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Abstract—This paper evaluates how different risk preferences
of electricity producers alter the market-clearing outcomes.
Toward this goal, we propose a stochastic equilibrium model
for electricity markets with two settlements, i.e., day-ahead and
balancing, in which a number of conventional and stochastic
renewable (e.g., wind power) producers compete. We assume
that all producers are price-taking and can be risk-averse, while
loads are inelastic to price. Renewable power production is
the only source of uncertainty considered. The risk of profit
variability of each producer is incorporated into the model
using the conditional value-at-risk (CVaR) metric. The proposed
equilibrium model consists of several risk-constrained profit
maximization problems (one per producer), several curtailment
cost minimization problems (one per load), and power balance
constraints. Each optimization problem is then replaced by
its optimality conditions, resulting in a mixed complementarity
problem. Numerical results from a case study based on the IEEE
one-area reliability test system are derived and discussed.

Index Terms—Risk, equilibrium, wind power, uncertainty, day-
ahead, balancing.

NOTATION

Indices and Sets:

l Index for loads
g Index for conventional producers
q Index for renewable power producers
ω Index for renewable power scenarios

Constants:

Cg Offer price of conventional producer g [e/MWh],
equal to its marginal cost

CDW
g Offer price of conventional producer g for downward

reserve deployment [e/MWh]
CUP
g Offer price of conventional producer g for upward

reserve deployment [e/MWh]
Pl Power consumption of load l [MW]
Pmax
g Capacity of conventional producer g [MW]

RDW
g Maximum downward reserve limit of conventional

producer g [MW/h]
RUP
g Maximum upward reserve limit of conventional pro-

ducer g [MW/h]
Vl Value of curtailed load for load l [e/MWh]
Wq,ω Renewable power realization of producer q under

scenario ω [MW]

Wmax
q Installed capacity of renewable power producer q

[MW]
ϕω Probability of scenario ω
α ∈ (0, 1), which is confidence level used to compute

the conditional value-at-risk
β A non-negative weighting parameter modeling the

tradeoff between expected profit and conditional
value-at-risk

Variables in Day-Ahead Stage:

pDA
g Dispatched power output of conventional producer g

[MW]
wDA
q Dispatched power output of renewable power pro-

ducer q [MW]
λDA Day-ahead market-clearing price [e/MWh]

Variables in Balancing Stage:

pcurl,ω Involuntarily load curtailment of load l under sce-
nario ω [MW]

rDW
g,ω Downward reserve provided by conventional pro-

ducer g under scenario ω [MW]
rUP
g,ω Upward reserve provided by conventional producer

g under scenario ω [MW]
wB
q,ω Renewable power deviation of producer q under

scenario ω [MW]
λBω Probability-weighted balancing market-clearing price

under scenario ω [e/MWh]

Risk Variables:

ζ Value-at-risk
η Auxiliary variable to compute the conditional value-

at-risk

I. INTRODUCTION

The continuously increasing penetration of variable renew-
able energy sources, e.g., wind and solar power producers,
in electricity markets motivates to use stochastic platforms
for various decision-making problems, e.g., market clearing.
For example, references [1]-[4] address the market-clearing
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problem using a stochastic setup for perfectly competitive elec-
tricity markets with two settlements: day-ahead and balancing.
In these works, all producers are assumed to be price-taking
and risk-neutral, and a market operator clears the market by
solving a single optimization problem, whose objective is to
maximize the expected social welfare of the market, or to
minimize the expected system cost in markets with inelastic
loads. The market-clearing outcomes are in fact the solution
of an equilibrium problem, in which no producer desires to
deviate from its power schedule. In other words, none of
producers can increase its expected profit in the equilibrium
point by changing unilaterally its schedule.

In electricity markets with stochastic renewable energy
sources, all producers, either renewable or conventional, are
exposed to the risk of profit variability. This raises several
technical questions: how to model different risk preferences
of producers? What are their impacts on market-clearing
outcomes? and etc. Note that the market-clearing outcomes
(equilibrium solution) should support all risk preferences,
otherwise the unsatisfied producers may move the equilibrium
point to their own favor.

Several papers incorporate the risk management into the
market-clearing problem. Reference [5] proposes a stochastic
two-settlement equilibrium model for markets considering
renewable incentives, e.g., feed-in premiums, that generate risk
exposures for both conventional and renewable producers. A
distributed market-clearing mechanism is proposed in [6] to
minimize the system cost, including conventional generation
costs, end-user disutility, as well as a risk measure of the
system redispatching cost. In addition, a risk-based day-ahead
unit commitment model is proposed in [7] that considers the
risks of the loss of load, wind curtailment and transmission
congestion caused by wind power uncertainty.

