the equation follows trivially.

166 Soundness of the Algorithmic Evaluation for Attack Trees

(b) Assume (p1, c1) ∈ U1\MR−−(U1) and (p2, c2) ∈ U2\MR−−(U2). Ap-
plying the definition of Ui\MR−− we can write
∃(p′1, c′1) ∈ MR−−(U1) and ∃(p′2, c′2) ∈ MR−−(U2) such that
((p1 = p′1 ∧ c1 w c′1) ∨ (p1 w b′1 ∧ c1 = c′1)) ∧
((p2 = p′2 ∧ c2 w c′2) ∨ (p2 w b′2 ∧ c2 = c′2))

Based on distributivity of ∧ over ∨, we can write
(p1 = p′1 ∧ c1 w c′1) ∧ (p2 = p′2 ∧ c2 w c′2) ∨
(p1 = p′1 ∧ c1 w c′1) ∧ (p2 w p′2 ∧ c2 = c′2) ∨
(p1 w p′1 ∧ c1 = c′1) ∧ (p2 = p′2 ∧ c2 w c′2) ∨
(p1 w p′1 ∧ c1 = c′1) ∧ (p2 w p′2 ∧ c2 = c′2)

As multiplication over [0,1] is monotonic and summation over non-
negative rational numbers is monotonic, we have
((p1 · p2 = p′1 · p′2) ∧ (c1 + c2 w c′1 + c′2)) ∨
((p1 · p2 = p′1 · p′2) ∧ (c1 + c2 = c′1 + c′2)) ∨
((p1 · p2 = p′1 · p′2) ∧ (c1 + c2 = c′1 + c′2)) ∨
((p1 · p2 w p′1 · p′2) ∧ (c1 + c2 = c′1 + c′2))

From here we can see that the tuple (p1 ·p2, c1 +c2) has higher values
on both arguments with respect to the tuple (p′1 · p′2, c′1 + c′2). Thus,
after applying the function MR−− the former will be discarded.
We proved that the point-wise combination of pairs from the sets
U1\MR−−(U1), U2\MR−−(U2) will be discarded in favour of the point-
wise combination of pairs from the sets MR−−(U1),MR−−(U2) when
applying the outer MR−−.

(c) Assume (p1, c1) ∈ U1\MR−−(U1) and (p2, c2) ∈ MR−−(U2). This
case is analogous to the previous case hence omitted.

(d) Assume (p1, c1) ∈ MR−−(U1) and (p2, c2) ∈ U2\MR−−(U2). This
case is analogous to the previous case hence omitted.

Thus, we showed that when applying the outer MR−− only the combina-
tions of pairs from the sets MR−−(U1) and MR−−(U2) are kept. Thus, we
can consider these sets only instead of the sets U1 and U2 without loosing
any pairs in the final result.

2. The proof is analogous to the proof of the first point of the lemma, where
the sets U1 and U2 are represented as

U1 = MR+−(U1) ∪ U1\MR+−(U1)

U2 = MR+−(U2) ∪ U2\MR+−(U2)

and

Ui\MR+−(Ui) = {(x, y) ∈ Ui | ∃(x′, y′) ∈ MR+−(Ui) :
(x < x′ ∧ y w y′) ∨ (x v x′ ∧ y = y′)}

A.4 Probabilistic Case with Cost 167

3. The proof is analogous to the proof of the first point of the lemma, using
the fact that 1− (1− p) · (1− p) over [0,1] is monotonic.

4. The proof is analogous to the previous cases, using the fact that 1− (1−
p) · (1− p) over [0,1] is monotonic.

5. The proof is analogous to the previous cases, where the sets U is repre-
sented as

U = MR+−(U) ∪ U1\MR+−(U)

and

U\MR+−(U) = {(x, y) ∈ U | ∃(x′, y′) ∈ MR+−(U) :
(x < x′ ∧ y w y′) ∨ (x v x′ ∧ y = y′)}

Moreover, we use the fact that minus over [0,1] is anti-monotonic.

6. The proof is analogous to the previous cases, where the sets U is repre-
sented as

U = MR−−(U) ∪ U1\MR−−(U)

and

Ui\MR−−(Ui) = {(x, y) ∈ Ui | ∃(x′, y′) ∈ MR−−(Ui) :
(x = x′ ∧ y w y′) ∨ (x w x′ ∧ y = y′)}

and the fact that minus over [0,1] is anti-monotonic.

�

Theorem A.8 Let t ∈ Tree be a linear attack tree. Then

M (t , yield(t)) = INT (t)

Proof.[Theorem 3.6] The proof is organised by structural induction on the
shape of the tree t.

Basis. The basis of the induction consists in the analysis of three cases.

1. Assume t = &false. Then we have

M (t, yield(t)) = (MR−−({ (P[[&false]]m, b) | cost(m, yield(t)) ≤ b}),
MR+−({ (P[[&false]]m, b) | cost(m, yield(t)) ≤ b}))

= (MR−−({(0, 0)}),MR+−({(0, 0)}))
= ({(0, 0)}, {0, 0)})

168 Soundness of the Algorithmic Evaluation for Attack Trees

for P[[&false]]m is independent from any assignment m.

On the other hand, we have

INT (t) = ({(0, 0)}, {(0, 0)})

and we conclude that M (t , yield(t)) = INT (t).

2. Assume t = &true. This case is analogous to the previous case.

3. Assume t = a. Then we have

M (t, yield(t)) = (MR−−({ (P[[a]]m, b) | cost(m, yield(t)) ≤ b}),
MR+−({ (P[[a]]m, b) | cost(m, yield(t)) ≤ b}))

= (MR−−({(p1(a), 0), (p2(a), c(a))}),
MR+−({(p1(a), 0), (p2(a), c(a))}))

and

INT (t) = (MR−−({(p1(a), 0), (p2(a), c(a))}),
MR+−({(p1(a), 0), (p2(a), c(a))}))

and the thesis follows immediately.

Step. The inductive step consists of the case analysis of three cases, corre-
sponding to the Boolean operators.

1. Assume t = &∧(t1, t2). Then, by inductive hypothesis it holds that

M (ti, yield(ti)) = (MR−−({ (P[[ti]]m, b) | cost(m, yield(ti)) ≤ b}),
MR+−({ (P[[ti]]m, b) | cost(m, yield(ti)) ≤ b})) =

INT (ti) = (Vi,Wi)

for i ∈ {1, 2}, and we shall prove that M (t) = INT (t).

Since t is a linear tree no action occurs both in t1 and t2. Thus, we can
write the budget b corresponding to cost(m, yield(t)) ≤ b as a summa-
tion of budgets b1 and b2 corresponding to cost(m, yield(t1)) ≤ b1 and
cost(m, yield(t2)) ≤ b2, respectively.

From the mentioned fact, Lemma A.7, and the inductive hypothesis, we

A.4 Probabilistic Case with Cost 169

have

M (t, yield(t)) = (MR−−({ (P[[&∧(t1, t2)]]m, b) | cost(m, yield(t)) ≤ b}),
MR+−({ (P[[&∧(t1, t2)]]m, b) | cost(m, yield(t)) ≤ b}))

= (MR−−({(P[[t1]]m · P[[t2]]m, b1 + b2) |
cost(m, yield(t1)) ≤ b1, cost(m, yield(t2)) ≤ b2}),

MR+−({(P[[t1]]m · P[[t2]]m, b1 + b2) |
cost(m, yield(t1)) ≤ b1, cost(m, yield(t2)) ≤ b2}))

= let Ui = {(P[[ti]]m, bi) | cost(m, yield(ti)) ≤ bi}
in (MR−−({ (p · p′, c+ c′) | (p, c) ∈ U1, (p

′, c′) ∈ U2}),
MR+−({ (p · p′, c+ c′) | (p, c) ∈ U1, (p

′, c′) ∈ U2}))
= (MR−−({ (p · p′, c+ c′) | (p, c) ∈ MR−−(U1),

(p′, c′) ∈ MR−−(U2)}),
MR+−({ (p · p′, c+ c′) | (p, c) ∈ MR+−(U1),

(p′, c′) ∈ MR+−(U2)}))
= (MR−−({ (p · p′, c+ c′) | (p, c) ∈ V1, (p

′, c′) ∈ V2}),
MR+−({ (p · p′, c+ c′) | (p, c) ∈W1, (p

′, c′) ∈W2}))

On the other hand, we have

INT (t) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(p · p′, c+ c′) | (p, c) ∈ V1, (p

′, c′) ∈ V2}),
MR+−({(p · p′, c+ c′) | (p, c) ∈W1, (p

′, c′) ∈W2}))

and we conclude that M (t) = INT (t).

2. Assume t = &∨(t1, t2). This case is analogous to the previous case hence
omitted.

3. Assume t = &¬(t′). Then, by inductive hypothesis it holds that

M (t′, yield(t′)) = (MR−−({ (P[[t′]]m, b) | cost(m, yield(t′)) ≤ b}),
MR+−({ (P[[t′]]m, b) | cost(m, yield(t′)) ≤ b})) =

INT (t′) = (V ′,W ′)

170 Soundness of the Algorithmic Evaluation for Attack Trees

From Lemma A.7 and the inductive hypothesis, we have

M (t, yield(t)) = (MR−−({ (P[[&¬(t′)]]m, b) | cost(m, yield(t′)) ≤ b}),
MR+−({ (P[[&¬(t′)]]m, b) | cost(m, yield(t′)) ≤ b}))

= (MR−−({ (1− P[[t′]]m, b) | cost(m, yield(t′)) ≤ b}),
MR+−({ (1− P[[t′]]m, b) | cost(m, yield(t′)) ≤ b}))

= let U = {(P[[t′]]m, b) | cost(m, yield(t′)) ≤ b}
in (MR−−({ (1− p, c) | (p, c) ∈ U}),

MR+−({ (1− p, c) | (p, c) ∈ U}))
= (MR−−({ (1− p, c) | (p, c) ∈ MR+−(U)}),

MR+−({ (1− p, c) | (p, c) ∈ MR−−(U)}))
= (MR−−({ (1− p, c) | (p, c) ∈W}),

MR+−({ (1− p, c) | (p, c) ∈ V }))

and

INT (t) = let (V,W) = INT (t)
in (MR−−({(1− p, c) | (p, c) ∈W}),

MR+−({(1− p, c) | (p, c) ∈ V }))

and we conclude that M (t) = INT (t).

�

A.5 Probabilistic Case with Multiple Costs

In the following we prove Theorem 3.7 given in Sect 3.3. First let us formalise
a lemma to be used later in the proof.

