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Abstract—The dominance of fluctuating and intermittent
stochastic renewable energy sources (RES) has introduced
uncertainty in power systems which in turn, has challenged
how electricity market operate. In this context, there has
been significant research in developing strategies for RES
producers, which however typically focuses on the decision
process of a single producer, assuming unrealistic access
to aspects of information about the power system. This
paper analyzes the behavior of an entire population of
stochastic producers in an electricity market using as basis
a minority game: the El Farol Bar problem. We illustrate
how uncomplicated strategies based on a adaptive learning
rules lead to the coordination among RES producers and
a Pareto efficient outcome.

I. INTRODUCTION

The deployment of stochastic renewable energy
sources (RES) e.g. wind and solar power, has been
steadily increasing, bringing significant economic and
environmental benefits. As renewable generation ap-
proaches grid parity, stochastic producers are asked to
participate in electricity markets under the rules applied
to conventional producers. Although now they may face
regulation costs due to imbalances between their day-
ahead market offers and real-time production, they can
also employ trading strategies in the day-ahead markets
that may offset the cost of imbalances.

There has been an increasing scientific interest in
addressing such issues. Specifically, [1] identify the
optimal offer for a price-taker wind power producer
highlighting the benefits of probabilistic offers against
point forecasts. However, the assumption of the producer
being a price-taker does not hold in zonal markets
dominated by renewables, e.g., the Western Danish price
area of Nord Pool’s ‘elspot’ [2]. Recent works modeled
the participation of a price-maker wind power producer
in day-ahead [3] and real-time [4] markets, as well as in
a joint day-ahead and real-time stochastic market [5].

Although the aforementioned approaches bring sig-
nificant contributions, they have limitations. First, the
stochastic producers rely on knowledge that is unlikely

to be available to them, such as complete information of
the power system’s attributes and access to the predictive
distributions of all other stochastic producers, while as-
suming that they accurately model real-time production.
Second, they assume that only a single producer is
strategic and capable of devising an optimal strategy,
with the rest following without a reaction. That is, they
do not capture the inherent dynamics of participating
in a market, with the exception being the formulation
of the competition among stochastic producers as an
equilibrium program with equilibrium constraint [6].
However, such techniques are computationally demand-
ing with reduced tractability, often too complex to be
implemented in real-world real-time basis.

In this paper we analyze the behavior of a population
of stochastic producers in electricity markets focusing
on the collective impact of individual actions as they
manifest through day-ahead market offers on an energy
dispatch model consisting of a day-ahead and a real-
time market. We draw inspiration from the El Farol Bar
Problem (EFBP) [7], a specific example of a class of
game-theoretic problems known as Minority Games [8],
to study the market competition among self-interested
participants. We employ a set of adaptive learning rules,
introduced in [9], that through a probabilistic evolution-
ary process allow stochastic producers to successfully
co-ordinate their offers under limited knowledge of the
market conditions. We use a pool system based on IEEE-
96 [10] to show numerically that stochastic producers
can derive simple adaptive strategies that converge dy-
namically to a steady state without relying on extensive
records of generation profiles or market prices.

The rest of the paper is organized as follows: In
Section II we provide and overview of the Minority
Game and the El Farol Bar problem, while in Section
III we provide the formulation that allows to study an
electricity market as a Minority Game. In Section IV
we illustrate the convergence properties on a simulated
system, and we conclude in Section V.



II. MINORITY GAMES, MARKET COMPETITION AND
A BAR

In this section we describe how Minority Games
can be used to study population dynamics in financial
markets. Then we introduce key aspects of the El Farol
Bar Problem, a specific case of a Minority Game.

A. Minority Games

In a Minority Game, a population of agents has to
decide between options A and B with those belonging
on the minority group by the end of the game considered
as the winners. Naturally, the fact that those belonging in
the minority group derive more benefits is very appealing
in financial markets, given that market complexity is
summarized under the famous mantra: ‘Sell when every-
body is buying and buy when everybody is selling’. This
link is strongly represented in related literature [8], [11],
[12] which generally considers a market that consists of
N participants who without loss of generality can either
‘buy’ or ‘sell’ a commodity at each time step t. For
participant i, its action set is denoted by ai = {−1, 1}
where 1 corresponds to an action and −1 to its opposite.