In a similar line with [5], we propose a stochastic two-stage
equilibrium model, in which all conventional and renewable
producers are price-taking and can be risk-averse, while loads
are inelastic to price. Renewable power production is the
only source of uncertainty considered. The risk of profit
variability of each producer is incorporated into the model
using the conditional value-at-risk (CVaR) metric [8]. Inspired
by [9] that proposes a single-stage deterministic equilibrium
model, the stochastic two-stage equilibrium model proposed
in the current paper consists of several risk-constrained profit
maximization problems (one per producer), several curtailment
cost minimization problems (one per load), and power balance
constraints. Each optimization problem is then replaced by its
optimality conditions, resulting in a mixed complementarity
problem. The numerical results achieved in this paper show
how market-clearing prices, system cost, and power dispatches
vary with different risk preferences of producers.

II. PROPOSED EQUILIBRIUM MODEL

The proposed stochastic two-stage equilibrium model con-
sists of four blocks as illustrated in Fig. 1. In the first
block, each conventional producer g, either risk-neutral or
risk-averse, maximizes its expected profit in day-ahead and
balancing stages. Similarly, each renewable power producer

Common market constraints including: 
 Power balance (15) in day‐ahead stage
 Power balances (16) in balancing stage, one per scenario

Profit‐maximization problem (1)‐(8) for each risk‐averse 
conventional generator g 
Profit‐maximization problem (1)‐(8) for each risk‐averse 
conventional generator g 
Profit‐maximization  problem  (1)‐(8)  for  each  conventional 
producer g (either risk‐neutral or risk‐averse)  

Profit‐maximization problem (1)‐(8) for each risk‐averse 
conventional generator g 
Profit‐maximization problem (1)‐(8) for each risk‐averse 
conventional generator g 
Profit‐maximization  problem  (9)‐(13)  for  each  renewable 
power producer q (either risk‐neutral or risk‐averse)  

Profit‐maximization problem (1)‐(8) for each risk‐averse 
conventional generator g 
Profit‐maximization problem (1)‐(8) for each risk‐averse 
conventional generator g 
Curtailment  cost‐minimization  problem  (14)‐(15)  for  each 
inelastic load l 

Fig. 1. Structure of the proposed stochastic two-stage equilibrium model with
risk-averse producers

q, either risk-neutral or risk-averse, maximizes its profit in
the second block. In addition, each inelastic load minimizes
its cost incurred by involuntarily load curtailment in the third
block. As common constraints of the market included in the
fourth block, we enforce the power balances in day-ahead and
balancing stages, whose dual variables provide the market-
clearing prices. Note that those prices are variables in the
equilibrium model, while they are treated as fixed values
(parameters) within the producers’ and loads’ optimization
problems, i.e., blocks 1 to 3.

Problem (1)-(8) below presents the profit-maximization
problem of each conventional producer g. Note that the dual
variables are indicated within constraints following a colon.{

Maximize
pDA
g , rUP

g,ω, r
DW
g,ω , ζg, ηg,ω

pDA
g

(
λDA − Cg

)
+
∑
ω

ϕω

[
λBω
ϕω

(
rUP
g,ω − rDW

g,ω

)
− CUP

g rUP
g,ω + CDW

g rDW
g,ω

]
+ βg

[
ζg −

1

1− αg

∑
ω

ϕω ηg,ω

]
(1)

subject to:

0 ≤ pDA
g ≤ Pmax

g : µDA
g
, µDA
g (2)

pDA
g + rUP

g,ω ≤ Pmax
g : ρBg,ω ∀ω (3)

rDW
g,ω ≤ pDA

g : ρB
g,ω
∀ω (4)

0 ≤ rUP
g,ω ≤ RUP

g : ρUP
g,ω
, ρUP
g,ω ∀ω (5)

0 ≤ rDW
g,ω ≤ RDW

g : ρDW
g,ω

, ρDW
g,ω ∀ω (6)

ηg,ω ≥ 0 : ρηg,ω ∀ω (7)

ζg −
[
pDA
g

(
λDA − Cg

)
+
λBω
ϕω

(
rUP
g,ω − rDW

g,ω

)
− CUP

g rUP
g,ω + CDW

g rDW
g,ω

]
≤ ηg,ω : ρCVaR

g,ω ∀ω (8)}
∀g.