A.5 Probabilistic Case with Multiple Costs 171

Lemma A.9

1 . MR−−···−({(p · p′, c1 + c′1, · · · , cn + c′n) |
(p, c1, · · · , cn) ∈ U1, (p

′, c′1, · · · , c′n) ∈ U2}) =
MR−−···−({(p · p′, c1 + c′1, · · · , cn + c′n) |

(p, c1, · · · , cn) ∈ MR−−···−(U1), (p′, c′1, · · · , c′n) ∈ MR−−···−(U2)})
2 . MR+−···−({(p · p′, c1 + c′1, · · · , cn + c′n) |

(p, c1, · · · , cn) ∈ U1, (p
′, c′1, · · · , c′n) ∈ U2}) =

MR+−···−({(p · p′, c1 + c′1, · · · , cn + c′n) |
(p, c1, · · · , cn) ∈ MR+−···−(U1), (p′, c′1, · · · , c′n) ∈ MR+−···−(U2)})

3 . MR−−···−({(1− (1− p)(1− p′), c1 + c′1, · · · , cn + c′n) |
(p, c1, · · · , cn) ∈ U1, (p

′, c′1, · · · , c′n) ∈ U2}) =
MR−−···−({(1− (1− p)(1− p′), c1 + c′1, · · · , cn + c′n) |

(p, c1, · · · , cn) ∈ MR−−···−(U1), (p′, c′1, · · · , c′n) ∈ MR−−···−(U2)})
4 . MR+−···−({(1− (1− p)(1− p′), c1 + c′1, · · · , cn + c′n) |

(p, c1, · · · , cn) ∈ U1, (p
′, c′1, · · · , c′n) ∈ U2}) =

MR+−···−({(1− (1− p)(1− p′), c1 + c′1, · · · , cn + c′n) |
(p, c1, · · · , cn) ∈ MR+−···−(U1), (p′, c′1, · · · , c′n) ∈ MR+−···−(U2)})

5 . MR−−···−({(1− p, c1, · · · , cn) | (p, c1, · · · , cn) ∈ U}) =
MR−−···−({(1− p, c1, · · · , cn) | (p, c1, · · · , cn) ∈ MR+−···−(U)})

6 . MR+−···−({(1− p, c1, · · · , cn) | (p, c1, · · · , cn) ∈ U}) =
MR+−···−({(1− p, c1, · · · , cn) | (p, c1, · · · , cn) ∈ MR−−···−(U)})

Proof. The proof is analogous to the proof of Lemma A.7, hence omitted.
�

Theorem A.10 Let t ∈ Tree be a linear attack tree. Then

M ∗(t , yield(t)) = INT ∗(t)

Proof.[Theorem 3.7] The proof is organised by structural induction on the
shape of the tree t using Lemma A.9. It is analogous to the proof of Theorem 3.6.
�

172 Soundness of the Algorithmic Evaluation for Attack Trees

Appendix B
Detailed Evaluation of

Attack Trees

This appendix contains the detailed evaluation of the attack trees discussed
in the examples of Ch. 3. Section B.1 shows the algorithmic evaluation of an
attack tree with probabilities, displayed in Figure B.1, while Sect. B.2 gives
the algorithmic evaluation of an attack tree with probability and a single-cost
associated with basic actions, displayed in Figure B.2.

174 Detailed Evaluation of Attack Trees

B.1 Probability Evaluation of Attack Trees

∨

(0
,
0
.3

4
)

M
ak
e
ca
rd
ho

ld
er

pa
y

∧

(0
,
0
.2

6
)

th
re
at
en

∧

(0
,
0
.1

1
)

bl
ac
km

ai
l

∨

(0
,
0
.8

6
)

ac
ce
ss

ho
us
eh

ol
d

th
re
at
en

ca
rd
ho

ld
er

(0
,0
.3
)

co
ll
ec
t

in
fo
r-

m
at
io
n

(0
.1
,0
.5
5)

bl
ac
km

ai
l

ca
rd
ho

ld
er

(0
,0
.2
)

in
fi
lt
ra
te

pr
em

is
es

(0
,0
.2
5)

∨
(0
,
0
.8

2
)

im
p
er
so
na

te

∨

(0
,
0
.7

4
)

T
V

te
ch
ni
ci
an

im
p
er
so
-

na
te

tr
us
te
d

p
er
so
n

(0
,0
.3
)

∧
(0
,
0
.5

3
)

pr
et
ex
t

im
p
er
so
-

na
te

T
V

te
ch
ni
ci
an

(0
,0
.4
5)

∨

(0
,
0
.8

8
)

di
sr
up

t
T
V

op
er
at
io
ns

im
p
er
so
-

na
te

te
ch
ni
ci
an

(0
,0
.6
)

ja
m

re
m
ot
e-

ca
rd

co
m
m
un

i-
ca
ti
on

s

(0
,0
.6
5)

ja
m

re
m
ot
e-

T
V

co
m
m
un

i-
ca
ti
on

s

(0
,0
.6
5)

Figure B.1: The probabilistic algorithmic evaluation on the tree of Figure 3.1.

B.2 Cost Evaluation of Attack Trees 175

B.2 Cost Evaluation of Attack Trees
∨

M
ak
e
ca
rd
ho

ld
er

pa
y

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
0
3
,
3
0
),

(.
0
5
,
6
0
),

(.
1
1
,
8
0
),

(.
1
5
,
9
0
),

(.
1
7
,
1
2
0
),

(.
2
4
,
1
7
0
),

(.
2
8
,
2
5
0
),

(.
3
,
3
3
0
),

(.
3
1
,
4
1
0
),

(.
3
3
,
5
1
0
),

(.
3
4
,
6
3
0
)}

∧
th
re
at
en

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
0
3
,
3
0
),

(.
1
5
,
9
0
),

(.
1
9
,
1
7
0
),

(.
2
1
,
2
5
0
),

(.
2
3
,
3
3
0
),

(.
2
5
,
4
3
0
),

(.
2
6
,
5
5
0
)}

∧
bl
ac
km

ai
l

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
0
2
,
3
0
),

(.
1
1
,
8
0
),

∨
ac
ce
ss

ho
us
eh

ol
d

M
R
−
−

:
{(
.1
,
0
)}

M
R

+
−

:
{(
.1
,
0
),

(.
5
,
6
0
),

(.
6
5
,
1
4
0
),

(.
6
9
,
2
2
0
),

(.
7
1
,
2
6
0
),

(.
7
8
,
3
0
0
),

(.
8
4
,
4
0
0
),

(.
8
6
,
5
2
0
)}

th
re
at
en

ca
rd
ho

ld
er

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
3
,
3
0
)}

co
ll
ec
t

in
fo
r-

m
at
io
n

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(
.1
,
0
),

(.
5
5
,
5
0
)}

bl
ac
km

ai
l

ca
rd
ho

ld
er

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
2
,
3
0
)}

in
fi
lt
ra
te

pr
em

is
es

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(
.1
,
0
),

(.
2
5
,
1
2
0
)}

∨
im

p
er
so
na

teM
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
4
5
,
6
0
),

(.
6
1
,
1
4
0
),

(.
6
6
,
2
2
0
),

(.
7
6
,
3
0
0
),

(.
8
2
,
4
0
0
)}

∨
T
V

te
ch
ni
ci
an

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
4
5
,
6
0
),

(.
6
6
,
2
2
0
),

(.
7
4
,
3
2
0
)}

im
p
er
so
-

na
te

tr
us
te
d

p
er
so
n

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
3
,
8
0
)}

∧
pr
et
ex
t

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
3
9
,
1
6
0
),

(.
5
3
,
2
6
0
)}

im
p
er
so
-

na
te

T
V

te
ch
ni
ci
an

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
4
5
,
6
0
)}

∨
di
sr
up

t
T
V

op
er
at
io
ns

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
6
5
,
1
0
0
),

(.
8
8
,
2
0
0
)}

im
p
er
so
-

na
te

te
ch
ni
ci
an

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
6
,
6
0
)}

ja
m

re
m
ot
e-

ca
rd

co
m
m
un

i-
ca
ti
on

s

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
6
5
,
1
0
0
)}

ja
m

re
m
ot
e-

T
V

co
m
m
un

i-
ca
ti
on

s
M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
6
5
,
1
0
0
)}

Figure B.2: The probabilistic algorithmic evaluation on the tree of Figure 3.1.

176 Detailed Evaluation of Attack Trees

Appendix C

Soundness of the
Algorithmic Evaluation for

Attack-Defence Trees

This appendix contains the proof of equivalence of the evaluation techniques for
attack-defence trees presented in Ch. 4.

C.1 Boolean Case

Here, we show the equivalence of the semantic evaluation given in Table 4.2 and
the algorithmic evaluation presented in Table 4.3, for attack-defence trees.

Theorem C.1 Let t ∈ Tree be a polarity-consistent attack-defence stree.
Then

M (t) = INT (t)

Proof.[Theorem 4.2] The proof is organised by structural induction on the
shape of the tree t. In order to simplify the presentation, we will write B.a. as
a short-hand for Boolean assignment.

Basis. The basis of the induction consists of the analysis of three cases.

178 Soundness of the Algorithmic Evaluation for Attack-Defence Trees

1. Assume t = &false. Then, we have

M (t) = (min{max{B[[&false]](mp,mo) | mo B.a.} | mp B.a.},
max{min{B[[&false]](mp,mo) | mo B.a.} | mp B.a.})

= (ff ,ff)

and
INT (t) = (ff ,ff)

and we conclude M (t) = INT (t).

2. Assume t = &true. This case is analogous to the case t = &false.

3. Assume t = a. There are two possible cases.

• If a ∈ Actp, then we have

M (t) = (min{max{B[[a]](mp,mo) | mo B.a.} | mp B.a.},
max{min{B[[a]](mp,mo) | mo B.a.} | mp B.a.})

= (min{max{mp(a) | mo B.a.} | mp B.a.},
max{min{mp(a) | mo B.a.} | mp B.a.})

= (min{mp(a) | mp B.a.},
max{mp(a) | mp B.a.})

= (ff , tt)

and
INT (t) = (ff , tt)

• If a ∈ Acto, then we have

M (t) = (min{max{B[[a]](mp,mo) | mo B.a.} | mp B.a.},
max{min{B[[a]](mp,mo) | mo B.a.} | mp B.a.})

= (min{max{mo(a) | mo B.a.} | mp B.a.},
max{min{mo(a) | mo B.a.} | mp B.a.})

= (min{tt | mp B.a.},
max{ff | mp B.a.})

= (tt ,ff)

and
INT (t) = (tt ,ff)

Thus, we conclude that M (t) = INT (t).

Step. The inductive step consists of the analysis of three cases, corresponding
to the Boolean operators.

C.1 Boolean Case 179

1. Assume t = &∧(t1, t2). Then, by inductive hypothesis it holds that

M (ti) = (min{max{B[[ti]](mp,mo) | mo B.a.} | mp B.a.},
max{min{B[[ti]](mp,mo) | mo B.a.} | mp B.a.}) =

INT (ti) = (mini,maxi)

for i ∈ {1, 2}, and we shall prove that M (t) = INT (t).