At each evolutionary step t of the MG, the gain (or
loss), is equal to ρi(t) = −aig(A(t)), where g(.) a
function of A(t) =

∑N
i=1 a(t) a global measure that

describes the state of the market at time t. For the choice
of g(A(t)), [8] propose the sign function

sgn(A) =

 −1 if A < 0
1 if A > 0
0 if A = 0

(1)

while [11] propose g(A(t)) = A(t)/N as more appro-
priate for analytical mathematical calculations.

Based on the definition of the MG, A(t) = 0 is
the ‘comfort threshold’ as A(t) < 0 suggests that the
minority has chosen action 1 and for A(t) > 0 the
minority has chosen −1. The intuition behind the choice
of the sign function becomes clear as those who belong
in the minority group are those with ai = −sgn(A(t))
and receive |A(t)|, while those in the majority have
chosen ai = sgn(A(t)) and face a loss of −|A(t)|.
Clearly, the gain of a market participant at each iteration
of the game does not solely depend on the individual’s
actions; instead, it takes into consideration the global
state the system as it aggregates all participants’ actions.

B. The El Farol Bar Problem

The EFBP is a MG with a fixed threshold on the
majority of the population at 60% as opposed to the
MG with a threshold 50% + 1. It was defined by W.
B. Arthur, inspired by the El Farol bar he frequented in
Santa Fe [7]. The bar was popular on an Irish music night

but Arthur felt uncomfortable when he perceived the
bar to be overcrowded. Assuming a total population of
N = 100 he set the threshold at N = 60 and simulated
the bar’s attendance deriving predictors from the history
of prior actions. The EFBP is considered a perfect exam-
ple of ‘bounded rationality’, a departure from classical
economic models assuming pure logic and ‘deductive
rationality’. Bounded rationality is arguably appropriate
for modeling population dynamics in complex systems
such as markets whereby individuals are aware only
of their own valuations and their decision process is
restricted by limits on the available information.

Therefore, the EFBP provides a realistic framework
for modeling some of the complex operations in power
systems. In particular, supply and demand in a micro-
grid utilizing generation from renewable and conven-
tional sources and storage is modeled as a ‘Potluck
Game’, a generalization of the EFBP with varying
threshold levels [13]. Similarly, [14] achieve lower costs
and increased stability, by deploying a MG based energy
management system for smart buildings in a micro-grids.

C. Inductive vs Adaptive Learning

A common characteristic of MG based studies of
populations in financial markets, power systems and in
the El Farol bar, is the ‘inductive learning’ approach that
requires that agents decide on their actions by predicting
the global state of the system. They do so, by inferring
the actions of everybody else, through a combination of
rational rules and empirical evidence. Bell et al. in [9]
provide an overview of the inductive learning approach,
from simple deterministic methods (e.g. moving aver-
ages) to advanced methods involving genetic algorithms
and neural networks. However, they argue that inductive
learning emphasizes on the prediction of the state of the
system at equilibrium without considering the evolution
process towards that equilibrium, while having access to
the distribution of the outcome.

Instead, they introduce ‘adaptive learning’, a pro-
cess that allows members of a population to adapt
the probability of undertaking a specific action, solely
based on the history of their own experiences. As the
probability slightly increases when an agent has a pos-
itive experience (e.g., an uncrowded bar) and slightly
decreases after a negative experience (e.g., a crowded
bar), the proposed adaptive learning rules are based on
the principle that self-interested agents prefer to repeat
enjoyable experiences and minimize the unpleasant ones.

III. ADAPTIVE PROBABILISTIC LEARNING RULES
FOR PARTICIPATING IN ELECTRICITY MARKETS

In this section we analyze the behavior of a popula-
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tion of stochastic producers in an electricity market that
consists of a day-ahead and real-time market under the
one-price balancing system, widely used in the USA and
in Europe (incl. the UK, Germany, Benelux and Austria).
We introduce a set of inductive and adaptive learning
rules depending on stochastic producers’ full or partial
access on information about the outcomes of the day-
ahead and real-time markets.

A. The Electricity Market as a Minority Game

The ‘market mantra’ that links financial markets with
Minority Games also applies on electricity markets under
the one-price system where the optimal offer of a risk-
neutral price-taker stochastic producer is equal to to zero
if the balancing price is higher than the day-ahead price,
or equal to its capacity if the balancing price is lower
than the day-ahead price. In a one-price balancing market
the market price, λB , is higher than the day-ahead market
price, λD, when the system is in up-regulation i.e. there
is a deficit in power production due to deviations from
day-ahead market offers. On the contrary, the balancing
market price is lower than the day-ahead market price
when the system is in down-regulation i.e. there is a
surplus in power production.