The objective function (1) includes the day-ahead profit of
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producer g (the first line), the expected profit of that unit in
balancing stage (the second line), and the CVaR multiplied by
a non-negative factor, i.e., βg , making a tradeoff between the
expected profit and the CVaR (the third line). Note that βg = 0
means that conventional producer g is risk-neutral, while its
non-zero value implies that producer g is risk averse. A higher
positive value for βg makes conventional producer g more risk
averse [8].

Constraint (2) enforces the lower and upper bounds for
power schedule of producer g in day-ahead market, and con-
straints (3)-(6) restrict the reserve deployment of that producer
based on its generation capacity and maximum downward
and upward reserve limits. Finally, (7) and (8) are the CVaR
constraints. Note that ζg is a free variable and its optimal value
refers to the value-at-risk (VaR), which is the largest value for
the profit of producer g such that the probability of the profit
being lower than or equal to this value is lower than or equal
to 1−αg . Based on the VaR, the CVaR is the expected value
of profit values that are lower than or equal to the VaR.

Similarly, optimization problem (9)-(13) below allows each
renewable power producer q to make a trade-off between its
expected profit and CVaR:{

Maximize
wDA

q , wB
q,ω, ζq, ηq,ω

wDA
q λDA +

∑
ω

wB
q,ω λ

B
ω

+ βq

[
ζq −

1

1− αq

∑
ω

ϕω ηq,ω

]
(9)

subject to:

0 ≤ wDA
q ≤Wmax

q : µDA
q
, µDA
q (10)

0 ≤
(
wDA
q + wB

q,ω

)
≤Wq,ω : ρB

q,ω
, ρBq,ω ∀ω (11)

ηq,ω ≥ 0 : ρηq,ω ∀ω (12)

ζq −
[
wDA
q λDA +

λBω
ϕω

wB
q,ω

]
≤ ηq,ω : ρCVaR

q,ω ∀ω (13)}
∀q.

The objective function (9) includes the expected profit of
renewable power producer q (the first line) and its weighted
CVaR (the second line). The renewable power production cost
is assumed to be zero. Constraint (10) limits the day-ahead
schedule of producer q based on its installed capacity. For
each scenario, constraint (11) restricts the total production
of producer q to be non-negative and lower than the power
realization under that scenario. Note that this constraint allows
excess renewable power to be curtailed. Finally, (12) and (13)
are CVaR constraints.

In addition, each inelastic load minimizes its expected
curtailment cost as given by (14)-(15) below:{

Minimize
pcur
l,ω

∑
ω

ϕω p
cur
l,ω

(
Vl −

λBω
ϕω

)
(14)

subject to:
0 ≤ pcurl,ω ≤ Pl : ρcur

l,ω
, ρcurl,ω ∀ω (15)}

∀l.

TABLE I
DATA FOR CONVENTIONAL PRODUCERS

Unit Pmax
g RUP

g RDW
g Cg CUP

g CDW
g

(g) [MW] [MW] [MW] [e/MWh] [e/MWh] [e/MWh]

G1 40 0 0 11.09 - -

G2 40 0 0 11.09 - -

G3 152 40 40 16.60 18.26 14.94

G4 152 40 40 16.60 18.26 14.94

G5 300 105 105 18.52 20.37 16.67

G6 591 210 210 19.10 21.01 17.19

G7 60 60 60 22.41 24.65 20.17

G8 155 30 30 14.08 15.49 12.67

G9 155 30 30 14.08 15.49 12.67

G10 400 0 0 10.17 - -

G11 400 0 0 10.17 - -

G12 300 0 0 0 - -

G13 310 60 60 14.08 15.49 12.67

G14 350 40 40 12.46 13.71 11.21

Finally, constraints (16) and (17) are included in the equilib-
rium model enforcing the power balance equalities in day-
ahead and balancing markets, respectively:∑

l

Pl −
∑
g

pDA
g −

∑
q

wDA
q = 0 : λDA (16)∑

g

(
rUP
g,ω − rDW

g,ω

)
+
∑
q

wB
q,ω

+
∑
l

pcurl,ω = 0 : λBω ∀ω. (17)

All optimization problems included in the equilibrium
model (1)-(17) are continuous and linear. This allows us to
replace each optimization problem by its Karush-Kuhn-Tucker
(KKT) optimality conditions. Appendices A, B and C include
the KKT conditions associated with optimization problems of
conventional producers, renewable power producers and loads,
respectively. This way, the proposed equilibrium model (1)-
(17) is recast as a stochastic nonlinear mixed-complementarity
problem (MCP) including market constraints (16)-(17) and
KKT conditions (18)-(45). The resulting MCP is solvable
by PATH under GAMS or other complementarity problem
solvers.