From Lemma A.1, the rules in Table 4.2, the inductive hypothesis and the
fact that Actp ∩Acto = ∅, we have

M (t) = (min{max{B[[&∧(t1, t2)]](mp,mo) | mo B.a.} | mp B.a.},
max{min{B[[&∧(t1, t2)]](mp,mo) | mo B.a.} | mp B.a.})

= (min{B[[&∧(t1, t2)]](mp,m
+
o) | mp B.a.},

max{B[[&∧(t1, t2)]](mp,m
−
o) | mp B.a.})

= (B[[&∧(t1, t2)]](m−p ,m
+
o),

B[[&∧(t1, t2)]](m+
p ,m

−
o))

= (B[[t1]](m−p ,m
+
o) ∧ B[[t2]](m−p ,m

+
o),

B[[t1]](m+
p ,m

−
o) ∧ B[[t2]](m+

p ,m
−
o))

= (min{B[[t1]](mp,m
+
o) | mp B.a.} ∧min{B[[t2]](mp,m

+
o) | mp B.a.},

max{B[[t1]](mp,m
−
o) | mp B.a.} ∧max{B[[t2]](mp,m

−
o) | mp B.a.})

= (min{max{B[[t1]](mp,mo) | mo B.a.} | mp B.a.}∧
min{max{B[[t2]](mp,mo) | mo B.a.} | mp B.a.},
max{min{B[[t1]](mp,mo) | mo B.a.} | mp B.a.}∧
max{min{B[[t2]](mp,mo) | mo B.a.} | mp B.a.})

= (min1 ∧min2,max1 ∧max2)

On the other hand, we have

INT (t) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (min1 ∧min2,max1 ∧max2)

Hence, M (t) = INT (t).

2. Assume t = &∨(t1, t2). This case is analogous to the previous case hence
omitted.

3. Assume t = &¬(t′). Then, by inductive hypothesis it holds that

M (t′) = (min{max{B[[t′]](mp,mo) | mo B.a.} | mp B.a.},
max{min{B[[t′]](mp,mo) | mo B.a.} | mp B.a.}) =

INT (t′) = (min′,max′)

180 Soundness of the Algorithmic Evaluation for Attack-Defence Trees

We shall show that M (t) = INT (t).
From Lemma A.1, the rules in Table 4.2, the inductive hypothesis, and
the fact that ¬m− = m+,¬m+ = m−, we have

M (t) = (min{max{B[[&¬(t′)]](mp,mo) | mo B.a.} | mp B.a.},
max{min{B[[&¬(t′)]](mp,mo) | mo B.a.} | mp B.a.})

= (min{B[[&¬(t′)]](mp,m
+
o) | mp B.a.},

max{B[[&¬(t′)]](mp,m
−
o) | mp B.a.})

= (B[[&¬(t′)]](m−p ,m
+
o),

B[[&¬(t′)]](m+
p ,m

−
o))

= (¬B[[t′]](m+
p ,m

−
o),

¬B[[t′]](m−p ,m
+
o))

= (¬max{B[[t′]](mp,m
−
o) | mp B.a.},

¬min{B[[t′]](mp,m
+
o) | mp B.a.})

= (¬max{min{B[[t′]](mp,mo) | mo B.a.} | mp B.a.},
¬min{max{B[[t′]](mp,mo) | mo B.a.} | mp B.a.})

= (¬max′,¬min′)

and
INT (t) = let (min′,max′) = INT (t′)

in (¬max′,¬min′)
and the thesis follows.

4. Assume t = &∼(t′). This case is analogous to the case t = &¬(t′) hence
omitted.

�

C.2 Probabilistic Case
In the following we show Theorem 4.3, presented in Sect. 4.1.3.

Theorem C.2 Let t ∈ Tree be a polarity-consistent attack-defence tree. Then

M (t) = INT (t)

Proof.[Theorem 4.3] The proof is organised by structural induction on the
shape of the tree t. For simplifying the presentation, we will use B.a. as short-
hand for Boolean assignment.

Basis. The basis of the induction consists in the analysis of three cases.

C.2 Probabilistic Case 181

1. Assume t = &false. Then, we have

M (t) = (min{max{P[[&false]](mp,mo) | mo B.a.} | mp B.a.},
max{min{P[[&false]](mp,mo) | mo B.a.} | mp B.a.})

= (0, 0)

and
INT (t) = (0, 0)

and we conclude M (t) = INT (t).

2. Assume t = &true. This case is analogous to the case t = &false.

3. Assume t = a. There are two possible cases for a.

• If a ∈ Actp, then we have

M (t) = (min{max{P[[a]](mp,mo) | mo B.a.} | mp B.a.},
max{min{P[[a]](mp,mo) | mo B.a.} | mp B.a.})

= (min{max{P[[a]]mp | mo B.a.} | mp B.a.},
max{min{P[[a]]mp | mo B.a.} | mp B.a.})

= (min{P[[a]]mp | mp B.a.},
max{P[[a]]mp | mp B.a.})

= (p1(a), p2(a))

for we have assumed p1(a) ≤ p2(a).
On the other hand, we have

INT (t) = (p1(a), p2(a))

• If a ∈ Acto, then we have

M (t) = (min{max{P[[a]](mp,mo) | mo B.a.} | mp B.a.},
max{min{P[[a]](mp,mo) | mo B.a.} | mp B.a.})

= (min{max{P[[a]]mo | mo B.a.} | mp B.a.},
max{min{P[[a]]mo | mo B.a.} | mp B.a.})

= (min{max{p1(a), p2(a)} | mp B.a.},
max{min{p1(a), p2(a)} | mp B.a.})

= (min{p2(a) | mp B.a.},
max{p1(a) | mp B.a.})

= (p2(a), p1(a))

for we have assumed p1(a) ≤ p2(a).
On the other hand, we have

INT (t) = (p2(a), p1(a))

182 Soundness of the Algorithmic Evaluation for Attack-Defence Trees

Thus, the thesis follows immediately.

Step. The inductive step consists of the analysis of three cases, corresponding
to the probabilistic operators.

1. Assume t = &∧(t1, t2). By inductive hypothesis it holds that

M (ti) = (min{max{P[[ti]](mp,mo) | mo B.a.} | mp B.a.},
max{min{P[[ti]](mp,mo) | mo B.a.} | mp B.a.}) =

INT (ti) = (mini,maxi)

for i ∈ {1, 2}, and we shall prove that M (t) = INT (t).

From Lemma A.3, the rules in Table 4.4 and the inductive hypothesis, we
have

M (t) = (min{max{P[[&∧(t1, t2)]](mp,mo) | mo B.a.} | mp B.a.},
max{min{P[[&∧(t1, t2)]](mp,mo) | mo B.a.} | mp B.a.})

= (min{P[[&∧(t1, t2)]](mp,m
+
o) | mp B.a.},

max{P[[&∧(t1, t2)]](mp,m
−
o) | mp B.a.})

= (P[[&∧(t1, t2)]](m−p ,m
+
o),

P[[&∧(t1, t2)]](m+
p ,m

−
o))

= (P[[t1]](m−p ,m
+
o) · P[[t2]](m−p ,m

+
o),

P[[t1]](m+
p ,m

−
o) · P[[t2]](m+

p ,m
−
o))

= (min{P[[t1]](mp,m
+
o) | mp B.a.} ·min{P[[t2]](mp,m

+
o) | mp B.a.},

max{P[[t1]](mp,m
−
o) | mp B.a.} ·max{P[[t2]](mp,m

−
o) | mp B.a.})

= (min{max{P[[t1]](mp,mo) | mo B.a.} | mp B.a.}·
min{max{P[[t2]](mp,mo) | mo B.a.} | mp B.a.},
max{min{P[[t1]](mp,mo) | mo B.a.} | mp B.a.}·
max{min{P[[t2]](mp,mo) | mo B.a.} | mp B.a.})

= (min1 ·min2,max1 ·max2)

On the other hand, we have

INT (t) = let (mini,maxi) = INT (ti), i ∈ {1, 2}
in (min1 ·min2,max1 ·max2)

Hence, M (t) = INT (t).

2. Assume t = &∨(t1, t2). This case is analogous to the previous case hence
omitted.

C.3 Boolean Case with Cost 183

3. Assume t = &¬(t′). By inductive hypothesis it holds that

M (t′) = (min{max{P[[t′]](mp,mo) | mo B.a.} | mp B.a.},
max{min{P[[t′]](mp,mo) | mo B.a.} | mp B.a.}) =

INT (t′) = (min′,max′)

and we shall prove M (t) = INT (t).
From Lemma A.3, the rules in Table 4.4, the inductive hypothesis, and
the fact that ¬m− = m+,¬m+ = m− we have

M (t) = (min{max{P[[&¬(t′)]](mp,mo) | mo B.a.} | mp B.a.},
max{min{P[[&¬(t′)]](mp,mo) | mo B.a.} | mp B.a.})

= (min{P[[&¬(t′)]](mp,m
+
o) | mp B.a.},

max{P[[&¬(t′)]](mp,m
−
o) | mp B.a.})

= (P[[&¬(t′)]](m−p ,m
+
o),

P[[&¬(t′)]](m+
p ,m

−
o))

= (1− P[[t′]](m+
p ,m

−
o),

1− P[[t′]](m−p ,m
+
o))

= (1−max{P[[t′]](mp,m
−
o) | mp B.a.},

1−min{P[[t′]](mp,m
+
o) | mp B.a.})

= (1−max{min{P[[t′]](mp,mo) | mo B.a.} | mp B.a.},
1−min{max{P[[t′]](mp,mo) | mo B.a.} | mp B.a.})

= (1−max′, 1−min′)

On the other handle, we have

INT (t) = let (min′,max′) = INT (t′)

in (1−max′, 1−min′)

and the thesis follows.

4. Assume t = &∼(t′). This case is analogous to the case t = &¬(t′) hence
omitted. As we have discussed in Sect. 4.1.2 the operators &¬ and &∼
unfold identically, even if the reasoning supporting them is different.

�

C.3 Boolean Case with Cost
We prove that the semantic evaluation given in Table 4.7 and the algorithmic
evaluation presented in Table 4.8 are equivalent for linear attack-defence trees.

184 Soundness of the Algorithmic Evaluation for Attack-Defence Trees

Theorem C.3 Let t ∈ Tree be a linear attack-defence tree. Then

M (t , yield(t)) = INT (t)

Proof.[Theorem 3.5] The proof is organised by structural induction on the
shape of the tree t. In order to simplify the presentation, we will write B.a. as
short-hand for Boolean assignment.

Basis. The basis of the induction consists in the analysis of three cases.