Let E∗ be the upper limit a stochastic producer
faces in its output, as it is defined by the technical
specifications of the deployed wind farm units and let the
real-time generation be equal to E∗Ẽ, where Ẽ ∈ [0, 1]
is a realization of a random variable Y which models
the producer’s stochastic output. The payment a producer
receives under the one-price balancing market is

P = λDE∗ED + λBE∗ẼB (2)

replacing ẼB = Ẽ − ED leads to an expression where
ED is the only decision variable

P = (λD − λB)E∗ED + λBE∗Ẽ (3)

with the variable Y following a distribution G defined
by a set of parameters θ s.t. Y ∼ G(Ẽ; θ).

Under Eq. (3) it is trivial to determine the optimal
offer for a price-taker stochastic producer. That is, if
λB > λD, it is in its best interest to offer zero power in
the day-ahead market; while if λB < λD it is in its best
interest to offer its capacity E∗ on the day-ahead market.
However, it is unrealistic to consider that only a single
producer will determine and follow the optimal strategy
that will maximize its revenues and all others will be
merely observing without undertaking any action.

Furthermore, even if the assumption of the stochastic
producers being price-takers and not able to exercise
market power individually, is maintained, they can most

Minority Majority

ρ −ρ

Fig. 1. Gains and losses in a minority game modeled electricity market.

certainly do so collectively. For example, if strategic
stochastic producers’ models predict a lower price in the
balancing market, their optimal strategy will be to offer
their nominal capacities at the day-ahead market. If the
majority follows that strategy, the over-supply of cheap
energy on the day-ahead market suggests that the market
may be cleared at a relative low price. Consequently,
having the majority of stochastic producers offer their
capacities, will cause a deficit in the balancing market,
given that a producer’s output cannot exceed its nominal
capacity. In turn, this may push up the balancing prices.

The observation that it is not optimal for a producer
to offer its nominal capacity if all others also follow this
strategy, relates to the behavior of a market population,
whereby it is in an individual’s best interest to act against
the majority. The action set ai of stochastic producer
i facing the dilemma of either offering its nominal
capacity or a zero bid, is denoted by ai = {1,−1} with
1 corresponding to an offer equal to its capacity and −1
to an offer equal to zero KWh. Fig. 1 summarizes the
gains and losses for a producer at each time step in the
evolution of the MG. Specifically, the gain is equal to
ρi = sgn(A) ·ED where A =

∑N
i=1 ai, with a stochastic

producer in the minority group receiving ρ, while one
belonging in the majority group facing a loss equal to
−ρ. This shows that stochastic producers decide on their
actions based only on whether their action will put them
in the minority or the majority.

We manipulate Eq. (3) so that stochastic producers’
revenues express gains at each time step, by subtracting
λBE∗Ẽ, and then dividing by E∗.

P ∗ =
P − λBE∗Ẽ

E∗ = (λD − λB)ED (4)

By doing so, the scaled revenue depends only on the
day-ahead offer and the difference between the day-
ahead and real-time markets which dictates the pro-
ducer’s optimal strategy. It can be seen that ρ = A·|P ∗|
with ED being equal to either E∗ or 0.

B. Learning Rules for Stochastic Producers

Having modified the payment structure in the one-
price electricity market so that it can express the gains
for stochastic producers at each iteration of the MG, we
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pi(t+ 1) =

 0 if pi(t)− ε(N(t)−N )ai(t) < 0
1 if pi(t)− ε(N(t)−N )ai(t) > 1
pi(t)− ε(N(t)−N )ai(t) otherwise

(5)

pi(t+ 1) =

 0 if pi(t)− εsgn(N(t)−N )ai(t) < 0
1 if pi(t)− εsgn(N(t)−N )ai(t) > 1
pi(t)− εsgn(N(t)−N )ai(t) otherwise

(6)

pi(t+ 1) =

 0 if pi(t)− ε(N(t)−N ) < 0
1 if pi(t)− ε(N(t)−N ) > 1
pi(t)− ε(N(t)−N )ai(t) otherwise

(7)

proceed to develop the adaptive learning rule that defines
their interactions within the market. As mentioned in
Section II-C adaptive learning rules are based on the
simple intuition that market participants will tend to
maximize their positive experience, in this case associ-
ated with belonging in the minority group. Based on [9]
we depart from the classic literature in Minority Games
[8] and the El Farol Bar Problem [7] relying on inductive
learning approaches that assume market participants’
capacity to predict the market outcome i.e. day-ahead
and real-time prices and all other producers’ production.
In doing so, we provide an efficient explanation of
market dynamics that does not rely on information that
is either impossible or too costly to obtain.