III. NUMERICAL RESULTS

This section provides numerical results for a case study
based on the IEEE one-area reliability test system [10] in-
cluding 17 inelastic loads, 14 conventional producers (G1 to
G14), and two wind power producers (Q1 and Q2). Pursuing
simplicity, the network constraints are not enforced. The
consumption level of each load is identical to that in [10]
raised by 5%. A single hour is considered, and the total load
is 2992.5 MW. The technical data for conventional producers
are given in Table I. The total conventional generation capacity
is 3405 MW, whereas the total installed wind power capacity is
1586 MW. The wind power uncertainty is modeled through 48
equiprobable scenarios. According to the scenarios considered,
the wind power penetration, i.e., total expected wind power
divided by total load, is 23.3%. In addition, the total standard
deviation of the two wind producers is 363 MW, which equals
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TABLE II
EQUILIBRIUM RESULTS FOR DIFFERENT CASES

Case 1 Case 2 Case 3 Case 4 Case 5
Day-ahead market-clearing price [e/MWh] 16.481 16.557 16.759 16.600 17.840
Expected balancing market-clearing price [e/MWh] 16.481 16.557 16.759 12.456 10.808
Total dispatch of conventional producers in day-ahead [MW] 2234.1 2234.1 2234.1 2637.8 2534.1
Total dispatch of wind power producers in day-ahead [MW] 758.4 758.4 758.4 354.7 458.4
Total expected curtailed wind power [MW] 15.3 15.3 36.4 48.1 107.6
Total expected curtailed load [MW] 0 0 0 0 0
Expected system cost [e] including generation and load curtailment costs 25863.0 25898.2 26056.8 26442.6 27150.7
Total payment of loads [e] 49319.0 49546.8 50151.3 49675.5 53386.2

Wind power producer Q1

Expected profit [e] 4827.9 4856.0 3922.1 3523.8 5109.7
CVaR [e] -3398.3 -3349.2 -17652.8 1276.3 -779.2

Dispatch in day-ahead [MW] 387.1 387.1 387.1 82.6 385.7

Wind power producer Q2

Expected profit [e] 4575.8 4601.8 3725.4 4170.1 2691.2
CVaR [e] -4059.7 -4000.8 -18209.3 -149.0 732.0

Dispatch in day-ahead [MW] 371.3 371.3 371.3 272.1 72.7

Conventional producer G5

Expected profit [e] 108.7 77.5 323.3 333.2 170.1
CVaR [e] -2264.3 0 0 -2178.1 -13.6

Dispatch in day-ahead [MW] 105.0 0 0 105.0 20.1

Conventional producer G6

Expected profit [e] 127.1 127.1 665.8 602.9 41.6
CVaR [e] -1644.3 -4654.4 -47.0 -5533.7 0

Dispatch in day-ahead [MW] 59.1 164.1 20.1 210.0 0

Conventional producer G7

Expected profit [e] 18.1 18.1 158.5 117.5 310.5
CVaR [e] 0 0 0 -2526.3 -1942.4

Dispatch in day-ahead [MW] 0 0 0 60.0 60.0

to 52% of their expected production. The value of curtailed
load (Vl) for all loads are identical and equal to $200/MWh.

We consider the following five cases to evaluate how differ-
ent risk preferences of producers change the market-clearing
outcomes:
• Case 1) all producers are risk-neutral, i.e., βg = 0,∀g

and βq = 0,∀q.
• Case 2) this case is similar to Case 1, but βG5 = 1.

In this case, conventional producer G5 is the sole risk-
averse agent of the market.

• Case 3) this case is similar to Case 1, but βG5 = 2 and
βG6 = 1. This implies that G5 is more risk averse than
G6, while other producers are risk-neutral.

• Case 4) this case is similar to Case 1, but βQ1 = 2 and
βQ2 = 1. In this case, both wind power producers are
risk averse (with different weights), while all conven-
tional producers are risk-neutral.