1. Assume t = &false. Let us first evaluate the functions fmp1 (t) and fmp2 (t).

fmp1 (t) = max{B[[&false]](mp,mo) | mo B.a.} = ff

fmp2 (t) = min{B[[&false]](mp,mo) | mo B.a.} = ff

We have
M (t, yield(t)) = (MR−−({ (fmp1 (&false), bp) | cost(mp, yield(t)) ≤ bp}),

MR+−({ (fmp2 (&false), bp) | cost(mp, yield(t)) ≤ bp}))
= (MR−−({ (ff , bp) | cost(mp, yield(t)) ≤ bp}),

MR+−({ (ff , bp) | cost(mp, yield(t)) ≤ bp}))
= ({(ff , 0)}, {(ff , 0)})

On the other hand, we have

INT (&false) = ({(ff , 0)}, {(ff , 0)})

and we conclude that M (t , yield(t)) = INT (t)

2. Assume t = &true. This case is analogous to the previous case.

3. Assume t = a. There are two possible cases.

• If a ∈ Actp, then the evaluation of functions fmp1 (t) and fmp2 (t) is

fmp1 (t) = max{B[[a]](mp,mo) | mo B.a.} = max{mp(a) | mo B.a.}
= mp(a)

fmp2 (t) = min{B[[a]](mp,mo) | mo B.a.} = min{mp(a) | mo B.a.}
= mp(a)

and we have
M (t, yield(t)) = (MR−−({ (fmp1 (a), bp) | cost(mp, yield(t)) ≤ bp}),

MR+−({ (fmp2 (a), bp) | cost(mp, yield(t)) ≤ bp}))
= (MR−−({ (mp(a), bp) | cost(mp, yield(t)) ≤ bp}),

MR+−({ (mp(a), bp) | cost(mp, yield(t)) ≤ bp}))
= (MR−−({(ff , 0), (tt , c(a))}),

MR+−({(ff , 0), (tt , c(a))}))

C.3 Boolean Case with Cost 185

and
INT (t) = (MR−−({(ff, 0), (tt, c(a))}),

MR+−({(ff, 0), (tt, c(a))}))

• If a ∈ Acto, then the evaluation of functions fmp1 (t) and fmp2 (t) is

fmp1 (t) = max{B[[a]](mp,mo) | mo B.a.} = max{mo(a) | mo B.a.}
= max{ff , tt} = tt

fmp2 (t) = min{B[[a]](mp,mo) | mo B.a.} = min{mo(a) | mo B.a.}
= min{ff , tt} = ff

and we have

M (t, yield(t)) = (MR−−({ (fmp1 (a), bp) | cost(mp, yield(t)) ≤ bp}),
MR+−({ (fmp2 (a), bp) | cost(mp, yield(t)) ≤ bp}))

= (MR−−({ (tt , bp) | cost(mp, yield(t)) ≤ bp}),
MR+−({ (ff , bp) | cost(mp, yield(t)) ≤ bp}))

= (MR−−({(tt , 0)}),
MR+−({(ff , 0)}))

On the other hand, we have

INT (t) = (MR−−({(tt, 0)}),MR+−({(ff, 0)}))

Thus, the thesis follows immediately.

Step. The inductive step consists of the analysis of three cases, corresponding
to the Boolean operators.

1. Assume t = &∧(t1, t2). Then, by inductive hypothesis it holds that

M (ti, yield(ti)) = (MR−−({ (fmp1 (ti), bp) | cost(mp, yield(ti)) ≤ bp}),
MR+−({ (fmp2 (ti), bp) | cost(mp, yield(ti)) ≤ bp})) =

INT (ti) = (Vi,Wi)

for i ∈ {1, 2}, and we shall prove that M (t) = INT (t).

Let us first evaluate functions fmp1 (t) and fmp2 (t). From Lemma A.1, we
have

fmp1 (t) = max{B[[&∧(t1, t2)]](mp,mo) | mo B.a.}
= B[[&∧(t1, t2)]](mp,m

+
o)

= B[[t1]](mp,m
+
o) ∧ B[[t2]](mp,m

+
o)

= max{B[[t1]](mp,mo) | mo B.a.} ∧max{B[[t2]](mp,mo) | mo B.a.}
= fmp1 (t1) ∧ fmp1 (t2)

186 Soundness of the Algorithmic Evaluation for Attack-Defence Trees

Analogously, we have

fmp2 (t) = fmp2 (t1) ∧ fmp2 (t2)

Let us now evaluate M (t) and INT (t).

Since t is a linear tree no action occurs both in t1 and t2. Thus, we
can write the budget bp corresponding to cost(m,p yield(t)) ≤ bp as a
summation of budgets b1

p and b2
p corresponding to cost(mp, yield(t1)) ≤ b1

p

and cost(mp, yield(t2)) ≤ b2
p, respectively.

From the mentioned fact, Lemma A.5 and the inductive hypothesis, we
have

M (t, yield(t)) = (MR−−({ (fmp1 (&∧(t1, t2)), bp) | cost(mp, yield(t)) ≤ bp}),
MR+−({ (fmp2 (&∧(t1, t2)), bp) | cost(mp, yield(t)) ≤ bp}))

= (MR−−({ (fmp1 (t1) ∧ fmp1 (t2), b1
p + b2

p) |
cost(mp, yield(t1)) ≤ b1

p, cost(mp, yield(t2)) ≤ b2
p}),

MR+−({ (fmp2 (t1) ∧ fmp2 (t2), b1
p + b2

p) |
cost(mp, yield(t1)) ≤ b1

p, cost(mp, yield(t2)) ≤ b2
p}),

= let (Xi, Yi) = ({ (fmp1 (ti), b
i
p) | cost(mp, yield(ti)) ≤ bip}),

{ (fmp2 (ti), b
i
p) | cost(mp, yield(ti)) ≤ bip})

in (MR−−({ (b ∧ b′, c+ c′) | (b, c) ∈ X1, (b
′, c′) ∈ X2}),

MR+−({ (b ∧ b′, c+ c′) | (b, c) ∈ Y1, (b
′, c′) ∈ Y2}))

= (MR−−({ (b ∧ b′, c+ c′) | (b, c) ∈ MR−−(X1),
(b′, c′) ∈ MR−−(X2)}),

MR+−({ (b ∧ b′, c+ c′) | (b, c) ∈ MR+−(Y1),
(b′, c′) ∈ MR+−(Y2)}))

= (MR−−({ (b ∧ b′, c+ c′) | (b, c) ∈ V1, (b
′, c′) ∈ V2}),

MR+−({ (b ∧ b′, c+ c′) | (b, c) ∈W1, (b
′, c′) ∈W2}))

On the other hand, we have

INT (t) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(b ∧ b′, c+ c′) | (b, c) ∈ V1, (b

′, c′) ∈ V2}),
MR+−({(b ∧ b′, c+ c′) | (b, c) ∈W1, (b

′, c′) ∈W2}))

and we conclude that M (t) = INT (t).

2. Assume t = &∨(t1, t2). This case is analogous to the previous case hence
omitted.

C.3 Boolean Case with Cost 187

3. Assume t = &¬(t′). Then, by inductive hypothesis it holds that

M (t′, yield(t′)) = (MR−−({ (fmp1 (t′), bp) | cost(mp, yield(t′)) ≤ bp}),
MR+−({ (fmp2 (t′), bp) | cost(mp, yield(t′)) ≤ bp})) =

INT (t′) = (V,W)

Let us first evaluate functions fmp1 (t) and fmp2 (t). From Lemma A.1 and
the fact that ¬m+ = m−, we have

fmp1 (t) = max{B[[&¬(t′)]](mp,mo) | mo B.a.}
= B[[&¬(t′)]](mp,m

+
o)

= ¬B[[t′]](mp,m
−
o)

= ¬min{B[[t′]](mp,mo) | mo B.a.}
= ¬fmp2 (t′)

Analogously, we have
fmp2 (t) = ¬fmp1 (t′)

Let us now evaluate M (t) and INT (t).
From Lemma A.5 and the inductive hypothesis, we have

M (t, yield(t)) = (MR−−({ (fmp1 (&¬(t′)), bp) | cost(mp, yield(t′)) ≤ bp}),
MR+−({ (fmp2 (&¬(t′)), bp) | cost(mp, yield(t′)) ≤ bp}))

= (MR−−({ (¬fmp2 (t′), bp) | cost(mp, yield(t′)) ≤ bp}),
MR+−({ (¬fmp1 (t′), bp) | cost(mp, yield(t′)) ≤ bp}),

= let (X,Y) = ({ (fmp1 (t′), bp) | cost(mp, yield(t′)) ≤ bp}),
{ (fmp2 (t′), bp) | cost(mp, yield(t′)) ≤ bp})

in (MR−−({ (¬b, c) | (b, c) ∈ Y }),
MR+−({ (¬b, c) | (b, c) ∈ X}))

= (MR−−({ (¬b, c) | (b, c) ∈ MR+−(Y)}),
MR+−({ (¬b, c+ c′) | (b, c) ∈ MR−−(X)}))

= (MR−−({ (¬b, c) | (b, c) ∈W}),
MR+−({ (¬b, c) | (b, c) ∈ V }))

On the other hand, we have

INT (&¬(t)) = let (V,W) = INT (t)
in (MR−−({(¬b, c) | (b, c) ∈W}),

MR+−({(¬b, c) | (b, c) ∈ V }))

and we conclude that M (t) = INT (t).

188 Soundness of the Algorithmic Evaluation for Attack-Defence Trees

4. Assume t = &∼(t′). This case is analogous to the case t = &¬(t′) hence
omitted.

�

C.4 Probabilistic Case with Cost

We prove that the semantic evaluation given in Table 4.9 and the algorithmic
evaluation presented in Table 4.10 are equivalent for linear attack-defence trees.

Theorem C.4 Let t ∈ Tree be a linear attack-defence tree. Then

M (t , yield(t)) = INT (t)

Proof.[Theorem 4.5] The proof is organised by structural induction on the
shape of the tree t. In order to simplify the presentation, we will write B.a. as
short-hand for Boolean assignment.

Basis. The basis of the induction consists in the analysis of three cases.

1. Assume t = &false. Let us first evaluate the functions fmp1 (t) and fmp2 (t).

fmp1 (t) = max{P[[&false]](mp,mo) | mo B.a.} = 0

fmp2 (t) = min{P[[&false]](mp,mo) | mo B.a.} = 0

We have

M (t, yield(t)) = (MR−−({ (fmp1 (&false), bp) | cost(mp, yield(t)) ≤ bp}),
MR+−({ (fmp2 (&false), bp) | cost(mp, yield(t)) ≤ bp}))

= (MR−−({ (0, bp) | cost(mp, yield(t)) ≤ bp}),
MR+−({ (0, bp) | cost(mp, yield(t)) ≤ bp}))

= ({(0, 0)}, {(0, 0)})

On the other hand, we have

INT (&false) = ({(0, 0)}, {(0, 0)})

and we conclude that M (t , yield(t)) = INT (t).