Against this background, we introduce pi as the proba-
bility of stochastic producer i offering its nominal capac-
ity. Initially, we assume that there is pi(0)% chance that
a producer will offer its capacity with pi(0) ∼ U(0, 1).
Let {1, 0} denote the actions available to a producer,
M their total number and N the threshold that defines
majority and minority in a market. In consistence with
MG literature, we assume that M is an odd number
2k + 1 with k ∈ N and N = k + 1. The value of N
suggests that the cardinality of the minority set is equal
to k and of the majority set equal to k + 1.

In this context, we assume that in the t-th iteration of
the algorithm, each producer’s action ai(t) is a random
variable drawn from a Bernoulli random distribution
with p = pi(t). Furthermore, N(t) denotes the number
of producers reporting their nominal capacities, with
N(t) =

∑M
i=1 ai(t). The operation of the algorithm is

simple: At each time t the producer flips a biased coin
with probability pi(t), with pi(t) increasing proportion-
ally to N(t)−N on a positive outcome, and decreasing
on a negative outcome. By positive and negative outcome
we refer to the producer offering its nominal capacity
ending in the minority or majority groups respectively.

Over time, producers gather information about the
state of the market, which they ‘store’ in pi, with the
evolution of pi(t) described in Eqs. (5)-(7). It should be
noted that the probabilistic element ai(t) in Eqs. (5) and
(6) represents the adaptive learning process, while its
absence in Eq. (7) suggests that producers have access
to full information regarding the market’s state, mimick-
ing the information structure of the inductive learning
process. Indeed, the rule in Eq. (7) is updated based on
the total participation of the market at a previous time
step, while rules in Eqs. (5) and (6) allow producers to
decide based only on their prior experience.

Irrespective of how the learning rule is updated, there
is a significant constraint given that pi(t) denotes a
probability and therefore takes values in [0, 1]. This
may not necessarily be the case for (N(t) − N )ai(t)
or N(t) − N , hence we introduce a parameter ε that
defines how producers adapt to new information. Most
importantly, parameter ε can be used to express the
evolution of pi(t) based on a payoff scheme. Specifically,
for the rule described in Eq. (6), the use of the sign
function defined in Eq. (1), introduces a form of payoff
similar to the gains or losses, in accordance to the
payment structure in Fig. 1. A producer offering its
nominal capacity expects to receive a gain equal to ε
if it ends up in the minority group, or −ε if it ends in
the majority group.

Consequently, we further manipulate P ∗ to include ε
by scaling Eq. (4) so it takes values in [0, 1]. To do so,
we introduce an upper bound for |λD−λB | equal to the
value of the lost load, denoted by VL. The total revenue
of a stochastic producer is given by

P = VLE
∗P ∗∗ + λBE∗Ẽ (8)

where P ∗∗ is given by

P ∗∗ =
λD − λB

VL
ED (9)
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which is then used as the basis of the parameter ε of the
adaptive learning rules s.t.

ε =
|λD − λB |

VL
(10)

To this end, the whole process is the following:
Step 0 The parameter of the Bernoulli trial that de-

cides whether producer i will offer its nominal
capacity is initiated s.t. pi(t = 0) ∼ U(0, 1)

Step 1 All producers submit their offers in the day-
ahead market, with stochastic producers of-
fering their nominal capacity with probability
pi(t) and the market cleared at price λD(t).

Step 2 Stochastic production is drawn from Gi and
balancing market is cleared at price λB(t).

Step 3 The parameter pi(t+ 1) is updated based on ε
from Eq. (10) and values of λD(t) and λB(t).