• Case 5) this case is similar to Case 1, but βQ1 =
βQ2 = 1 and βG5 = βG6 = 10. In this case, the two
conventional producers G5 and G6 are more risk-averse
than the two wind power producers.

In all Cases 1 to 5, the confidence levels of all producers,
either conventional or renewable, are identical, i.e., αg =
0.95,∀g and αq = 0.95,∀q. The equilibrium results obtained
by solving MCP (16)-(45) for different cases are provided in
Table II. Rows 2 to 9 of this table refer to social market-
clearing outcomes, while the next rows correspond to individ-
ual market-clearing outcomes for both wind power producers
and some flexiable conventional producers, including G5, G6
and G7.

In Case 1, i.e., the risk-neutral case, the day-ahead and
balancing markets are arbitraged, and therefore, the day-ahead
and expected balancing prices are identical. Both wind power
producers and each flexiable (reserve provider) conventional

producer with high level of power schedules in day-ahead
market are exposed to comparatively high risk. The reason
for this is that their total generation levels in balancing stage
change across different scenarios.

In Case 2, the conventional producer G5 is risk averse.
Therefore, the expected profit of G5 decreases with respect
to that in Case 1, while its CVaR increases. In this case,
G5 is not scheduled in the day-ahead market. Instead of
G5, the power schedule of the risk-neutral producer G6 is
increased with respect to that in Case 1. Therefore, G6 is
exposed to higher risk. This change in power schedules of
conventional producers slightly increases the market prices,
since the production cost of G6 is comparatively higher than
that of G5. However, the day-ahead and expected balancing
prices are still identical. Note also that the total schedules of
conventional and wind power producers are not changed with
respect to Case 1.

In Case 3, both flexible producers G5 and G6 are risk
averse, but with different weights. Therefore, their day-ahead
schedules are comparatively lower than those in Cases 1 and
2. This leads to the lack of downward reserve sources in
the balancing stages, and thus, the expected curtailed wind
power increases. Thus, the expected profit of each wind power
producer drops considerably, while that of each flexiable
conventional producer increases. Note that the CVaR of each
wind power producer is significantly low with respect to that
in Cases 1 and 2. The market prices in Case 3 are slightly
increased, however, the day-ahead and the expected balancing
prices are still the same. In addition, the total schedules of
conventional and wind power producers are identical to those
in Cases 1 and 2.

In Case 4, both wind power producers are risk averse,
whereas all conventional producers are risk-neutral. Therefore,
compared to Case 1, the expected profit of each wind power
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producer decreases, while its CVaR significantly increases.
The most important observation is that the wind power produc-
ers tend to be dispatched in balancing stage in order to reduce
their own risk. Therefore, the total schedule of wind power
producers in day-ahead market decreases from 758.4 MW in
Cases 1-3 to 354.7 MW in Case 4, i.e., more wind power
is available in balancing stage. In contrast, the total schedule
of conventional producers in day-ahead market increases from
2234.1 MW in Cases 1-3 to 2637.8 MW in Case 4. Due to
the risk considerations of both wind power producers, the day-
ahead market-clearing price is comparatively higher than the
expected balancing price.

In Case 5, both wind power producers as well as flexiable
producers G5 and G6 are risk averse (different weights).
Therefore, all those producers tend to be less scheduled in
day-ahead market. This increases the gap between day-ahead
and expected balancing prices. Unlike producers G5 and G6,
the most expensive but risk-neutral producer, i.e., G7, is
fully dispatched in day-ahead market. The values for total
expected wind power curtailment, expected system cost and
total demand-side payment are highest in this case among all
Cases 1 to 5.

IV. CONCLUSION

This paper proposes a stochastic two-stage equilibrium
model for perfectly competitive electricity markets (including
day-ahead and balancing settlements) with risk-averse pro-
ducers, and then evaluates the effects of risk aversion on
market-clearing outcomes. This model is recast as a mixed
complementarity problem.

The numerical results reveal that the risk-averse producers
tend to be less scheduled in day-ahead market. This results
in increasing the system cost and market-clearing prices. The
most important conclusion of this work is that the day-ahead
and the expected balancing prices may not be identical if
all stochastic renewable producers are risk averse. The gap
between those two prices even increases in a case in which the
conventional reserve-provider producers are risk averse too.