2. Assume t = &true. This case is analogous to the previous case.

3. Assume t = a. There are two possible cases.

C.4 Probabilistic Case with Cost 189

• If a ∈ Actp, then the evaluation of functions fmp1 (t) and fmp2 (t) is

fmp1 (t) = max{P[[a]](mp,mo) | mo B.a.}
= max{P[[a]]mp | mo B.a.} = P[[a]]mp

fmp2 (t) = min{P[[a]](mp,mo) | mo B.a.}
= min{P[[a]]mp | mo B.a.} = P[[a]]mp

and we have

M (t, yield(t)) = (MR−−({ (fmp1 (a), bp) | cost(mp, yield(t)) ≤ bp}),
MR+−({ (fmp2 (a), bp) | cost(mp, yield(t)) ≤ bp}))

= (MR−−({ (P[[a]]mp, bp) | cost(mp, yield(t)) ≤ bp}),
MR+−({ (P[[a]]mp, bp) | cost(mp, yield(t)) ≤ bp}))

= (MR−−({(p1(a), 0), (p2(a), c(a))}),
MR+−({(p1(a), 0), (p2(a), c(a))}))

and
INT (t) = (MR−−({(p1(a), 0), (p2(a), c(a))}),

MR+−({(p1(a), 0), (p2(a), c(a))}))

• If a ∈ Acto, then the evaluation of functions fmp1 (t) and fmp2 (t) is

fmp1 (t) = max{P[[a]](mp,mo) | mo B.a.}
= max{P[[a]]mo | mo B.a.} = max{p1(a), p2(a)} = p2(a)

fmp2 (t) = min{P[[a]](mp,mo) | mo B.a.}
= min{P[[a]]mo | mo B.a.} = min{p1(a), p2(a)} = p1(a)

and we have

M (t, yield(t)) = (MR−−({ (fmp1 (a), bp) | cost(mp, yield(t)) ≤ bp}),
MR+−({ (fmp2 (a), bp) | cost(mp, yield(t)) ≤ bp}))

= (MR−−({ (p2(a), bp) | cost(mp, yield(t)) ≤ bp}),
MR+−({ (p1(a), bp) | cost(mp, yield(t)) ≤ bp}))

= (MR−−({(p2(a), 0)}),
MR+−({(p1(a), 0)}))

On the other hand, we have

INT (t) = (MR−−({(p2(a), 0)}),MR+−({(p1(a), 0)}))

Thus, the thesis follows immediately.

190 Soundness of the Algorithmic Evaluation for Attack-Defence Trees

Step. The inductive step consists of the analysis of three cases, corresponding
to the probabilistic operators.

1. Assume t = &∧(t1, t2). Then, by inductive hypothesis it holds that

M (ti, yield(ti)) = (MR−−({ (fmp1 (ti), bp) | cost(mp, yield(ti)) ≤ bp}),
MR+−({ (fmp2 (ti), bp) | cost(mp, yield(ti)) ≤ bp})) =

INT (ti) = (Vi,Wi)

for i ∈ {1, 2}, and we shall prove that M (t) = INT (t).

Let us first evaluate functions fmp1 (t) and fmp2 (t). From Lemma A.3, we
have

fmp1 (t) = max{P[[&∧(t1, t2)]](mp,mo) | mo B.a.}
= P[[&∧(t1, t2)]](mp,m

+
o)

= P[[t1]](mp,m
+
o) · P[[t2]](mp,m

+
o)

= max{P[[t1]](mp,mo) | mo B.a.} ·max{P[[t2]](mp,mo) | mo B.a.}
= fmp1 (t1) · fmp1 (t2)

Analogously, we have

fmp2 (t) = fmp2 (t1) · fmp2 (t2)

Let us now evaluate M (t) and INT (t).

Since t is a linear tree no action occurs both in t1 and t2. Thus, we
can write the budget bp corresponding to cost(m,p yield(t)) ≤ bp as a
summation of budgets b1

p and b2
p corresponding to cost(mp, yield(t1)) ≤ b1

p

and cost(mp, yield(t2)) ≤ b2
p, respectively.

From the mentioned fact, Lemma A.7 and the inductive hypothesis, we

C.4 Probabilistic Case with Cost 191

have

M (t, yield(t)) = (MR−−({ (fmp1 (&∧(t1, t2)), bp) | cost(mp, yield(t)) ≤ bp}),
MR+−({ (fmp2 (&∧(t1, t2)), bp) | cost(mp, yield(t)) ≤ bp}))

= (MR−−({ (fmp1 (t1) · fmp1 (t2), b1
p + b2

p) |
cost(mp, yield(t1)) ≤ b1

p, cost(mp, yield(t2)) ≤ b2
p}),

MR+−({ (fmp2 (t1) · fmp2 (t2), b1
p + b2

p) |
cost(mp, yield(t1)) ≤ b1

p, cost(mp, yield(t2)) ≤ b2
p}),

= let (Xi, Yi) = ({ (fmp1 (ti), b
i
p) | cost(mp, yield(ti)) ≤ bip}),

{ (fmp2 (ti), b
i
p) | cost(mp, yield(ti)) ≤ bip})

in (MR−−({ (p · p′, c+ c′) | (p, c) ∈ X1, (p
′, c′) ∈ X2}),

MR+−({ (p · p′, c+ c′) | (p, c) ∈ Y1, (p
′, c′) ∈ Y2}))

= (MR−−({ (p · p′, c+ c′) | (p, c) ∈ MR−−(X1),
(p′, c′) ∈ MR−−(X2)}),

MR+−({ (p · p′, c+ c′) | (p, c) ∈ MR+−(Y1),
(p′, c′) ∈ MR+−(Y2)}))

= (MR−−({ (p · p′, c+ c′) | (p, c) ∈ V1, (p
′, c′) ∈ V2}),

MR+−({ (p · p′, c+ c′) | (p, c) ∈W1, (p
′, c′) ∈W2}))

On the other hand, we have

INT (t) = let (Vi,Wi) = INT (ti), i ∈ {1, 2}
in (MR−−({(p · p′, c+ c′) | (p, c) ∈ V1, (p

′, c′) ∈ V2}),
MR+−({(p · p′, c+ c′) | (p, c) ∈W1, (p

′, c′) ∈W2}))

and we conclude that M (t) = INT (t).

2. Assume t = &∨(t1, t2). This case is analogous to the previous case hence
omitted.

3. Assume t = &¬(t′). Then, by inductive hypothesis it holds that

M (t′, yield(t′)) = (MR−−({ (fmp1 (t′), bp) | cost(mp, yield(t′)) ≤ bp}),
MR+−({ (fmp2 (t′), bp) | cost(mp, yield(t′)) ≤ bp})) =

INT (t′) = (V,W)

Let us first evaluate functions fmp1 (t) and fmp2 (t). From Lemma A.3 and

192 Soundness of the Algorithmic Evaluation for Attack-Defence Trees

the fact that ¬m+ = m−, we have

fmp1 (t) = max{P[[&¬(t′)]](mp,mo) | mo B.a.}
= P[[&¬(t′)]](mp,m

+
o)

= 1− P[[t′]](mp,m
−
o)

= 1−min{P[[t′]](mp,mo) | mo B.a.}
= 1− fmp2 (t′)

Analogously, we have
fmp2 (t) = 1− fmp1 (t′)

Let us now evaluate M (t) and INT (t).

From Lemma A.7 and the inductive hypothesis, we have

M (t, yield(t)) = (MR−−({ (fmp1 (&¬(t′)), bp) | cost(mp, yield(t′)) ≤ bp}),
MR+−({ (fmp2 (&¬(t′)), bp) | cost(mp, yield(t′)) ≤ bp}))

= (MR−−({ (1− fmp2 (t′), bp) | cost(mp, yield(t′)) ≤ bp}),
MR+−({ (1− fmp1 (t′), bp) | cost(mp, yield(t′)) ≤ bp}),

= let (X,Y) = ({ (fmp1 (t′), bp) | cost(mp, yield(t′)) ≤ bp}),
{ (fmp2 (t′), bp) | cost(mp, yield(t′)) ≤ bp})

in (MR−−({ (1− p, c) | (p, c) ∈ Y }),
MR+−({ (1− p, c) | (p, c) ∈ X}))

= (MR−−({ (1− p, c) | (p, c) ∈ MR+−(Y)}),
MR+−({ (1− p, c+ c′) | (p, c) ∈ MR−−(X)}))

= (MR−−({ (1− p, c) | (p, c) ∈W}),
MR+−({ (1− p, c) | (p, c) ∈ V }))

On the other hand, we have

INT (&¬(t)) = let (V,W) = INT (t)
in (MR−−({(1− p, c) | (p, c) ∈W}),

MR+−({(1− p, c) | (p, c) ∈ V }))

and we conclude that M (t) = INT (t).

4. Assume t = &∼(t′). This case is analogous to the case t = &¬(t′) hence
omitted.

�

C.5 Probabilistic Case with Multiple Costs 193

C.5 Probabilistic Case with Multiple Costs
In the following we prove Theorem 4.6 given in Sect. 4.3.

Theorem C.5 Let t ∈ Tree be a linear attack-defence tree. Then

M ∗(t , yield(t)) = INT ∗(t)

Proof.[Theorem 4.6] The proof is organised by structural induction on the
shape of the tree t using Lemma A.9. It is analogous to the proof of Theorem 4.5.
�

194 Soundness of the Algorithmic Evaluation for Attack-Defence Trees

Appendix D
Detailed Evaluation of
Attack-Defence Trees

This appendix contains the detailed evaluation of the attack-defence trees dis-
cussed in the examples of Ch. 4. Section D.1 shows the algorithmic evaluation of
an attack-defence tree with probabilities, displayed in Figure D.1, while Sect. D.2
gives the algorithmic evaluation of an attack-defence tree with probability and
a single-cost associated with basic actions, displayed in Figure D.2.