IV. NUMERICAL SIMULATIONS

In this section, we illustrate the evolution of the
producers’ behavior in the market, through a numerical
simulation based on a version of the IEEE Reliability
Test System 1996 [10]. While we omit the network
structure, we improve the setup by including marginal
costs for conventional generation based on [15] and by
adding flexible generators capable of providing up and
down regulation following [16]. Finally, the cost of up-
regulation is assumed to be 10% higher than the day-
ahead cost and the cost of down-regulation 9% less than
the day-ahead ahead costs1.

Regarding stochastic generation, we assume zero
marginal cost [17] and cost free spilling action, while
load shedding, VL, induces a cost of 1000 £/MWh. We
guarantee feasibility of the market clearing by assuming
that the total demand is at 80% of the conventional
generation [16], while the total capacity of the 39
stochastic producers is at 30% of the demand. Stochastic
generation uncertainty is modeled by a Beta distribution
in consistence with the related literature (cf. [18], [17])
defined by mean µi and variance equal to 0.05. The mean
can be viewed as the point forecasts that the stochastic
producers may submit as offers in the day-ahead market
and for the simulations are sampled from a Uniform
distribution U(0.3, 0.6). The parameters αi and βi of the
Beta distribution are defined as

α =
(1− µ)µ2

σ2
− µ, β =

(1− µ)a
µ

(11)

We study the competition within the stochastic pro-
ducers in a simulated market environment as it evolves

1The full dataset can be found on
http://dx.doi.org/10.5281/zenodo.56362

Fig. 2. Evolution of adaptive learning rules.

Fig. 3. Participation in the electricity market.

through 5000 time steps. In this context, Fig. 2 illustrates
the convergence properties of the adaptive learning rules
while Fig. 3 the evolution of the day-ahead market
participation for all three learning rules. The ‘adaptive:
varying step’ uses the ε derived from Eq. 10, while
‘fixed step’ assumes ε = 0.01. In Table I we provide
some summary statistics for the three learning rules and
a conventional setup where stochastic producers report
their point forecasts in the day-ahead market.

Now, Fig. 2 shows that for a fixed step, the day-ahead
market converges relatively fast to a state where the
population is divided in two groups: those in the minority
offering their nominal capacity and those in the majority
bidding zero, while for the varying step the convergence
is slower, due to the values of ε being close to 0.001.
This shows that producers manage to coordinate their
behavior despite acting with little information available
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TABLE I
TOTAL PROFIT FOR WIND POWER PRODUCERS.

varying fixed inductive pt. forecast

Avg. DA 29572 29672 30958 25762
Avg. RT -4629 -4664 -6670 -216

Avg. total 24943 25008 24287 25546
Sd. Error 38.81 38.54 42.49 31.11
Eq. total 26507 26507 26751 n/a

and only interested in maximizing their own gains. As
mentioned in [9], employing adaptive learning rules
allows the market to achieve a Pareto efficient outcome,
converging to a pure strategy Nash equilibrium.

Such behavior is an inherent property of the adaptive
rules as opposed to the inductive learning one. As shown
in Fig.3, the use of an inductive learning rule a pattern
similar to the agents’ attendance in the El Farol Bar
as also mentioned in [9], [7]. The apparent noise in
the market outcome is also captured by the standard
deviation over the 5000 time steps, equal to 0.64, 1.31,
2.88 for the fixed, varying and inductive learning rules
respectively. Finally, Table I shows that for MG based
studies producers have increased profits in equilibrium
(Eg. Total) compared to a market whereby all stochastic
producers report their point forecasts in the day-ahead
market (Avg. total for pt. forecast).

V. CONCLUSIONS AND FUTURE WORK

In this paper we draw analogies between the El Farol
Bar Problem, a specific example of a Minority Game
and electricity markets. We study the competition among
stochastic producers using a set of learning rules to
identify their actions in the day-ahead market followed
by a one-price balancing market. We illustrate through
numerical simulations that adaptive learning rules can
lead to the coordination of self-interested producers
having access to minimum information on the outcome
of the market and their peers’ actions.

For future research we intend to generalize to both
one-price and two-price balancing markets, while intro-
ducing additional uncertainty in the form of probabilistic
estimates of market clearing prices. Furthermore we
intend to focus on local aspects of the power system e.g.,
congestion issues between zones in wider geographical
areas and develop more advanced learning rules that will
be able to capture more complex behavior patterns that
may arise e.g., incentive based learning for producers
offering their full capacity in congested nodes.
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