APPENDIX A
The KKT conditions associated with optimization problem

(1)-(8) for each conventional producer g are given by (18)-(32)
below:

Cg − λDA + µDA
g − µDA

g

+
∑
ω

[
ρBg,ω − ρBg,ω − ρ

CVaR
g,ω

(
λDA − Cg

)]
= 0 ∀g (18)

φω C
UP
g − λBω + ρBg,ω + ρUP

g,ω − ρUP
g,ω

− ρCVaR
g,ω

(
λBω
ϕω
− CUP

g

)
= 0 ∀g,∀ω (19)

λBω − φω CDW
g + ρB

g,ω
+ ρDW

g,ω − ρDW
g,ω

+ ρCVaR
g,ω

(
λBω
ϕω
− CDW

g

)
= 0 ∀g,∀ω (20)

− βg +
∑
ω

ρCVaR
g,ω = 0 ∀g (21)

βg φω
1− αg

− ρηg,ω − ρCVaR
g,ω = 0 ∀g,∀ω (22)

0 ≤ pDA
g ⊥ µDA

g
≥ 0 ∀g (23)

0 ≤
[
Pmax
g − pDA

g

]
⊥ µDA

g ≥ 0 ∀g (24)

0 ≤
[
Pmax
g − pDA

g − rUP
g,ω

]
⊥ ρBg,ω ≥ 0 ∀g,∀ω (25)

0 ≤
[
pDA
g − rDW

g,ω

]
⊥ ρB

g,ω
≥ 0 ∀g,∀ω (26)

0 ≤ rUP
g,ω ⊥ ρUP

g,ω
≥ 0 ∀g,∀ω (27)

0 ≤
[
RUP
g − rUP

g,ω

]
⊥ ρUP

g,ω
≥ 0 ∀g,∀ω (28)

0 ≤ rDW
g,ω ⊥ ρDW

g,ω
≥ 0 ∀g,∀ω (29)

0 ≤
[
RDW
g − rDW

g,ω

]
⊥ ρDW

g,ω
≥ 0 ∀g,∀ω (30)

0 ≤ ηg,ω ⊥ ρηg,ω ≥ 0 ∀g,∀ω (31)

0 ≤
[
ηg,ω − ζg +

(
pDA
g

(
λDA − Cg

)
+
λBω
ϕω

(
rUP
g,ω − rDW

g,ω

)
− CUP

g rUP
g,ω + CDW

g rDW
g,ω

)]
⊥ ρCVaR

g,ω ≥ 0 ∀g,∀ω.

(32)

APPENDIX B

The KKT conditions associated with optimization problem
(9)-(13) for each renewable power producer q are given by
(33)-(42) below:

− λDA + µDA
q − µDA

q

+
∑
ω

(
ρBq,ω − ρBq,ω − ρ

CVaR
q,ω λDA

)
= 0 ∀q (33)

− λBω + ρBq,ω − ρBq,ω − ρ
CVaR
q,ω

λBω
ϕω

= 0 ∀q,∀ω (34)

− βq +
∑
ω

ρCVaR
q,ω = 0 ∀q (35)

βq φω
1− αq

− ρηq,ω − ρCVaR
q,ω = 0 ∀q,∀ω (36)

0 ≤ wDA
q ⊥ µDA

q
≥ 0 ∀q (37)

0 ≤
[
Wmax
q − wDA

q

]
⊥ µDA

q ≥ 0 ∀q (38)

0 ≤
[
wDA
q + wB

q,ω

]
⊥ ρB

q,ω
≥ 0 ∀q,∀ω (39)

0 ≤
[
Wq,ω − wDA

q − wB
q,ω

]
⊥ ρBq,ω ≥ 0 ∀q,∀ω (40)
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0 ≤ ηq,ω ⊥ ρηq,ω ≥ 0 ∀q,∀ω (41)

0 ≤
[
ηq,ω − ζq +

(
wDA
q λDA +

λBω
ϕω

wB
q,ω

)]
⊥ ρCVaR

q,ω ≥ 0 ∀q,∀ω. (42)

APPENDIX C

The KKT conditions associated with optimization problem
(14)-(15) for each load l are given by (43)-(45) below:

φω Vd − λBω + ρcurl,ω − ρcurl,ω
= 0 ∀l,∀ω (43)

0 ≤ pcurl,ω ⊥ ρcurl,ω
≥ 0 ∀l,∀ω (44)

0 ≤
[
Pl − pcurl,ω

]
⊥ ρcurl,ω ≥ 0 ∀l,∀ω. (45)
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