196 Detailed Evaluation of Attack-Defence Trees

D.1 Probability Evaluation of Attack-Defence Trees

∨

(0
,
0
.9

7
)

R
em

ov
e
ta
g

th
re
at
en

(0
,.
7)

∧
br
ib
e

(0
,.
49
)

bl
ac
km

ai
l

(0
,.
7)

∧tr
ic
k
(0
,.
33
)

id
en
ti
fy

su
b
je
ct

(.
2,
.8
)

br
ib
e

su
b
je
ct

(0
,.
7)

∼
(.
99
,.
88
)

∧
th
w
ar
t

em
pl
oy
ee
s

(.
12
,.
01
)

tr
ai
ni
ng

fo
r
th
w
ar
t

(.
3,
.1
)

th
re
at
en

to
fi
re

em
pl
oy
ee
s

(.
4,
.1
)

∨
(0
,.
55
)

∼
(0
.9
,.
6)

∧
fa
ls
e

re
pl
ac
em

en
t

(0
,.
36
)

∧
fa
ls
e

m
an

ag
em

en
t

(0
,.
3)

se
nd

fa
ls
e

ta
g

(0
,.
5)

∼
(.
91
,.
72
)

∧
au

th
en
ti
ca
ti
on

(.
28
,.
09
)

au
th
en
ti
ca
te

ta
g

()
.7
,.
1

∼
()
.4
,.
9

br
ea
k

au
th
en
ti
-

ca
ti
on

(.
1,
.6
)

in
fi
lt
ra
te

m
an

ag
e-

m
en
t

(0
,.
5)

or
de
r
ta
g

re
pl
ac
e-

m
en
t

(0
,.
6)

tr
ai
ni
ng

fo
r
tr
ic
k

(.
4,
.1
)

©
-
pr
op

on
en
t’
s
ac
ti
on

�
-
op

po
ne
nt
’s

ac
ti
on

Figure D.1: The probabilistic algorithmic evaluation on the tree of Figure 4.1.

D.2 Cost Evaluation of Attack-Defence Trees 197

D.2 Cost Evaluation of Attack-Defence Trees
∨

R
em

ov
e
ta
g

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
1
,
5
0
),

(.
1
8
,
7
0
),

(.
2
6
,
1
2
0
),

(.
7
,
1
5
0
),

(.
7
3
,
2
0
0
),

(.
7
5
,
2
2
0
),

(.
7
8
,
2
7
0
),

(.
9
1
,
3
1
0
),

(.
9
2
,
3
6
0
),

(.
9
3
,
4
3
0
),

(.
9
5
,
4
9
0
),

(.
9
6
,
5
4
0
),

(.
9
7
,
6
9
5
)}

th
re
at
en

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
7
,
1
6
0
)}

∧
br
ib
e

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
1
2
,
1
0
0
),

(.
4
9
,
1
8
0
)}

bl
ac
km

ai
l

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
7
,
1
5
0
)}

∧tr
ic
k

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
1
,
5
0
),

(.
1
8
,
7
0
),

(.
2
6
,
1
2
0
),

(.
3
3
,
2
0
5
)}

id
en
ti
fy

su
b
je
ct

M
R
−
−

:
{(
.2
,
0
)}

M
R

+
−

:
{(
.2
,
0
),

(.
8
,
8
0
)}

br
ib
e

su
b
je
ct

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
7
,
1
0
0
)}

∼
M
R
−
−

:
{(
.9

9
,
0
)}

M
R

+
−

:
{(
.8

8
,
0
)}

∧
th
w
ar
t

em
pl
oy
ee
s
M
R
−
−

:
{(
.1

2
,
0
)}

M
R

+
−

:
{(
.0

1
,
0
)}

tr
ai
ni
ng

fo
r
th
w
ar
t

M
R
−
−

:
{(
.3
,
0
)}

M
R

+
−

:
{(
.1
,
0
)}

th
re
at
en

to
fi
re

em
pl
oy
ee
s

M
R
−
−

:
{(
.4
,
0
)}

M
R

+
−

:
{(
.1
,
0
)}

∨
M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
3
,
7
0
),

(.
1
8
,
5
0
),

(.
4
3
,
1
2
0
),

(.
5
5
,
2
0
5
)}

∼

M
R
−
−

:
{(
.9
,
0
)}

M
R

+
−

:
{(
.6
,
0
)}

∧
fa
ls
e

re
pl
ac
em

en
t

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
1
8
,
5
0
),

(.
3
6
,
1
3
5
)}

∧
fa
ls
e

m
an

ag
em

en
t

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
3
,
7
0
)}

se
nd

fa
ls
e

ta
g

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
5
,
5
0
)}

∼
M
R
−
−

:
{(
.9

1
,
0
)}

M
R

+
−

:
{(
.3

7
,
0
),

(.
7
2
,
8
5
)}

∧
au

th
en
ti
ca
ti
on

M
R
−
−

:
{(
.6

3
,
0
),

(.
2
8
,
8
5
)}

M
R

+
−

:
{(
.0

9
,
0
)}

au
th
en
ti
ca
te

ta
g

M
R
−
−

:
{(
.7
,
0
)}

M
R

+
−

:
{(
.1
,
0
)}

∼
M
R
−
−

:
{(
.9
,
0
),

(.
4
,
8
5
)}

M
R

+
−

:
{(
.9
,
0
)}

br
ea
k

au
th
en
ti
-

ca
ti
on

M
R
−
−

:
{(
.1
,
0
)}

M
R

+
−

:
{(
.1
,
0
),

(.
6
,
8
5
)}

in
fi
lt
ra
te

m
an

ag
e-

m
en
t

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
5
,
7
0
)}

or
de

r
ta
g

re
pl
ac
e-

m
en
t

M
R
−
−

:
{(

0
,
0
)}

M
R

+
−

:
{(

0
,
0
),

(.
6
,
0
)}

tr
ai
ni
ng

fo
r
tr
ic
k

M
R
−
−

:
{(
.4
,
0
)}

M
R

+
−

:
{(
.1
,
0
)}

©
-
pr
op

on
en
t’
s
ac
ti
on

�
-
op

po
ne
nt
’s

ac
ti
on

Figure D.2: The algorithmic evaluation on the tree of Figure 4.1.

198 Detailed Evaluation of Attack-Defence Trees

Bibliography

[AHK03] Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen.
Discrete-time rewards model-checked. In Formal Modeling and
Analysis of Timed Systems: First International Workshop, FOR-
MATS 2003, Marseille, France, September 6-7, 2003. Revised Pa-
pers, pages 88–104, 2003.

[AHPS14] Florian Arnold, Holger Hermanns, Reza Pulungan, and Mariëlle
Stoelinga. Time-dependent analysis of attacks. In Principles of
Security and Trust - Third International Conference, POST 2014,
Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014, Proceedings, pages 285–305, 2014.

[AINP15] Zaruhi Aslanyan, Marieta Georgieva Ivanova, Flemming Nielson,
and Christian W. Probst. Modelling and analysing socio-technical
systems. In Proceedings of the 1st International Workshop on Socio-
Technical Perspective in IS Development (STPIS’15) co-located
with the 27th International Conference on Advanced Information
Systems Engineering (CAiSE 2015), Stockholm, Sweden, June 9,
2015., pages 121–124, 2015.

[Ame] Amenaza. SecurITree. http://www.amenaza.com.

[AN14] Zaruhi Aslanyan and Flemming Nielson. Pareto efficient solutions
of attack trees. Secure IT Systems, page 279, 2014.

[AN15] Zaruhi Aslanyan and Flemming Nielson. Pareto efficient solutions
of attack-defence trees. In Principles of Security and Trust - 4th
International Conference, POST 2015, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS

http://www.amenaza.com

200 BIBLIOGRAPHY

2015, London, UK, April 11-18, 2015, Proceedings, pages 95–114,
2015.

[AN17] Zaruhi Aslanyan and Flemming Nielson. Model checking exact cost
for attack scenarios. In Principles of Security and Trust - 6th In-
ternational Conference, POST 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, 2017.

[ANP16] Zaruhi Aslanyan, Flemming Nielson, and David Parker. Quantita-
tive verification and synthesis of attack-defence scenarios. In IEEE
29th Computer Security Foundations Symposium, CSF 2016, Lis-
bon, Portugal, June 27 - July 1, 2016, pages 105–119, 2016.

[AWK02] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable,
graph-based network vulnerability analysis. In Proceedings of the
9th ACM conference on Computer and communications security,
CCS’02, pages 217–224. ACM, 2002.

[Bai98] C. Baier. On algorithmic verification methods for probabilistic sys-
tems. Habilitation thesis, Fakultät für Mathematik & Informatik,
Universität Mannheim, 1998.

[BDP06] Stefano Bistarelli, Marco Dall’Aglio, and Pamela Peretti. Strategic
games on defense trees. In Formal Aspects in Security and Trust,
Fourth International Workshop, FAST 2006, pages 1–15, 2006.

[BFM04] Eric J Byres, Matthew Franz, and Darrin Miller. The use of attack
trees in assessing vulnerabilities in scada systems. In Proceedings of
the International Infrastructure Survivability Workshop. Citeseer,
2004.

[BFP06] Stefano Bistarelli, Fabio Fioravanti, and Pamela Peretti. Defense
trees for economic evaluation of security investments. In Availabil-
ity, Reliability and Security, pages 416–423, 2006.

[BHHK00] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and
Joost-Pieter Katoen. On the logical characterisation of performa-
bility properties. In Automata, Languages and Programming, 27th
International Colloquium, ICALP 2000, Geneva, Switzerland, July
9-15, 2000, Proceedings, pages 780–792, 2000.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing. The MIT Press, May 2008.

[BKMS12] Alessandra Bagnato, Barbara Kordy, Per Håkon Meland, and
Patrick Schweitzer. Attribute decoration of attack-defense trees.
IJSSE, 3(2):1–35, 2012.

BIBLIOGRAPHY 201

[BLMW13] Fabrizio Biondi, Axel Legay, Pasquale Malacaria, and Andrzej Wą-
sowski. Quantifying Information Leakage of Randomized Protocols.
In 14th International Conference Verification, Model Checking, and
Abstract Interpretation (VMCAI’13), volume 7737 of LNCS, pages
68–87. Springer, 2013.

[BLP+06] Ahto Buldas, Peeter Laud, Jaan Priisalu, Märt Saarepera, and
Jan Willemson. Rational choice of security measures via multi-
parameter attack trees. In Critical Information Infrastructures
Security, First International Workshop, CRITIS 2006, Samos,
Greece, August 31 - September 1, 2006, Revised Papers, pages 235–
248, 2006.

[BM07] Ahto Buldas and Triinu Mägi. Practical security analysis of e-
voting systems. InAdvances in Information and Computer Security,
Second International Workshop on Security, IWSEC 2007, Nara,
Japan, October 29-31, 2007, Proceedings, pages 320–335, 2007.

[BT91] Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochas-
tic shortest path problems. Math. Oper. Res., 16(3):580–595, Au-
gust 1991.

[Buc99] Peter Buchholz. Exact performance equivalence: An equivalence re-
lation for stochastic automata. Theor. Comput. Sci., 215(1-2):263–
287, 1999.

[Buc08] Peter Buchholz. Bisimulation relations for weighted automata.
Theor. Comput. Sci., 393(1-3):109–123, 2008.

[CCF04] Sean Convery, David Cook, and Matthew Franz. An attack tree for
the border gateway protocol. Work in Progress, 2004.

[CFK+13a] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker,
and Aistis Simaitis. Automatic verification of competitive stochas-
tic systems. Formal Methods in System Design, 43(1):61–92, 2013.

[CFK+13b] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, Aistis
Simaitis, and Clemens Wiltsche. On stochastic games with multi-
ple objectives. In Mathematical Foundations of Computer Science
2013 - 38th International Symposium, MFCS 2013, Klosterneuburg,
Austria, August 26-30, 2013. Proceedings, pages 266–277, 2013.

[DA98] Luca De Alfaro. Formal Verification of Probabilistic Systems. PhD
thesis, Stanford, CA, USA, 1998. AAI9837082.

[EDRM] K.S. Edge, G.C. Dalton, R.A. Raines, and R.F. Mills. Using attack
and protection trees to analyze threats and defenses to homeland

202 BIBLIOGRAPHY

security. In Military Communications Conference, MILCOM 2006.
IEEE, pages 1–7.

[ERG+07] Kenneth S. Edge, Richard A. Raines, Michael R. Grimaila, Rusty O.
Baldwin, Robert W. Bennington, and Christopher E. Reuter. The
use of attack and protection trees to analyze security for an on-
line banking system. In 40th Hawaii International International
Conference on Systems Science (HICSS-40 2007), CD-ROM / Ab-
stracts Proceedings, 3-6 January 2007, Waikoloa, Big Island, HI,
USA, page 144, 2007.

[FKNP11] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, and David
Parker. Automated verification techniques for probabilistic systems.
In Formal Methods for Eternal Networked Software Systems - 11th
International School on Formal Methods for the Design of Com-
puter, Communication and Software Systems, SFM 2011, Berti-
noro, Italy, June 13-18, 2011. Advanced Lectures, pages 53–113,
2011.

[Gir95] Jean-Yves Girard. Linear logic: Its syntax and semantics. In Pro-
ceedings of the Workshop on Advances in Linear Logic, pages 1–42.
Cambridge University Press, 1995.

[HJ94] Hans Hansson and Bengt Jonsson. A logic for reasoning about time
and reliability. Formal Asp. Comput., 6(5):512–535, 1994.

[HKKS16] Holger Hermanns, Julia Krämer, Jan Krcál, and Mariëlle Stoelinga.
The value of attack-defence diagrams. In Principles of Security
and Trust - 5th International Conference, POST 2016, Held as
Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings, pages 163–185, 2016.

[IEMR10] George C. Dalton II, Kenneth S. Edge, Robert F. Mills, and
Richard A. Raines. Analysing security risks in computer and radio
frequency identification (RFID) networks using attack and protec-
tion trees. IJSN, 5(2/3):87–95, 2010.

[IPHK15a] Marieta Georgieva Ivanova, Christian W. Probst, René Rydhof
Hansen, and Florian Kammüller. Attack tree generation by pol-
icy invalidation. In Information Security Theory and Practice -
9th IFIP WG 11.2 International Conference, WISTP 2015 Herak-
lion, Crete, Greece, August 24-25, 2015 Proceedings, pages 249–259,
2015.

[IPHK15b] Marieta Georgieva Ivanova, Christian W. Probst, René Rydhof
Hansen, and Florian Kammüller. Transforming graphical system

BIBLIOGRAPHY 203

models to graphical attack models. In Graphical Models for Se-
curity - Second International Workshop, GraMSec 2015, Verona,
Italy, July 13, 2015, Revised Selected Papers, pages 82–96, 2015.

[Iso] Isograph. AttackTree+. http://www.isograph.com/software/
attacktree/.

[JKM+15] Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and
Rolando Trujillo-Rasua. Attack trees with sequential conjunction.
In ICT Systems Security and Privacy Protection - 30th IFIP TC
11 International Conference, SEC 2015, Hamburg, Germany, May
26-28, 2015, Proceedings, pages 339–353, 2015.

[JSW02] S Jha, O Sheyner, and J Wing. Two formal analyses of attack
graphs. In Proceedings 15th IEEE Computer Security Foundations
Workshop CSFW15, pages 49–63, 2002.

[JW07] Aivo Jürgenson and Jan Willemson. Processing multi-parameter
attacktrees with estimated parameter values. In Advances in In-
formation and Computer Security, Second International Workshop
on Security, IWSEC 2007, Nara, Japan, October 29-31, 2007, Pro-
ceedings, pages 308–319, 2007.

[JW08] Aivo Jürgenson and Jan Willemson. Computing exact outcomes
of multi-parameter attack trees. In On the Move to Meaningful In-
ternet Systems: OTM 2008, OTM 2008 Confederated International
Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008, Mon-
terrey, Mexico, November 9-14, 2008, Proceedings, Part II, pages
1036–1051, 2008.

[JW09] Aivo Jürgenson and Jan Willemson. Serial model for attack tree
computations. In Information, Security and Cryptology - ICISC
2009, 12th International Conference, Seoul, Korea, December 2-4,
2009, Revised Selected Papers, pages 118–128, 2009.

[JW10] Aivo Jürgenson and Jan Willemson. On fast and approximate at-
tack tree computations. In Information Security, Practice and Ex-
perience, 6th International Conference, ISPEC 2010, Seoul, Korea,
May 12-13, 2010. Proceedings, pages 56–66, 2010.

[Kha09] Parvaiz Ahmed Khand. System level security modeling using attack
trees. In Computer, Control and Communication, 2009. IC4 2009.
2nd International Conference on, pages 1–6. IEEE, 2009.

[KKMS13] Barbara Kordy, Piotr Kordy, Sjouke Mauw, and Patrick Schweitzer.
Adtool: Security analysis with attack-defense trees. In Quantita-
tive Evaluation of Systems - 10th International Conference, QEST

http://www.isograph.com/software/attacktree/
http://www.isograph.com/software/attacktree/

204 BIBLIOGRAPHY

2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings,
pages 173–176, 2013.

[KMMS10] Barbara Kordy, Sjouke Mauw, Matthijs Melissen, and Patrick
Schweitzer. Attack-defense trees and two-player binary zero-sum
extensive form games are equivalent. In Decision and Game The-
ory for Security - First International Conference, GameSec 2010,
Berlin, Germany, November 22-23, 2010. Proceedings, pages 245–
256, 2010.

[KMRS10] Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Patrick
Schweitzer. Foundations of attack-defense trees. In Formal As-
pects of Security and Trust - 7th International Workshop, FAST
2010, pages 80–95, 2010.

[KMRS14] Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Patrick
Schweitzer. Attack-defense trees. J. Log. Comput., 24(1):55–87,
2014.

[KMS12] Barbara Kordy, Sjouke Mauw, and Patrick Schweitzer. Quantita-
tive questions on attack-defense trees. In Information Security and
Cryptology - ICISC 2012 - 15th International Conference, Seoul,
Korea, November 28-30, 2012, Revised Selected Papers, pages 49–
64, 2012.

[KNP07] Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
Stochastic model checking. In Formal Methods for Performance
Evaluation, 7th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems, SFM
2007, Bertinoro, Italy, May 28-June 2, 2007, Advanced Lectures,
pages 220–270, 2007.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM
4.0: Verification of probabilistic real-time systems. In Computer
Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings, pages 585–591,
2011.

[KP12] Marta Z. Kwiatkowska and David Parker. Advances in probabilistic
model checking. In Software Safety and Security - Tools for Analysis
and Verification, pages 126–151. 2012.

[KPS11] Barbara Kordy, Marc Pouly, and Patrick Schweitzer. Computa-
tional aspects of attack-defense trees. In Security and Intelligent
Information Systems - International Joint Conferences, SIIS 2011,
Warsaw, Poland, June 13-14, 2011, Revised Selected Papers, pages
103–116, 2011.

BIBLIOGRAPHY 205

[KPS14a] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick
Schweitzer. Dag-based attack and defense modeling: Don’t
miss the forest for the attack trees. Computer Science Review,
13-14:1–38, 2014.

[KPS14b] Barbara Kordy, Marc Pouly, and Patrick Schweitzer. A probabilis-
tic framework for security scenarios with dependent actions. In
Integrated Formal Methods - 11th International Conference, IFM
2014, Bertinoro, Italy, September 9-11, 2014, Proceedings, pages
256–271, 2014.

[KPW16] Marta Kwiatkowska, David Parker, and Clemens Wiltsche. Prism-
games 2.0: A tool for multi-objective strategy synthesis for stochas-
tic games. In Tools and Algorithms for the Construction and Analy-
sis of Systems - 22nd International Conference, TACAS 2016, Held
as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings, pages 560–566, 2016.

[KRS15] Rajesh Kumar, Enno Ruijters, and Mariëlle Stoelinga. Quantitative
attack tree analysis via priced timed automata. In Formal Modeling
and Analysis of Timed Systems - 13th International Conference,
FORMATS 2015, Madrid, Spain, September 2-4, 2015, Proceed-
ings, pages 156–171, 2015.

[LGCM10] Julien Legriel, Colas Le Guernic, Scott Cotton, and Oded Maler.
Approximating the pareto front of multi-criteria optimization prob-
lems. In Tools and Algorithms for the Construction and Analysis
of Systems, 16th International Conference, TACAS 2010, Held as
Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings, pages 69–83, 2010.

[LL11] Wen-ping Lv and Wei-min Li. Space based information system
security risk evaluation based on improved attack trees. In Multi-
media Information Networking and Security (MINES), 2011 Third
International Conference on, pages 480–483. IEEE, 2011.

[LW05] Kong-wei Lye and M. Jeannette Wing. Game strategies in network
security. International Journal of Information Security, 4(1):71–86,
2005.

[MAV+13] Y. A. Mahmood, Alireza Ahmadi, Ajit Kumar Verma, Ajit Sriv-
idya, and Uday Kumar. Fuzzy fault tree analysis: a review of
concept and application. Int. J. Systems Assurance Engineering
and Management, 4(1):19–32, 2013.

206 BIBLIOGRAPHY

[MDTG07] John Mallios, Stelios Dritsas, Bill Tsoumas, and Dimitris Gritza-
lis. Attack modeling of sip-oriented SPIT. In Critical Information
Infrastructures Security, Second International Workshop, CRITIS
2007, Málaga, Spain, October 3-5, 2007. Revised Papers, pages 299–
310, 2007.

[Mel10] Per Håkon Meland. Seamonster. 2007-2010.

[MG13] Franco Mastroddi and Stefania Gemma. Analysis of pareto fron-
tiers for multidisciplinary design optimization of aircraft. Aerospace
Science and Technology, 28(1):40–55, 2013.

[MGE+08] Per Håkon Meland, Spampinato Daniele Giuseppe, Hagen Eilev,
Baadshaug Egil Trygve, Krister Kris-Mikael, and Velle Ketil San-
danger. Seamonster: Providing tool support for security modeling.
In NISK 2008. Norsk informasjonssikkerhetskonferanse, Univer-
sitetet i Agder, Kampus Gimlemoen, November 17-19, 2008, 2008.

[MO05] Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees.
In Information Security and Cryptology - ICISC 2005, 8th Inter-
national Conference, Seoul, Korea, December 1-2, 2005, Revised
Selected Papers, pages 186–198, 2005.

[MRY11] Chris YT Ma, Nageswara SV Rao, and David KY Yau. A game
theoretic study of attack and defense in cyber-physical systems.
In Computer Communications Workshops (INFOCOM WKSHPS),
2011 IEEE Conference on, pages 708–713. IEEE, 2011.

[OBM06] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A scal-
able approach to attack graph generation. In Proceedings of the
13th ACM conference on Computer and communications security,
CCS’06, pages 336–345. ACM, 2006.

[Pau14] Stéphane Paul. Towards automating the construction & mainte-
nance of attack trees: a feasibility study. In Proceedings First In-
ternational Workshop on Graphical Models for Security, GraMSec
2014, Grenoble, France, April 12, 2014., pages 31–46, 2014.

[PB10] Ludovic Piètre-Cambacédès and Marc Bouissou. Beyond attack
trees: Dynamic security modeling with boolean logic driven markov
processes (BDMP). In Eighth European Dependable Computing
Conference, EDCC-8 2010, pages 199–208, 2010.

[PRI] PRISM Model Checker. Available at http://www.
prismmodelchecker.org.

http://www.prismmodelchecker.org
http://www.prismmodelchecker.org

BIBLIOGRAPHY 207

[PS98] Cynthia Phillips and Laura Painton Swiler. A graph-based system
for network-vulnerability analysis. In Proceedings of the 1998 work-
shop on New security paradigms NSPW 98, volume pages, pages
71–79, 1998.

[RKT10a] Arpan Roy, Dong Seong Kim, and Kishor S Trivedi. Act: attack
countermeasure trees for information assurance analysis. In INFO-
COM IEEE Conference on Computer Communications Workshops,
2010, pages 1–2. IEEE, 2010.

[RKT10b] Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. Cyber security
analysis using attack countermeasure trees. In Proceedings of the 6th
Cyber Security and Information Intelligence Research Workshop,
CSIIRW 2010, page 28, 2010.

[RKT12] Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. Attack coun-
termeasure trees (ACT): towards unifying the constructs of at-
tack and defense trees. Security and Communication Networks,
5(8):929–943, 2012.

[Sah08] Diptikalyan Saha. Extending logical attack graphs for efficient vul-
nerability analysis. In Proceedings of the 2008 ACM Conference on
Computer and Communications Security, CCS 2008, Alexandria,
Virginia, USA, October 27-31, 2008, pages 63–74, 2008.

[Sch99] Bruce Schneier. Attack Trees: Modeling Security Threats. Dr.
Dobb’s Journal of Software Tools, 24(12):21–29, 1999.

[Sch04] Bruce Schneier. Secrets and Lies: Digital Security in a Networked
World. John Wiley & Sons, 2004.

[Sha53] Lloyd S Shapley. Stochastic games. Proceedings of the National
Academy of Sciences of the United States of America, 39(10):1095,
1953.

[SHJ+02] Oleg Sheyner, Joshua W. Haines, Somesh Jha, Richard Lippmann,
and Jeannette M. Wing. Automated Generation and Analysis of
Attack Graphs. In 2002 IEEE Symposium on Security and Privacy,
pages 273–284, 2002.

[SSSW98] Chris Slater, O. Sami Saydjari, Bruce Schneier, and Jim Wallner.
Toward a secure system engineering methodolgy. In Proceedings of
the 1998 Workshop on New Security Paradigms, Charlottsville, VA,
USA, September 22-25, 1998, pages 2–10, 1998.

[SW04] Oleg Sheyner and Jeannette Wing. Tools for Generating and Ana-
lyzing Attack Graphs. In 2nd International Symposium on Formal

208 BIBLIOGRAPHY

Methods for Components and Objects (FMCO’03), volume 3188 of
LNCS, pages 344–371. Springer, 2004.

[The14] The TREsPASS Project. https://www.trespass-project.eu,
2014.

[TLG07] Chee-Wooi Ten, Chen-Ching Liu, and Manimaran Govindarasu.
Vulnerability assessment of cybersecurity for scada systems using
attack trees. In Power Engineering Society General Meeting, 2007.
IEEE, pages 1–8. IEEE, 2007.

[Umm11] Michael Ummels. Stochastic multiplayer games: theory and algo-
rithms. PhD thesis, RWTH Aachen University, 2011.

[VBY13] Roberto Vigo, Alessandro Bruni, and Ender Yüksel. Security games
for cyber-physical systems. In Secure IT Systems - 18th Nordic Con-
ference, NordSec 2013, Ilulissat, Greenland, October 18-21, 2013,
Proceedings, pages 17–32, 2013.

[VNN14] Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson. Auto-
mated generation of attack trees. In IEEE 27th Computer Security
Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July,
2014, pages 337–350, 2014.

[VRHG81] W.E. Vesely, N.H. Roberts, D.F. Haasl, and F.F Goldberg. Fault
Tree Handbook. Number v. 88 in Fault Tree Handbook. Systems
and Reliability Research, Office of Nuclear Regulatory Research,
U.S. Nuclear Regulatory Commission, 1981.

[Wei91] Jonathan D. Weiss. A system security engineering process. In
Proceedings of the 14th National Computer Security Conference,
pages 572–581, 1991.

[Yag06] Ronald R. Yager. OWA trees and their role in security modeling
using attack trees. Inf. Sci., 176(20):2933–2959, 2006.

[ZKSY14] Saman A. Zonouz, Himanshu Khurana, William H. Sanders, and
Timothy M. Yardley. RRE: A game-theoretic intrusion response
and recovery engine. IEEE Trans. Parallel Distrib. Syst., 25(2):395–
406, 2014.

https://www.trespass-project.eu

	Summary
	Resumè
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Challenge
	1.2 Contribution
	1.3 Synopsis

	I Evaluation of Attack and Defence Scenarios
	2 Preliminaries : Graphical Models for Security Analyses
	2.1 First Graphical Models
	2.2 Attack Modelling Techniques
	2.2.1 Attack Trees
	2.2.2 Extensions of Attack Trees
	2.2.3 Multi-Parameter Attack Trees

	2.3 Attack and Defence Modelling Techniques
	2.3.1 Defence Trees
	2.3.2 Protection Trees
	2.3.3 Attack Countermeasure Trees
	2.3.4 Attack-Response Trees
	2.3.5 Attack-Defence Trees

	2.4 Pareto Efficiency

	3 Pareto Efficient Solutions of Attack Trees
	3.1 Formal Model of Attack Trees
	3.1.1 Attack Trees
	3.1.2 Semantics in the Boolean Case
	3.1.3 Semantics in the Probabilistic Case

	3.2 Attack Trees with Cost
	3.2.1 Cost in the Boolean Case
	3.2.2 Cost in the Probabilistic Case

	3.3 Attack Trees with Multiple Costs
	3.4 Attack Tree Evaluator Tool
	3.5 Concluding Remarks

	4 Pareto Efficient Solutions of Attack-Defence Trees
	4.1 Formal Model of Attack-Defence Trees
	4.1.1 Attack-Defence Trees
	4.1.2 Semantics in the Boolean Case
	4.1.3 Semantics in the Probabilistic Case

	4.2 Attack-Defence Trees with Cost
	4.2.1 Cost in the Boolean Case
	4.2.2 Cost in the Probabilistic Case

	4.3 Attack-Defence Trees with Multiple Costs
	4.4 Concluding Remarks

	II From Attack-Defence Trees to Security Games
	5 Preliminaries: Probabilistic Models
	5.1 Probabilistic Models
	5.1.1 Discrete Time Markov Chains
	5.1.2 Stochastic Two-Player Games

	5.2 Probabilistic Model Checking
	5.2.1 PCTL and Model Checking DTMCs
	5.2.2 rPATL and Model Checking Games

	5.3 PRISM and PRISM-Games

	6 Quantitative Verification and Synthesis of Attack-Defence Scenarios
	6.1 Attack-Defence Trees with Sequential Operators
	6.1.1 Attack-Defence Trees
	6.1.2 Strategies as Decision Trees
	6.1.3 Semantics of Attack-Defence Trees

	6.2 Game-based Modelling and Verification
	6.2.1 From Attack-Defence Trees to Stochastic Games
	6.2.2 Probabilistic Model Checking Stochastic Games
	6.2.3 Synthesising Strategies as Decision Trees

	6.3 Extension with Multi-Objective Properties
	6.4 Implementation
	6.5 Concluding Remarks

	III The Logic erPCTL for Attack Trees
	7 Preliminaries : Markov Decision Processes
	7.1 Markov Decision Processes
	7.2 Model Checking MDPs
	7.2.1 rPCTL
	7.2.2 Model Checking rPCTL

	7.3 Reward Operators for rPCTL
	7.4 Verification of Attack Trees though DTMCs
	7.4.1 Construction of DTMCs
	7.4.2 Evaluation of DTMCs

	8 Evaluation of Attack Trees through MDPs
	8.1 From Attack Trees to Markov Decision Processes
	8.2 The Logic erPCTL for Attack Trees
	8.2.1 Probabilistic Operator with Cost Bound PJ(I)
	8.2.2 Cost operator CI()

	8.3 Model Checking erPCTL
	8.3.1 Model Checking the Operator PJ(I)
	8.3.2 Model Checking the Operator CI()

	8.4 Evaluation of Attack Trees with erPCTL
	8.5 Concluding Remarks

	9 Conclusion
	9.1 Contribution
	9.2 Future Directions

	A Soundness of the Algorithmic Evaluation for Attack Trees
	A.1 Boolean Case
	A.2 Probabilistic Case
	A.3 Boolean Case with Cost
	A.4 Probabilistic Case with Cost
	A.5 Probabilistic Case with Multiple Costs

	B Detailed Evaluation of Attack Trees
	B.1 Probability Evaluation of Attack Trees
	B.2 Cost Evaluation of Attack Trees

	C Soundness of the Algorithmic Evaluation for Attack-Defence Trees
	C.1 Boolean Case
	C.2 Probabilistic Case
	C.3 Boolean Case with Cost
	C.4 Probabilistic Case with Cost
	C.5 Probabilistic Case with Multiple Costs

	D Detailed Evaluation of Attack-Defence Trees
	D.1 Probability Evaluation of Attack-Defence Trees
	D.2 Cost Evaluation of Attack-Defence Trees

	Bibliography

